471 lines
97 KiB
Plaintext
471 lines
97 KiB
Plaintext
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome Deep Vision [0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mAwesome[0m[38;5;14m[1m[4m (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)[0m[38;2;255;187;0m[1m[4m (https://github.com/sindresorhus/awesome)[0m
|
||
|
||
[38;5;12mA curated list of deep learning resources for computer vision, inspired by [39m[38;5;14m[1mawesome-php[0m[38;5;12m (https://github.com/ziadoz/awesome-php) and [39m[38;5;14m[1mawesome-computer-vision[0m[38;5;12m (https://github.com/jbhuang0604/awesome-computer-vision).[39m
|
||
|
||
[38;5;12mMaintainers - [39m[38;5;14m[1mJiwon Kim[0m[38;5;12m (https://github.com/kjw0612), [39m[38;5;14m[1mHeesoo Myeong[0m[38;5;12m (https://github.com/hmyeong), [39m[38;5;14m[1mMyungsub Choi[0m[38;5;12m (https://github.com/myungsub), [39m[38;5;14m[1mJung Kwon Lee[0m[38;5;12m (https://github.com/deruci), [39m[38;5;14m[1mTaeksoo Kim[0m[38;5;12m (https://github.com/jazzsaxmafia)[39m
|
||
|
||
[38;5;12mThe project is not actively maintained. [39m
|
||
|
||
[38;2;255;187;0m[4mContributing[0m
|
||
[38;5;12mPlease feel free to [39m[38;5;14m[1mpull requests[0m[38;5;12m (https://github.com/kjw0612/awesome-deep-vision/pulls) to add papers.[39m
|
||
|
||
[38;5;14m[1m![0m[38;5;12mJoin the chat at https://gitter.im/kjw0612/awesome-deep-vision[39m[38;5;14m[1m (https://badges.gitter.im/Join%20Chat.svg)[0m[38;5;12m (https://gitter.im/kjw0612/awesome-deep-vision?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)[39m
|
||
|
||
[38;2;255;187;0m[4mSharing[0m
|
||
[38;5;12m+ [39m[38;5;14m[1mShare on Twitter[0m[38;5;12m (http://twitter.com/home?status=http://jiwonkim.org/awesome-deep-vision%0ADeep Learning Resources for Computer Vision)[39m
|
||
[38;5;12m+ [39m[38;5;14m[1mShare on Facebook[0m[38;5;12m (http://www.facebook.com/sharer/sharer.php?u=https://jiwonkim.org/awesome-deep-vision)[39m
|
||
[38;5;12m+ [39m[38;5;14m[1mShare on Google Plus[0m[38;5;12m (http://plus.google.com/share?url=https://jiwonkim.org/awesome-deep-vision)[39m
|
||
[38;5;12m+ [39m[38;5;14m[1mShare on LinkedIn[0m[38;5;12m (http://www.linkedin.com/shareArticle?mini=true&url=https://jiwonkim.org/awesome-deep-vision&title=Awesome%20Deep%20Vision&summary=&source=)[39m
|
||
|
||
[38;2;255;187;0m[4mTable of Contents[0m
|
||
[38;5;12m- [39m[38;5;14m[1mPapers[0m[38;5;12m (#papers)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mImageNet Classification[0m[38;5;12m (#imagenet-classification)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mObject Detection[0m[38;5;12m (#object-detection)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mObject Tracking[0m[38;5;12m (#object-tracking)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mLow-Level Vision[0m[38;5;12m (#low-level-vision)[39m
|
||
[48;5;235m[38;5;249m- **Super-Resolution** (#super-resolution)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **Other Applications** (#other-applications)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mEdge Detection[0m[38;5;12m (#edge-detection)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mSemantic Segmentation[0m[38;5;12m (#semantic-segmentation)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mVisual Attention and Saliency[0m[38;5;12m (#visual-attention-and-saliency)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mObject Recognition[0m[38;5;12m (#object-recognition)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mHuman Pose Estimation[0m[38;5;12m (#human-pose-estimation)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mUnderstanding CNN[0m[38;5;12m (#understanding-cnn)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mImage and Language[0m[38;5;12m (#image-and-language)[39m
|
||
[48;5;235m[38;5;249m- **Image Captioning** (#image-captioning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **Video Captioning** (#video-captioning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **Question Answering** (#question-answering)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mImage Generation[0m[38;5;12m (#image-generation)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mOther Topics[0m[38;5;12m (#other-topics)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCourses[0m[38;5;12m (#courses)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBooks[0m[38;5;12m (#books)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mVideos[0m[38;5;12m (#videos)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSoftware[0m[38;5;12m (#software)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mFramework[0m[38;5;12m (#framework)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mApplications[0m[38;5;12m (#applications)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTutorials[0m[38;5;12m (#tutorials)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBlogs[0m[38;5;12m (#blogs)[39m
|
||
|
||
[38;2;255;187;0m[4mPapers[0m
|
||
|
||
[38;2;255;187;0m[4mImageNet Classification[0m
|
||
[38;5;12m![39m[38;5;14m[1mclassification[0m[38;5;12m (https://cloud.githubusercontent.com/assets/5226447/8451949/327b9566-2022-11e5-8b34-53b4a64c13ad.PNG)[39m
|
||
[38;5;12m(from Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012.)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMicrosoft (Deep Residual Learning) [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1512.03385v1.pdf)[0m[38;5;12m [39m[38;5;12mSlide[39m[38;5;14m[1m (http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition, arXiv:1512.03385.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMicrosoft (PReLu/Weight Initialization) [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1502.01852)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, arXiv:1502.01852.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mBatch Normalization [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1502.03167)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSergey Ioffe, Christian Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv:1502.03167.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mGoogLeNet [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1409.4842)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mChristian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, CVPR, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mVGG-Net [39m[38;5;12mWeb[39m[38;5;14m[1m [0m[38;5;12m (http://www.robots.ox.ac.uk/~vgg/research/very_deep/) [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1409.1556)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKaren Simonyan and Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Visual Recognition, ICLR, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAlexNet [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://papers.nips.cc/book/advances-in-neural-information-processing-systems-25-2012)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAlex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012.[39m
|
||
|
||
[38;2;255;187;0m[4mObject Detection[0m
|
||
[38;5;12m![39m[38;5;14m[1mobject_detection[0m[38;5;12m (https://cloud.githubusercontent.com/assets/5226447/8452063/f76ba500-2022-11e5-8db1-2cd5d490e3b3.PNG)[39m
|
||
[38;5;12m(from Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, arXiv:1506.01497.)[39m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mPVANET [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/pdf/1608.08021) [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/sanghoon/pva-faster-rcnn)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKye-Hyeon Kim, Sanghoon Hong, Byungseok Roh, Yeongjae Cheon, Minje Park, PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection, arXiv:1608.08021[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mOverFeat, NYU [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1312.6229.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mOverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks, ICLR, 2014.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mR-CNN, UC Berkeley [39m[38;5;12mPaper-CVPR14[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf) [39m[38;5;12mPaper-arXiv14[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1311.2524)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mRoss Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR, 2014.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSPP, Microsoft Research [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1406.4729)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition, ECCV, 2014.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFast R-CNN, Microsoft Research [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1504.08083)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mRoss Girshick, Fast R-CNN, arXiv:1504.08083.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFaster R-CNN, Microsoft Research [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1506.01497)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mShaoqing Ren, Kaiming He, Ross Girshick, Jian Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, arXiv:1506.01497.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mR-CNN minus R, Oxford [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1506.06981)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKarel Lenc, Andrea Vedaldi, R-CNN minus R, arXiv:1506.06981.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mEnd-to-end people detection in crowded scenes [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/abs/1506.04878)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mRussell Stewart, Mykhaylo Andriluka, End-to-end people detection in crowded scenes, arXiv:1506.04878.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mYou[39m[38;5;12m [39m[38;5;12mOnly[39m[38;5;12m [39m[38;5;12mLook[39m[38;5;12m [39m[38;5;12mOnce:[39m[38;5;12m [39m[38;5;12mUnified,[39m[38;5;12m [39m[38;5;12mReal-Time[39m[38;5;12m [39m[38;5;12mObject[39m[38;5;12m [39m[38;5;12mDetection[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m[38;5;12m(http://arxiv.org/abs/1506.02640),[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;12m [39m[38;5;12mVersion[39m[38;5;12m [39m[38;5;12m2[39m[38;5;14m[1m [0m[38;5;12m [39m[38;5;12m(https://arxiv.org/abs/1612.08242),[39m[38;5;12m [39m[38;5;12mC[39m[38;5;12m [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m [39m[38;5;12m(https://github.com/pjreddie/darknet),[39m[38;5;12m [39m[38;5;12mTensorflow[39m[38;5;12m [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||
[38;5;12m(https://github.com/thtrieu/darkflow)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJoseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, You Only Look Once: Unified, Real-Time Object Detection, arXiv:1506.02640[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJoseph Redmon, Ali Farhadi (Version 2)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mInside-Outside Net [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/abs/1512.04143)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSean Bell, C. Lawrence Zitnick, Kavita Bala, Ross Girshick, Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mDeep Residual Network (Current State-of-the-Art) [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/abs/1512.03385)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mWeakly Supervised Object Localization with Multi-fold Multiple Instance Learning [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1503.00949.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mR-FCN [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1605.06409) [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/daijifeng001/R-FCN)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJifeng Dai, Yi Li, Kaiming He, Jian Sun, R-FCN: Object Detection via Region-based Fully Convolutional Networks[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSSD [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/pdf/1512.02325v2.pdf) [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/weiliu89/caffe/tree/ssd)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mWei Liu1, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg, SSD: Single Shot MultiBox Detector, arXiv:1512.02325[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSpeed/accuracy trade-offs for modern convolutional object detectors [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/pdf/1611.10012v1.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, Kevin Murphy, Google Research, arXiv:1611.10012[39m
|
||
|
||
[38;2;255;187;0m[4mVideo Classification[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mNicolas Ballas, Li Yao, Pal Chris, Aaron Courville, "Delving Deeper into Convolutional Networks for Learning Video Representations", ICLR 2016. [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.06432v4.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMichael Mathieu, camille couprie, Yann Lecun, "Deep Multi Scale Video Prediction Beyond Mean Square Error", ICLR 2016. [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.05440v6.pdf)[0m[38;5;12m [39m
|
||
|
||
[38;2;255;187;0m[4mObject Tracking[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSeunghoon Hong, Tackgeun You, Suha Kwak, Bohyung Han, Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network, arXiv:1502.06796. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1502.06796)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHanxi Li, Yi Li and Fatih Porikli, DeepTrack: Learning Discriminative Feature Representations by Convolutional Neural Networks for Visual Tracking, BMVC, 2014. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.bmva.org/bmvc/2014/files/paper028.pdf)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mN Wang, DY Yeung, Learning a Deep Compact Image Representation for Visual Tracking, NIPS, 2013. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://winsty.net/papers/dlt.pdf)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mChao[39m[38;5;12m [39m[38;5;12mMa,[39m[38;5;12m [39m[38;5;12mJia-Bin[39m[38;5;12m [39m[38;5;12mHuang,[39m[38;5;12m [39m[38;5;12mXiaokang[39m[38;5;12m [39m[38;5;12mYang[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mMing-Hsuan[39m[38;5;12m [39m[38;5;12mYang,[39m[38;5;12m [39m[38;5;12mHierarchical[39m[38;5;12m [39m[38;5;12mConvolutional[39m[38;5;12m [39m[38;5;12mFeatures[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mVisual[39m[38;5;12m [39m[38;5;12mTracking,[39m[38;5;12m [39m[38;5;12mICCV[39m[38;5;12m [39m[38;5;12m2015[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m
|
||
[38;5;14m[1m(http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Ma_Hierarchical_Convolutional_Features_ICCV_2015_paper.pdf)[0m[38;5;12m [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;14m[1m(https://github.com/jbhuang0604/CF2)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mLijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu, Visual Tracking with fully Convolutional Networks, ICCV 2015 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://202.118.75.4/lu/Paper/ICCV2015/iccv15_lijun.pdf)[0m[38;5;12m [39m[38;5;12mCode[39m[38;5;14m[1m (https://github.com/scott89/FCNT)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHyeonseob[39m[38;5;12m [39m[38;5;12mNamand[39m[38;5;12m [39m[38;5;12mBohyung[39m[38;5;12m [39m[38;5;12mHan,[39m[38;5;12m [39m[38;5;12mLearning[39m[38;5;12m [39m[38;5;12mMulti-Domain[39m[38;5;12m [39m[38;5;12mConvolutional[39m[38;5;12m [39m[38;5;12mNeural[39m[38;5;12m [39m[38;5;12mNetworks[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mVisual[39m[38;5;12m [39m[38;5;12mTracking,[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;14m[1m(http://arxiv.org/pdf/1510.07945.pdf)[0m[38;5;12m [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;14m[1m(https://github.com/HyeonseobNam/MDNet)[0m[38;5;12m [39m[38;5;12mProject[39m[38;5;12m [39m[38;5;12mPage[39m[38;5;14m[1m [0m
|
||
[38;5;14m[1m(http://cvlab.postech.ac.kr/research/mdnet/)[0m[38;5;12m [39m
|
||
|
||
[38;2;255;187;0m[4mLow-Level Vision[0m
|
||
|
||
[38;2;255;187;0m[4mSuper-Resolution[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mIterative Image Reconstruction[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSven Behnke: Learning Iterative Image Reconstruction. IJCAI, 2001. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.ais.uni-bonn.de/behnke/papers/ijcai01.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSven[39m[38;5;12m [39m[38;5;12mBehnke:[39m[38;5;12m [39m[38;5;12mLearning[39m[38;5;12m [39m[38;5;12mIterative[39m[38;5;12m [39m[38;5;12mImage[39m[38;5;12m [39m[38;5;12mReconstruction[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mNeural[39m[38;5;12m [39m[38;5;12mAbstraction[39m[38;5;12m [39m[38;5;12mPyramid.[39m[38;5;12m [39m[38;5;12mInternational[39m[38;5;12m [39m[38;5;12mJournal[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mComputational[39m[38;5;12m [39m[38;5;12mIntelligence[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mApplications,[39m[38;5;12m [39m[38;5;12mvol.[39m[38;5;12m [39m[38;5;12m1,[39m[38;5;12m [39m[38;5;12mno.[39m[38;5;12m [39m[38;5;12m4,[39m[38;5;12m [39m[38;5;12mpp.[39m[38;5;12m [39m[38;5;12m427-438,[39m[38;5;12m [39m[38;5;12m2001.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||
[38;5;12m(http://www.ais.uni-bonn.de/behnke/papers/ijcia01.pdf)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSuper-Resolution (SRCNN) [39m[38;5;12mWeb[39m[38;5;14m[1m [0m[38;5;12m (http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html) [39m[38;5;12mPaper-ECCV14[39m[38;5;14m[1m [0m[38;5;12m (http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepresolution.pdf) [39m[38;5;12mPaper-arXiv15[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1501.00092.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mChao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Learning a Deep Convolutional Network for Image Super-Resolution, ECCV, 2014.[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mChao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Image Super-Resolution Using Deep Convolutional Networks, arXiv:1501.00092.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mVery Deep Super-Resolution[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJiwon Kim, Jung Kwon Lee, Kyoung Mu Lee, Accurate Image Super-Resolution Using Very Deep Convolutional Networks, arXiv:1511.04587, 2015. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/abs/1511.04587)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mDeeply-Recursive Convolutional Network[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJiwon Kim, Jung Kwon Lee, Kyoung Mu Lee, Deeply-Recursive Convolutional Network for Image Super-Resolution, arXiv:1511.04491, 2015. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/abs/1511.04491)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mCasade-Sparse-Coding-Network[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mZhaowen[39m[38;5;12m [39m[38;5;12mWang,[39m[38;5;12m [39m[38;5;12mDing[39m[38;5;12m [39m[38;5;12mLiu,[39m[38;5;12m [39m[38;5;12mWei[39m[38;5;12m [39m[38;5;12mHan,[39m[38;5;12m [39m[38;5;12mJianchao[39m[38;5;12m [39m[38;5;12mYang[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mThomas[39m[38;5;12m [39m[38;5;12mS.[39m[38;5;12m [39m[38;5;12mHuang,[39m[38;5;12m [39m[38;5;12mDeep[39m[38;5;12m [39m[38;5;12mNetworks[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mImage[39m[38;5;12m [39m[38;5;12mSuper-Resolution[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mSparse[39m[38;5;12m [39m[38;5;12mPrior.[39m[38;5;12m [39m[38;5;12mICCV,[39m[38;5;12m [39m[38;5;12m2015.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m[38;5;12m(http://www.ifp.illinois.edu/~dingliu2/iccv15/iccv15.pdf)[39m[38;5;12m [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||
[38;5;12m(http://www.ifp.illinois.edu/~dingliu2/iccv15/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mPerceptual Losses for Super-Resolution[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJustin[39m[38;5;12m [39m[38;5;12mJohnson,[39m[38;5;12m [39m[38;5;12mAlexandre[39m[38;5;12m [39m[38;5;12mAlahi,[39m[38;5;12m [39m[38;5;12mLi[39m[38;5;12m [39m[38;5;12mFei-Fei,[39m[38;5;12m [39m[38;5;12mPerceptual[39m[38;5;12m [39m[38;5;12mLosses[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mReal-Time[39m[38;5;12m [39m[38;5;12mStyle[39m[38;5;12m [39m[38;5;12mTransfer[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mSuper-Resolution,[39m[38;5;12m [39m[38;5;12marXiv:1603.08155,[39m[38;5;12m [39m[38;5;12m2016.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m[38;5;12m(http://arxiv.org/abs/1603.08155)[39m[38;5;12m [39m[38;5;12mSupplementary[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||
[38;5;12m(http://cs.stanford.edu/people/jcjohns/papers/fast-style/fast-style-supp.pdf)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSRGAN[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mChristian[39m[38;5;12m [39m[38;5;12mLedig,[39m[38;5;12m [39m[38;5;12mLucas[39m[38;5;12m [39m[38;5;12mTheis,[39m[38;5;12m [39m[38;5;12mFerenc[39m[38;5;12m [39m[38;5;12mHuszar,[39m[38;5;12m [39m[38;5;12mJose[39m[38;5;12m [39m[38;5;12mCaballero,[39m[38;5;12m [39m[38;5;12mAndrew[39m[38;5;12m [39m[38;5;12mCunningham,[39m[38;5;12m [39m[38;5;12mAlejandro[39m[38;5;12m [39m[38;5;12mAcosta,[39m[38;5;12m [39m[38;5;12mAndrew[39m[38;5;12m [39m[38;5;12mAitken,[39m[38;5;12m [39m[38;5;12mAlykhan[39m[38;5;12m [39m[38;5;12mTejani,[39m[38;5;12m [39m[38;5;12mJohannes[39m[38;5;12m [39m[38;5;12mTotz,[39m[38;5;12m [39m[38;5;12mZehan[39m[38;5;12m [39m[38;5;12mWang,[39m[38;5;12m [39m[38;5;12mWenzhe[39m[38;5;12m [39m[38;5;12mShi,[39m[38;5;12m [39m[38;5;12mPhoto-Realistic[39m[38;5;12m [39m[38;5;12mSingle[39m[38;5;12m [39m[38;5;12mImage[39m[38;5;12m [39m[38;5;12mSuper-Resolution[39m[38;5;12m [39m[38;5;12mUsing[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mGenerative[39m
|
||
[38;5;12mAdversarial[39m[38;5;12m [39m[38;5;12mNetwork,[39m[38;5;12m [39m[38;5;12marXiv:1609.04802v3,[39m[38;5;12m [39m[38;5;12m2016.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m[38;5;12m(https://arxiv.org/pdf/1609.04802v3.pdf)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mOthers[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mOsendorfer, Christian, Hubert Soyer, and Patrick van der Smagt, Image Super-Resolution with Fast Approximate Convolutional Sparse Coding, ICONIP, 2014. [39m[38;5;12mPaper ICONIP-2014[39m[38;5;14m[1m [0m[38;5;12m (http://brml.org/uploads/tx_sibibtex/281.pdf)[39m
|
||
|
||
[38;2;255;187;0m[4mOther Applications[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mOptical Flow (FlowNet) [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1504.06852)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mPhilipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Häusser, Caner Hazırbaş, Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, Thomas Brox, FlowNet: Learning Optical Flow with Convolutional Networks, arXiv:1504.06852.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mCompression Artifacts Reduction [39m[38;5;12mPaper-arXiv15[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1504.06993)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mChao Dong, Yubin Deng, Chen Change Loy, Xiaoou Tang, Compression Artifacts Reduction by a Deep Convolutional Network, arXiv:1504.06993.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mBlur Removal[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mChristian J. Schuler, Michael Hirsch, Stefan Harmeling, Bernhard Schölkopf, Learning to Deblur, arXiv:1406.7444 [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1406.7444.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJian Sun, Wenfei Cao, Zongben Xu, Jean Ponce, Learning a Convolutional Neural Network for Non-uniform Motion Blur Removal, CVPR, 2015 [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1503.00593)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mImage Deconvolution [39m[38;5;12mWeb[39m[38;5;14m[1m [0m[38;5;12m (http://lxu.me/projects/dcnn/) [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://lxu.me/mypapers/dcnn_nips14.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mLi Xu, Jimmy SJ. Ren, Ce Liu, Jiaya Jia, Deep Convolutional Neural Network for Image Deconvolution, NIPS, 2014.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mDeep Edge-Aware Filter [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://jmlr.org/proceedings/papers/v37/xub15.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mLi Xu, Jimmy SJ. Ren, Qiong Yan, Renjie Liao, Jiaya Jia, Deep Edge-Aware Filters, ICML, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mComputing the Stereo Matching Cost with a Convolutional Neural Network [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zbontar_Computing_the_Stereo_2015_CVPR_paper.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJure Žbontar, Yann LeCun, Computing the Stereo Matching Cost with a Convolutional Neural Network, CVPR, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mColorful Image Colorization Richard Zhang, Phillip Isola, Alexei A. Efros, ECCV, 2016 [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1603.08511.pdf), [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/richzhang/colorization)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mRyan Dahl, [39m[38;5;12mBlog[39m[38;5;14m[1m [0m[38;5;12m (http://tinyclouds.org/colorize/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFeature Learning by Inpainting[39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/pdf/1604.07379v1.pdf)[39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/pathak22/context-encoder)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mDeepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, Alexei A. Efros, Context Encoders: Feature Learning by Inpainting, CVPR, 2016[39m
|
||
|
||
[38;2;255;187;0m[4mEdge Detection[0m
|
||
[38;5;12m![39m[38;5;14m[1medge_detection[0m[38;5;12m (https://cloud.githubusercontent.com/assets/5226447/8452371/93ca6f7e-2025-11e5-90f2-d428fd5ff7ac.PNG)[39m
|
||
[38;5;12m(from Gedas Bertasius, Jianbo Shi, Lorenzo Torresani, DeepEdge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection, CVPR, 2015.)[39m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHolistically-Nested Edge Detection [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1504.06375) [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/s9xie/hed)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSaining Xie, Zhuowen Tu, Holistically-Nested Edge Detection, arXiv:1504.06375.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mDeepEdge [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1412.1123)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mGedas Bertasius, Jianbo Shi, Lorenzo Torresani, DeepEdge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection, CVPR, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mDeepContour [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://mc.eistar.net/UpLoadFiles/Papers/DeepContour_cvpr15.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mWei Shen, Xinggang Wang, Yan Wang, Xiang Bai, Zhijiang Zhang, DeepContour: A Deep Convolutional Feature Learned by Positive-Sharing Loss for Contour Detection, CVPR, 2015.[39m
|
||
|
||
[38;2;255;187;0m[4mSemantic Segmentation[0m
|
||
[38;5;12m![39m[38;5;14m[1msemantic_segmantation[0m[38;5;12m (https://cloud.githubusercontent.com/assets/5226447/8452076/0ba8340c-2023-11e5-88bc-bebf4509b6bb.PNG)[39m
|
||
[38;5;12m(from Jifeng Dai, Kaiming He, Jian Sun, BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation, arXiv:1503.01640.)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mPASCAL VOC2012 Challenge Leaderboard (01 Sep. 2016)[39m
|
||
[38;5;12m ![39m[38;5;14m[1mVOC2012_top_rankings[0m[38;5;12m (https://cloud.githubusercontent.com/assets/3803777/18164608/c3678488-7038-11e6-9ec1-74a1542dce13.png)[39m
|
||
[38;5;12m (from PASCAL VOC2012 [39m[38;5;14m[1mleaderboards[0m[38;5;12m (http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6))[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSEC: Seed, Expand and Constrain[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12m [39m[38;5;12mAlexander[39m[38;5;12m [39m[38;5;12mKolesnikov,[39m[38;5;12m [39m[38;5;12mChristoph[39m[38;5;12m [39m[38;5;12mLampert,[39m[38;5;12m [39m[38;5;12mSeed,[39m[38;5;12m [39m[38;5;12mExpand[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mConstrain:[39m[38;5;12m [39m[38;5;12mThree[39m[38;5;12m [39m[38;5;12mPrinciples[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mWeakly-Supervised[39m[38;5;12m [39m[38;5;12mImage[39m[38;5;12m [39m[38;5;12mSegmentation,[39m[38;5;12m [39m[38;5;12mECCV,[39m[38;5;12m [39m[38;5;12m2016.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m[38;5;12m(http://pub.ist.ac.at/~akolesnikov/files/ECCV2016/main.pdf)[39m[38;5;12m [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||
[38;5;12m(https://github.com/kolesman/SEC)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAdelaide[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mGuosheng Lin, Chunhua Shen, Ian Reid, Anton van dan Hengel, Efficient piecewise training of deep structured models for semantic segmentation, arXiv:1504.01013. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1504.01013) (1st ranked in VOC2012)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mGuosheng Lin, Chunhua Shen, Ian Reid, Anton van den Hengel, Deeply Learning the Messages in Message Passing Inference, arXiv:1508.02108. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1506.02108) (4th ranked in VOC2012)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mDeep Parsing Network (DPN)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mZiwei Liu, Xiaoxiao Li, Ping Luo, Chen Change Loy, Xiaoou Tang, Semantic Image Segmentation via Deep Parsing Network, arXiv:1509.02634 / ICCV 2015 [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1509.02634.pdf) (2nd ranked in VOC 2012)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mCentraleSuperBoundaries, INRIA [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1511.07386)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mIasonas Kokkinos, Surpassing Humans in Boundary Detection using Deep Learning, arXiv:1411.07386 (4th ranked in VOC 2012)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mBoxSup [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1503.01640)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJifeng Dai, Kaiming He, Jian Sun, BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation, arXiv:1503.01640. (6th ranked in VOC2012)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mPOSTECH[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHyeonwoo Noh, Seunghoon Hong, Bohyung Han, Learning Deconvolution Network for Semantic Segmentation, arXiv:1505.04366. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1505.04366) (7th ranked in VOC2012)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSeunghoon Hong, Hyeonwoo Noh, Bohyung Han, Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation, arXiv:1506.04924. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1506.04924)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSeunghoon[39m[38;5;12m [39m[38;5;12mHong,Junhyuk[39m[38;5;12m [39m[38;5;12mOh,[39m[38;5;12m [39m[38;5;12mBohyung[39m[38;5;12m [39m[38;5;12mHan,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mHonglak[39m[38;5;12m [39m[38;5;12mLee,[39m[38;5;12m [39m[38;5;12mLearning[39m[38;5;12m [39m[38;5;12mTransferrable[39m[38;5;12m [39m[38;5;12mKnowledge[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mSemantic[39m[38;5;12m [39m[38;5;12mSegmentation[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mDeep[39m[38;5;12m [39m[38;5;12mConvolutional[39m[38;5;12m [39m[38;5;12mNeural[39m[38;5;12m [39m[38;5;12mNetwork,[39m[38;5;12m [39m[38;5;12marXiv:1512.07928[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;14m[1m(http://arxiv.org/pdf/1512.07928.pdf)[0m[38;5;12m [39m[38;5;12mProject[39m[38;5;12m [39m[38;5;12mPage[39m[38;5;14m[1m [0m
|
||
[38;5;14m[1m(http://cvlab.postech.ac.kr/research/transfernet/)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mConditional Random Fields as Recurrent Neural Networks [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1502.03240)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mShuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang Huang, Philip H. S. Torr, Conditional Random Fields as Recurrent Neural Networks, arXiv:1502.03240. (8th ranked in VOC2012)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mDeepLab[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mLiang-Chieh Chen, George Papandreou, Kevin Murphy, Alan L. Yuille, Weakly-and semi-supervised learning of a DCNN for semantic image segmentation, arXiv:1502.02734. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1502.02734) (9th ranked in VOC2012)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mZoom-out [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Mostajabi_Feedforward_Semantic_Segmentation_2015_CVPR_paper.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMohammadreza Mostajabi, Payman Yadollahpour, Gregory Shakhnarovich, Feedforward Semantic Segmentation With Zoom-Out Features, CVPR, 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJoint Calibration [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1507.01581)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHolger Caesar, Jasper Uijlings, Vittorio Ferrari, Joint Calibration for Semantic Segmentation, arXiv:1507.01581.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFully[39m[38;5;12m [39m[38;5;12mConvolutional[39m[38;5;12m [39m[38;5;12mNetworks[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mSemantic[39m[38;5;12m [39m[38;5;12mSegmentation[39m[38;5;12m [39m[38;5;12mPaper-CVPR15[39m[38;5;14m[1m [0m[38;5;12m [39m[38;5;12m(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf)[39m[38;5;12m [39m[38;5;12mPaper-arXiv15[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||
[38;5;12m(http://arxiv.org/pdf/1411.4038)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJonathan Long, Evan Shelhamer, Trevor Darrell, Fully Convolutional Networks for Semantic Segmentation, CVPR, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHypercolumn [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Hariharan_Hypercolumns_for_Object_2015_CVPR_paper.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mBharath Hariharan, Pablo Arbelaez, Ross Girshick, Jitendra Malik, Hypercolumns for Object Segmentation and Fine-Grained Localization, CVPR, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mDeep Hierarchical Parsing[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAbhishek[39m[38;5;12m [39m[38;5;12mSharma,[39m[38;5;12m [39m[38;5;12mOncel[39m[38;5;12m [39m[38;5;12mTuzel,[39m[38;5;12m [39m[38;5;12mDavid[39m[38;5;12m [39m[38;5;12mW.[39m[38;5;12m [39m[38;5;12mJacobs,[39m[38;5;12m [39m[38;5;12mDeep[39m[38;5;12m [39m[38;5;12mHierarchical[39m[38;5;12m [39m[38;5;12mParsing[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mSemantic[39m[38;5;12m [39m[38;5;12mSegmentation,[39m[38;5;12m [39m[38;5;12mCVPR,[39m[38;5;12m [39m[38;5;12m2015.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||
[38;5;12m(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Sharma_Deep_Hierarchical_Parsing_2015_CVPR_paper.pdf)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mLearning Hierarchical Features for Scene Labeling [39m[38;5;12mPaper-ICML12[39m[38;5;14m[1m [0m[38;5;12m (http://yann.lecun.com/exdb/publis/pdf/farabet-icml-12.pdf) [39m[38;5;12mPaper-PAMI13[39m[38;5;14m[1m [0m[38;5;12m (http://yann.lecun.com/exdb/publis/pdf/farabet-pami-13.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mClement Farabet, Camille Couprie, Laurent Najman, Yann LeCun, Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers, ICML, 2012.[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mClement Farabet, Camille Couprie, Laurent Najman, Yann LeCun, Learning Hierarchical Features for Scene Labeling, PAMI, 2013.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniversity of Cambridge [39m[38;5;12mWeb[39m[38;5;14m[1m [0m[38;5;12m (http://mi.eng.cam.ac.uk/projects/segnet/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mVijay Badrinarayanan, Alex Kendall and Roberto Cipolla "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation." arXiv preprint arXiv:1511.00561, 2015. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/abs/1511.00561)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAlex[39m[38;5;12m [39m[38;5;12mKendall,[39m[38;5;12m [39m[38;5;12mVijay[39m[38;5;12m [39m[38;5;12mBadrinarayanan[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mRoberto[39m[38;5;12m [39m[38;5;12mCipolla[39m[38;5;12m [39m[38;5;12m"Bayesian[39m[38;5;12m [39m[38;5;12mSegNet:[39m[38;5;12m [39m[38;5;12mModel[39m[38;5;12m [39m[38;5;12mUncertainty[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mDeep[39m[38;5;12m [39m[38;5;12mConvolutional[39m[38;5;12m [39m[38;5;12mEncoder-Decoder[39m[38;5;12m [39m[38;5;12mArchitectures[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mScene[39m[38;5;12m [39m[38;5;12mUnderstanding."[39m[38;5;12m [39m[38;5;12marXiv[39m[38;5;12m [39m[38;5;12mpreprint[39m[38;5;12m [39m[38;5;12marXiv:1511.02680,[39m[38;5;12m [39m[38;5;12m2015.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||
[38;5;12m(http://arxiv.org/abs/1511.00561)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mPrinceton[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFisher Yu, Vladlen Koltun, "Multi-Scale Context Aggregation by Dilated Convolutions", ICLR 2016, [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.07122v2.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. of Washington, Allen AI[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHamid[39m[38;5;12m [39m[38;5;12mIzadinia,[39m[38;5;12m [39m[38;5;12mFereshteh[39m[38;5;12m [39m[38;5;12mSadeghi,[39m[38;5;12m [39m[38;5;12mSantosh[39m[38;5;12m [39m[38;5;12mKumar[39m[38;5;12m [39m[38;5;12mDivvala,[39m[38;5;12m [39m[38;5;12mYejin[39m[38;5;12m [39m[38;5;12mChoi,[39m[38;5;12m [39m[38;5;12mAli[39m[38;5;12m [39m[38;5;12mFarhadi,[39m[38;5;12m [39m[38;5;12m"Segment-Phrase[39m[38;5;12m [39m[38;5;12mTable[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mSemantic[39m[38;5;12m [39m[38;5;12mSegmentation,[39m[38;5;12m [39m[38;5;12mVisual[39m[38;5;12m [39m[38;5;12mEntailment[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mParaphrasing",[39m[38;5;12m [39m[38;5;12mICCV,[39m[38;5;12m [39m[38;5;12m2015,[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m
|
||
[38;5;14m[1m(http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Izadinia_Segment-Phrase_Table_for_ICCV_2015_paper.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mINRIA[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mIasonas Kokkinos, "Pusing the Boundaries of Boundary Detection Using deep Learning", ICLR 2016, [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.07386v2.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUCSB[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mNiloufar[39m[38;5;12m [39m[38;5;12mPourian,[39m[38;5;12m [39m[38;5;12mS.[39m[38;5;12m [39m[38;5;12mKarthikeyan,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mB.S.[39m[38;5;12m [39m[38;5;12mManjunath,[39m[38;5;12m [39m[38;5;12m"Weakly[39m[38;5;12m [39m[38;5;12msupervised[39m[38;5;12m [39m[38;5;12mgraph[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12msemantic[39m[38;5;12m [39m[38;5;12msegmentation[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mcommunities[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mimage-parts",[39m[38;5;12m [39m[38;5;12mICCV,[39m[38;5;12m [39m[38;5;12m2015,[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m
|
||
[38;5;14m[1m(http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pourian_Weakly_Supervised_Graph_ICCV_2015_paper.pdf)[0m[38;5;12m [39m
|
||
|
||
[38;2;255;187;0m[4mVisual Attention and Saliency[0m
|
||
[38;5;12m![39m[38;5;14m[1msaliency[0m[38;5;12m (https://cloud.githubusercontent.com/assets/5226447/8492362/7ec65b88-2183-11e5-978f-017e45ddba32.png)[39m
|
||
[38;5;12m(from Nian Liu, Junwei Han, Dingwen Zhang, Shifeng Wen, Tianming Liu, Predicting Eye Fixations using Convolutional Neural Networks, CVPR, 2015.)[39m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMr-CNN [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Liu_Predicting_Eye_Fixations_2015_CVPR_paper.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mNian Liu, Junwei Han, Dingwen Zhang, Shifeng Wen, Tianming Liu, Predicting Eye Fixations using Convolutional Neural Networks, CVPR, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mLearning a Sequential Search for Landmarks [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Singh_Learning_a_Sequential_2015_CVPR_paper.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSaurabh Singh, Derek Hoiem, David Forsyth, Learning a Sequential Search for Landmarks, CVPR, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMultiple Object Recognition with Visual Attention [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1412.7755.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJimmy Lei Ba, Volodymyr Mnih, Koray Kavukcuoglu, Multiple Object Recognition with Visual Attention, ICLR, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mRecurrent Models of Visual Attention [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mVolodymyr Mnih, Nicolas Heess, Alex Graves, Koray Kavukcuoglu, Recurrent Models of Visual Attention, NIPS, 2014.[39m
|
||
|
||
[38;2;255;187;0m[4mObject Recognition[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mWeakly-supervised learning with convolutional neural networks [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Oquab_Is_Object_Localization_2015_CVPR_paper.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMaxime Oquab, Leon Bottou, Ivan Laptev, Josef Sivic, Is object localization for free? – Weakly-supervised learning with convolutional neural networks, CVPR, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFV-CNN [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Cimpoi_Deep_Filter_Banks_2015_CVPR_paper.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMircea Cimpoi, Subhransu Maji, Andrea Vedaldi, Deep Filter Banks for Texture Recognition and Segmentation, CVPR, 2015.[39m
|
||
|
||
[38;2;255;187;0m[4mHuman Pose Estimation[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mZhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh, Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields, CVPR, 2017.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mLeonid Pishchulin, Eldar Insafutdinov, Siyu Tang, Bjoern Andres, Mykhaylo Andriluka, Peter Gehler, and Bernt Schiele, Deepcut: Joint subset partition and labeling for multi person pose estimation, CVPR, 2016.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mShih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh, Convolutional pose machines, CVPR, 2016.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAlejandro Newell, Kaiyu Yang, and Jia Deng, Stacked hourglass networks for human pose estimation, ECCV, 2016.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTomas Pfister, James Charles, and Andrew Zisserman, Flowing convnets for human pose estimation in videos, ICCV, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJonathan J. Tompson, Arjun Jain, Yann LeCun, Christoph Bregler, Joint training of a convolutional network and a graphical model for human pose estimation, NIPS, 2014.[39m
|
||
|
||
[38;2;255;187;0m[4mUnderstanding CNN[0m
|
||
[38;5;12m![39m[38;5;14m[1munderstanding[0m[38;5;12m (https://cloud.githubusercontent.com/assets/5226447/8452083/1aaa0066-2023-11e5-800b-2248ead51584.PNG)[39m
|
||
[38;5;12m(from Aravindh Mahendran, Andrea Vedaldi, Understanding Deep Image Representations by Inverting Them, CVPR, 2015.)[39m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKarel[39m[38;5;12m [39m[38;5;12mLenc,[39m[38;5;12m [39m[38;5;12mAndrea[39m[38;5;12m [39m[38;5;12mVedaldi,[39m[38;5;12m [39m[38;5;12mUnderstanding[39m[38;5;12m [39m[38;5;12mimage[39m[38;5;12m [39m[38;5;12mrepresentations[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mmeasuring[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m[38;5;12mequivariance[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mequivalence,[39m[38;5;12m [39m[38;5;12mCVPR,[39m[38;5;12m [39m[38;5;12m2015.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||
[38;5;12m(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Lenc_Understanding_Image_Representations_2015_CVPR_paper.pdf)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAnh[39m[38;5;12m [39m[38;5;12mNguyen,[39m[38;5;12m [39m[38;5;12mJason[39m[38;5;12m [39m[38;5;12mYosinski,[39m[38;5;12m [39m[38;5;12mJeff[39m[38;5;12m [39m[38;5;12mClune,[39m[38;5;12m [39m[38;5;12mDeep[39m[38;5;12m [39m[38;5;12mNeural[39m[38;5;12m [39m[38;5;12mNetworks[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mEasily[39m[38;5;12m [39m[38;5;12mFooled:High[39m[38;5;12m [39m[38;5;12mConfidence[39m[38;5;12m [39m[38;5;12mPredictions[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mUnrecognizable[39m[38;5;12m [39m[38;5;12mImages,[39m[38;5;12m [39m[38;5;12mCVPR,[39m[38;5;12m [39m[38;5;12m2015.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||
[38;5;12m(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Nguyen_Deep_Neural_Networks_2015_CVPR_paper.pdf)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAravindh[39m[38;5;12m [39m[38;5;12mMahendran,[39m[38;5;12m [39m[38;5;12mAndrea[39m[38;5;12m [39m[38;5;12mVedaldi,[39m[38;5;12m [39m[38;5;12mUnderstanding[39m[38;5;12m [39m[38;5;12mDeep[39m[38;5;12m [39m[38;5;12mImage[39m[38;5;12m [39m[38;5;12mRepresentations[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mInverting[39m[38;5;12m [39m[38;5;12mThem,[39m[38;5;12m [39m[38;5;12mCVPR,[39m[38;5;12m [39m[38;5;12m2015.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||
[38;5;12m(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Mahendran_Understanding_Deep_Image_2015_CVPR_paper.pdf)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mBolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba, Object Detectors Emerge in Deep Scene CNNs, ICLR, 2015. [39m[38;5;12marXiv Paper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/abs/1412.6856)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAlexey Dosovitskiy, Thomas Brox, Inverting Visual Representations with Convolutional Networks, arXiv, 2015. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/abs/1506.02753)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMatthrew Zeiler, Rob Fergus, Visualizing and Understanding Convolutional Networks, ECCV, 2014. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf)[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mImage and Language[0m
|
||
|
||
[38;2;255;187;0m[4mImage Captioning[0m
|
||
[38;5;12m![39m[38;5;14m[1mimage_captioning[0m[38;5;12m (https://cloud.githubusercontent.com/assets/5226447/8452051/e8f81030-2022-11e5-85db-c68e7d8251ce.PNG)[39m
|
||
[38;5;12m(from Andrej Karpathy, Li Fei-Fei, Deep Visual-Semantic Alignments for Generating Image Description, CVPR, 2015.)[39m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUCLA / Baidu [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1410.1090)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJunhua Mao, Wei Xu, Yi Yang, Jiang Wang, Alan L. Yuille, Explain Images with Multimodal Recurrent Neural Networks, arXiv:1410.1090.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mToronto [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1411.2539)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mRyan Kiros, Ruslan Salakhutdinov, Richard S. Zemel, Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, arXiv:1411.2539.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mBerkeley [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1411.4389)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, Trevor Darrell, Long-term Recurrent Convolutional Networks for Visual Recognition and Description, arXiv:1411.4389.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mGoogle [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1411.4555)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mOriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan, Show and Tell: A Neural Image Caption Generator, arXiv:1411.4555.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mStanford [39m[38;5;12mWeb[39m[38;5;14m[1m [0m[38;5;12m (http://cs.stanford.edu/people/karpathy/deepimagesent/) [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://cs.stanford.edu/people/karpathy/cvpr2015.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAndrej Karpathy, Li Fei-Fei, Deep Visual-Semantic Alignments for Generating Image Description, CVPR, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUML / UT [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1412.4729)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSubhashini Venugopalan, Huijuan Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, Kate Saenko, Translating Videos to Natural Language Using Deep Recurrent Neural Networks, NAACL-HLT, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mCMU / Microsoft [39m[38;5;12mPaper-arXiv[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1411.5654) [39m[38;5;12mPaper-CVPR[39m[38;5;14m[1m [0m[38;5;12m (http://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mXinlei Chen, C. Lawrence Zitnick, Learning a Recurrent Visual Representation for Image Caption Generation, arXiv:1411.5654.[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mXinlei Chen, C. Lawrence Zitnick, Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation, CVPR 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMicrosoft [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1411.4952)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHao[39m[38;5;12m [39m[38;5;12mFang,[39m[38;5;12m [39m[38;5;12mSaurabh[39m[38;5;12m [39m[38;5;12mGupta,[39m[38;5;12m [39m[38;5;12mForrest[39m[38;5;12m [39m[38;5;12mIandola,[39m[38;5;12m [39m[38;5;12mRupesh[39m[38;5;12m [39m[38;5;12mSrivastava,[39m[38;5;12m [39m[38;5;12mLi[39m[38;5;12m [39m[38;5;12mDeng,[39m[38;5;12m [39m[38;5;12mPiotr[39m[38;5;12m [39m[38;5;12mDollár,[39m[38;5;12m [39m[38;5;12mJianfeng[39m[38;5;12m [39m[38;5;12mGao,[39m[38;5;12m [39m[38;5;12mXiaodong[39m[38;5;12m [39m[38;5;12mHe,[39m[38;5;12m [39m[38;5;12mMargaret[39m[38;5;12m [39m[38;5;12mMitchell,[39m[38;5;12m [39m[38;5;12mJohn[39m[38;5;12m [39m[38;5;12mC.[39m[38;5;12m [39m[38;5;12mPlatt,[39m[38;5;12m [39m[38;5;12mC.[39m[38;5;12m [39m[38;5;12mLawrence[39m[38;5;12m [39m[38;5;12mZitnick,[39m[38;5;12m [39m[38;5;12mGeoffrey[39m[38;5;12m [39m[38;5;12mZweig,[39m[38;5;12m [39m[38;5;12mFrom[39m[38;5;12m [39m[38;5;12mCaptions[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mVisual[39m[38;5;12m [39m[38;5;12mConcepts[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mBack,[39m[38;5;12m [39m[38;5;12mCVPR,[39m[38;5;12m [39m
|
||
[38;5;12m2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. Montreal / Univ. Toronto [39m[38;5;12mWeb[39m[38;5;14m[1m (http://kelvinxu.github.io/projects/capgen.html)[0m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m (http://www.cs.toronto.edu/~zemel/documents/captionAttn.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, Yoshua Bengio, Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention, arXiv:1502.03044 / ICML 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mIdiap / EPFL / Facebook [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1502.03671)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mRemi Lebret, Pedro O. Pinheiro, Ronan Collobert, Phrase-based Image Captioning, arXiv:1502.03671 / ICML 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUCLA / Baidu [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1504.06692)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJunhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, Alan L. Yuille, Learning like a Child: Fast Novel Visual Concept Learning from Sentence Descriptions of Images, arXiv:1504.06692[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMS + Berkeley[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJacob Devlin, Saurabh Gupta, Ross Girshick, Margaret Mitchell, C. Lawrence Zitnick, Exploring Nearest Neighbor Approaches for Image Captioning, arXiv:1505.04467 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1505.04467.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJacob[39m[38;5;12m [39m[38;5;12mDevlin,[39m[38;5;12m [39m[38;5;12mHao[39m[38;5;12m [39m[38;5;12mCheng,[39m[38;5;12m [39m[38;5;12mHao[39m[38;5;12m [39m[38;5;12mFang,[39m[38;5;12m [39m[38;5;12mSaurabh[39m[38;5;12m [39m[38;5;12mGupta,[39m[38;5;12m [39m[38;5;12mLi[39m[38;5;12m [39m[38;5;12mDeng,[39m[38;5;12m [39m[38;5;12mXiaodong[39m[38;5;12m [39m[38;5;12mHe,[39m[38;5;12m [39m[38;5;12mGeoffrey[39m[38;5;12m [39m[38;5;12mZweig,[39m[38;5;12m [39m[38;5;12mMargaret[39m[38;5;12m [39m[38;5;12mMitchell,[39m[38;5;12m [39m[38;5;12mLanguage[39m[38;5;12m [39m[38;5;12mModels[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mImage[39m[38;5;12m [39m[38;5;12mCaptioning:[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mQuirks[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mWhat[39m[38;5;12m [39m[38;5;12mWorks,[39m[38;5;12m [39m[38;5;12marXiv:1505.01809[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;14m[1m(http://arxiv.org/pdf/1505.01809.pdf)[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAdelaide [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.01144.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mQi Wu, Chunhua Shen, Anton van den Hengel, Lingqiao Liu, Anthony Dick, Image Captioning with an Intermediate Attributes Layer, arXiv:1506.01144[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTilburg [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.03694.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mGrzegorz Chrupala, Akos Kadar, Afra Alishahi, Learning language through pictures, arXiv:1506.03694[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. Montreal [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1507.01053.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKyunghyun Cho, Aaron Courville, Yoshua Bengio, Describing Multimedia Content using Attention-based Encoder-Decoder Networks, arXiv:1507.01053[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mCornell [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1508.02091.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJack Hessel, Nicolas Savva, Michael J. Wilber, Image Representations and New Domains in Neural Image Captioning, arXiv:1508.02091[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMS + City Univ. of HongKong [39m[38;5;12mPaper[39m[38;5;14m[1m (http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Learning_Query_and_ICCV_2015_paper.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTing Yao, Tao Mei, and Chong-Wah Ngo, "Learning Query and Image Similarities[39m
|
||
[48;5;235m[38;5;249mwith Ranking Canonical Correlation Analysis", ICCV, 2015[49m[39m
|
||
|
||
[38;2;255;187;0m[4mVideo Captioning[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mBerkeley [39m[38;5;12mWeb[39m[38;5;14m[1m [0m[38;5;12m (http://jeffdonahue.com/lrcn/) [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1411.4389.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, Trevor Darrell, Long-term Recurrent Convolutional Networks for Visual Recognition and Description, CVPR, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUT / UML / Berkeley [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1412.4729)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSubhashini Venugopalan, Huijuan Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, Kate Saenko, Translating Videos to Natural Language Using Deep Recurrent Neural Networks, arXiv:1412.4729.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMicrosoft [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1505.01861)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mYingwei Pan, Tao Mei, Ting Yao, Houqiang Li, Yong Rui, Joint Modeling Embedding and Translation to Bridge Video and Language, arXiv:1505.01861.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUT / Berkeley / UML [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1505.00487)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSubhashini Venugopalan, Marcus Rohrbach, Jeff Donahue, Raymond Mooney, Trevor Darrell, Kate Saenko, Sequence to Sequence--Video to Text, arXiv:1505.00487.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. Montreal / Univ. Sherbrooke [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1502.08029.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mLi Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Ballas, Christopher Pal, Hugo Larochelle, Aaron Courville, Describing Videos by Exploiting Temporal Structure, arXiv:1502.08029[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMPI / Berkeley [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.01698.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAnna Rohrbach, Marcus Rohrbach, Bernt Schiele, The Long-Short Story of Movie Description, arXiv:1506.01698[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. Toronto / MIT [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.06724.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mYukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, Sanja Fidler, Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books, arXiv:1506.06724[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. Montreal [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1507.01053.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKyunghyun Cho, Aaron Courville, Yoshua Bengio, Describing Multimedia Content using Attention-based Encoder-Decoder Networks, arXiv:1507.01053[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTAU / USC [39m[38;5;12mpaper[39m[38;5;14m[1m (https://arxiv.org/pdf/1612.06950.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mDotan Kaufman, Gil Levi, Tal Hassner, Lior Wolf, Temporal Tessellation for Video Annotation and Summarization, arXiv:1612.06950.[39m
|
||
|
||
[38;2;255;187;0m[4mQuestion Answering[0m
|
||
[38;5;12m![39m[38;5;14m[1mquestion_answering[0m[38;5;12m (https://cloud.githubusercontent.com/assets/5226447/8452068/ffe7b1f6-2022-11e5-87ab-4f6d4696c220.PNG)[39m
|
||
[38;5;12m(from Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh, VQA: Visual Question Answering, CVPR, 2015 SUNw:Scene Understanding workshop)[39m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mVirginia Tech / MSR [39m[38;5;12mWeb[39m[38;5;14m[1m [0m[38;5;12m (http://www.visualqa.org/) [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1505.00468)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mStanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh, VQA: Visual Question Answering, CVPR, 2015 SUNw:Scene Understanding workshop.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMPI / Berkeley [39m[38;5;12mWeb[39m[38;5;14m[1m [0m[38;5;12m (https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/visual-turing-challenge/) [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1505.01121)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMateusz Malinowski, Marcus Rohrbach, Mario Fritz, Ask Your Neurons: A Neural-based Approach to Answering Questions about Images, arXiv:1505.01121.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mToronto [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1505.02074) [39m[38;5;12mDataset[39m[38;5;14m[1m [0m[38;5;12m (http://www.cs.toronto.edu/~mren/imageqa/data/cocoqa/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMengye Ren, Ryan Kiros, Richard Zemel, Image Question Answering: A Visual Semantic Embedding Model and a New Dataset, arXiv:1505.02074 / ICML 2015 deep learning workshop.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mBaidu / UCLA [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1505.05612) [39m[38;5;12mDataset[39m[38;5;14m[1m [0m[38;5;12m ()[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHauyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang, Lei Wang, Wei Xu, Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question Answering, arXiv:1505.05612.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mPOSTECH [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.05756.pdf)[0m[38;5;12m [39m[38;5;12mProject Page[39m[38;5;14m[1m (http://cvlab.postech.ac.kr/research/dppnet/)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHyeonwoo Noh, Paul Hongsuck Seo, and Bohyung Han, Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction, arXiv:1511.05765[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mCMU / Microsoft Research [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.02274v2.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mYang, Z., He, X., Gao, J., Deng, L., & Smola, A. (2015). Stacked Attention Networks for Image Question Answering. arXiv:1511.02274.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMetaMind [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1603.01417v1.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mXiong, Caiming, Stephen Merity, and Richard Socher. "Dynamic Memory Networks for Visual and Textual Question Answering." arXiv:1603.01417 (2016).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSNU + NAVER [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/abs/1606.01455)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJin-Hwa Kim, Sang-Woo Lee, Dong-Hyun Kwak, Min-Oh Heo, Jeonghee Kim, Jung-Woo Ha, Byoung-Tak Zhang, [39m[48;2;30;30;40m[38;5;13m[3mMultimodal Residual Learning for Visual QA[0m[38;5;12m, arXiv:1606:01455[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUC Berkeley + Sony [39m[38;5;12mPaper[39m[38;5;14m[1m (https://arxiv.org/pdf/1606.01847)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAkira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and Marcus Rohrbach, [39m[48;2;30;30;40m[38;5;13m[3mMultimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding[0m[38;5;12m, arXiv:1606.01847[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mPostech [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1606.03647.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHyeonwoo Noh and Bohyung Han, [39m[48;2;30;30;40m[38;5;13m[3mTraining Recurrent Answering Units with Joint Loss Minimization for VQA[0m[38;5;12m, arXiv:1606.03647[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSNU + NAVER [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/abs/1610.04325)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJin-Hwa Kim, Kyoung Woon On, Jeonghee Kim, Jung-Woo Ha, Byoung-Tak Zhang, [39m[48;2;30;30;40m[38;5;13m[3mHadamard Product for Low-rank Bilinear Pooling[0m[38;5;12m, arXiv:1610.04325.[39m
|
||
|
||
[38;2;255;187;0m[4mImage Generation[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mConvolutional / Recurrent Networks[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAäron[39m[38;5;12m [39m[38;5;12mvan[39m[38;5;12m [39m[38;5;12mden[39m[38;5;12m [39m[38;5;12mOord,[39m[38;5;12m [39m[38;5;12mNal[39m[38;5;12m [39m[38;5;12mKalchbrenner,[39m[38;5;12m [39m[38;5;12mOriol[39m[38;5;12m [39m[38;5;12mVinyals,[39m[38;5;12m [39m[38;5;12mLasse[39m[38;5;12m [39m[38;5;12mEspeholt,[39m[38;5;12m [39m[38;5;12mAlex[39m[38;5;12m [39m[38;5;12mGraves,[39m[38;5;12m [39m[38;5;12mKoray[39m[38;5;12m [39m[38;5;12mKavukcuoglu.[39m[38;5;12m [39m[38;5;12m"Conditional[39m[38;5;12m [39m[38;5;12mImage[39m[38;5;12m [39m[38;5;12mGeneration[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mPixelCNN[39m[38;5;12m [39m[38;5;12mDecoders"[39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m[38;5;12m(https://arxiv.org/pdf/1606.05328v2.pdf)[39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||
[38;5;12m(https://github.com/kundan2510/pixelCNN)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAlexey[39m[38;5;12m [39m[38;5;12mDosovitskiy,[39m[38;5;12m [39m[38;5;12mJost[39m[38;5;12m [39m[38;5;12mTobias[39m[38;5;12m [39m[38;5;12mSpringenberg,[39m[38;5;12m [39m[38;5;12mThomas[39m[38;5;12m [39m[38;5;12mBrox,[39m[38;5;12m [39m[38;5;12m"Learning[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mGenerate[39m[38;5;12m [39m[38;5;12mChairs[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mConvolutional[39m[38;5;12m [39m[38;5;12mNeural[39m[38;5;12m [39m[38;5;12mNetworks",[39m[38;5;12m [39m[38;5;12mCVPR,[39m[38;5;12m [39m[38;5;12m2015.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||
[38;5;12m(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Dosovitskiy_Learning_to_Generate_2015_CVPR_paper.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKarol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, Daan Wierstra, "DRAW: A Recurrent Neural Network For Image Generation", ICML, 2015. [39m[38;5;12mPaper[39m[38;5;14m[1m (https://arxiv.org/pdf/1502.04623v2.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAdversarial Networks[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mIan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative Adversarial Networks, NIPS, 2014. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/abs/1406.2661)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mEmily Denton, Soumith Chintala, Arthur Szlam, Rob Fergus, Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks, NIPS, 2015. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/abs/1506.05751)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mLucas Theis, Aäron van den Oord, Matthias Bethge, "A note on the evaluation of generative models", ICLR 2016. [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/abs/1511.01844)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mZhenwen Dai, Andreas Damianou, Javier Gonzalez, Neil Lawrence, "Variationally Auto-Encoded Deep Gaussian Processes", ICLR 2016. [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.06455v2.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mElman Mansimov, Emilio Parisotto, Jimmy Ba, Ruslan Salakhutdinov, "Generating Images from Captions with Attention", ICLR 2016, [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.02793v2.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJost Tobias Springenberg, "Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks", ICLR 2016, [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.06390v1.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHarrison Edwards, Amos Storkey, "Censoring Representations with an Adversary", ICLR 2016, [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.05897v3.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTakeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, Shin Ishii, "Distributional Smoothing with Virtual Adversarial Training", ICLR 2016, [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1507.00677v8.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJun-Yan[39m[38;5;12m [39m[38;5;12mZhu,[39m[38;5;12m [39m[38;5;12mPhilipp[39m[38;5;12m [39m[38;5;12mKrahenbuhl,[39m[38;5;12m [39m[38;5;12mEli[39m[38;5;12m [39m[38;5;12mShechtman,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mAlexei[39m[38;5;12m [39m[38;5;12mA.[39m[38;5;12m [39m[38;5;12mEfros,[39m[38;5;12m [39m[38;5;12m"Generative[39m[38;5;12m [39m[38;5;12mVisual[39m[38;5;12m [39m[38;5;12mManipulation[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mNatural[39m[38;5;12m [39m[38;5;12mImage[39m[38;5;12m [39m[38;5;12mManifold",[39m[38;5;12m [39m[38;5;12mECCV[39m[38;5;12m [39m[38;5;12m2016.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;14m[1m(https://arxiv.org/pdf/1609.03552v2.pdf)[0m[38;5;12m [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;14m[1m(https://github.com/junyanz/iGAN)[0m[38;5;12m [39m
|
||
[38;5;12mVideo[39m[38;5;14m[1m [0m[38;5;14m[1m(https://youtu.be/9c4z6YsBGQ0)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMixing Convolutional and Adversarial Networks[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAlec Radford, Luke Metz, Soumith Chintala, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016. [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.06434.pdf)[0m[38;5;12m [39m
|
||
|
||
[38;2;255;187;0m[4mOther Topics[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mVisual Analogy [39m[38;5;12mPaper[39m[38;5;14m[1m (https://web.eecs.umich.edu/~honglak/nips2015-analogy.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mScott Reed, Yi Zhang, Yuting Zhang, Honglak Lee, Deep Visual Analogy Making, NIPS, 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSurface Normal Estimation [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Designing_Deep_Networks_2015_CVPR_paper.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mXiaolong Wang, David F. Fouhey, Abhinav Gupta, Designing Deep Networks for Surface Normal Estimation, CVPR, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAction Detection [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Gkioxari_Finding_Action_Tubes_2015_CVPR_paper.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mGeorgia Gkioxari, Jitendra Malik, Finding Action Tubes, CVPR, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mCrowd Counting [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zhang_Cross-Scene_Crowd_Counting_2015_CVPR_paper.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mCong Zhang, Hongsheng Li, Xiaogang Wang, Xiaokang Yang, Cross-scene Crowd Counting via Deep Convolutional Neural Networks, CVPR, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12m3D Shape Retrieval [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Sketch-Based_3D_Shape_2015_CVPR_paper.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFang Wang, Le Kang, Yi Li, Sketch-based 3D Shape Retrieval using Convolutional Neural Networks, CVPR, 2015.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mWeakly-supervised Classification[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSamaneh Azadi, Jiashi Feng, Stefanie Jegelka, Trevor Darrell, "Auxiliary Image Regularization for Deep CNNs with Noisy Labels", ICLR 2016, [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.07069v2.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mArtistic Style [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/abs/1508.06576) [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/jcjohnson/neural-style)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mLeon A. Gatys, Alexander S. Ecker, Matthias Bethge, A Neural Algorithm of Artistic Style.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHuman Gaze Estimation[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mXucong[39m[38;5;12m [39m[38;5;12mZhang,[39m[38;5;12m [39m[38;5;12mYusuke[39m[38;5;12m [39m[38;5;12mSugano,[39m[38;5;12m [39m[38;5;12mMario[39m[38;5;12m [39m[38;5;12mFritz,[39m[38;5;12m [39m[38;5;12mAndreas[39m[38;5;12m [39m[38;5;12mBulling,[39m[38;5;12m [39m[38;5;12mAppearance-Based[39m[38;5;12m [39m[38;5;12mGaze[39m[38;5;12m [39m[38;5;12mEstimation[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mWild,[39m[38;5;12m [39m[38;5;12mCVPR,[39m[38;5;12m [39m[38;5;12m2015.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||
[38;5;12m(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zhang_Appearance-Based_Gaze_Estimation_2015_CVPR_paper.pdf)[39m[38;5;12m [39m[38;5;12mWebsite[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||
[38;5;12m(https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/gaze-based-human-computer-interaction/appearance-based-gaze-estimation-in-the-wild-mpiigaze/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFace Recognition[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mYaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, Lior Wolf, DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR, 2014. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mYi Sun, Ding Liang, Xiaogang Wang, Xiaoou Tang, DeepID3: Face Recognition with Very Deep Neural Networks, 2015. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/abs/1502.00873)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFlorian Schroff, Dmitry Kalenichenko, James Philbin, FaceNet: A Unified Embedding for Face Recognition and Clustering, CVPR, 2015. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/abs/1503.03832)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFacial Landmark Detection[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mYue[39m[38;5;12m [39m[38;5;12mWu,[39m[38;5;12m [39m[38;5;12mTal[39m[38;5;12m [39m[38;5;12mHassner,[39m[38;5;12m [39m[38;5;12mKangGeon[39m[38;5;12m [39m[38;5;12mKim,[39m[38;5;12m [39m[38;5;12mGerard[39m[38;5;12m [39m[38;5;12mMedioni,[39m[38;5;12m [39m[38;5;12mPrem[39m[38;5;12m [39m[38;5;12mNatarajan,[39m[38;5;12m [39m[38;5;12mFacial[39m[38;5;12m [39m[38;5;12mLandmark[39m[38;5;12m [39m[38;5;12mDetection[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mTweaked[39m[38;5;12m [39m[38;5;12mConvolutional[39m[38;5;12m [39m[38;5;12mNeural[39m[38;5;12m [39m[38;5;12mNetworks,[39m[38;5;12m [39m[38;5;12m2015.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m[38;5;12m(http://arxiv.org/abs/1511.04031)[39m[38;5;12m [39m[38;5;12mProject[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||
[38;5;12m(http://www.openu.ac.il/home/hassner/projects/tcnn_landmarks/)[39m
|
||
|
||
[38;2;255;187;0m[4mCourses[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mDeep Vision[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStanford[0m[38;5;12m [39m[38;5;14m[1mCS231n: Convolutional Neural Networks for Visual Recognition[0m[38;5;12m (http://cs231n.stanford.edu/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCUHK[0m[38;5;12m [39m[38;5;14m[1mELEG 5040: Advanced Topics in Signal Processing(Introduction to Deep Learning)[0m[38;5;12m (https://piazza.com/cuhk.edu.hk/spring2015/eleg5040/home)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMore Deep Learning[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStanford[0m[38;5;12m [39m[38;5;14m[1mCS224d: Deep Learning for Natural Language Processing[0m[38;5;12m (http://cs224d.stanford.edu/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOxford[0m[38;5;12m [39m[38;5;14m[1mDeep Learning by Prof. Nando de Freitas[0m[38;5;12m (https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNYU[0m[38;5;12m [39m[38;5;14m[1mDeep Learning by Prof. Yann LeCun[0m[38;5;12m (http://cilvr.cs.nyu.edu/doku.php?id=courses:deeplearning2014:start)[39m
|
||
|
||
[38;2;255;187;0m[4mBooks[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFree Online Books[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville[0m[38;5;12m (http://www.iro.umontreal.ca/~bengioy/dlbook/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeural Networks and Deep Learning by Michael Nielsen[0m[38;5;12m (http://neuralnetworksanddeeplearning.com/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeep Learning Tutorial by LISA lab, University of Montreal[0m[38;5;12m (http://deeplearning.net/tutorial/deeplearning.pdf)[39m
|
||
|
||
[38;2;255;187;0m[4mVideos[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTalks[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeep Learning, Self-Taught Learning and Unsupervised Feature Learning By Andrew Ng[0m[38;5;12m (https://www.youtube.com/watch?v=n1ViNeWhC24)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRecent Developments in Deep Learning By Geoff Hinton[0m[38;5;12m (https://www.youtube.com/watch?v=vShMxxqtDDs)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mThe Unreasonable Effectiveness of Deep Learning by Yann LeCun[0m[38;5;12m (https://www.youtube.com/watch?v=sc-KbuZqGkI)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeep Learning of Representations by Yoshua bengio[0m[38;5;12m (https://www.youtube.com/watch?v=4xsVFLnHC_0)[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mSoftware[0m
|
||
[38;2;255;187;0m[4mFramework[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTensorflow: An open source software library for numerical computation using data flow graph by Google [39m[38;5;12mWeb[39m[38;5;14m[1m (https://www.tensorflow.org/)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTorch7: Deep learning library in Lua, used by Facebook and Google Deepmind [39m[38;5;12mWeb[39m[38;5;14m[1m (http://torch.ch/)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTorch-based deep learning libraries: [39m[38;5;12mtorchnet[39m[38;5;14m[1m (https://github.com/torchnet/torchnet)[0m[38;5;12m ,[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mCaffe: Deep learning framework by the BVLC [39m[38;5;12mWeb[39m[38;5;14m[1m (http://caffe.berkeleyvision.org/)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTheano: Mathematical library in Python, maintained by LISA lab [39m[38;5;12mWeb[39m[38;5;14m[1m (http://deeplearning.net/software/theano/)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTheano-based deep learning libraries: [39m[38;5;12mPylearn2[39m[38;5;14m[1m (http://deeplearning.net/software/pylearn2/)[0m[38;5;12m , [39m[38;5;12mBlocks[39m[38;5;14m[1m (https://github.com/mila-udem/blocks)[0m[38;5;12m , [39m[38;5;12mKeras[39m[38;5;14m[1m (http://keras.io/)[0m[38;5;12m , [39m[38;5;12mLasagne[39m[38;5;14m[1m (https://github.com/Lasagne/Lasagne)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMatConvNet: CNNs for MATLAB [39m[38;5;12mWeb[39m[38;5;14m[1m (http://www.vlfeat.org/matconvnet/)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMXNet: A flexible and efficient deep learning library for heterogeneous distributed systems with multi-language support [39m[38;5;12mWeb[39m[38;5;14m[1m (http://mxnet.io/)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mDeepgaze: A computer vision library for human-computer interaction based on CNNs [39m[38;5;12mWeb[39m[38;5;14m[1m (https://github.com/mpatacchiola/deepgaze)[0m[38;5;12m [39m
|
||
|
||
[38;2;255;187;0m[4mApplications[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAdversarial Training[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mCode and hyperparameters for the paper "Generative Adversarial Networks" [39m[38;5;12mWeb[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/goodfeli/adversarial)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUnderstanding and Visualizing[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSource code for "Understanding Deep Image Representations by Inverting Them," CVPR, 2015. [39m[38;5;12mWeb[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/aravindhm/deep-goggle)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSemantic Segmentation[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSource code for the paper "Rich feature hierarchies for accurate object detection and semantic segmentation," CVPR, 2014. [39m[38;5;12mWeb[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/rbgirshick/rcnn)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSource code for the paper "Fully Convolutional Networks for Semantic Segmentation," CVPR, 2015. [39m[38;5;12mWeb[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/longjon/caffe/tree/future)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSuper-Resolution[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mImage Super-Resolution for Anime-Style-Art [39m[38;5;12mWeb[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/nagadomi/waifu2x)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mEdge Detection[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSource code for the paper "DeepContour: A Deep Convolutional Feature Learned by Positive-Sharing Loss for Contour Detection," CVPR, 2015. [39m[38;5;12mWeb[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/shenwei1231/DeepContour)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSource code for the paper "Holistically-Nested Edge Detection", ICCV 2015. [39m[38;5;12mWeb[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/s9xie/hed)[39m
|
||
|
||
[38;2;255;187;0m[4mTutorials[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCVPR 2014[0m[38;5;12m [39m[38;5;14m[1mTutorial on Deep Learning in Computer Vision[0m[38;5;12m (https://sites.google.com/site/deeplearningcvpr2014/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCVPR 2015[0m[38;5;12m [39m[38;5;14m[1mApplied Deep Learning for Computer Vision with Torch[0m[38;5;12m (https://github.com/soumith/cvpr2015)[39m
|
||
|
||
[38;2;255;187;0m[4mBlogs[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeep down the rabbit hole: CVPR 2015 and beyond@Tombone's Computer Vision Blog[0m[38;5;12m (http://www.computervisionblog.com/2015/06/deep-down-rabbit-hole-cvpr-2015-and.html)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCVPR recap and where we're going@Zoya Bylinskii (MIT PhD Student)'s Blog[0m[38;5;12m (http://zoyathinks.blogspot.kr/2015/06/cvpr-recap-and-where-were-going.html)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook's AI Painting@Wired[0m[38;5;12m (http://www.wired.com/2015/06/facebook-googles-fake-brains-spawn-new-visual-reality/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mInceptionism: Going Deeper into Neural Networks@Google Research[0m[38;5;12m (http://googleresearch.blogspot.kr/2015/06/inceptionism-going-deeper-into-neural.html)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mImplementing Neural networks[0m[38;5;12m (http://peterroelants.github.io/) [39m
|