1190 lines
248 KiB
Plaintext
1190 lines
248 KiB
Plaintext
|
||
|
||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAWESOME DATA SCIENCE[0m
|
||
|
||
[38;5;14m[1m![0m[38;5;12mAwesome[39m[38;5;14m[1m (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)[0m[38;5;12m (https://github.com/sindresorhus/awesome) [39m
|
||
|
||
[38;5;14m[1mAn open-source Data Science repository to learn and apply towards solving real world problems.[0m
|
||
|
||
[38;5;12mThis is a shortcut path to start studying [39m[38;5;14m[1mData Science[0m[38;5;12m. Just follow the steps to answer the questions, "What is Data Science and what should I study to learn Data Science?"[39m
|
||
|
||
[38;2;255;187;0m[4mSponsors[0m
|
||
|
||
[38;5;239m│[39m[38;5;12mSponsor[39m[38;5;239m│[39m[38;5;12m [39m[38;5;12mPitch[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m├[39m[38;5;239m───────[39m[38;5;239m┼[39m[38;5;239m───────────────────────────────────────────[39m[38;5;239m┤[39m
|
||
[38;5;239m│[39m[38;5;12m---[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mBe the first to sponsor! [39m[48;5;235m[38;5;249mgithub@academic.io[49m[39m[38;5;239m│[39m
|
||
|
||
|
||
|
||
|
||
|
||
[38;2;255;187;0m[4mTable of Contents[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mWhat is Data Science?[0m[38;5;12m (#what-is-data-science)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mWhere do I Start?[0m[38;5;12m (#where-do-i-start)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTraining Resources[0m[38;5;12m (#training-resources)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mTutorials[0m[38;5;12m (#tutorials)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mFree Courses[0m[38;5;12m (#free-courses)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mMassively Open Online Courses[0m[38;5;12m (#moocs)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mIntensive Programs[0m[38;5;12m (#intensive-programs)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mColleges[0m[38;5;12m (#colleges)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe Data Science Toolbox[0m[38;5;12m (#the-data-science-toolbox)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mAlgorithms[0m[38;5;12m (#algorithms)[39m
|
||
[48;5;235m[38;5;249m- **Supervised Learning** (#supervised-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **Unsupervised Learning** (#unsupervised-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **Semi-Supervised Learning** (#semi-supervised-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **Reinforcement Learning** (#reinforcement-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **Data Mining Algorithms** (#data-mining-algorithms)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **Deep Learning Architectures** (#deep-learning-architectures)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mGeneral Machine Learning Packages[0m[38;5;12m (#general-machine-learning-packages)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mDeep Learning Packages[0m[38;5;12m (#deep-learning-packages)[39m
|
||
[48;5;235m[38;5;249m- **PyTorch Ecosystem** (#pytorch-ecosystem)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **TensorFlow Ecosystem** (#tensorflow-ecosystem)[49m[39m
|
||
[48;5;235m[38;5;249m- **Keras Ecosystem** (#keras-ecosystem)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mVisualization Tools[0m[38;5;12m (#visualization-tools)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mMiscellaneous Tools[0m[38;5;12m (#miscellaneous-tools)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLiterature and Media[0m[38;5;12m (#literature-and-media)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mBooks[0m[38;5;12m (#books)[39m
|
||
[48;5;235m[38;5;249m- **Book Deals (Affiliated)** (#book-deals-affiliated-)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mJournals, Publications, and Magazines[0m[38;5;12m (#journals-publications-and-magazines)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mNewsletters[0m[38;5;12m (#newsletters)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mBloggers[0m[38;5;12m (#bloggers)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mPresentations[0m[38;5;12m (#presentations)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mPodcasts[0m[38;5;12m (#podcasts)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mYouTube Videos & Channels[0m[38;5;12m (#youtube-videos--channels)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSocialize[0m[38;5;12m (#socialize)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mFacebook Accounts[0m[38;5;12m (#facebook-accounts)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mTwitter Accounts[0m[38;5;12m (#twitter-accounts)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mTelegram Channels[0m[38;5;12m (#telegram-channels)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mSlack Communities[0m[38;5;12m (#slack-communities)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mGitHub Groups[0m[38;5;12m (#github-groups)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mData Science Competitions[0m[38;5;12m (#data-science-competitions)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mFun[0m[38;5;12m (#fun)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mInfographics[0m[38;5;12m (#infographics)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mDatasets[0m[38;5;12m (#datasets)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mComics[0m[38;5;12m (#comics)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOther Awesome Lists[0m[38;5;12m (#other-awesome-lists)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mHobby[0m[38;5;12m (#hobby)[39m
|
||
|
||
[38;2;255;187;0m[4mWhat is Data Science?[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12mData[39m[38;5;12m [39m[38;5;12mScience[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mone[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mhottest[39m[38;5;12m [39m[38;5;12mtopics[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mComputer[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mInternet[39m[38;5;12m [39m[38;5;12mfarmland[39m[38;5;12m [39m[38;5;12mnowadays.[39m[38;5;12m [39m[38;5;12mPeople[39m[38;5;12m [39m[38;5;12mhave[39m[38;5;12m [39m[38;5;12mgathered[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mapplications[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12msystems[39m[38;5;12m [39m[38;5;12muntil[39m[38;5;12m [39m[38;5;12mtoday[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mnow[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mtime[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12manalyze[39m[38;5;12m [39m[38;5;12mthem.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mnext[39m[38;5;12m [39m[38;5;12msteps[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mproducing[39m[38;5;12m [39m[38;5;12msuggestions[39m[38;5;12m [39m
|
||
[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcreating[39m[38;5;12m [39m[38;5;12mpredictions[39m[38;5;12m [39m[38;5;12mabout[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mfuture.[39m[38;5;12m [39m[38;5;14m[1mHere[0m[38;5;12m [39m[38;5;12m(https://www.quora.com/Data-Science/What-is-data-science)[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mfind[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbiggest[39m[38;5;12m [39m[38;5;12mquestion[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;14m[1mData[0m[38;5;14m[1m [0m[38;5;14m[1mScience[0m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mhundreds[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12manswers[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mexperts.[39m
|
||
|
||
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;12mLink[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m [39m[38;5;12mPreview[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m├[39m[38;5;239m──────────────────────────────────────────────────────────────────────────────────────[39m[38;5;239m┼[39m[38;5;239m───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────[39m[38;5;239m┤[39m
|
||
[38;5;239m│[39m[38;5;14m[1mWhat is Data Science @ O'reilly[0m[38;5;12m (https://www.oreilly.com/ideas/what-is-data-science)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m_Data[39m[38;5;12m [39m[38;5;12mscientists[39m[38;5;12m [39m[38;5;12mcombine[39m[38;5;12m [39m[38;5;12mentrepreneurship[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mpatience,[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mwillingness[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbuild[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mproducts[39m[38;5;12m [39m[38;5;12mincrementally,[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mability[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mexplore,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mability[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12miterate[39m[38;5;12m [39m[38;5;12mover[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msolution.[39m[38;5;12m [39m[38;5;12mThey[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12minherently[39m[38;5;12m [39m[38;5;12minterdisciplinary.[39m[38;5;12m [39m[38;5;12mThey[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mtackle[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12maspects[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mproblem,[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12minitial[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mcollection[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mconditioning[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mdrawing[39m[38;5;12m [39m[38;5;12mconclusions.[39m[38;5;12m [39m[38;5;12mThey[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mthink[39m[38;5;12m [39m[38;5;12moutside[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbox[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcome[39m[38;5;12m [39m[38;5;12mup[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mnew[39m[38;5;12m [39m[38;5;12mways[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mview[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mproblem,[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mwork[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mvery[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mbroadly[39m[38;5;12m [39m[38;5;12mdefined[39m[38;5;12m [39m[38;5;12mproblems:[39m[38;5;12m [39m[38;5;12m“here’s[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mlot[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdata,[39m[38;5;12m [39m[38;5;12mwhat[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mmake[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mit?”_[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mWhat is Data Science @ Quora[0m[38;5;12m (https://www.quora.com/Data-Science/What-is-data-science)[39m[38;5;239m│[39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mScience[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcombination[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mnumber[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12maspects[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mTechnology,[39m[38;5;12m [39m[38;5;12mAlgorithm[39m[38;5;12m [39m[38;5;12mdevelopment,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12minterference[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mstudy[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mdata,[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12manalyse[39m[38;5;12m [39m[38;5;12mit,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mfind[39m[38;5;12m [39m[38;5;12minnovative[39m[38;5;12m [39m[38;5;12msolutions[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mdifficult[39m[38;5;12m [39m[38;5;12mproblems.[39m[38;5;12m [39m[38;5;12mBasically[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mScience[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mabout[39m[38;5;12m [39m[38;5;12mAnalysing[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdriving[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mbusiness[39m[38;5;12m [39m[38;5;12mgrowth[39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mfinding[39m[38;5;12m [39m[38;5;12mcreative[39m[38;5;12m [39m[38;5;12mways.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mThe sexiest job of 21st century[0m[38;5;12m [39m[38;5;239m│[39m[38;5;12m_Data[39m[38;5;12m [39m[38;5;12mscientists[39m[38;5;12m [39m[38;5;12mtoday[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12makin[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mWall[39m[38;5;12m [39m[38;5;12mStreet[39m[38;5;12m [39m[38;5;12m“quants”[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12m1980s[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12m1990s.[39m[38;5;12m [39m[38;5;12mIn[39m[38;5;12m [39m[38;5;12mthose[39m[38;5;12m [39m[38;5;12mdays[39m[38;5;12m [39m[38;5;12mpeople[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mbackgrounds[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mphysics[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmath[39m[38;5;12m [39m[38;5;12mstreamed[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m (https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mto[39m[38;5;12m [39m[38;5;12minvestment[39m[38;5;12m [39m[38;5;12mbanks[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mhedge[39m[38;5;12m [39m[38;5;12mfunds,[39m[38;5;12m [39m[38;5;12mwhere[39m[38;5;12m [39m[38;5;12mthey[39m[38;5;12m [39m[38;5;12mcould[39m[38;5;12m [39m[38;5;12mdevise[39m[38;5;12m [39m[38;5;12mentirely[39m[38;5;12m [39m[38;5;12mnew[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mstrategies.[39m[38;5;12m [39m[38;5;12mThen[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mvariety[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12muniversities[39m[38;5;12m [39m[38;5;12mdeveloped[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mmaster’s[39m[38;5;12m [39m[38;5;12mprograms[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mfinancial[39m[38;5;12m [39m[38;5;12mengineering,[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mchurned[39m[38;5;12m [39m[38;5;12mout[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msecond[39m[38;5;12m [39m[38;5;12mgeneration[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mtalent[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mwas[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12maccessible[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mmainstream[39m[38;5;12m [39m[38;5;12mfirms.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mpattern[39m[38;5;12m [39m[38;5;12mwas[39m[38;5;12m [39m[38;5;12mrepeated[39m[38;5;12m [39m[38;5;12mlater[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12m1990s[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mengineers,[39m[38;5;12m [39m[38;5;12mwhose[39m[38;5;12m [39m[38;5;12mrarefied[39m[38;5;12m [39m[38;5;12mskills[39m[38;5;12m [39m[38;5;12msoon[39m[38;5;12m [39m[38;5;12mcame[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mtaught[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mcomputer[39m[38;5;12m [39m[38;5;12mscience[39m[38;5;12m [39m[38;5;12mprograms._[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mWikipedia[0m[38;5;12m (https://en.wikipedia.org/wiki/Data_science)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m_Data[39m[38;5;12m [39m[38;5;12mscience[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12minterdisciplinary[39m[38;5;12m [39m[38;5;12mfield[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12muses[39m[38;5;12m [39m[38;5;12mscientific[39m[38;5;12m [39m[38;5;12mmethods,[39m[38;5;12m [39m[38;5;12mprocesses,[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12msystems[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mextract[39m[38;5;12m [39m[38;5;12mknowledge[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12minsights[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mstructural[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12munstructured[39m[38;5;12m [39m[38;5;12mdata.[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mscience[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mrelated[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mmining,[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mbig[39m[38;5;12m [39m[38;5;12mdata._[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mHow to Become a Data Scientist[0m[38;5;12m [39m[38;5;239m│[39m[38;5;12m_Data[39m[38;5;12m [39m[38;5;12mscientists[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mbig[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mwranglers,[39m[38;5;12m [39m[38;5;12mgathering[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12manalyzing[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12msets[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mstructured[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12munstructured[39m[38;5;12m [39m[38;5;12mdata.[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscientist’s[39m[38;5;12m [39m[38;5;12mrole[39m[38;5;12m [39m[38;5;12mcombines[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m (https://www.mastersindatascience.org/careers/data-scientist/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mcomputer[39m[38;5;12m [39m[38;5;12mscience,[39m[38;5;12m [39m[38;5;12mstatistics,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmathematics.[39m[38;5;12m [39m[38;5;12mThey[39m[38;5;12m [39m[38;5;12manalyze,[39m[38;5;12m [39m[38;5;12mprocess,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mthen[39m[38;5;12m [39m[38;5;12minterpret[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mresults[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcreate[39m[38;5;12m [39m[38;5;12mactionable[39m[38;5;12m [39m[38;5;12mplans[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mcompanies[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[38;5;12morganizations._[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1ma[0m[38;5;14m[1m [0m[38;5;14m[1mvery[0m[38;5;14m[1m [0m[38;5;14m[1mshort[0m[38;5;14m[1m [0m[38;5;14m[1mhistory[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1m#datascience[0m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m_The[39m[38;5;12m [39m[38;5;12mstory[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscientists[39m[38;5;12m [39m[38;5;12mbecame[39m[38;5;12m [39m[38;5;12msexy[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mmostly[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mstory[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mcoupling[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mmature[39m[38;5;12m [39m[38;5;12mdiscipline[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mstatistics[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mvery[39m[38;5;12m [39m[38;5;12myoung[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m(https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science[39m[38;5;239m│[39m[38;5;12mone--computer[39m[38;5;12m [39m[38;5;12mscience.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mterm[39m[38;5;12m [39m[38;5;12m“Data[39m[38;5;12m [39m[38;5;12mScience”[39m[38;5;12m [39m[38;5;12mhas[39m[38;5;12m [39m[38;5;12memerged[39m[38;5;12m [39m[38;5;12monly[39m[38;5;12m [39m[38;5;12mrecently[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mspecifically[39m[38;5;12m [39m[38;5;12mdesignate[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mnew[39m[38;5;12m [39m[38;5;12mprofession[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mexpected[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mmake[39m[38;5;12m [39m[38;5;12msense[39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mvast[39m[38;5;12m [39m[38;5;12mstores[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mbig[39m[38;5;12m [39m[38;5;12mdata.[39m[38;5;12m [39m[38;5;12mBut[39m[38;5;12m [39m[38;5;12mmaking[39m[38;5;12m [39m[38;5;12msense[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mhas[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mlong[39m[38;5;12m [39m[38;5;12mhistory[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mhas[39m[38;5;12m [39m[38;5;12mbeen[39m[38;5;12m [39m[38;5;12mdiscussed[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mscientists,[39m[38;5;12m [39m[38;5;12mstatisticians,[39m[38;5;12m [39m[38;5;12mlibrarians,[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mcomputer[39m[38;5;12m [39m[38;5;12mscientists[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mothers[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12myears.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mfollowing[39m[38;5;12m [39m[38;5;12mtimeline[39m[38;5;12m [39m[38;5;12mtraces[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mevolution[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mterm[39m[38;5;12m [39m[38;5;12m“Data[39m[38;5;12m [39m[38;5;12mScience”[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mits[39m[38;5;12m [39m[38;5;12muse,[39m[38;5;12m [39m[38;5;12mattempts[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mdefine[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mit,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mrelated[39m[38;5;12m [39m[38;5;12mterms._[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mSoftware Development Resources for Data Scientists[0m[38;5;12m [39m[38;5;239m│[39m[38;5;12m_Data[39m[38;5;12m [39m[38;5;12mscientists[39m[38;5;12m [39m[38;5;12mconcentrate[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mmaking[39m[38;5;12m [39m[38;5;12msense[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mthrough[39m[38;5;12m [39m[38;5;12mexploratory[39m[38;5;12m [39m[38;5;12manalysis,[39m[38;5;12m [39m[38;5;12mstatistics,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmodels.[39m[38;5;12m [39m[38;5;12mSoftware[39m[38;5;12m [39m[38;5;12mdevelopers[39m[38;5;12m [39m[38;5;12mapply[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mseparate[39m[38;5;12m [39m[38;5;12mset[39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m (https://www.rstudio.com/blog/software-development-resources-for-data-scientists/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mknowledge[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mdifferent[39m[38;5;12m [39m[38;5;12mtools.[39m[38;5;12m [39m[38;5;12mAlthough[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m[38;5;12mfocus[39m[38;5;12m [39m[38;5;12mmay[39m[38;5;12m [39m[38;5;12mseem[39m[38;5;12m [39m[38;5;12munrelated,[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscience[39m[38;5;12m [39m[38;5;12mteams[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbenefit[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12madopting[39m[38;5;12m [39m[38;5;12msoftware[39m[38;5;12m [39m[38;5;12mdevelopment[39m[38;5;12m [39m[38;5;12mbest[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mpractices.[39m[38;5;12m [39m[38;5;12mVersion[39m[38;5;12m [39m[38;5;12mcontrol,[39m[38;5;12m [39m[38;5;12mautomated[39m[38;5;12m [39m[38;5;12mtesting,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[38;5;12mdev[39m[38;5;12m [39m[38;5;12mskills[39m[38;5;12m [39m[38;5;12mhelp[39m[38;5;12m [39m[38;5;12mcreate[39m[38;5;12m [39m[38;5;12mreproducible,[39m[38;5;12m [39m[38;5;12mproduction-ready[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mtools._[39m[38;5;12m [39m[38;5;239m│[39m
|
||
|
||
[38;2;255;187;0m[4mWhere do I Start?[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12mWhile[39m[38;5;12m [39m[38;5;12mnot[39m[38;5;12m [39m[38;5;12mstrictly[39m[38;5;12m [39m[38;5;12mnecessary,[39m[38;5;12m [39m[38;5;12mhaving[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mprogramming[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcrucial[39m[38;5;12m [39m[38;5;12mskill[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12meffective[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscientist.[39m[38;5;12m [39m[38;5;12mCurrently,[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mmost[39m[38;5;12m [39m[38;5;12mpopular[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12m_Python_,[39m[38;5;12m [39m[38;5;12mclosely[39m[38;5;12m [39m[38;5;12mfollowed[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12m_R_.[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgeneral-purpose[39m[38;5;12m [39m[38;5;12mscripting[39m[38;5;12m [39m
|
||
[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12msees[39m[38;5;12m [39m[38;5;12mapplications[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mwide[39m[38;5;12m [39m[38;5;12mvariety[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mfields.[39m[38;5;12m [39m[38;5;12mR[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mdomain-specific[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mstatistics,[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mcontains[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mlot[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mcommon[39m[38;5;12m [39m[38;5;12mstatistics[39m[38;5;12m [39m[38;5;12mtools[39m[38;5;12m [39m[38;5;12mout[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbox.[39m
|
||
|
||
[38;5;14m[1mPython[0m[38;5;12m [39m[38;5;12m(https://python.org/)[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mfar[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mmost[39m[38;5;12m [39m[38;5;12mpopular[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mscience,[39m[38;5;12m [39m[38;5;12mdue[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mno[39m[38;5;12m [39m[38;5;12msmall[39m[38;5;12m [39m[38;5;12mpart[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mease[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mused[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mvibrant[39m[38;5;12m [39m[38;5;12mecosystem[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12muser-generated[39m[38;5;12m [39m[38;5;12mpackages.[39m[38;5;12m [39m[38;5;12mTo[39m[38;5;12m [39m[38;5;12minstall[39m[38;5;12m [39m[38;5;12mpackages,[39m[38;5;12m [39m[38;5;12mthere[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mtwo[39m[38;5;12m [39m[38;5;12mmain[39m[38;5;12m [39m[38;5;12mmethods:[39m
|
||
[38;5;12mPip[39m[38;5;12m [39m[38;5;12m(invoked[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[48;5;235m[38;5;249mpip install[49m[39m[38;5;12m),[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mpackage[39m[38;5;12m [39m[38;5;12mmanager[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcomes[39m[38;5;12m [39m[38;5;12mbundled[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mPython,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;14m[1mAnaconda[0m[38;5;12m [39m[38;5;12m(https://www.anaconda.com)[39m[38;5;12m [39m[38;5;12m(invoked[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[48;5;235m[38;5;249mconda install[49m[39m[38;5;12m),[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mpowerful[39m[38;5;12m [39m[38;5;12mpackage[39m[38;5;12m [39m[38;5;12mmanager[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12minstall[39m[38;5;12m [39m[38;5;12mpackages[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mPython,[39m[38;5;12m [39m[38;5;12mR,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mdownload[39m[38;5;12m [39m
|
||
[38;5;12mexecutables[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m[38;5;12mGit.[39m[38;5;12m [39m
|
||
|
||
[38;5;12mUnlike[39m[38;5;12m [39m[38;5;12mR,[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mwas[39m[38;5;12m [39m[38;5;12mnot[39m[38;5;12m [39m[38;5;12mbuilt[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mground[39m[38;5;12m [39m[38;5;12mup[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscience[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mmind,[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12mthere[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mplenty[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthird[39m[38;5;12m [39m[38;5;12mparty[39m[38;5;12m [39m[38;5;12mlibraries[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mmake[39m[38;5;12m [39m[38;5;12mup[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mthis.[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mmuch[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12mexhaustive[39m[38;5;12m [39m[38;5;12mlist[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mpackages[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mfound[39m[38;5;12m [39m[38;5;12mlater[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mdocument,[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12mthese[39m[38;5;12m [39m[38;5;12mfour[39m[38;5;12m [39m
|
||
[38;5;12mpackages[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgood[39m[38;5;12m [39m[38;5;12mset[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mchoices[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mstart[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscience[39m[38;5;12m [39m[38;5;12mjourney[39m[38;5;12m [39m[38;5;12mwith:[39m[38;5;12m [39m[38;5;14m[1mScikit-Learn[0m[38;5;12m [39m[38;5;12m(https://scikit-learn.org/stable/index.html)[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgeneral-purpose[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscience[39m[38;5;12m [39m[38;5;12mpackage[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mimplements[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mmost[39m[38;5;12m [39m[38;5;12mpopular[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m
|
||
[38;5;12mincludes[39m[38;5;12m [39m[38;5;12mrich[39m[38;5;12m [39m[38;5;12mdocumentation,[39m[38;5;12m [39m[38;5;12mtutorials,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mexamples[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mimplements.[39m[38;5;12m [39m[38;5;12mEven[39m[38;5;12m [39m[38;5;12mif[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mprefer[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mwrite[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mown[39m[38;5;12m [39m[38;5;12mimplementations,[39m[38;5;12m [39m[38;5;12mScikit-Learn[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mvaluable[39m[38;5;12m [39m[38;5;12mreference[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mnuts-and-bolts[39m[38;5;12m [39m[38;5;12mbehind[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mcommon[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m
|
||
[38;5;12myou'll[39m[38;5;12m [39m[38;5;12mfind.[39m[38;5;12m [39m[38;5;12mWith[39m[38;5;12m [39m[38;5;14m[1mPandas[0m[38;5;12m [39m[38;5;12m(https://pandas.pydata.org/),[39m[38;5;12m [39m[38;5;12mone[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mcollect[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12manalyze[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mconvenient[39m[38;5;12m [39m[38;5;12mtable[39m[38;5;12m [39m[38;5;12mformat.[39m[38;5;12m [39m[38;5;14m[1mNumpy[0m[38;5;12m [39m[38;5;12m(https://numpy.org/)[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12mvery[39m[38;5;12m [39m[38;5;12mfast[39m[38;5;12m [39m[38;5;12mtooling[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmathematical[39m[38;5;12m [39m[38;5;12moperations,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mfocus[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mvectors[39m[38;5;12m [39m[38;5;12mand[39m
|
||
[38;5;12mmatrices.[39m[38;5;12m [39m[38;5;14m[1mSeaborn[0m[38;5;12m [39m[38;5;12m(https://seaborn.pydata.org/),[39m[38;5;12m [39m[38;5;12mitself[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;14m[1mMatplotlib[0m[38;5;12m [39m[38;5;12m(https://matplotlib.org/)[39m[38;5;12m [39m[38;5;12mpackage,[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mquick[39m[38;5;12m [39m[38;5;12mway[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mgenerate[39m[38;5;12m [39m[38;5;12mbeautiful[39m[38;5;12m [39m[38;5;12mvisualizations[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mdata,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mgood[39m[38;5;12m [39m[38;5;12mdefaults[39m[38;5;12m [39m[38;5;12mavailable[39m[38;5;12m [39m[38;5;12mout[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbox,[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m
|
||
[38;5;12mwell[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgallery[39m[38;5;12m [39m[38;5;12mshowing[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mproduce[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mcommon[39m[38;5;12m [39m[38;5;12mvisualizations[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mdata.[39m
|
||
|
||
[38;5;12m [39m[38;5;12mWhen[39m[38;5;12m [39m[38;5;12membarking[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mjourney[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbecoming[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscientist,[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mchoice[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12misn't[39m[38;5;12m [39m[38;5;12mparticularly[39m[38;5;12m [39m[38;5;12mimportant,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mboth[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mR[39m[38;5;12m [39m[38;5;12mhave[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m[38;5;12mpros[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcons.[39m[38;5;12m [39m[38;5;12mPick[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mlike,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcheck[39m[38;5;12m [39m[38;5;12mout[39m[38;5;12m [39m[38;5;12mone[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;14m[1mFree[0m[38;5;14m[1m [0m[38;5;14m[1mcourses[0m[38;5;12m [39m
|
||
[38;5;12m(#free-courses)[39m[38;5;12m [39m[38;5;12mwe've[39m[38;5;12m [39m[38;5;12mlisted[39m[38;5;12m [39m[38;5;12mbelow![39m
|
||
[38;5;12m [39m
|
||
[38;2;255;187;0m[4mReal World[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12mData science is a powerful tool that is utilized in various fields to solve real-world problems by extracting insights and patterns from complex data.[39m
|
||
|
||
[38;2;255;187;0m[4mDisaster[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mdeprem-ml[0m[38;5;12m [39m[38;5;12m(https://huggingface.co/deprem-ml)[39m[38;5;12m [39m[38;5;14m[1mAYA:[0m[38;5;14m[1m [0m[38;5;14m[1mAçık[0m[38;5;14m[1m [0m[38;5;14m[1mYazılım[0m[38;5;14m[1m [0m[38;5;14m[1mAğı[0m[38;5;12m [39m[38;5;12m(https://linktr.ee/acikyazilimagi)[39m[38;5;12m [39m[38;5;12m(+25k[39m[38;5;12m [39m[38;5;12mdevelopers)[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mtrying[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mhelp[39m[38;5;12m [39m[38;5;12mdisaster[39m[38;5;12m [39m[38;5;12mresponse[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12martificial[39m[38;5;12m [39m[38;5;12mintelligence.[39m[38;5;12m [39m[38;5;12mEverything[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mopen-sourced[39m[38;5;12m [39m[38;5;14m[1mafet.org[0m[38;5;12m [39m
|
||
[38;5;12m(https://afet.org).[39m[38;5;12m [39m
|
||
|
||
[38;5;12m [39m
|
||
|
||
[38;2;255;187;0m[4mTraining Resources[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12mHow[39m[38;5;12m [39m[38;5;12mdo[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mlearn[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscience?[39m[38;5;12m [39m[38;5;12mBy[39m[38;5;12m [39m[38;5;12mdoing[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscience,[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mcourse![39m[38;5;12m [39m[38;5;12mOkay,[39m[38;5;12m [39m[38;5;12mokay[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mmight[39m[38;5;12m [39m[38;5;12mnot[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mparticularly[39m[38;5;12m [39m[38;5;12mhelpful[39m[38;5;12m [39m[38;5;12mwhen[39m[38;5;12m [39m[38;5;12myou're[39m[38;5;12m [39m[38;5;12mfirst[39m[38;5;12m [39m[38;5;12mstarting[39m[38;5;12m [39m[38;5;12mout.[39m[38;5;12m [39m[38;5;12mIn[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12msection,[39m[38;5;12m [39m[38;5;12mwe've[39m[38;5;12m [39m[38;5;12mlisted[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mresources,[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mrough[39m[38;5;12m [39m[38;5;12morder[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mleast[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m
|
||
[38;5;12mgreatest[39m[38;5;12m [39m[38;5;12mcommitment[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mTutorials[0m[38;5;12m [39m[38;5;12m(#tutorials),[39m[38;5;12m [39m[38;5;14m[1mMassively[0m[38;5;14m[1m [0m[38;5;14m[1mOpen[0m[38;5;14m[1m [0m[38;5;14m[1mOnline[0m[38;5;14m[1m [0m[38;5;14m[1mCourses[0m[38;5;14m[1m [0m[38;5;14m[1m(MOOCs)[0m[38;5;12m [39m[38;5;12m(#moocs),[39m[38;5;12m [39m[38;5;14m[1mIntensive[0m[38;5;14m[1m [0m[38;5;14m[1mPrograms[0m[38;5;12m [39m[38;5;12m(#intensive-programs),[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;14m[1mColleges[0m[38;5;12m [39m[38;5;12m(#colleges).[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mTutorials[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1m1000 Data Science Projects[0m[38;5;12m (https://cloud.blobcity.com/#/ps/explore) you can run on the browser with IPython.[39m
|
||
[38;5;12m- [39m[38;5;14m[1m#tidytuesday[0m[38;5;12m (https://github.com/rfordatascience/tidytuesday) A weekly data project aimed at the R ecosystem.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData science your way[0m[38;5;12m (https://github.com/jadianes/data-science-your-way)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPySpark Cheatsheet[0m[38;5;12m (https://github.com/kevinschaich/pyspark-cheatsheet)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine Learning, Data Science and Deep Learning with Python [0m[38;5;12m (https://www.manning.com/livevideo/machine-learning-data-science-and-deep-learning-with-python)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHow To Label Data[0m[38;5;12m (https://www.lighttag.io/how-to-label-data/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mYour Guide to Latent Dirichlet Allocation[0m[38;5;12m (https://medium.com/@lettier/how-does-lda-work-ill-explain-using-emoji-108abf40fa7d)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOver 1000 Data Science Online Courses at Classpert Online Search Engine[0m[38;5;12m (https://classpert.com/search/data-science)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTutorials of source code from the book Genetic Algorithms with Python by Clinton Sheppard[0m[38;5;12m (https://github.com/handcraftsman/GeneticAlgorithmsWithPython)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTutorials to get started on signal processing for machine learning[0m[38;5;12m (https://github.com/jinglescode/python-signal-processing)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRealtime deployment[0m[38;5;12m (https://www.microprediction.com/python-1) Tutorial on Python time-series model deployment.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPython for Data Science: A Beginner’s Guide[0m[38;5;12m (https://learntocodewith.me/posts/python-for-data-science/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMinimum Viable Study Plan for Machine Learning Interviews[0m[38;5;12m (https://github.com/khangich/machine-learning-interview)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mUnderstand and Know Machine Learning Engineering by Building Solid Projects[0m[38;5;12m (http://mlzoomcamp.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1m12 free Data Science projects to practice Python and Pandas[0m[38;5;12m (https://www.datawars.io/articles/12-free-data-science-projects-to-practice-python-and-pandas)[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mFree Courses[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mData Scientist with R[0m[38;5;12m (https://www.datacamp.com/tracks/data-scientist-with-r)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Scientist with Python[0m[38;5;12m (https://www.datacamp.com/tracks/data-scientist-with-python)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGenetic Algorithms OCW Course[0m[38;5;12m (https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/lecture-1-introduction-and-scope/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAI Expert Roadmap[0m[38;5;12m (https://github.com/AMAI-GmbH/AI-Expert-Roadmap) - Roadmap to becoming an Artificial Intelligence Expert[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mConvex[0m[38;5;14m[1m [0m[38;5;14m[1mOptimization[0m[38;5;12m [39m[38;5;12m(https://www.edx.org/course/convex-optimization)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mConvex[39m[38;5;12m [39m[38;5;12mOptimization[39m[38;5;12m [39m[38;5;12m(basics[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mconvex[39m[38;5;12m [39m[38;5;12manalysis;[39m[38;5;12m [39m[38;5;12mleast-squares,[39m[38;5;12m [39m[38;5;12mlinear[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mquadratic[39m[38;5;12m [39m[38;5;12mprograms,[39m[38;5;12m [39m[38;5;12msemidefinite[39m[38;5;12m [39m[38;5;12mprogramming,[39m[38;5;12m [39m[38;5;12mminimax,[39m[38;5;12m [39m[38;5;12mextremal[39m[38;5;12m [39m[38;5;12mvolume,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m
|
||
[38;5;12mproblems;[39m[38;5;12m [39m[38;5;12moptimality[39m[38;5;12m [39m[38;5;12mconditions,[39m[38;5;12m [39m[38;5;12mduality[39m[38;5;12m [39m[38;5;12mtheory...)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSkillcombo - Data Science[0m[38;5;12m (https://skillcombo.com/courses/development/data-science/free/) - 1000+ free online Data Science courses[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLearning from Data[0m[38;5;12m (https://home.work.caltech.edu/telecourse.html) - Introduction to machine learning covering basic theory, algorithms and applications[39m
|
||
[38;5;12m- [39m[38;5;14m[1mKaggle[0m[38;5;12m (https://www.kaggle.com/learn) - Learn about Data Science, Machine Learning, Python etc[39m
|
||
[38;5;12m- [39m[38;5;14m[1mML Observability Fundamentals[0m[38;5;12m (https://arize.com/ml-observability-fundamentals/) - Learn how to monitor and root-cause production ML issues.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mWeights & Biases Effective MLOps: Model Development[0m[38;5;12m (https://www.wandb.courses/courses/effective-mlops-model-development) - Free Course and Certification for building an end-to-end machine using W&B[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPython for Machine Learning[0m[38;5;12m (https://globalaihub.com/courses/introduction-to-python-the-road-to-machine-learning/) - Start your journey to machine learning with Python, one of the most powerful programming languages.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mPython[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mData[0m[38;5;14m[1m [0m[38;5;14m[1mScience[0m[38;5;14m[1m [0m[38;5;14m[1mby[0m[38;5;14m[1m [0m[38;5;14m[1mScaler[0m[38;5;12m [39m[38;5;12m(https://www.scaler.com/topics/course/python-for-data-science/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mcourse[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mdesigned[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mempower[39m[38;5;12m [39m[38;5;12mbeginners[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12messential[39m[38;5;12m [39m[38;5;12mskills[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mexcel[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mtoday's[39m[38;5;12m [39m[38;5;12mdata-driven[39m[38;5;12m [39m[38;5;12mworld.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mcomprehensive[39m[38;5;12m [39m
|
||
[38;5;12mcurriculum[39m[38;5;12m [39m[38;5;12mwill[39m[38;5;12m [39m[38;5;12mgive[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msolid[39m[38;5;12m [39m[38;5;12mfoundation[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mstatistics,[39m[38;5;12m [39m[38;5;12mprogramming,[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mvisualization,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMLSys-NYU-2022[0m[38;5;12m (https://github.com/jacopotagliabue/MLSys-NYU-2022/tree/main) - Slides, scripts and materials for the Machine Learning in Finance course at NYU Tandon, 2022.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHands-on Train and Deploy ML[0m[38;5;12m (https://github.com/Paulescu/hands-on-train-and-deploy-ml) - A hands-on course to train and deploy a serverless API that predicts crypto prices.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLLMOps: Building Real-World Applications With Large Language Models[0m[38;5;12m (https://www.comet.com/site/llm-course/) - Learn to build modern software with LLMs using the newest tools and techniques in the field.[39m
|
||
|
||
[38;5;12m [39m
|
||
[38;2;255;187;0m[4mMOOC's[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mCoursera Introduction to Data Science[0m[38;5;12m (https://www.coursera.org/specializations/data-science)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science - 9 Steps Courses, A Specialization on Coursera[0m[38;5;12m (https://www.coursera.org/specializations/jhu-data-science)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Mining - 5 Steps Courses, A Specialization on Coursera[0m[38;5;12m (https://www.coursera.org/specializations/data-mining)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine Learning – 5 Steps Courses, A Specialization on Coursera[0m[38;5;12m (https://www.coursera.org/specializations/machine-learning)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCS 109 Data Science[0m[38;5;12m (https://cs109.github.io/2015/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOpenIntro[0m[38;5;12m (https://www.openintro.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCS 171 Visualization[0m[38;5;12m (https://www.cs171.org/#!index.md)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mProcess Mining: Data science in Action[0m[38;5;12m (https://www.coursera.org/learn/process-mining)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOxford Deep Learning[0m[38;5;12m (https://www.cs.ox.ac.uk/projects/DeepLearn/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOxford Deep Learning - video[0m[38;5;12m (https://www.youtube.com/playlist?list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOxford Machine Learning[0m[38;5;12m (https://www.cs.ox.ac.uk/research/ai_ml/index.html)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mUBC Machine Learning - video[0m[38;5;12m (https://www.cs.ubc.ca/~nando/540-2013/lectures.html)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science Specialization[0m[38;5;12m (https://github.com/DataScienceSpecialization/courses)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCoursera Big Data Specialization[0m[38;5;12m (https://www.coursera.org/specializations/big-data)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mStatistical Thinking for Data Science and Analytics by Edx[0m[38;5;12m (https://www.edx.org/course/statistical-thinking-for-data-science-and-analytic)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCognitive Class AI by IBM[0m[38;5;12m (https://cognitiveclass.ai/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mUdacity - Deep Learning[0m[38;5;12m (https://www.udacity.com/course/intro-to-tensorflow-for-deep-learning--ud187)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mKeras in Motion[0m[38;5;12m (https://www.manning.com/livevideo/keras-in-motion)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMicrosoft Professional Program for Data Science[0m[38;5;12m (https://academy.microsoft.com/en-us/professional-program/tracks/data-science/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCOMP3222/COMP6246 - Machine Learning Technologies[0m[38;5;12m (https://tdgunes.com/COMP6246-2019Fall/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCS 231 - Convolutional Neural Networks for Visual Recognition[0m[38;5;12m (https://cs231n.github.io/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCoursera Tensorflow in practice[0m[38;5;12m (https://www.coursera.org/professional-certificates/tensorflow-in-practice)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCoursera Deep Learning Specialization[0m[38;5;12m (https://www.coursera.org/specializations/deep-learning)[39m
|
||
[38;5;12m- [39m[38;5;14m[1m365 Data Science Course[0m[38;5;12m (https://365datascience.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCoursera Natural Language Processing Specialization[0m[38;5;12m (https://www.coursera.org/specializations/natural-language-processing)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCoursera GAN Specialization[0m[38;5;12m (https://www.coursera.org/specializations/generative-adversarial-networks-gans)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCodecademy's Data Science[0m[38;5;12m (https://www.codecademy.com/learn/paths/data-science)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLinear Algebra[0m[38;5;12m (https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/) - Linear Algebra course by Gilbert Strang[39m
|
||
[38;5;12m- [39m[38;5;14m[1mA 2020 Vision of Linear Algebra (G. Strang)[0m[38;5;12m (https://ocw.mit.edu/resources/res-18-010-a-2020-vision-of-linear-algebra-spring-2020/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPython for Data Science Foundation Course[0m[38;5;12m (https://intellipaat.com/academy/course/python-for-data-science-free-training/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science: Statistics & Machine Learning[0m[38;5;12m (https://www.coursera.org/specializations/data-science-statistics-machine-learning)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine Learning Engineering for Production (MLOps)[0m[38;5;12m (https://www.coursera.org/specializations/machine-learning-engineering-for-production-mlops)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRecommender Systems Specialization from University of Minnesota[0m[38;5;12m (https://www.coursera.org/specializations/recommender-systems) is an intermediate/advanced level specialization focused on Recommender System on the Coursera platform.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mStanford Artificial Intelligence Professional Program[0m[38;5;12m (https://online.stanford.edu/programs/artificial-intelligence-professional-program)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Scientist with Python[0m[38;5;12m (https://app.datacamp.com/learn/career-tracks/data-scientist-with-python)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mProgramming with Julia[0m[38;5;12m (https://www.udemy.com/course/programming-with-julia/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mScaler Data Science & Machine Learning Program[0m[38;5;12m (https://www.scaler.com/data-science-course/)[39m
|
||
|
||
|
||
|
||
[38;2;255;187;0m[4mIntensive Programs[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mS2DS[0m[38;5;12m (https://www.s2ds.org/)[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mColleges[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA list of colleges and universities offering degrees in data science.[0m[38;5;12m (https://github.com/ryanswanstrom/awesome-datascience-colleges)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science Degree @ Berkeley[0m[38;5;12m (https://ischoolonline.berkeley.edu/data-science/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science Degree @ UVA[0m[38;5;12m (https://datascience.virginia.edu/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science Degree @ Wisconsin[0m[38;5;12m (https://datasciencedegree.wisconsin.edu/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBS in Data Science & Applications[0m[38;5;12m (https://study.iitm.ac.in/ds/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMS in Computer Information Systems @ Boston University[0m[38;5;12m (https://www.bu.edu/online/programs/graduate-programs/computer-information-systems-masters-degree/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMS in Business Analytics @ ASU Online[0m[38;5;12m (https://asuonline.asu.edu/online-degree-programs/graduate/master-science-business-analytics/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMS in Applied Data Science @ Syracuse[0m[38;5;12m (https://ischool.syr.edu/academics/applied-data-science-masters-degree/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mM.S. Management & Data Science @ Leuphana[0m[38;5;12m (https://www.leuphana.de/en/graduate-school/masters-programmes/management-data-science.html)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMaster of Data Science @ Melbourne University[0m[38;5;12m (https://study.unimelb.edu.au/find/courses/graduate/master-of-data-science/#overview)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMsc in Data Science @ The University of Edinburgh[0m[38;5;12m (https://www.ed.ac.uk/studying/postgraduate/degrees/index.php?r=site/view&id=902)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMaster of Management Analytics @ Queen's University[0m[38;5;12m (https://smith.queensu.ca/grad_studies/mma/index.php)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMaster of Data Science @ Illinois Institute of Technology[0m[38;5;12m (https://www.iit.edu/academics/programs/data-science-mas)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMaster of Applied Data Science @ The University of Michigan[0m[38;5;12m (https://www.si.umich.edu/programs/master-applied-data-science-online)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMaster Data Science and Artificial Intelligence @ Eindhoven University of Technology[0m[38;5;12m (https://www.tue.nl/en/education/graduate-school/master-data-science-and-artificial-intelligence/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMaster's Degree in Data Science and Computer Engineering @ University of Granada[0m[38;5;12m (https://masteres.ugr.es/datcom/)[39m
|
||
|
||
[38;2;255;187;0m[4mThe Data Science Toolbox[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12mThis section is a collection of packages, tools, algorithms, and other useful items in the data science world.[39m
|
||
|
||
[38;2;255;187;0m[4mAlgorithms[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12mThese are some Machine Learning and Data Mining algorithms and models help you to understand your data and derive meaning from it.[39m
|
||
|
||
[38;2;255;187;0m[4mThree kinds of Machine Learning Systems[0m
|
||
|
||
[38;5;12m- Based on training with human supervision[39m
|
||
[38;5;12m- Based on learning incrementally on fly[39m
|
||
[38;5;12m- Based on data points comparison and pattern detection[39m
|
||
[38;5;12m [39m
|
||
[38;2;255;187;0m[4mSupervised Learning[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mRegression[0m[38;5;12m (https://en.wikipedia.org/wiki/Regression)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLinear Regression[0m[38;5;12m (https://en.wikipedia.org/wiki/Linear_regression)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOrdinary Least Squares[0m[38;5;12m (https://en.wikipedia.org/wiki/Ordinary_least_squares)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLogistic Regression[0m[38;5;12m (https://en.wikipedia.org/wiki/Logistic_regression)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mStepwise Regression[0m[38;5;12m (https://en.wikipedia.org/wiki/Stepwise_regression)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMultivariate Adaptive Regression Splines[0m[38;5;12m (https://en.wikipedia.org/wiki/Multivariate_adaptive_regression_spline)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSoftmax Regression[0m[38;5;12m (https://d2l.ai/chapter_linear-classification/softmax-regression.html)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLocally Estimated Scatterplot Smoothing[0m[38;5;12m (https://en.wikipedia.org/wiki/Local_regression)[39m
|
||
[38;5;12m- Classification[39m
|
||
[38;5;12m - [39m[38;5;14m[1mk-nearest neighbor[0m[38;5;12m (https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mSupport Vector Machines[0m[38;5;12m (https://en.wikipedia.org/wiki/Support_vector_machine)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mDecision Trees[0m[38;5;12m (https://en.wikipedia.org/wiki/Decision_tree)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mID3 algorithm[0m[38;5;12m (https://en.wikipedia.org/wiki/ID3_algorithm)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mC4.5 algorithm[0m[38;5;12m (https://en.wikipedia.org/wiki/C4.5_algorithm)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mEnsemble Learning[0m[38;5;12m (https://scikit-learn.org/stable/modules/ensemble.html)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mBoosting[0m[38;5;12m (https://en.wikipedia.org/wiki/Boosting_(machine_learning))[39m
|
||
[38;5;12m - [39m[38;5;14m[1mStacking[0m[38;5;12m (https://machinelearningmastery.com/stacking-ensemble-machine-learning-with-python)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mBagging[0m[38;5;12m (https://en.wikipedia.org/wiki/Bootstrap_aggregating)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mRandom Forest[0m[38;5;12m (https://en.wikipedia.org/wiki/Random_forest)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mAdaBoost[0m[38;5;12m (https://en.wikipedia.org/wiki/AdaBoost)[39m
|
||
|
||
[38;2;255;187;0m[4mUnsupervised Learning[0m
|
||
[38;5;12m- [39m[38;5;14m[1mClustering[0m[38;5;12m (https://scikit-learn.org/stable/modules/clustering.html#clustering)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mHierchical clustering[0m[38;5;12m (https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mk-means[0m[38;5;12m (https://scikit-learn.org/stable/modules/clustering.html#k-means)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mDensity-based clustering[0m[38;5;12m (https://scikit-learn.org/stable/modules/clustering.html#dbscan)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mFuzzy clustering[0m[38;5;12m (https://en.wikipedia.org/wiki/Fuzzy_clustering)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mMixture models[0m[38;5;12m (https://en.wikipedia.org/wiki/Mixture_model)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDimension Reduction[0m[38;5;12m (https://en.wikipedia.org/wiki/Dimensionality_reduction)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mPrincipal Component Analysis (PCA)[0m[38;5;12m (https://scikit-learn.org/stable/modules/decomposition.html#principal-component-analysis-pca)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mt-SNE; t-distributed Stochastic Neighbor Embedding[0m[38;5;12m (https://scikit-learn.org/stable/modules/decomposition.html#principal-component-analysis-pca)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mFactor Analysis[0m[38;5;12m (https://scikit-learn.org/stable/modules/decomposition.html#factor-analysis)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mLatent Dirichlet Allocation (LDA)[0m[38;5;12m (https://scikit-learn.org/stable/modules/decomposition.html#latent-dirichlet-allocation-lda)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNeural Networks[0m[38;5;12m (https://en.wikipedia.org/wiki/Neural_network)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSelf-organizing map[0m[38;5;12m (https://en.wikipedia.org/wiki/Self-organizing_map)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAdaptive resonance theory[0m[38;5;12m (https://en.wikipedia.org/wiki/Adaptive_resonance_theory)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHidden Markov Models (HMM)[0m[38;5;12m (https://en.wikipedia.org/wiki/Hidden_Markov_model)[39m
|
||
|
||
[38;2;255;187;0m[4mSemi-Supervised Learning[0m
|
||
|
||
[38;5;12m- S3VM[39m
|
||
[38;5;12m- [39m[38;5;14m[1mClustering[0m[38;5;12m (https://en.wikipedia.org/wiki/Weak_supervision#Cluster_assumption)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGenerative models[0m[38;5;12m (https://en.wikipedia.org/wiki/Weak_supervision#Generative_models)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLow-density separation[0m[38;5;12m (https://en.wikipedia.org/wiki/Weak_supervision#Low-density_separation)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLaplacian regularization[0m[38;5;12m (https://en.wikipedia.org/wiki/Weak_supervision#Laplacian_regularization)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHeuristic approaches[0m[38;5;12m (https://en.wikipedia.org/wiki/Weak_supervision#Heuristic_approaches)[39m
|
||
|
||
[38;2;255;187;0m[4mReinforcement Learning[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mQ Learning[0m[38;5;12m (https://en.wikipedia.org/wiki/Q-learning)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSARSA (State-Action-Reward-State-Action) algorithm[0m[38;5;12m (https://en.wikipedia.org/wiki/State%E2%80%93action%E2%80%93reward%E2%80%93state%E2%80%93action)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTemporal difference learning[0m[38;5;12m (https://en.wikipedia.org/wiki/Temporal_difference_learning#:~:text=Temporal%20difference%20(TD)%20learning%20refers,estimate%20of%20the%20value%20function.)[39m
|
||
|
||
[38;2;255;187;0m[4mData Mining Algorithms[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mC4.5[0m[38;5;12m (https://en.wikipedia.org/wiki/C4.5_algorithm)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mk-Means[0m[38;5;12m (https://en.wikipedia.org/wiki/K-means_clustering)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSVM (Support Vector Machine)[0m[38;5;12m (https://en.wikipedia.org/wiki/Support_vector_machine)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mApriori[0m[38;5;12m (https://en.wikipedia.org/wiki/Apriori_algorithm)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mEM (Expectation-Maximization)[0m[38;5;12m (https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPageRank[0m[38;5;12m (https://en.wikipedia.org/wiki/PageRank)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAdaBoost[0m[38;5;12m (https://en.wikipedia.org/wiki/AdaBoost)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mKNN (K-Nearest Neighbors)[0m[38;5;12m (https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNaive Bayes[0m[38;5;12m (https://en.wikipedia.org/wiki/Naive_Bayes_classifier)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCART (Classification and Regression Trees)[0m[38;5;12m (https://en.wikipedia.org/wiki/Decision_tree_learning)[39m
|
||
|
||
|
||
|
||
[38;2;255;187;0m[4mDeep Learning architectures[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMultilayer Perceptron[0m[38;5;12m (https://en.wikipedia.org/wiki/Multilayer_perceptron)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mConvolutional Neural Network (CNN)[0m[38;5;12m (https://en.wikipedia.org/wiki/Convolutional_neural_network)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRecurrent Neural Network (RNN)[0m[38;5;12m (https://en.wikipedia.org/wiki/Recurrent_neural_network)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBoltzmann Machines[0m[38;5;12m (https://en.wikipedia.org/wiki/Boltzmann_machine)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAutoencoder[0m[38;5;12m (https://www.tensorflow.org/tutorials/generative/autoencoder)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGenerative Adversarial Network (GAN)[0m[38;5;12m (https://developers.google.com/machine-learning/gan/gan_structure)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSelf-Organized Maps[0m[38;5;12m (https://en.wikipedia.org/wiki/Self-organizing_map)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTransformer[0m[38;5;12m (https://www.tensorflow.org/text/tutorials/transformer)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mConditional Random Field (CRF)[0m[38;5;12m (https://towardsdatascience.com/conditional-random-fields-explained-e5b8256da776)[39m
|
||
|
||
[38;2;255;187;0m[4mGeneral Machine Learning Packages[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscikit-learn[0m[38;5;12m (https://scikit-learn.org/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscikit-multilearn[0m[38;5;12m (https://github.com/scikit-multilearn/scikit-multilearn)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msklearn-expertsys[0m[38;5;12m (https://github.com/tmadl/sklearn-expertsys)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscikit-feature[0m[38;5;12m (https://github.com/jundongl/scikit-feature)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscikit-rebate[0m[38;5;12m (https://github.com/EpistasisLab/scikit-rebate)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mseqlearn[0m[38;5;12m (https://github.com/larsmans/seqlearn)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msklearn-bayes[0m[38;5;12m (https://github.com/AmazaspShumik/sklearn-bayes)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msklearn-crfsuite[0m[38;5;12m (https://github.com/TeamHG-Memex/sklearn-crfsuite)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msklearn-deap[0m[38;5;12m (https://github.com/rsteca/sklearn-deap)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msigopt_sklearn[0m[38;5;12m (https://github.com/sigopt/sigopt-sklearn)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msklearn-evaluation[0m[38;5;12m (https://github.com/edublancas/sklearn-evaluation)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscikit-image[0m[38;5;12m (https://github.com/scikit-image/scikit-image)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscikit-opt[0m[38;5;12m (https://github.com/guofei9987/scikit-opt)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscikit-posthocs[0m[38;5;12m (https://github.com/maximtrp/scikit-posthocs)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpystruct[0m[38;5;12m (https://github.com/pystruct/pystruct)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mShogun[0m[38;5;12m (https://www.shogun-toolbox.org/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mxLearn[0m[38;5;12m (https://github.com/aksnzhy/xlearn)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcuML[0m[38;5;12m (https://github.com/rapidsai/cuml)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcausalml[0m[38;5;12m (https://github.com/uber/causalml)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmlpack[0m[38;5;12m (https://github.com/mlpack/mlpack)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMLxtend[0m[38;5;12m (https://github.com/rasbt/mlxtend)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmodAL[0m[38;5;12m (https://github.com/modAL-python/modAL)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSparkit-learn[0m[38;5;12m (https://github.com/lensacom/sparkit-learn)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mhyperlearn[0m[38;5;12m (https://github.com/danielhanchen/hyperlearn)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdlib[0m[38;5;12m (https://github.com/davisking/dlib)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mimodels[0m[38;5;12m (https://github.com/csinva/imodels)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRuleFit[0m[38;5;12m (https://github.com/christophM/rulefit)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpyGAM[0m[38;5;12m (https://github.com/dswah/pyGAM)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeepchecks[0m[38;5;12m (https://github.com/deepchecks/deepchecks)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscikit-survival[0m[38;5;12m (https://scikit-survival.readthedocs.io/en/stable)[39m
|
||
|
||
[38;2;255;187;0m[4mDeep Learning Packages[0m
|
||
|
||
[38;2;255;187;0m[4mPyTorch Ecosystem[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyTorch[0m[38;5;12m (https://github.com/pytorch/pytorch)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtorchvision[0m[38;5;12m (https://github.com/pytorch/vision)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtorchtext[0m[38;5;12m (https://github.com/pytorch/text)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtorchaudio[0m[38;5;12m (https://github.com/pytorch/audio)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mignite[0m[38;5;12m (https://github.com/pytorch/ignite)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyTorchNet[0m[38;5;12m (https://github.com/pytorch/tnt)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyToune[0m[38;5;12m (https://github.com/GRAAL-Research/poutyne)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mskorch[0m[38;5;12m (https://github.com/skorch-dev/skorch)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyVarInf[0m[38;5;12m (https://github.com/ctallec/pyvarinf)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpytorch_geometric[0m[38;5;12m (https://github.com/pyg-team/pytorch_geometric)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGPyTorch[0m[38;5;12m (https://github.com/cornellius-gp/gpytorch)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpyro[0m[38;5;12m (https://github.com/pyro-ppl/pyro)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCatalyst[0m[38;5;12m (https://github.com/catalyst-team/catalyst)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpytorch_tabular[0m[38;5;12m (https://github.com/manujosephv/pytorch_tabular)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mYolov3[0m[38;5;12m (https://github.com/ultralytics/yolov3)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mYolov5[0m[38;5;12m (https://github.com/ultralytics/yolov5)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mYolov8[0m[38;5;12m (https://github.com/ultralytics/ultralytics)[39m
|
||
|
||
[38;2;255;187;0m[4mTensorFlow Ecosystem[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorFlow[0m[38;5;12m (https://github.com/tensorflow/tensorflow)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorLayer[0m[38;5;12m (https://github.com/tensorlayer/TensorLayer)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTFLearn[0m[38;5;12m (https://github.com/tflearn/tflearn)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSonnet[0m[38;5;12m (https://github.com/deepmind/sonnet)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtensorpack[0m[38;5;12m (https://github.com/tensorpack/tensorpack)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTRFL[0m[38;5;12m (https://github.com/deepmind/trfl)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPolyaxon[0m[38;5;12m (https://github.com/polyaxon/polyaxon)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeuPy[0m[38;5;12m (https://github.com/itdxer/neupy)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtfdeploy[0m[38;5;12m (https://github.com/riga/tfdeploy)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtensorflow-upstream[0m[38;5;12m (https://github.com/ROCmSoftwarePlatform/tensorflow-upstream)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorFlow Fold[0m[38;5;12m (https://github.com/tensorflow/fold)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtensorlm[0m[38;5;12m (https://github.com/batzner/tensorlm)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorLight[0m[38;5;12m (https://github.com/bsautermeister/tensorlight)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMesh TensorFlow[0m[38;5;12m (https://github.com/tensorflow/mesh)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLudwig[0m[38;5;12m (https://github.com/ludwig-ai/ludwig)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTF-Agents[0m[38;5;12m (https://github.com/tensorflow/agents)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorForce[0m[38;5;12m (https://github.com/tensorforce/tensorforce)[39m
|
||
|
||
[38;2;255;187;0m[4mKeras Ecosystem[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKeras[0m[38;5;12m (https://keras.io)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkeras-contrib[0m[38;5;12m (https://github.com/keras-team/keras-contrib)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHyperas[0m[38;5;12m (https://github.com/maxpumperla/hyperas)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mElephas[0m[38;5;12m (https://github.com/maxpumperla/elephas)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHera[0m[38;5;12m (https://github.com/keplr-io/hera)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpektral[0m[38;5;12m (https://github.com/danielegrattarola/spektral)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mqkeras[0m[38;5;12m (https://github.com/google/qkeras)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkeras-rl[0m[38;5;12m (https://github.com/keras-rl/keras-rl)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTalos[0m[38;5;12m (https://github.com/autonomio/talos)[39m
|
||
|
||
[38;2;255;187;0m[4mVisualization Tools[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1maltair[0m[38;5;12m (https://altair-viz.github.io/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1maddepar[0m[38;5;12m (https://opensource.addepar.com/ember-charts/#/overview)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mamcharts[0m[38;5;12m (https://www.amcharts.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1manychart[0m[38;5;12m (https://www.anychart.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mbokeh[0m[38;5;12m (https://bokeh.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mComet[0m[38;5;12m (https://www.comet.com/site/products/ml-experiment-tracking/?utm_source=awesome-datascience)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mslemma[0m[38;5;12m (https://slemma.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mcartodb[0m[38;5;12m (https://cartodb.github.io/odyssey.js/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCube[0m[38;5;12m (https://square.github.io/cube/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1md3plus[0m[38;5;12m (https://d3plus.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData-Driven Documents(D3js)[0m[38;5;12m (https://d3js.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mdygraphs[0m[38;5;12m (https://dygraphs.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mECharts[0m[38;5;12m (https://echarts.baidu.com/index-en.html)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mexhibit[0m[38;5;12m (https://www.simile-widgets.org/exhibit/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mgephi[0m[38;5;12m (https://gephi.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mggplot2[0m[38;5;12m (https://ggplot2.tidyverse.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGlue[0m[38;5;12m (http://docs.glueviz.org/en/latest/index.html)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGoogle Chart Gallery[0m[38;5;12m (https://developers.google.com/chart/interactive/docs/gallery)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mhighcarts[0m[38;5;12m (https://www.highcharts.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mimport.io[0m[38;5;12m (https://www.import.io/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mjqplot[0m[38;5;12m (https://www.jqplot.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMatplotlib[0m[38;5;12m (https://matplotlib.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mnvd3[0m[38;5;12m (https://nvd3.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNetron[0m[38;5;12m (https://github.com/lutzroeder/netron)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOpenrefine[0m[38;5;12m (https://openrefine.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mplot.ly[0m[38;5;12m (https://plot.ly/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mraw[0m[38;5;12m (https://rawgraphs.io)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mResseract Lite[0m[38;5;12m (https://github.com/abistarun/resseract-lite)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSeaborn[0m[38;5;12m (https://seaborn.pydata.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mtechanjs[0m[38;5;12m (https://techanjs.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTimeline[0m[38;5;12m (https://timeline.knightlab.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mvariancecharts[0m[38;5;12m (https://variancecharts.com/index.html)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mvida[0m[38;5;12m (https://vida.io/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mvizzu[0m[38;5;12m (https://github.com/vizzuhq/vizzu-lib)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mWrangler[0m[38;5;12m (http://vis.stanford.edu/wrangler/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mr2d3[0m[38;5;12m (https://www.r2d3.us/visual-intro-to-machine-learning-part-1/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNetworkX[0m[38;5;12m (https://networkx.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRedash[0m[38;5;12m (https://redash.io/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mC3[0m[38;5;12m (https://c3js.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTensorWatch[0m[38;5;12m (https://github.com/microsoft/tensorwatch)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mgeomap[0m[38;5;12m (https://pypi.org/project/geomap/)[39m
|
||
|
||
[38;2;255;187;0m[4mMiscellaneous Tools[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;12mLink[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m [39m[38;5;12mDescription[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m├[39m[38;5;239m──────────────────────────────────────────────────────────────────────────────────────────────[39m[38;5;239m┼[39m[38;5;239m───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────[39m[38;5;239m┤[39m
|
||
[38;5;239m│[39m[38;5;14m[1mThe Data Science Lifecycle Process[0m[38;5;12m (https://github.com/dslp/dslp)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mScience[39m[38;5;12m [39m[38;5;12mLifecycle[39m[38;5;12m [39m[38;5;12mProcess[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mprocess[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mtaking[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscience[39m[38;5;12m [39m[38;5;12mteams[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mIdea[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mValue[39m[38;5;12m [39m[38;5;12mrepeatedly[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12msustainably.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mprocess[39m[38;5;12m [39m[38;5;12mis[39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mdocumented[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mrepo[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mData Science Lifecycle Template Repo[0m[38;5;12m (https://github.com/dslp/dslp-repo-template)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mTemplate repository for data science lifecycle project[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mRexMex[0m[38;5;12m (https://github.com/AstraZeneca/rexmex)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA general purpose recommender metrics library for fair evaluation.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mChemicalX[0m[38;5;12m (https://github.com/AstraZeneca/chemicalx)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA PyTorch based deep learning library for drug pair scoring.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mPyTorch Geometric Temporal[0m[38;5;12m (https://github.com/benedekrozemberczki/pytorch_geometric_temporal)[39m[38;5;239m│[39m[38;5;12mRepresentation learning on dynamic graphs.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mLittle Ball of Fur[0m[38;5;12m (https://github.com/benedekrozemberczki/littleballoffur)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA graph sampling library for NetworkX with a Scikit-Learn like API.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mKarate Club[0m[38;5;12m (https://github.com/benedekrozemberczki/karateclub)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAn unsupervised machine learning extension library for NetworkX with a Scikit-Learn like API.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mML Workspace[0m[38;5;12m (https://github.com/ml-tooling/ml-workspace)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAll-in-one[39m[38;5;12m [39m[38;5;12mweb-based[39m[38;5;12m [39m[38;5;12mIDE[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscience.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mworkspace[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mdeployed[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mDocker[39m[38;5;12m [39m[38;5;12mcontainer[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mpreloaded[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mvariety[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mpopular[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscience[39m[38;5;12m [39m[38;5;12mlibraries[39m[38;5;12m [39m[38;5;12m(e.g.,[39m[38;5;12m [39m[38;5;12mTensorflow,[39m[38;5;12m [39m[38;5;12mPyTorch)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdev[39m[38;5;12m [39m[38;5;12mtools[39m[38;5;12m [39m[38;5;12m(e.g.,[39m[38;5;12m [39m[38;5;12mJupyter,[39m[38;5;12m [39m[38;5;12mVS[39m[38;5;12m [39m[38;5;12mCode)[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mNeptune.ai[0m[38;5;12m (https://neptune.ai)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mCommunity-friendly[39m[38;5;12m [39m[38;5;12mplatform[39m[38;5;12m [39m[38;5;12msupporting[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscientists[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mcreating[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12msharing[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mmodels.[39m[38;5;12m [39m[38;5;12mNeptune[39m[38;5;12m [39m[38;5;12mfacilitates[39m[38;5;12m [39m[38;5;12mteamwork,[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12minfrastructure[39m[38;5;12m [39m[38;5;12mmanagement,[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mcomparison[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mreproducibility.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1msteppy[0m[38;5;12m (https://github.com/minerva-ml/steppy)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mLightweight,[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mfast[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mreproducible[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mexperimentation.[39m[38;5;12m [39m[38;5;12mIntroduces[39m[38;5;12m [39m[38;5;12mvery[39m[38;5;12m [39m[38;5;12msimple[39m[38;5;12m [39m[38;5;12minterface[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12menables[39m[38;5;12m [39m[38;5;12mclean[39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mpipeline[39m[38;5;12m [39m[38;5;12mdesign.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1msteppy-toolkit[0m[38;5;12m (https://github.com/minerva-ml/steppy-toolkit)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mCurated collection of the neural networks, transformers and models that make your machine learning work faster and more effective.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mDatalab from Google[0m[38;5;12m (https://cloud.google.com/datalab/docs/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12measily explore, visualize, analyze, and transform data using familiar languages, such as Python and SQL, interactively.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mHortonworks Sandbox[0m[38;5;12m (https://www.cloudera.com/downloads/hortonworks-sandbox.html)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mis a personal, portable Hadoop environment that comes with a dozen interactive Hadoop tutorials.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mR[0m[38;5;12m (https://www.r-project.org/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mis a free software environment for statistical computing and graphics.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mTidyverse[0m[38;5;12m (https://www.tidyverse.org/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mis[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12mopinionated[39m[38;5;12m [39m[38;5;12mcollection[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mR[39m[38;5;12m [39m[38;5;12mpackages[39m[38;5;12m [39m[38;5;12mdesigned[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscience.[39m[38;5;12m [39m[38;5;12mAll[39m[38;5;12m [39m[38;5;12mpackages[39m[38;5;12m [39m[38;5;12mshare[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12munderlying[39m[38;5;12m [39m[38;5;12mdesign[39m[38;5;12m [39m[38;5;12mphilosophy,[39m[38;5;12m [39m[38;5;12mgrammar,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mstructures.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mRStudio[0m[38;5;12m (https://www.rstudio.com)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mIDE – powerful user interface for R. It’s free and open source, and works on Windows, Mac, and Linux.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mPython - Pandas - Anaconda[0m[38;5;12m (https://www.anaconda.com)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mCompletely free enterprise-ready Python distribution for large-scale data processing, predictive analytics, and scientific computing[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mPandas GUI[0m[38;5;12m (https://github.com/adrotog/PandasGUI)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mPandas GUI[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mScikit-Learn[0m[38;5;12m (https://scikit-learn.org/stable/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mMachine Learning in Python[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mNumPy[0m[38;5;12m (https://numpy.org/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mNumPy[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mfundamental[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mscientific[39m[38;5;12m [39m[38;5;12mcomputing[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mPython.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12msupports[39m[38;5;12m [39m[38;5;12mlarge,[39m[38;5;12m [39m[38;5;12mmulti-dimensional[39m[38;5;12m [39m[38;5;12marrays[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmatrices[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mincludes[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12massortment[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mhigh-level[39m[38;5;12m [39m[38;5;12mmathematical[39m[38;5;12m [39m[38;5;12mfunctions[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12moperate[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mthese[39m[38;5;12m [39m[38;5;12marrays.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mVaex[0m[38;5;12m (https://vaex.io/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mVaex is a Python library that allows you to visualize large datasets and calculate statistics at high speeds.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mSciPy[0m[38;5;12m (https://scipy.org/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mSciPy works with NumPy arrays and provides efficient routines for numerical integration and optimization.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mData Science Toolbox[0m[38;5;12m (https://www.coursera.org/learn/data-scientists-tools)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mCoursera Course[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mData Science Toolbox[0m[38;5;12m (https://datasciencetoolbox.org/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mBlog[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mWolfram Data Science Platform[0m[38;5;12m (https://www.wolfram.com/data-science-platform/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mTake[39m[38;5;12m [39m[38;5;12mnumerical,[39m[38;5;12m [39m[38;5;12mtextual,[39m[38;5;12m [39m[38;5;12mimage,[39m[38;5;12m [39m[38;5;12mGIS[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mgive[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mWolfram[39m[38;5;12m [39m[38;5;12mtreatment,[39m[38;5;12m [39m[38;5;12mcarrying[39m[38;5;12m [39m[38;5;12mout[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mfull[39m[38;5;12m [39m[38;5;12mspectrum[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscience[39m[38;5;12m [39m[38;5;12manalysis[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mvisualization[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mautomatically[39m[38;5;12m [39m[38;5;12mgenerate[39m[38;5;12m [39m[38;5;12mrich[39m[38;5;12m [39m[38;5;12minteractive[39m[38;5;12m [39m[38;5;12mreports—all[39m[38;5;12m [39m[38;5;12mpowered[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mrevolutionary[39m[38;5;12m [39m[38;5;12mknowledge-based[39m[38;5;12m [39m[38;5;12mWolfram[39m[38;5;12m [39m[38;5;12mLanguage.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mDatadog[0m[38;5;12m (https://www.datadoghq.com/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mSolutions, code, and devops for high-scale data science.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mVariance[0m[38;5;12m (https://variancecharts.com/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mBuild powerful data visualizations for the web without writing JavaScript[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mKite Development Kit[0m[38;5;12m (https://kitesdk.org/docs/current/index.html)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mKite[39m[38;5;12m [39m[38;5;12mSoftware[39m[38;5;12m [39m[38;5;12mDevelopment[39m[38;5;12m [39m[38;5;12mKit[39m[38;5;12m [39m[38;5;12m(Apache[39m[38;5;12m [39m[38;5;12mLicense,[39m[38;5;12m [39m[38;5;12mVersion[39m[38;5;12m [39m[38;5;12m2.0),[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mKite[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mshort,[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mset[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mlibraries,[39m[38;5;12m [39m[38;5;12mtools,[39m[38;5;12m [39m[38;5;12mexamples,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mdocumentation[39m[38;5;12m [39m[38;5;12mfocused[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mmaking[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12measier[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbuild[39m[38;5;12m [39m[38;5;12msystems[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mtop[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mHadoop[39m[38;5;12m [39m[38;5;12mecosystem.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mDomino Data Labs[0m[38;5;12m (https://www.dominodatalab.com)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mRun, scale, share, and deploy your models — without any infrastructure or setup.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mApache Flink[0m[38;5;12m (https://flink.apache.org/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA platform for efficient, distributed, general-purpose data processing.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mApache Hama[0m[38;5;12m (https://hama.apache.org/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mApache Hama is an Apache Top-Level open source project, allowing you to do advanced analytics beyond MapReduce.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mWeka[0m[38;5;12m (https://www.cs.waikato.ac.nz/ml/weka/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mWeka is a collection of machine learning algorithms for data mining tasks.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mOctave[0m[38;5;12m (https://www.gnu.org/software/octave/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mGNU Octave is a high-level interpreted language, primarily intended for numerical computations.(Free Matlab)[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mApache Spark[0m[38;5;12m (https://spark.apache.org/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mLightning-fast cluster computing[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mHydrosphere Mist[0m[38;5;12m (https://github.com/Hydrospheredata/mist)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12ma service for exposing Apache Spark analytics jobs and machine learning models as realtime, batch or reactive web services.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mData Mechanics[0m[38;5;12m (https://www.datamechanics.co)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA data science and engineering platform making Apache Spark more developer-friendly and cost-effective.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mCaffe[0m[38;5;12m (https://caffe.berkeleyvision.org/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mDeep Learning Framework[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mTorch[0m[38;5;12m (https://torch.ch/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA SCIENTIFIC COMPUTING FRAMEWORK FOR LUAJIT[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mNervana's python based Deep Learning Framework[0m[38;5;12m (https://github.com/NervanaSystems/neon)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mIntel® Nervana™ reference deep learning framework committed to best performance on all hardware.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mSkale[0m[38;5;12m (https://github.com/skale-me/skale)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mHigh performance distributed data processing in NodeJS[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mAerosolve[0m[38;5;12m (https://airbnb.io/aerosolve/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA machine learning package built for humans.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mIntel framework[0m[38;5;12m (https://github.com/intel/idlf)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mIntel® Deep Learning Framework[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mDatawrapper[0m[38;5;12m (https://www.datawrapper.de/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAn[39m[38;5;12m [39m[38;5;12mopen[39m[38;5;12m [39m[38;5;12msource[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mvisualization[39m[38;5;12m [39m[38;5;12mplatform[39m[38;5;12m [39m[38;5;12mhelping[39m[38;5;12m [39m[38;5;12meveryone[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcreate[39m[38;5;12m [39m[38;5;12msimple,[39m[38;5;12m [39m[38;5;12mcorrect[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12membeddable[39m[38;5;12m [39m[38;5;12mcharts.[39m[38;5;12m [39m[38;5;12mAlso[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;14m[1mgithub.com[0m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m(https://github.com/datawrapper/datawrapper)[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mTensor Flow[0m[38;5;12m (https://www.tensorflow.org/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mTensorFlow is an Open Source Software Library for Machine Intelligence[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mNatural Language Toolkit[0m[38;5;12m (https://www.nltk.org/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAn introductory yet powerful toolkit for natural language processing and classification[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mAnnotation Lab[0m[38;5;12m (https://www.johnsnowlabs.com/annotation-lab/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mFree[39m[38;5;12m [39m[38;5;12mEnd-to-End[39m[38;5;12m [39m[38;5;12mNo-Code[39m[38;5;12m [39m[38;5;12mplatform[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mtext[39m[38;5;12m [39m[38;5;12mannotation[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mDL[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mtraining/tuning.[39m[38;5;12m [39m[38;5;12mOut-of-the-box[39m[38;5;12m [39m[38;5;12msupport[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mNamed[39m[38;5;12m [39m[38;5;12mEntity[39m[38;5;12m [39m[38;5;12mRecognition,[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mClassification,[39m[38;5;12m [39m[38;5;12mRelation[39m[38;5;12m [39m[38;5;12mextraction[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mAssertion[39m[38;5;12m [39m[38;5;12mStatus[39m[38;5;12m [39m[38;5;12mSpark[39m[38;5;12m [39m[38;5;12mNLP[39m[38;5;12m [39m[38;5;12mmodels.[39m[38;5;12m [39m[38;5;12mUnlimited[39m[38;5;12m [39m[38;5;12msupport[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12musers,[39m[38;5;12m [39m[38;5;12mteams,[39m[38;5;12m [39m[38;5;12mprojects,[39m[38;5;12m [39m[38;5;12mdocuments.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mnlp-toolkit for node.js[0m[38;5;12m (https://www.npmjs.com/package/nlp-toolkit)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mmodule[39m[38;5;12m [39m[38;5;12mcovers[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m[38;5;12mbasic[39m[38;5;12m [39m[38;5;12mnlp[39m[38;5;12m [39m[38;5;12mprinciples[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mimplementations.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mmain[39m[38;5;12m [39m[38;5;12mfocus[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mperformance.[39m[38;5;12m [39m[38;5;12mWhen[39m[38;5;12m [39m[38;5;12mwe[39m[38;5;12m [39m[38;5;12mdeal[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12msample[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12min[39m[38;5;12m [39m[38;5;12mnlp,[39m[38;5;12m [39m[38;5;12mwe[39m[38;5;12m [39m[38;5;12mquickly[39m[38;5;12m [39m[38;5;12mrun[39m[38;5;12m [39m[38;5;12mout[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mmemory.[39m[38;5;12m [39m[38;5;12mTherefore[39m[38;5;12m [39m[38;5;12mevery[39m[38;5;12m [39m[38;5;12mimplementation[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mmodule[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mwritten[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mstream[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12monly[39m[38;5;12m [39m[38;5;12mhold[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mmemory[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mcurrently[39m[38;5;12m [39m[38;5;12mprocessed[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12many[39m[38;5;12m [39m[38;5;12mstep.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mJulia[0m[38;5;12m (https://julialang.org)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mhigh-level, high-performance dynamic programming language for technical computing[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mIJulia[0m[38;5;12m (https://github.com/JuliaLang/IJulia.jl)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12ma Julia-language backend combined with the Jupyter interactive environment[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mApache Zeppelin[0m[38;5;12m (https://zeppelin.apache.org/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mWeb-based notebook that enables data-driven, interactive data analytics and collaborative documents with SQL, Scala and more[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mFeaturetools[0m[38;5;12m (https://github.com/alteryx/featuretools)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAn open source framework for automated feature engineering written in python[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mOptimus[0m[38;5;12m (https://github.com/hi-primus/optimus)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mCleansing, pre-processing, feature engineering, exploratory data analysis and easy ML with PySpark backend.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mAlbumentations[0m[38;5;12m (https://github.com/albumentations-team/albumentations)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mА[39m[38;5;12m [39m[38;5;12mfast[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12magnostic[39m[38;5;12m [39m[38;5;12mimage[39m[38;5;12m [39m[38;5;12maugmentation[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mimplements[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mdiverse[39m[38;5;12m [39m[38;5;12mset[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12maugmentation[39m[38;5;12m [39m[38;5;12mtechniques.[39m[38;5;12m [39m[38;5;12mSupports[39m[38;5;12m [39m[38;5;12mclassification,[39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12msegmentation,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdetection[39m[38;5;12m [39m[38;5;12mout[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbox.[39m[38;5;12m [39m[38;5;12mWas[39m[38;5;12m [39m[38;5;12mused[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mwin[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mnumber[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mDeep[39m[38;5;12m [39m[38;5;12mLearning[39m[38;5;12m [39m[38;5;12mcompetitions[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mKaggle,[39m[38;5;12m [39m[38;5;12mTopcoder[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthose[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mwere[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mpart[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mCVPR[39m[38;5;12m [39m[38;5;12mworkshops.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mDVC[0m[38;5;12m (https://github.com/iterative/dvc)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAn[39m[38;5;12m [39m[38;5;12mopen-source[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscience[39m[38;5;12m [39m[38;5;12mversion[39m[38;5;12m [39m[38;5;12mcontrol[39m[38;5;12m [39m[38;5;12msystem.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mhelps[39m[38;5;12m [39m[38;5;12mtrack,[39m[38;5;12m [39m[38;5;12morganize[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmake[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscience[39m[38;5;12m [39m[38;5;12mprojects[39m[38;5;12m [39m[38;5;12mreproducible.[39m[38;5;12m [39m[38;5;12mIn[39m[38;5;12m [39m[38;5;12mits[39m[38;5;12m [39m[38;5;12mvery[39m[38;5;12m [39m[38;5;12mbasic[39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mscenario[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mhelps[39m[38;5;12m [39m[38;5;12mversion[39m[38;5;12m [39m[38;5;12mcontrol[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mshare[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mfiles.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mLambdo[0m[38;5;12m (https://github.com/asavinov/lambdo)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mworkflow[39m[38;5;12m [39m[38;5;12mengine[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12msignificantly[39m[38;5;12m [39m[38;5;12msimplifies[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12manalysis[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mcombining[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mone[39m[38;5;12m [39m[38;5;12manalysis[39m[38;5;12m [39m[38;5;12mpipeline[39m[38;5;12m [39m[38;5;12m(i)[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12mengineering[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12m(ii)[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mprediction[39m[38;5;12m [39m[38;5;12m(iii)[39m[38;5;12m [39m[38;5;12mtable[39m[38;5;12m [39m[38;5;12mpopulation[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcolumn[39m[38;5;12m [39m[38;5;12mevaluation.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mFeast[0m[38;5;12m (https://github.com/feast-dev/feast)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12mstore[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mmanagement,[39m[38;5;12m [39m[38;5;12mdiscovery,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12maccess[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mfeatures.[39m[38;5;12m [39m[38;5;12mFeast[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mconsistent[39m[38;5;12m [39m[38;5;12mview[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mboth[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mserving.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mPolyaxon[0m[38;5;12m (https://github.com/polyaxon/polyaxon)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA platform for reproducible and scalable machine learning and deep learning.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mLightTag[0m[38;5;12m (https://www.lighttag.io/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mText Annotation Tool for teams[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mUBIAI[0m[38;5;12m (https://ubiai.tools)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mEasy-to-use[39m[38;5;12m [39m[38;5;12mtext[39m[38;5;12m [39m[38;5;12mannotation[39m[38;5;12m [39m[38;5;12mtool[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mteams[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mmost[39m[38;5;12m [39m[38;5;12mcomprehensive[39m[38;5;12m [39m[38;5;12mauto-annotation[39m[38;5;12m [39m[38;5;12mfeatures.[39m[38;5;12m [39m[38;5;12mSupports[39m[38;5;12m [39m[38;5;12mNER,[39m[38;5;12m [39m[38;5;12mrelations[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdocument[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mclassification[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mOCR[39m[38;5;12m [39m[38;5;12mannotation[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12minvoice[39m[38;5;12m [39m[38;5;12mlabeling[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mTrains[0m[38;5;12m (https://github.com/allegroai/clearml)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAuto-Magical Experiment Manager, Version Control & DevOps for AI[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mHopsworks[0m[38;5;12m (https://github.com/logicalclocks/hopsworks)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mOpen-source[39m[38;5;12m [39m[38;5;12mdata-intensive[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mplatform[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12mstore.[39m[38;5;12m [39m[38;5;12mIngest[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmanage[39m[38;5;12m [39m[38;5;12mfeatures[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mboth[39m[38;5;12m [39m[38;5;12monline[39m[38;5;12m [39m[38;5;12m(MySQL[39m[38;5;12m [39m[38;5;12mCluster)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12moffline[39m[38;5;12m [39m[38;5;12m(Apache[39m[38;5;12m [39m[38;5;12mHive)[39m[38;5;12m [39m[38;5;12maccess,[39m[38;5;12m [39m[38;5;12mtrain[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mserve[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mscale.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mMindsDB[0m[38;5;12m (https://github.com/mindsdb/mindsdb)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mMindsDB[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12mExplainable[39m[38;5;12m [39m[38;5;12mAutoML[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mdevelopers.[39m[38;5;12m [39m[38;5;12mWith[39m[38;5;12m [39m[38;5;12mMindsDB[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbuild,[39m[38;5;12m [39m[38;5;12mtrain[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;12mstate[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mart[39m[38;5;12m [39m[38;5;12mML[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12msimple[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mone[39m[38;5;12m [39m[38;5;12mline[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mcode.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mLightwood[0m[38;5;12m (https://github.com/mindsdb/lightwood)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mPytorch[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mbreaks[39m[38;5;12m [39m[38;5;12mdown[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mproblems[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12msmaller[39m[38;5;12m [39m[38;5;12mblocks[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mglued[39m[38;5;12m [39m[38;5;12mtogether[39m[38;5;12m [39m[38;5;12mseamlessly[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mobjective[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbuild[39m[38;5;12m [39m[38;5;12mpredictive[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mone[39m[38;5;12m [39m[38;5;12mline[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mcode.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mAWS Data Wrangler[0m[38;5;12m (https://github.com/awslabs/aws-data-wrangler)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAn[39m[38;5;12m [39m[38;5;12mopen-source[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mpackage[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mextends[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mpower[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mPandas[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mAWS[39m[38;5;12m [39m[38;5;12mconnecting[39m[38;5;12m [39m[38;5;12mDataFrames[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mAWS[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mrelated[39m[38;5;12m [39m[38;5;12mservices[39m[38;5;12m [39m[38;5;12m(Amazon[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mRedshift,[39m[38;5;12m [39m[38;5;12mAWS[39m[38;5;12m [39m[38;5;12mGlue,[39m[38;5;12m [39m[38;5;12mAmazon[39m[38;5;12m [39m[38;5;12mAthena,[39m[38;5;12m [39m[38;5;12mAmazon[39m[38;5;12m [39m[38;5;12mEMR,[39m[38;5;12m [39m[38;5;12metc).[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mAmazon Rekognition[0m[38;5;12m (https://aws.amazon.com/rekognition/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAWS[39m[38;5;12m [39m[38;5;12mRekognition[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mservice[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mlets[39m[38;5;12m [39m[38;5;12mdevelopers[39m[38;5;12m [39m[38;5;12mworking[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mAmazon[39m[38;5;12m [39m[38;5;12mWeb[39m[38;5;12m [39m[38;5;12mServices[39m[38;5;12m [39m[38;5;12madd[39m[38;5;12m [39m[38;5;12mimage[39m[38;5;12m [39m[38;5;12manalysis[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m[38;5;12mapplications.[39m[38;5;12m [39m[38;5;12mCatalog[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12massets,[39m[38;5;12m [39m[38;5;12mautomate[39m[38;5;12m [39m[38;5;12mworkflows,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mextract[39m[38;5;12m [39m[38;5;12mmeaning[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mmedia[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mapplications.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mAmazon Textract[0m[38;5;12m (https://aws.amazon.com/textract/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAutomatically extract printed text, handwriting, and data from any document.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mAmazon Lookout for Vision[0m[38;5;12m (https://aws.amazon.com/lookout-for-vision/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mSpot[39m[38;5;12m [39m[38;5;12mproduct[39m[38;5;12m [39m[38;5;12mdefects[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mcomputer[39m[38;5;12m [39m[38;5;12mvision[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mautomate[39m[38;5;12m [39m[38;5;12mquality[39m[38;5;12m [39m[38;5;12minspection.[39m[38;5;12m [39m[38;5;12mIdentify[39m[38;5;12m [39m[38;5;12mmissing[39m[38;5;12m [39m[38;5;12mproduct[39m[38;5;12m [39m[38;5;12mcomponents,[39m[38;5;12m [39m[38;5;12mvehicle[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mstructure[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mdamage,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mirregularities[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mcomprehensive[39m[38;5;12m [39m[38;5;12mquality[39m[38;5;12m [39m[38;5;12mcontrol.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mAmazon CodeGuru[0m[38;5;12m (https://aws.amazon.com/codeguru/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAutomate code reviews and optimize application performance with ML-powered recommendations.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mCML[0m[38;5;12m (https://github.com/iterative/cml)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAn[39m[38;5;12m [39m[38;5;12mopen[39m[38;5;12m [39m[38;5;12msource[39m[38;5;12m [39m[38;5;12mtoolkit[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mcontinuous[39m[38;5;12m [39m[38;5;12mintegration[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscience[39m[38;5;12m [39m[38;5;12mprojects.[39m[38;5;12m [39m[38;5;12mAutomatically[39m[38;5;12m [39m[38;5;12mtrain[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mtest[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mproduction-like[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12menvironments[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mGitHub[39m[38;5;12m [39m[38;5;12mActions[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;12mGitLab[39m[38;5;12m [39m[38;5;12mCI,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mautogenerate[39m[38;5;12m [39m[38;5;12mvisual[39m[38;5;12m [39m[38;5;12mreports[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mpull/merge[39m[38;5;12m [39m[38;5;12mrequests.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mDask[0m[38;5;12m (https://dask.org/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAn open source Python library to painlessly transition your analytics code to distributed computing systems (Big Data)[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mStatsmodels[0m[38;5;12m (https://www.statsmodels.org/stable/index.html)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA Python-based inferential statistics, hypothesis testing and regression framework[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mGensim[0m[38;5;12m (https://radimrehurek.com/gensim/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAn open-source library for topic modeling of natural language text[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mspaCy[0m[38;5;12m (https://spacy.io/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA performant natural language processing toolkit[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mGrid Studio[0m[38;5;12m (https://github.com/ricklamers/gridstudio)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mGrid studio is a web-based spreadsheet application with full integration of the Python programming language.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mPython Data Science Handbook[0m[38;5;12m (https://github.com/jakevdp/PythonDataScienceHandbook)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mPython Data Science Handbook: full text in Jupyter Notebooks[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mShapley[0m[38;5;12m (https://github.com/benedekrozemberczki/shapley)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA data-driven framework to quantify the value of classifiers in a machine learning ensemble.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mDAGsHub[0m[38;5;12m (https://dagshub.com)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA platform built on open source tools for data, model and pipeline management.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mDeepnote[0m[38;5;12m (https://deepnote.com)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA new kind of data science notebook. Jupyter-compatible, with real-time collaboration and running in the cloud.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mValohai[0m[38;5;12m (https://valohai.com)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAn MLOps platform that handles machine orchestration, automatic reproducibility and deployment.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mPyMC3[0m[38;5;12m (https://docs.pymc.io/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA Python Library for Probabalistic Programming (Bayesian Inference and Machine Learning)[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mPyStan[0m[38;5;12m (https://pypi.org/project/pystan/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mPython interface to Stan (Bayesian inference and modeling)[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mhmmlearn[0m[38;5;12m (https://pypi.org/project/hmmlearn/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mUnsupervised learning and inference of Hidden Markov Models[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mChaos Genius[0m[38;5;12m (https://github.com/chaos-genius/chaos_genius/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mML powered analytics engine for outlier/anomaly detection and root cause analysis[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mNimblebox[0m[38;5;12m (https://nimblebox.ai/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mfull-stack[39m[38;5;12m [39m[38;5;12mMLOps[39m[38;5;12m [39m[38;5;12mplatform[39m[38;5;12m [39m[38;5;12mdesigned[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mhelp[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscientists[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mpractitioners[39m[38;5;12m [39m[38;5;12maround[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mworld[39m[38;5;12m [39m[38;5;12mdiscover,[39m[38;5;12m [39m[38;5;12mcreate,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mlaunch[39m[38;5;12m [39m[38;5;12mmulti-cloud[39m[38;5;12m [39m[38;5;12mapps[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m[38;5;12mweb[39m[38;5;12m [39m[38;5;12mbrowser.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mTowhee[0m[38;5;12m (https://github.com/towhee-io/towhee)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA Python library that helps you encode your unstructured data into embeddings.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mLineaPy[0m[38;5;12m (https://github.com/LineaLabs/lineapy)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mEver[39m[38;5;12m [39m[38;5;12mbeen[39m[38;5;12m [39m[38;5;12mfrustrated[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mcleaning[39m[38;5;12m [39m[38;5;12mup[39m[38;5;12m [39m[38;5;12mlong,[39m[38;5;12m [39m[38;5;12mmessy[39m[38;5;12m [39m[38;5;12mJupyter[39m[38;5;12m [39m[38;5;12mnotebooks?[39m[38;5;12m [39m[38;5;12mWith[39m[38;5;12m [39m[38;5;12mLineaPy,[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12mopen[39m[38;5;12m [39m[38;5;12msource[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mlibrary,[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mtakes[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mlittle[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mtwo[39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mlines[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mtransform[39m[38;5;12m [39m[38;5;12mmessy[39m[38;5;12m [39m[38;5;12mdevelopment[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12mproduction[39m[38;5;12m [39m[38;5;12mpipelines.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1menvd[0m[38;5;12m (https://github.com/tensorchord/envd)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m🏕️ machine learning development environment for data science and AI/ML engineering teams[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mExplore Data Science Libraries[0m[38;5;12m (https://kandi.openweaver.com/explore/data-science)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mengine[39m[38;5;12m [39m[38;5;12m🔎[39m[38;5;12m [39m[38;5;12mtool[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mdiscover[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;12mfind[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcurated[39m[38;5;12m [39m[38;5;12mlist[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mpopular[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;12mnew[39m[38;5;12m [39m[38;5;12mlibraries,[39m[38;5;12m [39m[38;5;12mtop[39m[38;5;12m [39m[38;5;12mauthors,[39m[38;5;12m [39m[38;5;12mtrending[39m[38;5;12m [39m[38;5;12mproject[39m[38;5;12m [39m[38;5;12mkits,[39m[38;5;12m [39m[38;5;12mdiscussions,[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mtutorials[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mresources[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mMLEM[0m[38;5;12m (https://github.com/iterative/mlem)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m🐶 Version and deploy your ML models following GitOps principles[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mMLflow[0m[38;5;12m (https://mlflow.org/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mMLOps framework for managing ML models across their full lifecycle[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mcleanlab[0m[38;5;12m (https://github.com/cleanlab/cleanlab)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mPython library for data-centric AI and automatically detecting various issues in ML datasets[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mAutoGluon[0m[38;5;12m (https://github.com/awslabs/autogluon)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAutoML to easily produce accurate predictions for image, text, tabular, time-series, and multi-modal data[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mArize AI[0m[38;5;12m (https://arize.com/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mArize[39m[38;5;12m [39m[38;5;12mAI[39m[38;5;12m [39m[38;5;12mcommunity[39m[38;5;12m [39m[38;5;12mtier[39m[38;5;12m [39m[38;5;12mobservability[39m[38;5;12m [39m[38;5;12mtool[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmonitoring[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mproduction[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mroot-causing[39m[38;5;12m [39m[38;5;12missues[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mquality[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mperformance[39m[38;5;12m [39m[38;5;12mdrift.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mAureo.io[0m[38;5;12m (https://aureo.io)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAureo.io[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mlow-code[39m[38;5;12m [39m[38;5;12mplatform[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mfocuses[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mbuilding[39m[38;5;12m [39m[38;5;12martificial[39m[38;5;12m [39m[38;5;12mintelligence.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12musers[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mcapability[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcreate[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mpipelines,[39m[38;5;12m [39m[38;5;12mautomations[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mintegrate[39m[38;5;12m [39m[38;5;12mthem[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12martificial[39m[38;5;12m [39m[38;5;12mintelligence[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12m–[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m[38;5;12mbasic[39m[38;5;12m [39m[38;5;12mdata.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mERD Lab[0m[38;5;12m (https://www.erdlab.io/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mFree cloud based entity relationship diagram (ERD) tool made for developers.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mArize-Phoenix[0m[38;5;12m (https://docs.arize.com/phoenix)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mMLOps in a notebook - uncover insights, surface problems, monitor, and fine tune your models.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mComet[0m[38;5;12m (https://github.com/comet-ml/comet-examples)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAn[39m[38;5;12m [39m[38;5;12mMLOps[39m[38;5;12m [39m[38;5;12mplatform[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mexperiment[39m[38;5;12m [39m[38;5;12mtracking,[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mproduction[39m[38;5;12m [39m[38;5;12mmanagement,[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mregistry,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mfull[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mlineage[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12msupport[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mML[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mworkflow[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mstraight[39m[38;5;12m [39m[38;5;12mthrough[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mproduction.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mCometLLM[0m[38;5;12m (https://github.com/comet-ml/comet-llm)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mLog, track, visualize, and search your LLM prompts and chains in one easy-to-use, 100% open-source tool.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mSynthical[0m[38;5;12m (https://synthical.com)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAI-powered[39m[38;5;12m [39m[38;5;12mcollaborative[39m[38;5;12m [39m[38;5;12menvironment[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mresearch.[39m[38;5;12m [39m[38;5;12mFind[39m[38;5;12m [39m[38;5;12mrelevant[39m[38;5;12m [39m[38;5;12mpapers,[39m[38;5;12m [39m[38;5;12mcreate[39m[38;5;12m [39m[38;5;12mcollections[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mmanage[39m[38;5;12m [39m[38;5;12mbibliography,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12msummarize[39m[38;5;12m [39m[38;5;12mcontent[39m[38;5;12m [39m[38;5;12m—[39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mall[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mone[39m[38;5;12m [39m[38;5;12mplace[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mteeplot[0m[38;5;12m (https://github.com/mmore500/teeplot)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mWorkflow tool to automatically organize data visualization output[39m[38;5;12m [39m[38;5;239m│[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mLiterature and Media[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12mThis section includes some additional reading material, channels to watch, and talks to listen to.[39m
|
||
|
||
[38;2;255;187;0m[4mBooks[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mData Science From Scratch: First Principles with Python[0m[38;5;12m (https://www.amazon.com/Data-Science-Scratch-Principles-Python-dp-1492041130/dp/1492041130/ref=dp_ob_title_bk)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mArtificial Intelligence with Python - Tutorialspoint[0m[38;5;12m (https://www.tutorialspoint.com/artificial_intelligence_with_python/artificial_intelligence_with_python_tutorial.pdf)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine Learning from Scratch[0m[38;5;12m (https://dafriedman97.github.io/mlbook/content/introduction.html)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mProbabilistic Machine Learning: An Introduction[0m[38;5;12m (https://probml.github.io/pml-book/book1.html)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mA Comprehensive Guide to Machine Learning[0m[38;5;12m (https://www.eecs189.org/static/resources/comprehensive-guide.pdf)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHow to Lead in Data Science[0m[38;5;12m (https://www.manning.com/books/how-to-lead-in-data-science) - Early Access[39m
|
||
[38;5;12m- [39m[38;5;14m[1mFighting Churn With Data[0m[38;5;12m (https://www.manning.com/books/fighting-churn-with-data)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science at Scale with Python and Dask[0m[38;5;12m (https://www.manning.com/books/data-science-with-python-and-dask)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPython Data Science Handbook[0m[38;5;12m (https://jakevdp.github.io/PythonDataScienceHandbook/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe Data Science Handbook: Advice and Insights from 25 Amazing Data Scientists[0m[38;5;12m (https://www.thedatasciencehandbook.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThink Like a Data Scientist[0m[38;5;12m (https://www.manning.com/books/think-like-a-data-scientist)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mIntroducing Data Science[0m[38;5;12m (https://www.manning.com/books/introducing-data-science)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPractical Data Science with R[0m[38;5;12m (https://www.manning.com/books/practical-data-science-with-r)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mEveryday Data Science[0m[38;5;12m (https://www.amazon.com/dp/B08TZ1MT3W/ref=cm_sw_r_cp_apa_fabc_a0ceGbWECF9A8) & [39m[38;5;14m[1m(cheaper PDF version)[0m[38;5;12m (https://gum.co/everydaydata)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mExploring Data Science[0m[38;5;12m (https://www.manning.com/books/exploring-data-science) - free eBook sampler[39m
|
||
[38;5;12m- [39m[38;5;14m[1mExploring the Data Jungle[0m[38;5;12m (https://www.manning.com/books/exploring-the-data-jungle) - free eBook sampler[39m
|
||
[38;5;12m- [39m[38;5;14m[1mClassic Computer Science Problems in Python[0m[38;5;12m (https://www.manning.com/books/classic-computer-science-problems-in-python)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMath for Programmers[0m[38;5;12m (https://www.manning.com/books/math-for-programmers) Early access[39m
|
||
[38;5;12m- [39m[38;5;14m[1mR in Action, Third Edition[0m[38;5;12m (https://www.manning.com/books/r-in-action-third-edition) Early Access[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science Bookcamp[0m[38;5;12m (https://www.manning.com/books/data-science-bookcamp) Early access[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science Thinking: The Next Scientific, Technological and Economic Revolution[0m[38;5;12m (https://www.springer.com/gp/book/9783319950914)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mApplied Data Science: Lessons Learned for the Data-Driven Business[0m[38;5;12m (https://www.springer.com/gp/book/9783030118204)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe Data Science Handbook[0m[38;5;12m (https://www.amazon.com/Data-Science-Handbook-Field-Cady/dp/1119092949)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mEssential Natural Language Processing[0m[38;5;12m (https://www.manning.com/books/getting-started-with-natural-language-processing) - Early access[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMining Massive Datasets[0m[38;5;12m (https://www.mmds.org/) - free e-book comprehended by an online course[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPandas in Action[0m[38;5;12m (https://www.manning.com/books/pandas-in-action) - Early access[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGenetic Algorithms and Genetic Programming[0m[38;5;12m (https://www.taylorfrancis.com/books/9780429141973)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAdvances in Evolutionary Algorithms[0m[38;5;12m (https://www.intechopen.com/books/advances_in_evolutionary_algorithms) - Free Download[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGenetic Programming: New Approaches and Successful Applications[0m[38;5;12m (https://www.intechopen.com/books/genetic-programming-new-approaches-and-successful-applications) - Free Download[39m
|
||
[38;5;12m- [39m[38;5;14m[1mEvolutionary Algorithms[0m[38;5;12m (https://www.intechopen.com/books/evolutionary-algorithms) - Free Download[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAdvances in Genetic Programming, Vol. 3[0m[38;5;12m (https://www.cs.bham.ac.uk/~wbl/aigp3/) - Free Download[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGlobal Optimization Algorithms: Theory and Application[0m[38;5;12m (https://www.it-weise.de/projects/book.pdf) - Free Download[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGenetic Algorithms and Evolutionary Computation[0m[38;5;12m (https://www.talkorigins.org/faqs/genalg/genalg.html) - Free Download[39m
|
||
[38;5;12m- [39m[38;5;14m[1mConvex Optimization[0m[38;5;12m (https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf) - Convex Optimization book by Stephen Boyd - Free Download[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Analysis with Python and PySpark[0m[38;5;12m (https://www.manning.com/books/data-analysis-with-python-and-pyspark) - Early Access[39m
|
||
[38;5;12m- [39m[38;5;14m[1mR for Data Science[0m[38;5;12m (https://r4ds.had.co.nz/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBuild a Career in Data Science[0m[38;5;12m (https://www.manning.com/books/build-a-career-in-data-science)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine Learning Bookcamp[0m[38;5;12m (https://mlbookcamp.com/) - Early access[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition[0m[38;5;12m (https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mEffective Data Science Infrastructure[0m[38;5;12m (https://www.manning.com/books/effective-data-science-infrastructure)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPractical MLOps: How to Get Ready for Production Models[0m[38;5;12m (https://valohai.com/mlops-ebook/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Analysis with Python and PySpark[0m[38;5;12m (https://www.manning.com/books/data-analysis-with-python-and-pyspark)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRegression, a Friendly guide[0m[38;5;12m (https://www.manning.com/books/regression-a-friendly-guide) - Early Access[39m
|
||
[38;5;12m- [39m[38;5;14m[1mStreaming Systems: The What, Where, When, and How of Large-Scale Data Processing[0m[38;5;12m (https://www.oreilly.com/library/view/streaming-systems/9781491983867/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science at the Command Line: Facing the Future with Time-Tested Tools[0m[38;5;12m (https://www.oreilly.com/library/view/data-science-at/9781491947845/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine Learning - CIn UFPE[0m[38;5;12m (https://www.cin.ufpe.br/~cavmj/Machine%20-%20Learning%20-%20Tom%20Mitchell.pdf)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine Learning with Python - Tutorialspoint[0m[38;5;12m (https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_tutorial.pdf)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDeep Learning[0m[38;5;12m (https://www.deeplearningbook.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDesigning Cloud Data Platforms[0m[38;5;12m (https://www.manning.com/books/designing-cloud-data-platforms) - Early Access[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAn Introduction to Statistical Learning with Applications in R[0m[38;5;12m (https://www.statlearning.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe Elements of Statistical Learning: Data Mining, Inference, and Prediction[0m[38;5;12m (https://hastie.su.domains/ElemStatLearn/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDeep Learning with PyTorch[0m[38;5;12m (https://www.simonandschuster.com/books/Deep-Learning-with-PyTorch/Eli-Stevens/9781617295263)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNeural Networks and Deep Learning[0m[38;5;12m (https://neuralnetworksanddeeplearning.com)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDeep Learning Cookbook[0m[38;5;12m (https://www.oreilly.com/library/view/deep-learning-cookbook/9781491995839/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mIntroduction to Machine Learning with Python[0m[38;5;12m (https://www.oreilly.com/library/view/introduction-to-machine/9781449369880/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mArtificial Intelligence: Foundations of Computational Agents, 2nd Edition[0m[38;5;12m (https://artint.info/index.html) - Free HTML version[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe Quest for Artificial Intelligence: A History of Ideas and Achievements[0m[38;5;12m (https://ai.stanford.edu/~nilsson/QAI/qai.pdf) - Free Download[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGraph Algorithms for Data Science[0m[38;5;12m (https://www.manning.com/books/graph-algorithms-for-data-science) - Early Access[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Mesh in Action[0m[38;5;12m (https://www.manning.com/books/data-mesh-in-action) - Early Access[39m
|
||
[38;5;12m- [39m[38;5;14m[1mJulia for Data Analysis[0m[38;5;12m (https://www.manning.com/books/julia-for-data-analysis) - Early Access[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCasual Inference for Data Science[0m[38;5;12m (https://www.manning.com/books/julia-for-data-analysis) - Early Access[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRegular Expression Puzzles and AI Coding Assistants[0m[38;5;12m (https://www.manning.com/books/regular-expression-puzzles-and-ai-coding-assistants) by David Mertz[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDive into Deep Learning[0m[38;5;12m (https://d2l.ai/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData for All[0m[38;5;12m (https://www.manning.com/books/data-for-all)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mInterpretable Machine Learning: A Guide for Making Black Box Models Explainable[0m[38;5;12m (https://christophm.github.io/interpretable-ml-book/) - Free GitHub version[39m
|
||
[38;5;12m- [39m[38;5;14m[1mFoundations of Data Science[0m[38;5;12m (https://www.cs.cornell.edu/jeh/book.pdf) Free Download [39m
|
||
[38;5;12m- [39m[38;5;14m[1mComet for DataScience: Enhance your ability to manage and optimize the life cycle of your data science project[0m[38;5;12m (https://www.amazon.com/Comet-Data-Science-Enhance-optimize/dp/1801814430) [39m
|
||
[38;5;12m- [39m[38;5;14m[1mSoftware Engineering for Data Scientists[0m[38;5;12m (https://www.manning.com/books/software-engineering-for-data-scientists) - Early Access[39m
|
||
[38;5;12m- [39m[38;5;14m[1mJulia for Data Science[0m[38;5;12m (https://www.manning.com/books/julia-for-data-science) - Early Access[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAn Introduction to Statistical Learning[0m[38;5;12m (https://www.statlearning.com/) - Download Page[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine Learning For Absolute Beginners[0m[38;5;12m (https://www.amazon.in/Machine-Learning-Absolute-Beginners-Introduction-ebook/dp/B07335JNW1)[39m
|
||
|
||
[38;2;255;187;0m[4mBook Deals (Affiliated) 🛍[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1meBook sale - Save up to 45% on eBooks![0m[38;5;12m (https://www.manning.com/?utm_source=mikrobusiness&utm_medium=affiliate&utm_campaign=ebook_sale_8_8_22)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mCausal Machine Learning[0m[38;5;12m (https://www.manning.com/books/causal-machine-learning?utm_source=mikrobusiness&utm_medium=affiliate&utm_campaign=book_ness_causal_7_26_22&a_aid=mikrobusiness&a_bid=43a2198b[39m
|
||
[38;5;12m)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mManaging ML Projects[0m[38;5;12m (https://www.manning.com/books/managing-machine-learning-projects?utm_source=mikrobusiness&utm_medium=affiliate&utm_campaign=book_thompson_managing_6_14_22)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCausal Inference for Data Science[0m[38;5;12m (https://www.manning.com/books/causal-inference-for-data-science?utm_source=mikrobusiness&utm_medium=affiliate&utm_campaign=book_ruizdevilla_causal_6_6_22)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData for All[0m[38;5;12m (https://www.manning.com/books/data-for-all?utm_source=mikrobusiness&utm_medium=affiliate)[39m
|
||
|
||
[38;2;255;187;0m[4mJournals, Publications and Magazines[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mICML[0m[38;5;12m (https://icml.cc/2015/) - International Conference on Machine Learning[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGECCO[0m[38;5;12m (https://gecco-2019.sigevo.org/index.html/HomePage) - The Genetic and Evolutionary Computation Conference (GECCO)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mepjdatascience[0m[38;5;12m (https://epjdatascience.springeropen.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mJournal of Data Science[0m[38;5;12m (https://jds-online.org/journal/JDS) - an international journal devoted to applications of statistical methods at large[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBig Data Research[0m[38;5;12m (https://www.journals.elsevier.com/big-data-research)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mJournal of Big Data[0m[38;5;12m (https://journalofbigdata.springeropen.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBig Data & Society[0m[38;5;12m (https://journals.sagepub.com/home/bds)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science Journal[0m[38;5;12m (https://www.jstage.jst.go.jp/browse/dsj)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mdatatau.com/news[0m[38;5;12m (https://www.datatau.com/news) - Like Hacker News, but for data[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science Trello Board[0m[38;5;12m (https://trello.com/b/rbpEfMld/data-science)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMedium Data Science Topic[0m[38;5;12m (https://medium.com/tag/data-science) - Data Science related publications on medium[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mTowards[0m[38;5;14m[1m [0m[38;5;14m[1mData[0m[38;5;14m[1m [0m[38;5;14m[1mScience[0m[38;5;14m[1m [0m[38;5;14m[1mGenetic[0m[38;5;14m[1m [0m[38;5;14m[1mAlgorithm[0m[38;5;14m[1m [0m[38;5;14m[1mTopic[0m[38;5;12m [39m[38;5;12m(https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3#:~:text=A%20genetic%20algorithm%20is%20a,offspring%20of%20the%20next%20generation.)[39m[38;5;12m [39m
|
||
[38;5;12m-Genetic[39m[38;5;12m [39m[38;5;12mAlgorithm[39m[38;5;12m [39m[38;5;12mrelated[39m[38;5;12m [39m[38;5;12mPublications[39m[38;5;12m [39m[38;5;12mtowards[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mScience[39m
|
||
[38;5;12m- [39m[38;5;14m[1mall AI news[0m[38;5;12m (https://allainews.com/) - The AI/ML/Big Data news aggregator platform[39m
|
||
|
||
[38;2;255;187;0m[4mNewsletters[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAI Digest[0m[38;5;12m (https://aidigest.net/). A weekly newsletter to keep up to date with AI, machine learning, and data science. [39m[38;5;14m[1mArchive[0m[38;5;12m (https://aidigest.net/digests).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDataTalks.Club[0m[38;5;12m (https://datatalks.club). A weekly newsletter about data-related things. [39m[38;5;14m[1mArchive[0m[38;5;12m (https://us19.campaign-archive.com/home/?u=0d7822ab98152f5afc118c176&id=97178021aa).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe Analytics Engineering Roundup[0m[38;5;12m (https://roundup.getdbt.com/about). A newsletter about data science. [39m[38;5;14m[1mArchive[0m[38;5;12m (https://roundup.getdbt.com/archive).[39m
|
||
|
||
[38;2;255;187;0m[4mBloggers[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mWes McKinney[0m[38;5;12m (https://wesmckinney.com/archives.html) - Wes McKinney Archives.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMatthew Russell[0m[38;5;12m (https://miningthesocialweb.com/) - Mining The Social Web.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGreg Reda[0m[38;5;12m (https://www.gregreda.com/) - Greg Reda Personal Blog[39m
|
||
[38;5;12m- [39m[38;5;14m[1mKevin Davenport[0m[38;5;12m (https://kldavenport.com/) - Kevin Davenport Personal Blog[39m
|
||
[38;5;12m- [39m[38;5;14m[1mJulia Evans[0m[38;5;12m (https://jvns.ca/) - Recurse Center alumna[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHakan Kardas[0m[38;5;12m (https://www.cse.unr.edu/~hkardes/) - Personal Web Page[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSean J. Taylor[0m[38;5;12m (https://seanjtaylor.com/) - Personal Web Page[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDrew Conway[0m[38;5;12m (https://drewconway.com/) - Personal Web Page[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHilary Mason[0m[38;5;12m (https://hilarymason.com/) - Personal Web Page[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNoah Iliinsky[0m[38;5;12m (https://complexdiagrams.com/) - Personal Blog[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMatt Harrison[0m[38;5;12m (https://hairysun.com/) - Personal Blog[39m
|
||
[38;5;12m- [39m[38;5;14m[1mVamshi Ambati[0m[38;5;12m (https://allthingsds.wordpress.com/) - AllThings Data Sciene[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPrash Chan[0m[38;5;12m (https://www.mdmgeek.com/) - Tech Blog on Master Data Management And Every Buzz Surrounding It[39m
|
||
[38;5;12m- [39m[38;5;14m[1mClare Corthell[0m[38;5;12m (https://datasciencemasters.org/) - The Open Source Data Science Masters[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPaul Miller[0m[38;5;12m (https://cloudofdata.com/) Based in the UK and working globally, Cloud of Data's consultancy services help clients understand the implications of taking data and more to the Cloud.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science London[0m[38;5;12m (https://datasciencelondon.org/) Data Science London is a non-profit organization dedicated to the free, open, dissemination of data science.[39m
|
||
[38;5;12m We are the largest data science community in Europe.[39m
|
||
[38;5;12m We are more than 3,190 data scientists and data geeks in our community.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDatawrangling[0m[38;5;12m (http://www.datawrangling.org) by Peter Skomoroch. MACHINE LEARNING, DATA MINING, AND MORE[39m
|
||
[38;5;12m- [39m[38;5;14m[1mQuora Data Science[0m[38;5;12m (https://www.quora.com/topic/Data-Science) - Data Science Questions and Answers from experts[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSiah[0m[38;5;12m (https://openresearch.wordpress.com/) a PhD student at Berkeley[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLouis Dorard[0m[38;5;12m (https://www.ownml.co/blog/) a technology guy with a penchant for the web and for data, big and small[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine Learning Mastery[0m[38;5;12m (https://machinelearningmastery.com/) about helping professional programmers confidently apply machine learning algorithms to address complex problems.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDaniel Forsyth[0m[38;5;12m (https://www.danielforsyth.me/) - Personal Blog[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science Weekly[0m[38;5;12m (https://www.datascienceweekly.org/) - Weekly News Blog[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRevolution Analytics[0m[38;5;12m (https://blog.revolutionanalytics.com/) - Data Science Blog[39m
|
||
[38;5;12m- [39m[38;5;14m[1mR Bloggers[0m[38;5;12m (https://www.r-bloggers.com/) - R Bloggers[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe Practical Quant[0m[38;5;12m (https://practicalquant.blogspot.com/) Big data[39m
|
||
[38;5;12m- [39m[38;5;14m[1mYet Another Data Blog[0m[38;5;12m (https://yet-another-data-blog.blogspot.com/) Yet Another Data Blog[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSpenczar[0m[38;5;12m (https://spenczar.com/) a data scientist at _Twitch_. I handle the whole data pipeline, from tracking to model-building to reporting.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mKD Nuggets[0m[38;5;12m (https://www.kdnuggets.com/) Data Mining, Analytics, Big Data, Data, Science not a blog a portal[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMeta Brown[0m[38;5;12m (https://www.metabrown.com/blog/) - Personal Blog[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Scientist[0m[38;5;12m (https://datascientists.net/) is building the data scientist culture.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mWhatSTheBigData[0m[38;5;12m (https://whatsthebigdata.com/) is some of, all of, or much more than the above and this blog explores its impact on information technology, the business world, government agencies, and our lives.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTevfik Kosar[0m[38;5;12m (https://magnus-notitia.blogspot.com/) - Magnus Notitia[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNew Data Scientist[0m[38;5;12m (https://newdatascientist.blogspot.com/) How a Social Scientist Jumps into the World of Big Data[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHarvard Data Science[0m[38;5;12m (https://harvarddatascience.com/) - Thoughts on Statistical Computing and Visualization[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science 101[0m[38;5;12m (https://ryanswanstrom.com/datascience101/) - Learning To Be A Data Scientist[39m
|
||
[38;5;12m- [39m[38;5;14m[1mKaggle Past Solutions[0m[38;5;12m (https://www.chioka.in/kaggle-competition-solutions/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDataScientistJourney[0m[38;5;12m (https://datascientistjourney.wordpress.com/category/data-science/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNYC Taxi Visualization Blog[0m[38;5;12m (https://chriswhong.github.io/nyctaxi/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLearning Lover[0m[38;5;12m (https://learninglover.com/blog/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDataists[0m[38;5;12m (https://www.dataists.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData-Mania[0m[38;5;12m (https://www.data-mania.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData-Magnum[0m[38;5;12m (https://data-magnum.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mP-value[0m[38;5;12m (https://www.p-value.info/) - Musings on data science, machine learning, and stats.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mdatascopeanalytics[0m[38;5;12m (https://datascopeanalytics.com/blog/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDigital transformation[0m[38;5;12m (https://tarrysingh.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mdatascientistjourney[0m[38;5;12m (https://datascientistjourney.wordpress.com/category/data-science/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Mania Blog[0m[38;5;12m (https://www.data-mania.com/blog/) - [39m[38;5;14m[1mThe File Drawer[0m[38;5;12m (https://chris-said.io/) - Chris Said's science blog[39m
|
||
[38;5;12m- [39m[38;5;14m[1mEmilio Ferrara's web page[0m[38;5;12m (https://www.emilio.ferrara.name/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDataNews[0m[38;5;12m (https://datanews.tumblr.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mReddit TextMining[0m[38;5;12m (https://www.reddit.com/r/textdatamining/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPeriscopic[0m[38;5;12m (https://periscopic.com/#!/news)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHilary Parker[0m[38;5;12m (https://hilaryparker.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Stories[0m[38;5;12m (https://datastori.es/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science Lab[0m[38;5;12m (https://datasciencelab.wordpress.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMeaning of[0m[38;5;12m (https://www.kennybastani.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAdventures in Data Land[0m[38;5;12m (https://blog.smola.org)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDATA MINERS BLOG[0m[38;5;12m (https://blog.data-miners.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDataclysm[0m[38;5;12m (https://theblog.okcupid.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mFlowingData[0m[38;5;12m (https://flowingdata.com/) - Visualization and Statistics[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCalculated Risk[0m[38;5;12m (https://www.calculatedriskblog.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mO'reilly Learning Blog[0m[38;5;12m (https://www.oreilly.com/content/topics/oreilly-learning/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDominodatalab[0m[38;5;12m (https://blog.dominodatalab.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mi am trask[0m[38;5;12m (https://iamtrask.github.io/) - A Machine Learning Craftsmanship Blog[39m
|
||
[38;5;12m- [39m[38;5;14m[1mVademecum of Practical Data Science[0m[38;5;12m (https://datasciencevademecum.wordpress.com/) - Handbook and recipes for data-driven solutions of real-world problems[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDataconomy[0m[38;5;12m (https://dataconomy.com/) - A blog on the newly emerging data economy[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSpringboard[0m[38;5;12m (https://www.springboard.com/blog/) - A blog with resources for data science learners[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAnalytics Vidhya[0m[38;5;12m (https://www.analyticsvidhya.com/) - A full-fledged website about data science and analytics study material.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOccam's Razor[0m[38;5;12m (https://www.kaushik.net/avinash/) - Focused on Web Analytics.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData School[0m[38;5;12m (https://www.dataschool.io/) - Data science tutorials for beginners![39m
|
||
[38;5;12m- [39m[38;5;14m[1mColah's Blog[0m[38;5;12m (https://colah.github.io) - Blog for understanding Neural Networks![39m
|
||
[38;5;12m- [39m[38;5;14m[1mSebastian's Blog[0m[38;5;12m (https://ruder.io/#open) - Blog for NLP and transfer learning![39m
|
||
[38;5;12m- [39m[38;5;14m[1mDistill[0m[38;5;12m (https://distill.pub) - Dedicated to clear explanations of machine learning![39m
|
||
[38;5;12m- [39m[38;5;14m[1mChris Albon's Website[0m[38;5;12m (https://chrisalbon.com/) - Data Science and AI notes[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAndrew Carr[0m[38;5;12m (https://andrewnc.github.io/blog/blog.html) - Data Science with Esoteric programming languages[39m
|
||
[38;5;12m- [39m[38;5;14m[1mfloydhub[0m[38;5;12m (https://blog.floydhub.com/introduction-to-genetic-algorithms/) - Blog for Evolutionary Algorithms[39m
|
||
[38;5;12m- [39m[38;5;14m[1mJingles[0m[38;5;12m (https://jinglescode.github.io/) - Review and extract key concepts from academic papers[39m
|
||
[38;5;12m- [39m[38;5;14m[1mnbshare[0m[38;5;12m (https://www.nbshare.io/notebooks/data-science/) - Data Science notebooks[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDeep and Shallow[0m[38;5;12m (https://deep-and-shallow.com/) - All things Deep and Shallow in Data Science[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLoic Tetrel[0m[38;5;12m (https://ltetrel.github.io/) - Data science blog[39m
|
||
[38;5;12m- [39m[38;5;14m[1mChip Huyen's Blog[0m[38;5;12m (https://huyenchip.com/blog/) - ML Engineering, MLOps, and the use of ML in startups[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMaria Khalusova[0m[38;5;12m (https://www.mariakhalusova.com/) - Data science blog[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAditi Rastogi[0m[38;5;12m (https://medium.com/@aditi2507rastogi) - ML,DL,Data Science blog[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSantiago Basulto[0m[38;5;12m (https://medium.com/@santiagobasulto) - Data Science with Python[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAkhil Soni[0m[38;5;12m (https://medium.com/@akhil0435) - ML, DL and Data Science[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAkhil Soni[0m[38;5;12m (https://akhilworld.hashnode.dev/) - ML, DL and Data Science [39m
|
||
|
||
[38;2;255;187;0m[4mPresentations[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mHow to Become a Data Scientist[0m[38;5;12m (https://www.slideshare.net/ryanorban/how-to-become-a-data-scientist)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mIntroduction to Data Science[0m[38;5;12m (https://www.slideshare.net/NikoVuokko/introduction-to-data-science-25391618)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mIntro to Data Science for Enterprise Big Data[0m[38;5;12m (https://www.slideshare.net/pacoid/intro-to-data-science-for-enterprise-big-data)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHow to Interview a Data Scientist[0m[38;5;12m (https://www.slideshare.net/dtunkelang/how-to-interview-a-data-scientist)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHow to Share Data with a Statistician[0m[38;5;12m (https://github.com/jtleek/datasharing)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe Science of a Great Career in Data Science[0m[38;5;12m (https://www.slideshare.net/katemats/the-science-of-a-great-career-in-data-science)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mWhat Does a Data Scientist Do?[0m[38;5;12m (https://www.slideshare.net/datasciencelondon/big-data-sorry-data-science-what-does-a-data-scientist-do)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBuilding Data Start-Ups: Fast, Big, and Focused[0m[38;5;12m (https://www.slideshare.net/medriscoll/driscoll-strata-buildingdatastartups25may2011clean)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHow to win data science competitions with Deep Learning[0m[38;5;12m (https://www.slideshare.net/0xdata/how-to-win-data-science-competitions-with-deep-learning)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mFull-Stack Data Scientist[0m[38;5;12m (https://www.slideshare.net/AlexeyGrigorev/fullstack-data-scientist)[39m
|
||
|
||
[38;2;255;187;0m[4mPodcasts[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAI at Home[0m[38;5;12m (https://podcasts.apple.com/us/podcast/data-science-at-home/id1069871378)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAI Today[0m[38;5;12m (https://www.cognilytica.com/aitoday/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAdversarial Learning[0m[38;5;12m (https://adversariallearning.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBecoming a Data Scientist[0m[38;5;12m (https://www.becomingadatascientist.com/category/podcast/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mChai time Data Science[0m[38;5;12m (https://www.youtube.com/playlist?list=PLLvvXm0q8zUbiNdoIazGzlENMXvZ9bd3x)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Crunch[0m[38;5;12m (https://datacrunchcorp.com/data-crunch-podcast/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Engineering Podcast[0m[38;5;12m (https://www.dataengineeringpodcast.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science at Home[0m[38;5;12m (https://datascienceathome.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science Mixer[0m[38;5;12m (https://community.alteryx.com/t5/Data-Science-Mixer/bg-p/mixer)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Skeptic[0m[38;5;12m (https://dataskeptic.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Stories[0m[38;5;12m (https://datastori.es/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDatacast[0m[38;5;12m (https://jameskle.com/writes/category/Datacast)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDataFramed[0m[38;5;12m (https://www.datacamp.com/community/podcast)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDataTalks.Club[0m[38;5;12m (https://anchor.fm/datatalksclub)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGradient Dissent[0m[38;5;12m (https://wandb.ai/fully-connected/gradient-dissent)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLearning Machines 101[0m[38;5;12m (https://www.learningmachines101.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLet's Data (Brazil)[0m[38;5;12m (https://www.youtube.com/playlist?list=PLn_z5E4dh_Lj5eogejMxfOiNX3nOhmhmM)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLinear Digressions[0m[38;5;12m (https://lineardigressions.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNot So Standard Deviations[0m[38;5;12m (https://nssdeviations.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mO'Reilly Data Show Podcast[0m[38;5;12m (https://www.oreilly.com/radar/topics/oreilly-data-show-podcast/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPartially Derivative[0m[38;5;12m (https://partiallyderivative.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSuperdatascience[0m[38;5;12m (https://www.superdatascience.com/podcast/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe Data Engineering Show[0m[38;5;12m (https://www.dataengineeringshow.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe Radical AI Podcast[0m[38;5;12m (https://www.radicalai.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe Robot Brains Podcast[0m[38;5;12m (https://www.therobotbrains.ai/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mWhat's The Point[0m[38;5;12m (https://fivethirtyeight.com/tag/whats-the-point/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHow AI Built This[0m[38;5;12m (https://how-ai-built-this.captivate.fm/)[39m
|
||
|
||
[38;2;255;187;0m[4mYouTube Videos & Channels[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mWhat is machine learning?[0m[38;5;12m (https://www.youtube.com/watch?v=WXHM_i-fgGo)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAndrew Ng: Deep Learning, Self-Taught Learning and Unsupervised Feature Learning[0m[38;5;12m (https://www.youtube.com/watch?v=n1ViNeWhC24)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData36 - Data Science for Beginners by Tomi Mester[0m[38;5;12m (https://www.youtube.com/c/TomiMesterData36comDataScienceForBeginners)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDeep Learning: Intelligence from Big Data[0m[38;5;12m (https://www.youtube.com/watch?v=czLI3oLDe8M)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mInterview with Google's AI and Deep Learning 'Godfather' Geoffrey Hinton[0m[38;5;12m (https://www.youtube.com/watch?v=1Wp3IIpssEc)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mIntroduction to Deep Learning with Python[0m[38;5;12m (https://www.youtube.com/watch?v=S75EdAcXHKk)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mWhat is machine learning, and how does it work?[0m[38;5;12m (https://www.youtube.com/watch?v=elojMnjn4kk)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData School[0m[38;5;12m (https://www.youtube.com/channel/UCnVzApLJE2ljPZSeQylSEyg) - Data Science Education[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNeural Nets for Newbies by Melanie Warrick (May 2015)[0m[38;5;12m (https://www.youtube.com/watch?v=Cu6A96TUy_o)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNeural Networks video series by Hugo Larochelle[0m[38;5;12m (https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGoogle DeepMind co-founder Shane Legg - Machine Super Intelligence[0m[38;5;12m (https://www.youtube.com/watch?v=evNCyRL3DOU)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science Primer[0m[38;5;12m (https://www.youtube.com/watch?v=cHzvYxBN9Ls&list=PLPqVjP3T4RIRsjaW07zoGzH-Z4dBACpxY)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science with Genetic Algorithms[0m[38;5;12m (https://www.youtube.com/watch?v=lpD38NxTOnk)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science for Beginners[0m[38;5;12m (https://www.youtube.com/playlist?list=PL2zq7klxX5ATMsmyRazei7ZXkP1GHt-vs)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDataTalks.Club[0m[38;5;12m (https://www.youtube.com/channel/UCDvErgK0j5ur3aLgn6U-LqQ)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMildlyoverfitted - Tutorials on intermediate ML/DL topics[0m[38;5;12m (https://www.youtube.com/channel/UCYBSjwkGTK06NnDnFsOcR7g)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mmlops.community - Interviews of industry experts about production ML[0m[38;5;12m (https://www.youtube.com/channel/UCYBSjwkGTK06NnDnFsOcR7g)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mML Street Talk - Unabashedly technical and non-commercial, so you will hear no annoying pitches.[0m[38;5;12m (https://www.youtube.com/c/machinelearningstreettalk)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNeural networks by 3Blue1Brown [0m[38;5;12m (https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNeural networks from scratch by Sentdex[0m[38;5;12m (https://www.youtube.com/playlist?list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mManning Publications YouTube channel[0m[38;5;12m (https://www.youtube.com/c/ManningPublications/featured)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAsk Dr Chong: How to Lead in Data Science - Part 1[0m[38;5;12m (https://youtu.be/JYuQZii5o58)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAsk Dr Chong: How to Lead in Data Science - Part 2[0m[38;5;12m (https://youtu.be/SzqIXV-O-ko)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAsk Dr Chong: How to Lead in Data Science - Part 3[0m[38;5;12m (https://youtu.be/Ogwm7k_smTA)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAsk Dr Chong: How to Lead in Data Science - Part 4[0m[38;5;12m (https://youtu.be/a9usjdzTxTU)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAsk Dr Chong: How to Lead in Data Science - Part 5[0m[38;5;12m (https://youtu.be/MYdQq-F3Ws0)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAsk Dr Chong: How to Lead in Data Science - Part 6[0m[38;5;12m (https://youtu.be/LOOt4OVC3hY)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRegression Models: Applying simple Poisson regression[0m[38;5;12m (https://www.youtube.com/watch?v=9Hk8K8jhiOo)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDeep Learning Architectures[0m[38;5;12m (https://www.youtube.com/playlist?list=PLv8Cp2NvcY8DpVcsmOT71kymgMmcr59Mf)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTime Series Modelling and Analysis[0m[38;5;12m (https://www.youtube.com/playlist?list=PL3N9eeOlCrP5cK0QRQxeJd6GrQvhAtpBK)[39m
|
||
|
||
[38;2;255;187;0m[4mSocialize[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12mBelow are some Social Media links. Connect with other data scientists![39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFacebook Accounts[0m[38;5;12m (#facebook-accounts)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTwitter Accounts[0m[38;5;12m (#twitter-accounts)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTelegram Channels[0m[38;5;12m (#telegram-channels)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSlack Communities[0m[38;5;12m (#slack-communities)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGitHub Groups[0m[38;5;12m (#github-groups)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science Competitions[0m[38;5;12m (#data-science-competitions)[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mFacebook Accounts[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mData[0m[38;5;12m (https://www.facebook.com/data)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBig Data Scientist[0m[38;5;12m (https://www.facebook.com/Bigdatascientist)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science Day[0m[38;5;12m (https://www.facebook.com/datascienceday/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science Academy[0m[38;5;12m (https://www.facebook.com/nycdatascience)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mFacebook Data Science Page[0m[38;5;12m (https://www.facebook.com/pages/Data-science/431299473579193?ref=br_rs)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science London[0m[38;5;12m (https://www.facebook.com/pages/Data-Science-London/226174337471513)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science Technology and Corporation[0m[38;5;12m (https://www.facebook.com/DataScienceTechnologyCorporation?ref=br_rs)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science - Closed Group[0m[38;5;12m (https://www.facebook.com/groups/1394010454157077/?ref=br_rs)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCenter for Data Science[0m[38;5;12m (https://www.facebook.com/centerdatasciences?ref=br_rs)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBig data hadoop NOSQL Hive Hbase[0m[38;5;12m (https://www.facebook.com/groups/bigdatahadoop/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAnalytics, Data Mining, Predictive Modeling, Artificial Intelligence[0m[38;5;12m (https://www.facebook.com/groups/data.analytics/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBig Data Analytics using R[0m[38;5;12m (https://www.facebook.com/groups/434352233255448/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBig Data Analytics with R and Hadoop[0m[38;5;12m (https://www.facebook.com/groups/rhadoop/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBig Data Learnings[0m[38;5;12m (https://www.facebook.com/groups/bigdatalearnings/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBig Data, Data Science, Data Mining & Statistics[0m[38;5;12m (https://www.facebook.com/groups/bigdatastatistics/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBigData/Hadoop Expert[0m[38;5;12m (https://www.facebook.com/groups/BigDataExpert/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Mining / Machine Learning / AI[0m[38;5;12m (https://www.facebook.com/groups/machinelearningforum/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Mining/Big Data - Social Network Ana[0m[38;5;12m (https://www.facebook.com/groups/dataminingsocialnetworks/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mVademecum of Practical Data Science[0m[38;5;12m (https://www.facebook.com/datasciencevademecum)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mVeri Bilimi Istanbul[0m[38;5;12m (https://www.facebook.com/groups/veribilimiistanbul/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe Data Science Blog[0m[38;5;12m (https://www.facebook.com/theDataScienceBlog/)[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mTwitter Accounts[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;12mTwitter[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m [39m[38;5;12mDescription[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m├[39m[38;5;239m──────────────────────────────────────────────────────────[39m[38;5;239m┼[39m[38;5;239m───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────[39m[38;5;239m┤[39m
|
||
[38;5;239m│[39m[38;5;14m[1mBig Data Combine[0m[38;5;12m (https://twitter.com/BigDataCombine)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mRapid-fire, live tryouts for data scientists seeking to monetize their models as trading strategies[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12mBig Data Mania[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData Viz Wiz, Data Journalist, Growth Hacker, Author of Data Science for Dummies (2015)[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mBig Data Science[0m[38;5;12m (https://twitter.com/analyticbridge)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mBig Data, Data Science, Predictive Modeling, Business Analytics, Hadoop, Decision and Operations Research.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12mCharlie Greenbacker[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mDirector of Data Science at @ExploreAltamira[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mChris Said[0m[38;5;12m (https://twitter.com/Chris_Said)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData scientist at Twitter[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mClare Corthell[0m[38;5;12m (https://twitter.com/clarecorthell)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mDev, Design, Data Science @mattermark #hackerei[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mDADI Charles-Abner[0m[38;5;12m (https://twitter.com/DadiCharles)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m#datascientist @Ekimetrics. , #machinelearning #dataviz #DynamicCharts #Hadoop #R #Python #NLP #Bitcoin #dataenthousiast[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mData Science Central[0m[38;5;12m (https://twitter.com/DataScienceCtrl)[39m[38;5;239m│[39m[38;5;12mData Science Central is the industry's single resource for Big Data practitioners.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mData Science London[0m[38;5;12m (https://twitter.com/ds_ldn)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData Science. Big Data. Data Hacks. Data Junkies. Data Startups. Open Data[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mData Science Renee[0m[38;5;12m (https://twitter.com/BecomingDataSci)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mDocumenting my path from SQL Data Analyst pursuing an Engineering Master's Degree to Data Scientist[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mData Science Report[0m[38;5;12m (https://twitter.com/TedOBrien93)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mMission is to help guide & advance careers in Data Science & Analytics[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mData Science Tips[0m[38;5;12m (https://twitter.com/datasciencetips)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mTips and Tricks for Data Scientists around the world! #datascience #bigdata[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mData Vizzard[0m[38;5;12m (https://twitter.com/DataVisualizati)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mDataViz, Security, Military[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mDataScienceX[0m[38;5;12m (https://twitter.com/DataScienceX)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12mdeeplearning4j[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mDJ Patil[0m[38;5;12m (https://twitter.com/dpatil)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mWhite House Data Chief, VP @ RelateIQ.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mDomino Data Lab[0m[38;5;12m (https://twitter.com/DominoDataLab)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mDrew Conway[0m[38;5;12m (https://twitter.com/drewconway)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData nerd, hacker, student of conflict.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12mEmilio Ferrara[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m#Networks, #MachineLearning and #DataScience. I work on #Social Media. Postdoc at @IndianaUniv[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mErin Bartolo[0m[38;5;12m (https://twitter.com/erinbartolo)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mRunning with #BigData--enjoying a love/hate relationship with its hype. @iSchoolSU #DataScience Program Mgr.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mGreg Reda[0m[38;5;12m (https://twitter.com/gjreda)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mWorking @ _GrubHub_ about data and pandas[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mGregory Piatetsky[0m[38;5;12m (https://twitter.com/kdnuggets)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mKDnuggets President, Analytics/Big Data/Data Mining/Data Science expert, KDD & SIGKDD co-founder, was Chief Scientist at 2 startups, part-time philosopher.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mHadley Wickham[0m[38;5;12m (https://twitter.com/hadleywickham)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mChief Scientist at RStudio, and an Adjunct Professor of Statistics at the University of Auckland, Stanford University, and Rice University.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mHakan Kardas[0m[38;5;12m (https://twitter.com/hakan_kardes)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData Scientist[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mHilary Mason[0m[38;5;12m (https://twitter.com/hmason)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData Scientist in Residence at @accel.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mJeff Hammerbacher[0m[38;5;12m (https://twitter.com/hackingdata)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mReTweeting about data science[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mJohn Myles White[0m[38;5;12m (https://twitter.com/johnmyleswhite)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mScientist at Facebook and Julia developer. Author of Machine Learning for Hackers and Bandit Algorithms for Website Optimization. Tweets reflect my views only.[39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mJuan Miguel Lavista[0m[38;5;12m (https://twitter.com/BDataScientist)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mPrincipal Data Scientist @ Microsoft Data Science Team[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mJulia Evans[0m[38;5;12m (https://twitter.com/b0rk)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mHacker - Pandas - Data Analyze[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mKenneth Cukier[0m[38;5;12m (https://twitter.com/kncukier)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mThe Economist's Data Editor and co-author of Big Data (http://www.big-data-book.com/).[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12mKevin Davenport[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mOrganizer of https://www.meetup.com/San-Diego-Data-Science-R-Users-Group/[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mKevin Markham[0m[38;5;12m (https://twitter.com/justmarkham)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData science instructor, and founder of [39m[38;5;14m[1mData School[0m[38;5;12m (https://www.dataschool.io/)[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mKim Rees[0m[38;5;12m (https://twitter.com/krees)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mInteractive data visualization and tools. Data flaneur.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mKirk Borne[0m[38;5;12m (https://twitter.com/KirkDBorne)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mDataScientist, PhD Astrophysicist, Top #BigData Influencer.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12mLinda Regber[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData storyteller, visualizations.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mLuis Rei[0m[38;5;12m (https://twitter.com/lmrei)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mPhD Student. Programming, Mobile, Web. Artificial Intelligence, Intelligent Robotics Machine Learning, Data Mining, Natural Language Processing, Data Science.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12mMark Stevenson[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData Analytics Recruitment Specialist at Salt (@SaltJobs) Analytics - Insight - Big Data - Data science[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mMatt Harrison[0m[38;5;12m (https://twitter.com/__mharrison__)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mOpinions of full-stack Python guy, author, instructor, currently playing Data Scientist. Occasional fathering, husbanding, organic gardening.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mMatthew Russell[0m[38;5;12m (https://twitter.com/ptwobrussell)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mMining the Social Web.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mMert Nuhoğlu[0m[38;5;12m (https://twitter.com/mertnuhoglu)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData Scientist at BizQualify, Developer[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mMonica Rogati[0m[38;5;12m (https://twitter.com/mrogati)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData @ Jawbone. Turned data into stories & products at LinkedIn. Text mining, applied machine learning, recommender systems. Ex-gamer, ex-machine coder; namer.[39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mNoah Iliinsky[0m[38;5;12m (https://twitter.com/noahi)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mVisualization & interaction designer. Practical cyclist. Author of vis books: https://www.oreilly.com/pub/au/4419[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mPaul Miller[0m[38;5;12m (https://twitter.com/PaulMiller)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mCloud Computing/ Big Data/ Open Data Analyst & Consultant. Writer, Speaker & Moderator. Gigaom Research Analyst.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mPeter Skomoroch[0m[38;5;12m (https://twitter.com/peteskomoroch)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mCreating intelligent systems to automate tasks & improve decisions. Entrepreneur, ex-Principal Data Scientist @LinkedIn. Machine Learning, ProductRei, Networks[39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mPrash Chan[0m[38;5;12m (https://twitter.com/MDMGeek)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mSolution Architect @ IBM, Master Data Management, Data Quality & Data Governance Blogger. Data Science, Hadoop, Big Data & Cloud.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mQuora Data Science[0m[38;5;12m (https://twitter.com/q_datascience)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mQuora's data science topic[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mR-Bloggers[0m[38;5;12m (https://twitter.com/Rbloggers)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mTweet blog posts from the R blogosphere, data science conferences, and (!) open jobs for data scientists.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mRand Hindi[0m[38;5;12m (https://twitter.com/randhindi)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mRandy Olson[0m[38;5;12m (https://twitter.com/randal_olson)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mComputer scientist researching artificial intelligence. Data tinkerer. Community leader for @DataIsBeautiful. #OpenScience advocate.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mRecep Erol[0m[38;5;12m (https://twitter.com/EROLRecep)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData Science geek @ UALR[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mRyan Orban[0m[38;5;12m (https://twitter.com/ryanorban)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData scientist, genetic origamist, hardware aficionado[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mSean J. Taylor[0m[38;5;12m (https://twitter.com/seanjtaylor)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mSocial Scientist. Hacker. Facebook Data Science Team. Keywords: Experiments, Causal Inference, Statistics, Machine Learning, Economics.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mSilvia K. Spiva[0m[38;5;12m (https://twitter.com/silviakspiva)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m#DataScience at Cisco[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mHarsh B. Gupta[0m[38;5;12m (https://twitter.com/harshbg)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData Scientist at BBVA Compass[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mSpencer Nelson[0m[38;5;12m (https://twitter.com/spenczar_n)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData nerd[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mTalha Oz[0m[38;5;12m (https://twitter.com/tozCSS)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mEnjoys ABM, SNA, DM, ML, NLP, HI, Python, Java. Top percentile Kaggler/data scientist[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mTasos Skarlatidis[0m[38;5;12m (https://twitter.com/anskarl)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mComplex Event Processing, Big Data, Artificial Intelligence and Machine Learning. Passionate about programming and open-source.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mTerry Timko[0m[38;5;12m (https://twitter.com/Terry_Timko)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mInfoGov; Bigdata; Data as a Service; Data Science; Open, Social & Business Data Convergence[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mTony Baer[0m[38;5;12m (https://twitter.com/TonyBaer)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mIT analyst with Ovum covering Big Data & data management with some systems engineering thrown in.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mTony Ojeda[0m[38;5;12m (https://twitter.com/tonyojeda3)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData Scientist , Author , Entrepreneur. Co-founder @DataCommunityDC. Founder @DistrictDataLab. #DataScience #BigData #DataDC[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mVamshi Ambati[0m[38;5;12m (https://twitter.com/vambati)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData Science @ PayPal. #NLP, #machinelearning; PhD, Carnegie Mellon alumni (Blog: https://allthingsds.wordpress.com )[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mWes McKinney[0m[38;5;12m (https://twitter.com/wesmckinn)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mPandas (Python Data Analysis library).[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mWileyEd[0m[38;5;12m (https://twitter.com/WileyEd)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mSenior Manager - @Seagate Big Data Analytics @McKinsey Alum #BigData + #Analytics Evangelist #Hadoop, #Cloud, #Digital, & #R Enthusiast[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mWNYC Data News Team[0m[38;5;12m (https://twitter.com/datanews)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mThe data news crew at @WNYC. Practicing data-driven journalism, making it visual, and showing our work.[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mAlexey Grigorev[0m[38;5;12m (https://twitter.com/Al_Grigor)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData science author[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mİlker Arslan[0m[38;5;12m (https://twitter.com/ilkerarslan_35)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData science author. Shares mostly about Julia programming[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;14m[1mINEVITABLE[0m[38;5;12m (https://twitter.com/WeAreInevitable)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAI & Data Science Start-up Company based in England, UK[39m[38;5;12m [39m[38;5;239m│[39m
|
||
|
||
[38;2;255;187;0m[4mTelegram Channels[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mOpen[0m[38;5;14m[1m [0m[38;5;14m[1mData[0m[38;5;14m[1m [0m[38;5;14m[1mScience[0m[38;5;12m [39m[38;5;12m(https://t.me/opendatascience)[39m[38;5;12m [39m[38;5;12m–[39m[38;5;12m [39m[38;5;12mFirst[39m[38;5;12m [39m[38;5;12mTelegram[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mScience[39m[38;5;12m [39m[38;5;12mchannel.[39m[38;5;12m [39m[38;5;12mCovering[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mtechnical[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mpopular[39m[38;5;12m [39m[38;5;12mstaff[39m[38;5;12m [39m[38;5;12mabout[39m[38;5;12m [39m[38;5;12manything[39m[38;5;12m [39m[38;5;12mrelated[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mScience:[39m[38;5;12m [39m[38;5;12mAI,[39m[38;5;12m [39m[38;5;12mBig[39m[38;5;12m [39m[38;5;12mData,[39m[38;5;12m [39m[38;5;12mMachine[39m[38;5;12m [39m[38;5;12mLearning,[39m[38;5;12m [39m[38;5;12mStatistics,[39m[38;5;12m [39m[38;5;12mgeneral[39m[38;5;12m [39m[38;5;12mMath[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m
|
||
[38;5;12mapplications[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mformer.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLoss function porn[0m[38;5;12m (https://t.me/loss_function_porn) — Beautiful posts on DS/ML theme with video or graphic visualization.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachinelearning[0m[38;5;12m (https://t.me/ai_machinelearning_big_data) – Daily ML news.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mSlack Communities[0m
|
||
[38;5;14m[1mtop[0m[38;5;12m (#awesome-data-science)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mDataTalks.Club[0m[38;5;12m (https://datatalks.club)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mWomen Who Code - Data Science[0m[38;5;12m (https://www.womenwhocode.com/datascience)[39m
|
||
|
||
[38;2;255;187;0m[4mGitHub Groups[0m
|
||
[38;5;12m- [39m[38;5;14m[1mBerkeley Institute for Data Science[0m[38;5;12m (https://github.com/BIDS)[39m
|
||
|
||
[38;2;255;187;0m[4mData Science Competitions[0m
|
||
|
||
[38;5;12mSome data mining competition platforms[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mKaggle[0m[38;5;12m (https://www.kaggle.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDrivenData[0m[38;5;12m (https://www.drivendata.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAnalytics Vidhya[0m[38;5;12m (https://datahack.analyticsvidhya.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mInnoCentive[0m[38;5;12m (https://www.innocentive.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMicroprediction[0m[38;5;12m (https://www.microprediction.com/python-1)[39m
|
||
|
||
[38;2;255;187;0m[4mFun[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mInfographic[0m[38;5;12m (#infographics)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDatasets[0m[38;5;12m (#datasets)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mComics[0m[38;5;12m (#comics)[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mInfographics[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;12mPreview[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m [39m[38;5;12mDescription[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m├[39m[38;5;239m──────────────────────────────────────────────────────────────────────────────────────────────────[39m[38;5;239m┼[39m[38;5;239m───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────[39m[38;5;239m┤[39m
|
||
[38;5;239m│[39m[38;5;12m(https://i.imgur.com/0OoLaa5.png)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;14m[1mKey differences of a data scientist vs. data engineer[0m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m (https://searchbusinessanalytics.techtarget.com/feature/Key-differences-of-a-data-scientist-vs-data-engineer)[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m(https://s3.amazonaws.com/assets.datacamp.com/blog_assets/DataScienceEightSteps_Full.png)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mvisual[39m[38;5;12m [39m[38;5;12mguide[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mBecoming[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mScientist[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12m8[39m[38;5;12m [39m[38;5;12mSteps[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;14m[1mDataCamp[0m[38;5;12m [39m[38;5;12m(https://www.datacamp.com)[39m[38;5;12m [39m[38;5;14m[1m(img)[0m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m(https://s3.amazonaws.com/assets.datacamp.com/blog_assets/DataScienceEightSteps_Full.png)[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m(https://i.imgur.com/FxsL3b8.png)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mMindmap on required skills ([39m[38;5;14m[1mimg[0m[38;5;12m (https://i.imgur.com/FxsL3b8.png))[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m(https://nirvacana.com/thoughts/wp-content/uploads/2013/07/RoadToDataScientist1.png)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mSwami Chandrasekaran made a [39m[38;5;14m[1mCurriculum via Metro map[0m[38;5;12m (http://nirvacana.com/thoughts/2013/07/08/becoming-a-data-scientist/).[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m(https://i.imgur.com/4ZBBvb0.png)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mby [39m[38;5;14m[1m@kzawadz[0m[38;5;12m (https://twitter.com/kzawadz) via [39m[38;5;14m[1mtwitter[0m[38;5;12m (https://twitter.com/MktngDistillery/status/538671811991715840)[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m(https://i.imgur.com/xLY3XZn.jpg)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mBy [39m[38;5;14m[1mData Science Central[0m[38;5;12m (https://www.datasciencecentral.com/)[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m(https://i.imgur.com/0TydZ4M.png)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData Science Wars: R vs Python[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m(https://i.imgur.com/HnRwlce.png)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mHow to select statistical or machine learning techniques[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m(https://scikit-learn.org/stable/_static/ml_map.png)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mChoosing the Right Estimator[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m(https://i.imgur.com/uEqMwZa.png)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mThe Data Science Industry: Who Does What[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m(https://i.imgur.com/RsHqY84.png)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mData Science [39m[38;5;12m[9mVenn[0m[38;5;12m Euler Diagram[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m(https://www.springboard.com/blog/wp-content/uploads/2016/03/20160324_springboard_vennDiagram.png)[39m[38;5;239m│[39m[38;5;12mDifferent[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mScience[39m[38;5;12m [39m[38;5;12mSkills[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mRoles[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;14m[1mthis[0m[38;5;14m[1m [0m[38;5;14m[1marticle[0m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m(https://www.springboard.com/blog/data-science-career-paths-different-roles-industry/)[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mSpringboard[39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m(https://data-literacy.geckoboard.com/poster/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mA[39m[38;5;12m [39m[38;5;12msimple[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mfriendly[39m[38;5;12m [39m[38;5;12mway[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mteaching[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mnon-data[39m[38;5;12m [39m[38;5;12mscientist/non-statistician[39m[38;5;12m [39m[38;5;12mcolleagues[39m[38;5;12m [39m[38;5;14m[1mhow[0m[38;5;14m[1m [0m[38;5;14m[1mto[0m[38;5;14m[1m [0m[38;5;14m[1mavoid[0m[38;5;14m[1m [0m[38;5;14m[1mmistakes[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1mdata[0m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m
|
||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m(https://data-literacy.geckoboard.com/poster/).[39m[38;5;12m [39m[38;5;12mFrom[39m[38;5;12m [39m[38;5;12mGeckoboard's[39m[38;5;12m [39m[38;5;14m[1mData[0m[38;5;14m[1m [0m[38;5;14m[1mLiteracy[0m[38;5;14m[1m [0m[38;5;14m[1mLessons[0m[38;5;12m [39m[38;5;12m(https://data-literacy.geckoboard.com/).[39m[38;5;12m [39m[38;5;239m│[39m
|
||
|
||
[38;2;255;187;0m[4mDatasets[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAcademic Torrents[0m[38;5;12m (https://academictorrents.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mADS-B Exchange[0m[38;5;12m (https://www.adsbexchange.com/data-samples/) - Specific datasets for aircraft and Automatic Dependent Surveillance-Broadcast (ADS-B) sources.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mhadoopilluminated.com[0m[38;5;12m (https://hadoopilluminated.com/hadoop_illuminated/Public_Bigdata_Sets.html)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mdata.gov[0m[38;5;12m (https://catalog.data.gov/dataset) - The home of the U.S. Government's open data[39m
|
||
[38;5;12m- [39m[38;5;14m[1mUnited States Census Bureau[0m[38;5;12m (https://www.census.gov/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1musgovxml.com[0m[38;5;12m (https://usgovxml.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1menigma.com[0m[38;5;12m (https://enigma.com/) - Navigate the world of public data - Quickly search and analyze billions of public records published by governments, companies and organizations.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mdatahub.io[0m[38;5;12m (https://datahub.io/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1maws.amazon.com/datasets[0m[38;5;12m (https://aws.amazon.com/datasets/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mdatacite.org[0m[38;5;12m (https://datacite.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe official portal for European data[0m[38;5;12m (https://data.europa.eu/en)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNASDAQ:DATA[0m[38;5;12m (https://data.nasdaq.com/) - Nasdaq Data Link A premier source for financial, economic and alternative datasets.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mfigshare.com[0m[38;5;12m (https://figshare.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGeoLite Legacy Downloadable Databases[0m[38;5;12m (https://dev.maxmind.com/geoip)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mQuora's Big Datasets Answer[0m[38;5;12m (https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPublic Big Data Sets[0m[38;5;12m (https://hadoopilluminated.com/hadoop_illuminated/Public_Bigdata_Sets.html)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mKaggle Datasets[0m[38;5;12m (https://www.kaggle.com/datasets)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mA Deep Catalog of Human Genetic Variation[0m[38;5;12m (https://www.internationalgenome.org/data)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mA community-curated database of well-known people, places, and things[0m[38;5;12m (https://developers.google.com/freebase/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGoogle Public Data[0m[38;5;12m (https://www.google.com/publicdata/directory)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mWorld Bank Data[0m[38;5;12m (https://data.worldbank.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNYC Taxi data[0m[38;5;12m (https://chriswhong.github.io/nyctaxi/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOpen Data Philly[0m[38;5;12m (https://www.opendataphilly.org/) Connecting people with data for Philadelphia[39m
|
||
[38;5;12m- [39m[38;5;14m[1mgrouplens.org[0m[38;5;12m (https://grouplens.org/datasets/) Sample movie (with ratings), book and wiki datasets[39m
|
||
[38;5;12m- [39m[38;5;14m[1mUC Irvine Machine Learning Repository[0m[38;5;12m (https://archive.ics.uci.edu/ml/) - contains data sets good for machine learning[39m
|
||
[38;5;12m- [39m[38;5;14m[1mresearch-quality data sets[0m[38;5;12m (https://web.archive.org/web/20150320022752/https://bitly.com/bundles/hmason/1) by [39m[38;5;14m[1mHilary Mason[0m[38;5;12m (https://web.archive.org/web/20150501033715/https://bitly.com/u/hmason/bundles)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNational Centers for Environmental Information[0m[38;5;12m (https://www.ncei.noaa.gov/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mClimateData.us[0m[38;5;12m (https://www.climatedata.us/) (related: [39m[38;5;14m[1mU.S. Climate Resilience Toolkit[0m[38;5;12m (https://toolkit.climate.gov/))[39m
|
||
[38;5;12m- [39m[38;5;14m[1mr/datasets[0m[38;5;12m (https://www.reddit.com/r/datasets/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMapLight[0m[38;5;12m (https://www.maplight.org/data-series) - provides a variety of data free of charge for uses that are freely available to the general public. Click on a data set below to learn more[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGHDx[0m[38;5;12m (https://ghdx.healthdata.org/) - Institute for Health Metrics and Evaluation - a catalog of health and demographic datasets from around the world and including IHME results[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSt. Louis Federal Reserve Economic Data - FRED[0m[38;5;12m (https://fred.stlouisfed.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNew Zealand Institute of Economic Research – Data1850[0m[38;5;12m (https://data1850.nz/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOpen Data Sources[0m[38;5;12m (https://github.com/datasciencemasters/data)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mUNICEF Data[0m[38;5;12m (https://data.unicef.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mundata[0m[38;5;12m (https://data.un.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNASA SocioEconomic Data and Applications Center - SEDAC[0m[38;5;12m (https://sedac.ciesin.columbia.edu/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe GDELT Project[0m[38;5;12m (https://www.gdeltproject.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSweden, Statistics[0m[38;5;12m (https://www.scb.se/en/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mStackExchange Data Explorer[0m[38;5;12m (https://data.stackexchange.com) - an open source tool for running arbitrary queries against public data from the Stack Exchange network.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSocialGrep[0m[38;5;12m (https://socialgrep.com/datasets) - a collection of open Reddit datasets.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSan Fransisco Government Open Data[0m[38;5;12m (https://datasf.org/opendata/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mIBM Asset Dataset[0m[38;5;12m (https://developer.ibm.com/exchanges/data/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOpen data Index[0m[38;5;12m (https://index.okfn.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPublic Git Archive[0m[38;5;12m (https://github.com/src-d/datasets/tree/master/PublicGitArchive)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGHTorrent[0m[38;5;12m (https://ghtorrent.org/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMicrosoft Research Open Data[0m[38;5;12m (https://msropendata.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOpen Government Data Platform India[0m[38;5;12m (https://data.gov.in/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGoogle Dataset Search (beta)[0m[38;5;12m (https://datasetsearch.research.google.com/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNAYN.CO Turkish News with categories[0m[38;5;12m (https://github.com/naynco/nayn.data)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCovid-19[0m[38;5;12m (https://github.com/datasets/covid-19)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCovid-19 Google[0m[38;5;12m (https://github.com/google-research/open-covid-19-data)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mEnron Email Dataset[0m[38;5;12m (https://www.cs.cmu.edu/~./enron/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1m5000 Images of Clothes[0m[38;5;12m (https://github.com/alexeygrigorev/clothing-dataset)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mIBB Open Portal[0m[38;5;12m (https://data.ibb.gov.tr/en/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe Humanitarian Data Exchange[0m[38;5;12m (https://data.humdata.org/)[39m
|
||
|
||
[38;2;255;187;0m[4mComics[0m
|
||
[48;5;235m[38;5;249m^ back to top ^[49m[39m[38;5;14m[1m (#awesome-data-science)[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mComic compilation[0m[38;5;12m (https://medium.com/@nikhil_garg/a-compilation-of-comics-explaining-statistics-data-science-and-machine-learning-eeefbae91277)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCartoons[0m[38;5;12m (https://www.kdnuggets.com/websites/cartoons.html)[39m
|
||
|
||
[38;2;255;187;0m[4mOther Awesome Lists[0m
|
||
|
||
[38;5;12m- Other amazingly awesome lists can be found in the [39m[38;5;14m[1mawesome-awesomeness[0m[38;5;12m (https://github.com/bayandin/awesome-awesomeness)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAwesome Machine Learning[0m[38;5;12m (https://github.com/josephmisiti/awesome-machine-learning)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mlists[0m[38;5;12m (https://github.com/jnv/lists)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mawesome-dataviz[0m[38;5;12m (https://github.com/javierluraschi/awesome-dataviz)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mawesome-python[0m[38;5;12m (https://github.com/vinta/awesome-python)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science IPython Notebooks.[0m[38;5;12m (https://github.com/donnemartin/data-science-ipython-notebooks)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mawesome-r[0m[38;5;12m (https://github.com/qinwf/awesome-R)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mawesome-datasets[0m[38;5;12m (https://github.com/awesomedata/awesome-public-datasets)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mawesome-Machine Learning & Deep Learning Tutorials[0m[38;5;12m (https://github.com/ujjwalkarn/Machine-Learning-Tutorials/blob/master/README.md)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAwesome Data Science Ideas[0m[38;5;12m (https://github.com/JosPolfliet/awesome-ai-usecases)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine Learning for Software Engineers[0m[38;5;12m (https://github.com/ZuzooVn/machine-learning-for-software-engineers)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCommunity Curated Data Science Resources[0m[38;5;12m (https://hackr.io/tutorials/learn-data-science)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAwesome Machine Learning On Source Code[0m[38;5;12m (https://github.com/src-d/awesome-machine-learning-on-source-code)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAwesome Community Detection[0m[38;5;12m (https://github.com/benedekrozemberczki/awesome-community-detection)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAwesome Graph Classification[0m[38;5;12m (https://github.com/benedekrozemberczki/awesome-graph-classification)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAwesome Decision Tree Papers[0m[38;5;12m (https://github.com/benedekrozemberczki/awesome-decision-tree-papers)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAwesome Fraud Detection Papers[0m[38;5;12m (https://github.com/benedekrozemberczki/awesome-fraud-detection-papers)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAwesome Gradient Boosting Papers[0m[38;5;12m (https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAwesome Computer Vision Models[0m[38;5;12m (https://github.com/nerox8664/awesome-computer-vision-models)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAwesome Monte Carlo Tree Search[0m[38;5;12m (https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGlossary of common statistics and ML terms[0m[38;5;12m (https://www.analyticsvidhya.com/glossary-of-common-statistics-and-machine-learning-terms/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1m100 NLP Papers[0m[38;5;12m (https://github.com/mhagiwara/100-nlp-papers)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAwesome Game Datasets[0m[38;5;12m (https://github.com/leomaurodesenv/game-datasets#readme)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Science Interviews Questions[0m[38;5;12m (https://github.com/alexeygrigorev/data-science-interviews)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAwesome Explainable Graph Reasoning[0m[38;5;12m (https://github.com/AstraZeneca/awesome-explainable-graph-reasoning)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTop Data Science Interview Questions[0m[38;5;12m (https://www.interviewbit.com/data-science-interview-questions/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAwesome Drug Synergy, Interaction and Polypharmacy Prediction[0m[38;5;12m (https://github.com/AstraZeneca/awesome-drug-pair-scoring)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDeep Learning Interview Questions[0m[38;5;12m (https://www.adaface.com/blog/deep-learning-interview-questions/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTop Future Trends in Data Science in 2023[0m[38;5;12m (https://medium.com/the-modern-scientist/top-future-trends-in-data-science-in-2023-3e616c8998b8)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHow Generative AI Is Changing Creative Work[0m[38;5;12m (https://hbr.org/2022/11/how-generative-ai-is-changing-creative-work)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mWhat is generative AI?[0m[38;5;12m (https://www.techtarget.com/searchenterpriseai/definition/generative-AI)[39m
|
||
|
||
[38;2;255;187;0m[4mHobby[0m
|
||
[38;5;12m- [39m[38;5;14m[1mAwesome Music Production[0m[38;5;12m (https://github.com/ad-si/awesome-music-production)[39m
|
||
|
||
|
||
|
||
|
||
[38;5;12m window.dataLayer = window.dataLayer || [39m[38;5;12m ;[39m
|
||
[38;5;12m function gtag(){dataLayer.push(arguments);}[39m
|
||
[38;5;12m gtag('js', new Date());[39m
|
||
|
||
[38;5;12m gtag('config', 'G-YL0RV0E5XZ');[39m
|
||
|