Files
awesome-awesomeness/terminal/computervision
2024-04-23 15:17:38 +02:00

107 KiB

 
Awesome Computer Vision: !Awesome (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg) (https://github.com/sindresorhus/awesome)
A curated list of awesome computer vision resources, inspired by awesome-php (https://github.com/ziadoz/awesome-php).
 
For a list people in computer vision listed with their academic genealogy, please visit here (https://github.com/jbhuang0604/awesome-computer-vision/blob/master/people.md)
 
Contributing
Please feel free to send me pull requests (https://github.com/jbhuang0604/awesome-computer-vision/pulls) or email (jbhuang@vt.edu) to add links.
 
Table of Contents
 
- Awesome Lists (#awesome-lists)
- Books (#books)
- Courses (#courses)
- Papers (#papers)
- Software (#software)
- Datasets (#datasets)
- Pre-trained Computer Vision Models (#Pre-trained-Computer-Vision-Models)
- Tutorials and Talks (#tutorials-and-talks)
- Resources for students (#resources-for-students)
- Blogs (#blogs)
- Links (#links)
- Songs (#songs)
 
Awesome Lists
- Awesome Machine Learning (https://github.com/josephmisiti/awesome-machine-learning)
- Awesome Deep Vision (https://github.com/kjw0612/awesome-deep-vision)
- Awesome Domain Adaptation (https://github.com/zhaoxin94/awesome-domain-adaptation)
- Awesome Object Detection (https://github.com/amusi/awesome-object-detection)
- Awesome 3D Machine Learning (https://github.com/timzhang642/3D-Machine-Learning)
- Awesome Action Recognition (https://github.com/jinwchoi/awesome-action-recognition)
- Awesome Scene Understanding (https://github.com/bertjiazheng/awesome-scene-understanding)
- Awesome Adversarial Machine Learning (https://github.com/yenchenlin/awesome-adversarial-machine-learning)
- Awesome Adversarial Deep Learning (https://github.com/chbrian/awesome-adversarial-examples-dl)
- Awesome Face (https://github.com/polarisZhao/awesome-face)
- Awesome Face Recognition (https://github.com/ChanChiChoi/awesome-Face_Recognition)
- Awesome Human Pose Estimation (https://github.com/wangzheallen/awesome-human-pose-estimation)
- Awesome medical imaging (https://github.com/fepegar/awesome-medical-imaging)
- Awesome Images (https://github.com/heyalexej/awesome-images)
- Awesome Graphics (https://github.com/ericjang/awesome-graphics)
- Awesome Neural Radiance Fields (https://github.com/yenchenlin/awesome-NeRF)
- Awesome Implicit Neural Representations (https://github.com/vsitzmann/awesome-implicit-representations)
- Awesome Neural Rendering (https://github.com/weihaox/awesome-neural-rendering)
- Awesome Public Datasets (https://github.com/awesomedata/awesome-public-datasets)
- Awesome Dataset Tools (https://github.com/jsbroks/awesome-dataset-tools)
- Awesome Robotics Datasets (https://github.com/sunglok/awesome-robotics-datasets)
- Awesome Mobile Machine Learning (https://github.com/fritzlabs/Awesome-Mobile-Machine-Learning)
- Awesome Explainable AI (https://github.com/wangyongjie-ntu/Awesome-explainable-AI)
- Awesome Fairness in AI (https://github.com/datamllab/awesome-fairness-in-ai)
- Awesome Machine Learning Interpretability (https://github.com/jphall663/awesome-machine-learning-interpretability)
- Awesome Production Machine Learning (https://github.com/EthicalML/awesome-production-machine-learning)
- Awesome Video Text Retrieval (https://github.com/danieljf24/awesome-video-text-retrieval)
- Awesome Image-to-Image Translation (https://github.com/weihaox/awesome-image-translation)
- Awesome Image Inpainting (https://github.com/1900zyh/Awesome-Image-Inpainting)
- Awesome Deep HDR (https://github.com/vinthony/awesome-deep-hdr)
- Awesome Video Generation (https://github.com/matthewvowels1/Awesome-Video-Generation)
- Awesome GAN applications (https://github.com/nashory/gans-awesome-applications)
- Awesome Generative Modeling (https://github.com/zhoubolei/awesome-generative-modeling)
- Awesome Image Classification (https://github.com/weiaicunzai/awesome-image-classification)
- Awesome Deep Learning (https://github.com/ChristosChristofidis/awesome-deep-learning)
- Awesome Machine Learning in Biomedical(Healthcare) Imaging (https://github.com/XindiWu/Awesome-Machine-Learning-in-Biomedical-Healthcare-Imaging)
- Awesome Deep Learning for Tracking and Detection (https://github.com/abhineet123/Deep-Learning-for-Tracking-and-Detection)
- Awesome Human Pose Estimation (https://github.com/wangzheallen/awesome-human-pose-estimation)
- Awesome Deep Learning for Video Analysis (https://github.com/HuaizhengZhang/Awsome-Deep-Learning-for-Video-Analysis)
- Awesome Vision + Language (https://github.com/yuewang-cuhk/awesome-vision-language-pretraining-papers)
- Awesome Robotics (https://github.com/kiloreux/awesome-robotics)
- Awesome Visual Transformer (https://github.com/dk-liang/Awesome-Visual-Transformer)
- Awesome Embodied Vision (https://github.com/ChanganVR/awesome-embodied-vision)
- Awesome Anomaly Detection (https://github.com/hoya012/awesome-anomaly-detection)
- Awesome Makeup Transfer (https://github.com/thaoshibe/awesome-makeup-transfer)
- Awesome Learning with Label Noise (https://github.com/subeeshvasu/Awesome-Learning-with-Label-Noise)
- Awesome Deblurring (https://github.com/subeeshvasu/Awesome-Deblurring)
- Awsome Deep Geometry Learning (https://github.com/subeeshvasu/Awsome_Deep_Geometry_Learning)
- Awesome Image Distortion Correction (https://github.com/subeeshvasu/Awesome-Image-Distortion-Correction)
- Awesome Neuron Segmentation in EM Images (https://github.com/subeeshvasu/Awesome-Neuron-Segmentation-in-EM-Images)
- Awsome Delineation (https://github.com/subeeshvasu/Awsome_Delineation)
- Awesome ImageHarmonization (https://github.com/subeeshvasu/Awesome-ImageHarmonization)
- Awsome GAN Training (https://github.com/subeeshvasu/Awsome-GAN-Training)
- Awesome Document Understanding (https://github.com/tstanislawek/awesome-document-understanding)

 
Books
 
Computer Vision
Computer Vision: Models, Learning, and Inference (http://www.computervisionmodels.com/) - Simon J. D. Prince 2012
Computer Vision: Theory and Application (http://szeliski.org/Book/) - Rick Szeliski 2010
Computer Vision: A Modern Approach (2nd edition) (http://www.amazon.com/Computer-Vision-Modern-Approach-2nd/dp/013608592X/ref=dp_ob_title_bk) - David Forsyth and Jean Ponce 2011
Multiple View Geometry in Computer Vision (http://www.robots.ox.ac.uk/~vgg/hzbook/) - Richard Hartley and Andrew Zisserman 2004
Computer Vision (http://www.amazon.com/Computer-Vision-Linda-G-Shapiro/dp/0130307963) - Linda G. Shapiro 2001
Vision Science: Photons to Phenomenology (http://www.amazon.com/Vision-Science-Phenomenology-Stephen-Palmer/dp/0262161834/) - Stephen E. Palmer 1999
Visual Object Recognition synthesis lecture (http://www.morganclaypool.com/doi/abs/10.2200/S00332ED1V01Y201103AIM011) - Kristen Grauman and Bastian Leibe 2011
Computer Vision for Visual Effects (http://cvfxbook.com/) - Richard J. Radke, 2012
High dynamic range imaging: acquisition, display, and image-based lighting (http://www.amazon.com/High-Dynamic-Range-Imaging-Second/dp/012374914X) - Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., Myszkowski, K 2010
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics (https://people.csail.mit.edu/jsolomon/share/book/numerical_book.pdf) - Justin Solomon 2015
Image Processing and Analysis (https://www.amazon.com/Processing-Analysis-Activate-Learning-Engineering/dp/1285179528) - Stan Birchfield 2018
Computer Vision, From 3D Reconstruction to Recognition (http://web.stanford.edu/class/cs231a/) - Silvio Savarese 2018
 
OpenCV Programming
Learning OpenCV: Computer Vision with the OpenCV Library (http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134) - Gary Bradski and Adrian Kaehler
Practical Python and OpenCV (https://www.pyimagesearch.com/practical-python-opencv/) - Adrian Rosebrock
OpenCV Essentials (http://www.amazon.com/OpenCV-Essentials-Oscar-Deniz-Suarez/dp/1783984244/ref=sr_1_1?s=books&ie=UTF8&qid=1424594237&sr=1-1&keywords=opencv+essentials#) - Oscar Deniz Suarez, Mª del Milagro Fernandez Carrobles, Noelia
Vallez Enano, Gloria Bueno Garcia, Ismael Serrano Gracia
 
Machine Learning
Pattern Recognition and Machine Learning (http://research.microsoft.com/en-us/um/people/cmbishop/prml/index.htm) - Christopher M. Bishop 2007
Neural Networks for Pattern Recognition (http://www.engineering.upm.ro/master-ie/sacpi/mat_did/info068/docum/Neural%20Networks%20for%20Pattern%20Recognition.pdf) - Christopher M. Bishop 1995
Probabilistic Graphical Models: Principles and Techniques (http://pgm.stanford.edu/) - Daphne Koller and Nir Friedman 2009
Pattern Classification (http://www.amazon.com/Pattern-Classification-2nd-Richard-Duda/dp/0471056693) - Peter E. Hart, David G. Stork, and Richard O. Duda 2000
Machine Learning (http://www.amazon.com/Machine-Learning-Tom-M-Mitchell/dp/0070428077/) - Tom M. Mitchell 1997
Gaussian processes for machine learning (http://www.gaussianprocess.org/gpml/) - Carl Edward Rasmussen and Christopher K. I. Williams 2005
Learning From Data (https://work.caltech.edu/telecourse.html)- Yaser S. Abu-Mostafa, Malik Magdon-Ismail and Hsuan-Tien Lin 2012
Neural Networks and Deep Learning (http://neuralnetworksanddeeplearning.com/) - Michael Nielsen 2014
Bayesian Reasoning and Machine Learning (http://www.cs.ucl.ac.uk/staff/d.barber/brml/) - David Barber, Cambridge University Press, 2012
 
Fundamentals
Linear Algebra and Its Applications (http://www.amazon.com/Linear-Algebra-Its-Applications-4th/dp/0030105676/ref=sr_1_4?ie=UTF8&qid=1421433773&sr=8-4&keywords=Linear+Algebra+and+Its+Applications) - Gilbert Strang 1995
 
Courses
 
Computer Vision
EENG 512 / CSCI 512 - Computer Vision (http://inside.mines.edu/~whoff/courses/EENG512/) - William Hoff (Colorado School of Mines)
Visual Object and Activity Recognition (https://sites.google.com/site/ucbcs29443/) - Alexei A. Efros and Trevor Darrell (UC Berkeley)
Computer Vision (http://courses.cs.washington.edu/courses/cse455/12wi/) - Steve Seitz (University of Washington)
Visual Recognition Spring 2016 (http://vision.cs.utexas.edu/381V-spring2016/), Fall 2016 (http://vision.cs.utexas.edu/381V-fall2016/) - Kristen Grauman (UT Austin)
Language and Vision (http://www.tamaraberg.com/teaching/Spring_15/) - Tamara Berg (UNC Chapel Hill)
Convolutional Neural Networks for Visual Recognition (http://vision.stanford.edu/teaching/cs231n/) - Fei-Fei Li and Andrej Karpathy (Stanford University)
Computer Vision (http://cs.nyu.edu/~fergus/teaching/vision/index.html) - Rob Fergus (NYU)
Computer Vision (https://courses.engr.illinois.edu/cs543/sp2015/) - Derek Hoiem (UIUC)
Computer Vision: Foundations and Applications (http://vision.stanford.edu/teaching/cs131_fall1415/index.html) - Kalanit Grill-Spector and Fei-Fei Li (Stanford University)
High-Level Vision: Behaviors, Neurons and Computational Models (http://vision.stanford.edu/teaching/cs431_spring1314/) - Fei-Fei Li (Stanford University)
Advances in Computer Vision (http://6.869.csail.mit.edu/fa15/) - Antonio Torralba and Bill Freeman (MIT)
Computer Vision (http://www.vision.rwth-aachen.de/course/11/) - Bastian Leibe (RWTH Aachen University)
Computer Vision 2 (http://www.vision.rwth-aachen.de/course/9/) - Bastian Leibe (RWTH Aachen University)
Computer Vision (http://klewel.com/conferences/epfl-computer-vision/) Pascal Fua (EPFL):
Computer Vision 1 (http://cvlab-dresden.de/courses/computer-vision-1/) Carsten Rother (TU Dresden):
Computer Vision 2 (http://cvlab-dresden.de/courses/CV2/) Carsten Rother (TU Dresden):
Multiple View Geometry (https://youtu.be/RDkwklFGMfo?list=PLTBdjV_4f-EJn6udZ34tht9EVIW7lbeo4) Daniel Cremers (TU Munich):
 
 
 
 
Computational Photography
Image Manipulation and Computational Photography (http://inst.eecs.berkeley.edu/~cs194-26/fa14/) - Alexei A. Efros (UC Berkeley)
Computational Photography (http://graphics.cs.cmu.edu/courses/15-463/2012_fall/463.html) - Alexei A. Efros (CMU)
Computational Photography (https://courses.engr.illinois.edu/cs498dh3/) - Derek Hoiem (UIUC)
Computational Photography (http://cs.brown.edu/courses/csci1290/) - James Hays (Brown University)
Digital & Computational Photography (http://stellar.mit.edu/S/course/6/sp12/6.815/) - Fredo Durand (MIT)
Computational Camera and Photography (http://ocw.mit.edu/courses/media-arts-and-sciences/mas-531-computational-camera-and-photography-fall-2009/) - Ramesh Raskar (MIT Media Lab)
Computational Photography (https://www.udacity.com/course/computational-photography--ud955) - Irfan Essa (Georgia Tech)
Courses in Graphics (http://graphics.stanford.edu/courses/) - Stanford University
Computational Photography (http://cs.nyu.edu/~fergus/teaching/comp_photo/index.html) - Rob Fergus (NYU)
Introduction to Visual Computing (http://www.cs.toronto.edu/~kyros/courses/320/) - Kyros Kutulakos (University of Toronto)
Computational Photography (http://www.cs.toronto.edu/~kyros/courses/2530/) - Kyros Kutulakos (University of Toronto)
Computer Vision for Visual Effects (https://www.ecse.rpi.edu/~rjradke/cvfxcourse.html) - Rich Radke (Rensselaer Polytechnic Institute)
Introduction to Image Processing (https://www.ecse.rpi.edu/~rjradke/improccourse.html) - Rich Radke (Rensselaer Polytechnic Institute)
 
Machine Learning and Statistical Learning
Machine Learning (https://www.coursera.org/learn/machine-learning) - Andrew Ng (Stanford University)
Learning from Data (https://work.caltech.edu/telecourse.html) - Yaser S. Abu-Mostafa (Caltech)
Statistical Learning (https://class.stanford.edu/courses/HumanitiesandScience/StatLearning/Winter2015/about) - Trevor Hastie and Rob Tibshirani (Stanford University)
Statistical Learning Theory and Applications (http://www.mit.edu/~9.520/fall14/) - Tomaso Poggio, Lorenzo Rosasco, Carlo Ciliberto, Charlie Frogner, Georgios Evangelopoulos, Ben Deen (MIT)
Statistical Learning (http://www.stat.rice.edu/~gallen/stat640.html) - Genevera Allen (Rice University)
Practical Machine Learning (http://www.cs.berkeley.edu/~jordan/courses/294-fall09/) - Michael Jordan (UC Berkeley)
Course on Information Theory, Pattern Recognition, and Neural Networks (http://videolectures.net/course_information_theory_pattern_recognition/) - David MacKay (University of Cambridge)
Methods for Applied Statistics: Unsupervised Learning (http://web.stanford.edu/~lmackey/stats306b/) - Lester Mackey (Stanford)
Machine Learning (http://www.robots.ox.ac.uk/~az/lectures/ml/index.html) - Andrew Zisserman (University of Oxford)
Intro to Machine Learning (https://www.udacity.com/course/intro-to-machine-learning--ud120) - Sebastian Thrun (Stanford University)
Machine Learning (https://www.udacity.com/course/machine-learning--ud262) - Charles Isbell, Michael Littman (Georgia Tech)
(Convolutional) Neural Networks for Visual Recognition (https://cs231n.github.io/) - Fei-Fei Li, Andrej Karphaty, Justin Johnson (Stanford University)
Machine Learning for Computer Vision (https://youtu.be/QZmZFeZxEKI?list=PLTBdjV_4f-EIiongKlS9OKrBEp8QR47Wl) - Rudolph Triebel (TU Munich)
 
 
 
Optimization
Convex Optimization I (http://stanford.edu/class/ee364a/) - Stephen Boyd (Stanford University)
Convex Optimization II (http://stanford.edu/class/ee364b/) - Stephen Boyd (Stanford University)
Convex Optimization (https://class.stanford.edu/courses/Engineering/CVX101/Winter2014/about) - Stephen Boyd (Stanford University)
Optimization at MIT (http://optimization.mit.edu/classes.php) - (MIT)
Convex Optimization (http://www.stat.cmu.edu/~ryantibs/convexopt/) - Ryan Tibshirani (CMU)
 
Papers
 
Conference papers on the web
CVPapers (http://www.cvpapers.com/) - Computer vision papers on the web
SIGGRAPH Paper on the web (http://kesen.realtimerendering.com/) - Graphics papers on the web
NIPS Proceedings (http://papers.nips.cc/) - NIPS papers on the web
Computer Vision Foundation open access (http://www.cv-foundation.org/openaccess/menu.py)
Annotated Computer Vision Bibliography (http://iris.usc.edu/Vision-Notes/bibliography/contents.html) - Keith Price (USC)
Calendar of Computer Image Analysis, Computer Vision Conferences (http://iris.usc.edu/Information/Iris-Conferences.html) - (USC)
 
Survey Papers
Visionbib Survey Paper List (http://surveys.visionbib.com/index.html)
Foundations and Trends® in Computer Graphics and Vision (http://www.nowpublishers.com/CGV)
Computer Vision: A Reference Guide (http://link.springer.com/book/10.1007/978-0-387-31439-6)
 
## Pre-trained Computer Vision Models
List of Computer Vision models (https://github.com/shubham-shahh/Open-Source-Models) These models are trained on custom objects
 
Tutorials and talks
 
Computer Vision
Computer Vision Talks (http://www.computervisiontalks.com/) - Lectures, keynotes, panel discussions on computer vision
The Three R's of Computer Vision (https://www.youtube.com/watch?v=Mqg6eorYRIQ) - Jitendra Malik (UC Berkeley) 2013
Applications to Machine Vision (http://videolectures.net/epsrcws08_blake_amv/) - Andrew Blake (Microsoft Research) 2008
The Future of Image Search (http://videolectures.net/kdd08_malik_fis/?q=image) - Jitendra Malik (UC Berkeley) 2008
Should I do a PhD in Computer Vision? (https://www.youtube.com/watch?v=M17oGxh3Ny8) - Fatih Porikli (Australian National University)
- Graduate Summer School 2013: Computer Vision (http://www.ipam.ucla.edu/programs/summer-schools/graduate-summer-school-computer-vision/?tab=schedule) - IPAM, 2013
 
Recent Conference Talks
- CVPR 2015 (http://www.pamitc.org/cvpr15/) - Jun 2015
- ECCV 2014 (http://videolectures.net/eccv2014_zurich/) - Sep 2014
- CVPR 2014 (http://techtalks.tv/cvpr-2014-oral-talks/) - Jun 2014
- ICCV 2013 (http://techtalks.tv/iccv2013/) - Dec 2013
- ICML 2013 (http://techtalks.tv/icml/2013/) - Jul 2013
- CVPR 2013 (http://techtalks.tv/cvpr2013/) - Jun 2013
- ECCV 2012 (http://videolectures.net/eccv2012_firenze/) - Oct 2012
- ICML 2012 (http://techtalks.tv/icml/2012/orals/) - Jun 2012
- CVPR 2012 (http://techtalks.tv/cvpr2012webcast/) - Jun 2012
 
3D Computer Vision
3D Computer Vision: Past, Present, and Future (https://www.youtube.com/watch?v=kyIzMr917Rc) - Steve Seitz (University of Washington) 2011
Reconstructing the World from Photos on the Internet (https://www.youtube.com/watch?v=04Kgg3QEXFI) - Steve Seitz (University of Washington) 2013
 
Internet Vision
The Distributed Camera (http://www.technologyreview.com/video/426265/meet-2011-tr35-winner-noah-snavely/) - Noah Snavely (Cornell University) 2011
Planet-Scale Visual Understanding (https://www.youtube.com/watch?v=UHkCa9-Z1Ps) - Noah Snavely (Cornell University) 2014
A Trillion Photos (https://www.youtube.com/watch?v=6MWEfpKUfRc) - Steve Seitz (University of Washington) 2013
 
Computational Photography
Reflections on Image-Based Modeling and Rendering (https://www.youtube.com/watch?v=j90_0Ndk7XM) - Richard Szeliski (Microsoft Research) 2013
Photographing Events over Time (https://www.youtube.com/watch?v=ZvPaHZZVPRk) - William T. Freeman (MIT) 2011
Old and New algorithm for Blind Deconvolution (http://videolectures.net/nipsworkshops2011_weiss_deconvolution/) - Yair Weiss (The Hebrew University of Jerusalem) 2011
A Tour of Modern "Image Processing" (http://videolectures.net/nipsworkshops2010_milanfar_tmi/) - Peyman Milanfar (UC Santa Cruz/Google) 2010
Topics in image and video processing (http://videolectures.net/mlss07_blake_tiivp/) Andrew Blake (Microsoft Research) 2007
Computational Photography (https://www.youtube.com/watch?v=HJVNI0mkmqk) - William T. Freeman (MIT) 2012
Revealing the Invisible (https://www.youtube.com/watch?v=_BWnIQY_X98) - Frédo Durand (MIT) 2012
Overview of Computer Vision and Visual Effects (https://www.youtube.com/watch?v=rE-hVtytT-I) - Rich Radke (Rensselaer Polytechnic Institute) 2014
 
Learning and Vision
Where machine vision needs help from machine learning (http://videolectures.net/colt2011_freeman_help/?q=computer%20vision) - William T. Freeman (MIT) 2011
Learning in Computer Vision (http://videolectures.net/mlss08au_lucey_linv/) - Simon Lucey (CMU) 2008
Learning and Inference in Low-Level Vision (http://videolectures.net/nips09_weiss_lil/?q=computer%20vision) - Yair Weiss (The Hebrew University of Jerusalem) 2009
 
Object Recognition
Object Recognition (http://research.microsoft.com/apps/video/dl.aspx?id=231358) - Larry Zitnick (Microsoft Research)
Generative Models for Visual Objects and Object Recognition via Bayesian Inference (http://videolectures.net/mlas06_li_gmvoo/?q=Fei-Fei%20Li) - Fei-Fei Li (Stanford University)
 
Graphical Models
Graphical Models for Computer Vision (http://videolectures.net/uai2012_felzenszwalb_computer_vision/?q=computer%20vision) - Pedro Felzenszwalb (Brown University) 2012
Graphical Models (http://videolectures.net/mlss09uk_ghahramani_gm/) - Zoubin Ghahramani (University of Cambridge) 2009
Machine Learning, Probability and Graphical Models (http://videolectures.net/mlss06tw_roweis_mlpgm/) - Sam Roweis (NYU) 2006
Graphical Models and Applications (http://videolectures.net/mlss09us_weiss_gma/?q=Graphical%20Models) - Yair Weiss (The Hebrew University of Jerusalem) 2009
 
Machine Learning
A Gentle Tutorial of the EM Algorithm (https://nikola-rt.ee.washington.edu/people/bulyko/papers/em.pdf) - Jeff A. Bilmes (UC Berkeley) 1998
Introduction To Bayesian Inference (http://videolectures.net/mlss09uk_bishop_ibi/) - Christopher Bishop (Microsoft Research) 2009
Support Vector Machines (http://videolectures.net/mlss06tw_lin_svm/) - Chih-Jen Lin (National Taiwan University) 2006
Bayesian or Frequentist, Which Are You? (http://videolectures.net/mlss09uk_jordan_bfway/) - Michael I. Jordan (UC Berkeley)
 
Optimization
Optimization Algorithms in Machine Learning (http://videolectures.net/nips2010_wright_oaml/) - Stephen J. Wright (University of Wisconsin-Madison)
Convex Optimization (http://videolectures.net/mlss07_vandenberghe_copt/?q=convex%20optimization) - Lieven Vandenberghe (University of California, Los Angeles)
Continuous Optimization in Computer Vision (https://www.youtube.com/watch?v=oZqoWozVDVg) - Andrew Fitzgibbon (Microsoft Research)
Beyond stochastic gradient descent for large-scale machine learning (http://videolectures.net/sahd2014_bach_stochastic_gradient/) - Francis Bach (INRIA)
Variational Methods for Computer Vision (https://www.youtube.com/playlist?list=PLTBdjV_4f-EJ7A2iIH5L5ztqqrWYjP2RI) - Daniel Cremers (Technische Universität München) (lecture 18 missing from playlist
(https://www.youtube.com/watch?v=GgcbVPNd3SI))
 
Deep Learning
A tutorial on Deep Learning (http://videolectures.net/jul09_hinton_deeplearn/) - Geoffrey E. Hinton (University of Toronto)
Deep Learning (http://videolectures.net/kdd2014_salakhutdinov_deep_learning/?q=Hidden%20Markov%20model#) - Ruslan Salakhutdinov (University of Toronto)
Scaling up Deep Learning (http://videolectures.net/kdd2014_bengio_deep_learning/) - Yoshua Bengio (University of Montreal)
ImageNet Classification with Deep Convolutional Neural Networks (http://videolectures.net/machine_krizhevsky_imagenet_classification/?q=deep%20learning) - Alex Krizhevsky (University of Toronto)
The Unreasonable Effectivness Of Deep Learning (http://videolectures.net/sahd2014_lecun_deep_learning/) Yann LeCun (NYU/Facebook Research) 2014
Deep Learning for Computer Vision (https://www.youtube.com/watch?v=qgx57X0fBdA) - Rob Fergus (NYU/Facebook Research)
High-dimensional learning with deep network contractions (http://videolectures.net/sahd2014_mallat_dimensional_learning/) - Stéphane Mallat (Ecole Normale Superieure)
Graduate Summer School 2012: Deep Learning, Feature Learning (http://www.ipam.ucla.edu/programs/summer-schools/graduate-summer-school-deep-learning-feature-learning/?tab=schedule) - IPAM, 2012
Workshop on Big Data and Statistical Machine Learning (http://www.fields.utoronto.ca/programs/scientific/14-15/bigdata/machine/)
Machine Learning Summer School (https://www.youtube.com/channel/UC3ywjSv5OsDiDAnOP8C1NiQ) - Reykjavik, Iceland 2014
* **Deep Learning Session 1** (https://www.youtube.com/watch?v=JuimBuvEWBg) - Yoshua Bengio (Universtiy of Montreal)
* **Deep Learning Session 2** (https://www.youtube.com/watch?v=Fl-W7_z3w3o) - Yoshua Bengio (University of Montreal)
* **Deep Learning Session 3** (https://www.youtube.com/watch?v=_cohR7LAgWA) - Yoshua Bengio (University of Montreal)
 
Software
 
Annotation tools
Comma Coloring (http://commacoloring.herokuapp.com/)
Annotorious (https://annotorious.github.io/)
LabelME (http://labelme.csail.mit.edu/Release3.0/)
gtmaker (https://github.com/sanko-shoko/gtmaker)
 
External Resource Links
Computer Vision Resources (https://sites.google.com/site/jbhuang0604/resources/vision) - Jia-Bin Huang (UIUC)
Computer Vision Algorithm Implementations (http://www.cvpapers.com/rr.html) - CVPapers
Source Code Collection for Reproducible Research (http://www.csee.wvu.edu/~xinl/reproducible_research.html) - Xin Li (West Virginia University)
CMU Computer Vision Page (http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/v-source.html)
 
General Purpose Computer Vision Library
Open CV (http://opencv.org/)
mexopencv (http://kyamagu.github.io/mexopencv/)
SimpleCV (http://simplecv.org/)
Open source Python module for computer vision (https://github.com/jesolem/PCV)
ccv: A Modern Computer Vision Library (https://github.com/liuliu/ccv)
VLFeat (http://www.vlfeat.org/)
Matlab Computer Vision System Toolbox (http://www.mathworks.com/products/computer-vision/)
Piotr's Computer Vision Matlab Toolbox (http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html)
PCL: Point Cloud Library (http://pointclouds.org/)
ImageUtilities (https://gitorious.org/imageutilities)
 
Multiple-view Computer Vision
MATLAB Functions for Multiple View Geometry (http://www.robots.ox.ac.uk/~vgg/hzbook/code/)
Peter Kovesi's Matlab Functions for Computer Vision and Image Analysis (http://staffhome.ecm.uwa.edu.au/~00011811/Research/MatlabFns/index.html)
OpenGV (http://laurentkneip.github.io/opengv/) - geometric computer vision algorithms
MinimalSolvers (http://cmp.felk.cvut.cz/mini/) - Minimal problems solver
Multi-View Environment (http://www.gcc.tu-darmstadt.de/home/proj/mve/)
Visual SFM (http://ccwu.me/vsfm/)
Bundler SFM (http://www.cs.cornell.edu/~snavely/bundler/)
openMVG: open Multiple View Geometry (http://imagine.enpc.fr/~moulonp/openMVG/) - Multiple View Geometry; Structure from Motion library & softwares
Patch-based Multi-view Stereo V2 (http://www.di.ens.fr/pmvs/)
Clustering Views for Multi-view Stereo (http://www.di.ens.fr/cmvs/)
Floating Scale Surface Reconstruction (http://www.gris.informatik.tu-darmstadt.de/projects/floating-scale-surface-recon/)
Large-Scale Texturing of 3D Reconstructions (http://www.gcc.tu-darmstadt.de/home/proj/texrecon/)
Awesome 3D reconstruction list (https://github.com/openMVG/awesome_3DReconstruction_list)
 
 
Feature Detection and Extraction
VLFeat (http://www.vlfeat.org/)
SIFT (http://www.cs.ubc.ca/~lowe/keypoints/)
David G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, 60, 2 (2004), pp. 91-110.
SIFT++ (http://www.robots.ox.ac.uk/~vedaldi/code/siftpp.html)
BRISK (http://www.asl.ethz.ch/people/lestefan/personal/BRISK)
Stefan Leutenegger, Margarita Chli and Roland Siegwart, "BRISK: Binary Robust Invariant Scalable Keypoints", ICCV 2011
SURF (http://www.vision.ee.ethz.ch/~surf/)
Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, "SURF: Speeded Up Robust Features", Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3, pp. 346--359, 2008
FREAK (http://www.ivpe.com/freak.htm)
A. Alahi, R. Ortiz, and P. Vandergheynst, "FREAK: Fast Retina Keypoint", CVPR 2012
AKAZE (http://www.robesafe.com/personal/pablo.alcantarilla/kaze.html)
Pablo F. Alcantarilla, Adrien Bartoli and Andrew J. Davison, "KAZE Features", ECCV 2012
Local Binary Patterns (https://github.com/nourani/LBP)
 
High Dynamic Range Imaging
HDR_Toolbox (https://github.com/banterle/HDR_Toolbox)
 
Semantic Segmentation
List of Semantic Segmentation algorithms (http://www.it-caesar.com/list-of-contemporary-semantic-segmentation-datasets/)
 
Low-level Vision
 
Stereo Vision
Middlebury Stereo Vision (http://vision.middlebury.edu/stereo/)
The KITTI Vision Benchmark Suite (http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stero)
LIBELAS: Library for Efficient Large-scale Stereo Matching (http://www.cvlibs.net/software/libelas/)
Ground Truth Stixel Dataset (http://www.6d-vision.com/ground-truth-stixel-dataset)
 
Optical Flow
Middlebury Optical Flow Evaluation (http://vision.middlebury.edu/flow/)
MPI-Sintel Optical Flow Dataset and Evaluation (http://sintel.is.tue.mpg.de/)
The KITTI Vision Benchmark Suite (http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow)
HCI Challenge (http://hci.iwr.uni-heidelberg.de/Benchmarks/document/Challenging_Data_for_Stereo_and_Optical_Flow/)
Coarse2Fine Optical Flow (http://people.csail.mit.edu/celiu/OpticalFlow/) - Ce Liu (MIT)
Secrets of Optical Flow Estimation and Their Principles (http://cs.brown.edu/~dqsun/code/cvpr10_flow_code.zip)
C++/MatLab Optical Flow by C. Liu (based on Brox et al. and Bruhn et al.) (http://people.csail.mit.edu/celiu/OpticalFlow/)
Parallel Robust Optical Flow by Sánchez Pérez et al. (http://www.ctim.es/research_works/parallel_robust_optical_flow/)
 
Image Denoising
BM3D, KSVD,
 
Super-resolution
Multi-frame image super-resolution (http://www.robots.ox.ac.uk/~vgg/software/SR/)
* Pickup, L. C. Machine Learning in Multi-frame Image Super-resolution, PhD thesis 2008
Markov Random Fields for Super-Resolution (http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%20Fields%20for%20Super-Resolution.html)
* W. T Freeman and C. Liu. Markov Random Fields for Super-resolution and Texture Synthesis. In A. Blake, P. Kohli, and C. Rother, eds., Advances in Markov Random Fields for Vision and Image Processing, Chapter 10. MIT Press, 2011
Sparse regression and natural image prior (https://people.mpi-inf.mpg.de/~kkim/supres/supres.htm)
* K. I. Kim and Y. Kwon, "Single-image super-resolution using sparse regression and natural image prior", IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 6, pp. 1127-1133, 2010.
Single-Image Super Resolution via a Statistical Model (http://www.cs.technion.ac.il/~elad/Various/SingleImageSR_TIP14_Box.zip)
* T. Peleg and M. Elad, A Statistical Prediction Model Based on Sparse Representations for Single Image Super-Resolution, IEEE Transactions on Image Processing, Vol. 23, No. 6, Pages 2569-2582, June 2014
Sparse Coding for Super-Resolution (http://www.cs.technion.ac.il/~elad/Various/Single_Image_SR.zip)
* R. Zeyde, M. Elad, and M. Protter On Single Image Scale-Up using Sparse-Representations, Curves & Surfaces, Avignon-France, June 24-30, 2010 (appears also in Lecture-Notes-on-Computer-Science - LNCS).
Patch-wise Sparse Recovery (http://www.ifp.illinois.edu/~jyang29/ScSR.htm)
* Jianchao Yang, John Wright, Thomas Huang, and Yi Ma. Image super-resolution via sparse representation. IEEE Transactions on Image Processing (TIP), vol. 19, issue 11, 2010.
Neighbor embedding (http://www.jdl.ac.cn/user/hchang/doc/code.rar)
* H. Chang, D.Y. Yeung, Y. Xiong. Super-resolution through neighbor embedding. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol.1, pp.275-282, Washington, DC, USA, 27 June - 2 Ju
ly 2004.
Deformable Patches (https://sites.google.com/site/yuzhushome/single-image-super-resolution-using-deformable-patches)
* Yu Zhu, Yanning Zhang and Alan Yuille, Single Image Super-resolution using Deformable Patches, CVPR 2014
SRCNN (http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html)
* Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Learning a Deep Convolutional Network for Image Super-Resolution, in ECCV 2014
A+: Adjusted Anchored Neighborhood Regression (http://www.vision.ee.ethz.ch/~timofter/ACCV2014_ID820_SUPPLEMENTARY/index.html)
* R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution, ACCV 2014
Transformed Self-Exemplars (https://sites.google.com/site/jbhuang0604/publications/struct_sr)
* Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja, Single Image Super-Resolution using Transformed Self-Exemplars, IEEE Conference on Computer Vision and Pattern Recognition, 2015
 
Image Deblurring
 
Non-blind deconvolution
Spatially variant non-blind deconvolution (http://homes.cs.washington.edu/~shanqi/work/spvdeconv/)
Handling Outliers in Non-blind Image Deconvolution (http://cg.postech.ac.kr/research/deconv_outliers/)
Hyper-Laplacian Priors (http://cs.nyu.edu/~dilip/research/fast-deconvolution/)
From Learning Models of Natural Image Patches to Whole Image Restoration (http://people.csail.mit.edu/danielzoran/epllcode.zip)
Deep Convolutional Neural Network for Image Deconvolution (http://lxu.me/projects/dcnn/)
Neural Deconvolution (http://webdav.is.mpg.de/pixel/neural_deconvolution/)
 
Blind deconvolution
Removing Camera Shake From A Single Photograph (http://www.cs.nyu.edu/~fergus/research/deblur.html)
High-quality motion deblurring from a single image (http://www.cse.cuhk.edu.hk/leojia/projects/motion_deblurring/)
Two-Phase Kernel Estimation for Robust Motion Deblurring (http://www.cse.cuhk.edu.hk/leojia/projects/robust_deblur/)
Blur kernel estimation using the radon transform (http://people.csail.mit.edu/taegsang/Documents/RadonDeblurringCode.zip)
Fast motion deblurring (http://cg.postech.ac.kr/research/fast_motion_deblurring/)
Blind Deconvolution Using a Normalized Sparsity Measure (http://cs.nyu.edu//~dilip/research/blind-deconvolution/)
Blur-kernel estimation from spectral irregularities (http://www.cs.huji.ac.il/~raananf/projects/deblur/)
Efficient marginal likelihood optimization in blind deconvolution (http://www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR2011Code.zip)
Unnatural L0 Sparse Representation for Natural Image Deblurring (http://www.cse.cuhk.edu.hk/leojia/projects/l0deblur/)
Edge-based Blur Kernel Estimation Using Patch Priors (http://cs.brown.edu/~lbsun/deblur2013/deblur2013iccp.html)
Blind Deblurring Using Internal Patch Recurrence (http://www.wisdom.weizmann.ac.il/~vision/BlindDeblur.html)
 
Non-uniform Deblurring
Non-uniform Deblurring for Shaken Images (http://www.di.ens.fr/willow/research/deblurring/)
Single Image Deblurring Using Motion Density Functions (http://grail.cs.washington.edu/projects/mdf_deblurring/)
Image Deblurring using Inertial Measurement Sensors (http://research.microsoft.com/en-us/um/redmond/groups/ivm/imudeblurring/)
Fast Removal of Non-uniform Camera Shake (http://webdav.is.mpg.de/pixel/fast_removal_of_camera_shake/)
 
 
Image Completion
GIMP Resynthesizer (http://registry.gimp.org/node/27986)
Priority BP (http://lafarren.com/image-completer/)
ImageMelding (http://www.ece.ucsb.edu/~psen/melding)
PlanarStructureCompletion (https://sites.google.com/site/jbhuang0604/publications/struct_completion)
 
Image Retargeting
RetargetMe (http://people.csail.mit.edu/mrub/retargetme/)
 
Alpha Matting
Alpha Matting Evaluation (http://www.alphamatting.com/)
Closed-form image matting (http://people.csail.mit.edu/alevin/matting.tar.gz)
Spectral Matting (http://www.vision.huji.ac.il/SpectralMatting/)
Learning-based Matting (http://www.mathworks.com/matlabcentral/fileexchange/31412-learning-based-digital-matting)
Improving Image Matting using Comprehensive Sampling Sets (http://www.alphamatting.com/ImprovingMattingComprehensiveSamplingSets_CVPR2013.zip)
 
Image Pyramid
The Steerable Pyramid (http://www.cns.nyu.edu/~eero/steerpyr/)
CurveLab (http://www.curvelet.org/)
 
Edge-preserving image processing
Fast Bilateral Filter (http://people.csail.mit.edu/sparis/bf/)
O(1) Bilateral Filter (http://www.cs.cityu.edu.hk/~qiyang/publications/code/qx.cvpr09.ctbf.zip)
Recursive Bilateral Filtering (http://www.cs.cityu.edu.hk/~qiyang/publications/eccv-12/)
Rolling Guidance Filter (http://www.cse.cuhk.edu.hk/leojia/projects/rollguidance/)
Relative Total Variation (http://www.cse.cuhk.edu.hk/leojia/projects/texturesep/index.html)
L0 Gradient Optimization (http://www.cse.cuhk.edu.hk/leojia/projects/L0smoothing/index.html)
Domain Transform (http://www.inf.ufrgs.br/~eslgastal/DomainTransform/)
Adaptive Manifold (http://inf.ufrgs.br/~eslgastal/AdaptiveManifolds/)
Guided image filtering (http://research.microsoft.com/en-us/um/people/kahe/eccv10/)
 
Intrinsic Images
 
Recovering Intrinsic Images with a global Sparsity Prior on Reflectance (http://people.tuebingen.mpg.de/mkiefel/projects/intrinsic/)
Intrinsic Images by Clustering (http://giga.cps.unizar.es/~elenag/projects/EGSR2012_intrinsic/)
 
Contour Detection and Image Segmentation
Mean Shift Segmentation (http://coewww.rutgers.edu/riul/research/code/EDISON/)
Graph-based Segmentation (http://cs.brown.edu/~pff/segment/)
Normalized Cut (http://www.cis.upenn.edu/~jshi/software/)
Grab Cut (http://grabcut.weebly.com/background--algorithm.html)
Contour Detection and Image Segmentation (http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html)
Structured Edge Detection (http://research.microsoft.com/en-us/downloads/389109f6-b4e8-404c-84bf-239f7cbf4e3d/)
Pointwise Mutual Information (http://web.mit.edu/phillipi/pmi-boundaries/)
SLIC Super-pixel (http://ivrl.epfl.ch/research/superpixels)
QuickShift (http://www.vlfeat.org/overview/quickshift.html)
TurboPixels (http://www.cs.toronto.edu/~babalex/research.html)
Entropy Rate Superpixel (http://mingyuliu.net/)
Contour Relaxed Superpixels (http://www.vsi.cs.uni-frankfurt.de/research/current-projects/research/superpixel-segmentation/)
SEEDS (http://www.mvdblive.org/seeds/)
SEEDS Revised (https://github.com/davidstutz/seeds-revised)
Multiscale Combinatorial Grouping (http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/mcg/)
Fast Edge Detection Using Structured Forests (https://github.com/pdollar/edges)
 
Interactive Image Segmentation
Random Walker (http://cns.bu.edu/~lgrady/software.html)
Geodesic Segmentation (http://www.tc.umn.edu/~baixx015/)
Lazy Snapping (http://research.microsoft.com/apps/pubs/default.aspx?id=69040)
Power Watershed (http://powerwatershed.sourceforge.net/)
Geodesic Graph Cut (http://www.adobe.com/technology/people/san-jose/brian-price.html)
Segmentation by Transduction (http://www.cs.cmu.edu/~olivierd/)
 
Video Segmentation
Video Segmentation with Superpixels (http://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/image-and-video-segmentation/video-segmentation-with-superpixels/)
Efficient hierarchical graph-based video segmentation (http://www.cc.gatech.edu/cpl/projects/videosegmentation/)
Object segmentation in video (http://lmb.informatik.uni-freiburg.de/Publications/2011/OB11/)
Streaming hierarchical video segmentation (http://www.cse.buffalo.edu/~jcorso/r/supervoxels/)
 
Camera calibration
Camera Calibration Toolbox for Matlab (http://www.vision.caltech.edu/bouguetj/calib_doc/)
Camera calibration With OpenCV (http://docs.opencv.org/trunk/doc/tutorials/calib3d/camera_calibration/camera_calibration.html#)
Multiple Camera Calibration Toolbox (https://sites.google.com/site/prclibo/toolbox)
 
Simultaneous localization and mapping
 
SLAM community:
openSLAM (https://www.openslam.org/)
Kitti Odometry: benchmark for outdoor visual odometry (codes may be available) (http://www.cvlibs.net/datasets/kitti/eval_odometry.php)
 
Tracking/Odometry:
LIBVISO2: C++ Library for Visual Odometry 2 (http://www.cvlibs.net/software/libviso/)
PTAM: Parallel tracking and mapping (http://www.robots.ox.ac.uk/~gk/PTAM/)
KFusion: Implementation of KinectFusion (https://github.com/GerhardR/kfusion)
kinfu_remake: Lightweight, reworked and optimized version of Kinfu. (https://github.com/Nerei/kinfu_remake)
LVR-KinFu: kinfu_remake based Large Scale KinectFusion with online reconstruction (http://las-vegas.uni-osnabrueck.de/related-projects/lvr-kinfu/)
InfiniTAM: Implementation of multi-platform large-scale depth tracking and fusion (http://www.robots.ox.ac.uk/~victor/infinitam/)
VoxelHashing: Large-scale KinectFusion (https://github.com/nachtmar/VoxelHashing)
SLAMBench: Multiple-implementation of KinectFusion (http://apt.cs.manchester.ac.uk/projects/PAMELA/tools/SLAMBench/)
SVO: Semi-direct visual odometry (https://github.com/uzh-rpg/rpg_svo)
DVO: dense visual odometry (https://github.com/tum-vision/dvo_slam)
FOVIS: RGB-D visual odometry (https://code.google.com/p/fovis/)
 
Graph Optimization:
GTSAM: General smoothing and mapping library for Robotics and SFM (https://collab.cc.gatech.edu/borg/gtsam?destination=node%2F299) -- Georgia Institute of Technology
G2O: General framework for graph optomization (https://github.com/RainerKuemmerle/g2o)
 
Loop Closure:
FabMap: appearance-based loop closure system (http://www.robots.ox.ac.uk/~mjc/Software.htm) - also available in OpenCV2.4.11 (http://docs.opencv.org/2.4/modules/contrib/doc/openfabmap.html)
DBoW2: binary bag-of-words loop detection system (http://webdiis.unizar.es/~dorian/index.php?p=32)
 
Localization & Mapping:
RatSLAM (https://code.google.com/p/ratslam/)
LSD-SLAM (https://github.com/tum-vision/lsd_slam)
ORB-SLAM (https://github.com/raulmur/ORB_SLAM)
 
Single-view Spatial Understanding
Geometric Context (http://web.engr.illinois.edu/~dhoiem/projects/software.html) - Derek Hoiem (CMU)
Recovering Spatial Layout (http://web.engr.illinois.edu/~dhoiem/software/counter.php?Down=varsha_spatialLayout.zip) - Varsha Hedau (UIUC)
Geometric Reasoning (http://www.cs.cmu.edu/~./dclee/code/index.html) - David C. Lee (CMU)
RGBD2Full3D (https://github.com/arron2003/rgbd2full3d) - Ruiqi Guo (UIUC)
 
Object Detection
INRIA Object Detection and Localization Toolkit (http://pascal.inrialpes.fr/soft/olt/)
Discriminatively trained deformable part models (http://www.cs.berkeley.edu/~rbg/latent/)
VOC-DPM (https://github.com/rbgirshick/voc-dpm)
Histograms of Sparse Codes for Object Detection (http://www.ics.uci.edu/~dramanan/software/sparse/)
R-CNN: Regions with Convolutional Neural Network Features (https://github.com/rbgirshick/rcnn)
SPP-Net (https://github.com/ShaoqingRen/SPP_net)
BING: Objectness Estimation (http://mmcheng.net/bing/comment-page-9/)
Edge Boxes (https://github.com/pdollar/edges)
ReInspect (https://github.com/Russell91/ReInspect)
 
Nearest Neighbor Search
 
General purpose nearest neighbor search
ANN: A Library for Approximate Nearest Neighbor Searching (http://www.cs.umd.edu/~mount/ANN/)
FLANN - Fast Library for Approximate Nearest Neighbors (http://www.cs.ubc.ca/research/flann/)
Fast k nearest neighbor search using GPU (http://vincentfpgarcia.github.io/kNN-CUDA/)
 
Nearest Neighbor Field Estimation
PatchMatch (http://gfx.cs.princeton.edu/gfx/pubs/Barnes_2009_PAR/index.php)
Generalized PatchMatch (http://gfx.cs.princeton.edu/pubs/Barnes_2010_TGP/index.php)
Coherency Sensitive Hashing (http://www.eng.tau.ac.il/~simonk/CSH/)
PMBP: PatchMatch Belief Propagation (https://github.com/fbesse/pmbp)
TreeCANN (http://www.eng.tau.ac.il/~avidan/papers/TreeCANN_code_20121022.rar)
 
Visual Tracking
Visual Tracker Benchmark (https://sites.google.com/site/trackerbenchmark/benchmarks/v10)
Visual Tracking Challenge (http://www.votchallenge.net/)
Kanade-Lucas-Tomasi Feature Tracker (http://www.ces.clemson.edu/~stb/klt/)
Extended Lucas-Kanade Tracking (http://www.eng.tau.ac.il/~oron/ELK/ELK.html)
Online-boosting Tracking (http://www.vision.ee.ethz.ch/boostingTrackers/)
Spatio-Temporal Context Learning (http://www4.comp.polyu.edu.hk/~cslzhang/STC/STC.htm)
Locality Sensitive Histograms (http://www.shengfenghe.com/visual-tracking-via-locality-sensitive-histograms.html)
Enhanced adaptive coupled-layer LGTracker++ (http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W03/papers/Xiao_An_Enhanced_Adaptive_2013_ICCV_paper.pdf)
TLD: Tracking - Learning - Detection (http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html)
CMT: Clustering of Static-Adaptive Correspondences for Deformable Object Tracking (http://www.gnebehay.com/cmt/)
Kernelized Correlation Filters (http://home.isr.uc.pt/~henriques/circulant/)
Accurate Scale Estimation for Robust Visual Tracking (http://www.cvl.isy.liu.se/en/research/objrec/visualtracking/scalvistrack/index.html)
Multiple Experts using Entropy Minimization (http://cs-people.bu.edu/jmzhang/MEEM/MEEM.html)
TGPR (http://www.dabi.temple.edu/~hbling/code/TGPR.htm)
CF2: Hierarchical Convolutional Features for Visual Tracking (https://sites.google.com/site/jbhuang0604/publications/cf2)
Modular Tracking Framework (http://webdocs.cs.ualberta.ca/~vis/mtf/index.html)
 
Saliency Detection
 
Attributes
 
Action Reconition
 
Egocentric cameras
 
Human-in-the-loop systems
 
Image Captioning
NeuralTalk (https://github.com/karpathy/neuraltalk) -
 
Optimization
Ceres Solver (http://ceres-solver.org/) - Nonlinear least-square problem and unconstrained optimization solver
NLopt (http://ab-initio.mit.edu/wiki/index.php/NLopt)- Nonlinear least-square problem and unconstrained optimization solver
OpenGM (http://hci.iwr.uni-heidelberg.de/opengm2/) - Factor graph based discrete optimization and inference solver
GTSAM (https://collab.cc.gatech.edu/borg/gtsam/) - Factor graph based lease-square optimization solver
 
Deep Learning
Awesome Deep Vision (https://github.com/kjw0612/awesome-deep-vision)
 
Machine Learning
Awesome Machine Learning (https://github.com/josephmisiti/awesome-machine-learning)
Bob: a free signal processing and machine learning toolbox for researchers (http://idiap.github.io/bob/)
LIBSVM -- A Library for Support Vector Machines (https://www.csie.ntu.edu.tw/~cjlin/libsvm/)
 
Datasets
 
External Dataset Link Collection
CV Datasets on the web (http://www.cvpapers.com/datasets.html) - CVPapers
Are we there yet? (http://rodrigob.github.io/are_we_there_yet/build/) - Which paper provides the best results on standard dataset X?
Computer Vision Dataset on the web (http://www.cvpapers.com/datasets.html)
Yet Another Computer Vision Index To Datasets (http://riemenschneider.hayko.at/vision/dataset/)
ComputerVisionOnline Datasets (http://www.computervisiononline.com/datasets)
CVOnline Dataset (http://homepages.inf.ed.ac.uk/cgi/rbf/CVONLINE/entries.pl?TAG363)
CV datasets (http://clickdamage.com/sourcecode/cv_datasets.php)
visionbib (http://datasets.visionbib.com/info-index.html)
VisualData (http://www.visualdata.io/)
 
Low-level Vision
 
Stereo Vision
Middlebury Stereo Vision (http://vision.middlebury.edu/stereo/)
The KITTI Vision Benchmark Suite (http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stero)
LIBELAS: Library for Efficient Large-scale Stereo Matching (http://www.cvlibs.net/software/libelas/)
Ground Truth Stixel Dataset (http://www.6d-vision.com/ground-truth-stixel-dataset)
 
Optical Flow
Middlebury Optical Flow Evaluation (http://vision.middlebury.edu/flow/)
MPI-Sintel Optical Flow Dataset and Evaluation (http://sintel.is.tue.mpg.de/)
The KITTI Vision Benchmark Suite (http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow)
HCI Challenge (http://hci.iwr.uni-heidelberg.de/Benchmarks/document/Challenging_Data_for_Stereo_and_Optical_Flow/)
 
Video Object Segmentation
DAVIS: Densely Annotated VIdeo Segmentation (http://davischallenge.org/)
SegTrack v2 (http://web.engr.oregonstate.edu/~lif/SegTrack2/dataset.html)
 
 
Change Detection
Labeled and Annotated Sequences for Integral Evaluation of SegmenTation Algorithms (http://www.gti.ssr.upm.es/data/LASIESTA)
ChangeDetection.net (http://www.changedetection.net/)
 
Image Super-resolutions
Single-Image Super-Resolution: A Benchmark (https://eng.ucmerced.edu/people/cyang35/ECCV14/ECCV14.html)
 
Intrinsic Images
Ground-truth dataset and baseline evaluations for intrinsic image algorithms (http://www.mit.edu/~kimo/publications/intrinsic/)
Intrinsic Images in the Wild (http://opensurfaces.cs.cornell.edu/intrinsic/)
Intrinsic Image Evaluation on Synthetic Complex Scenes (http://www.cic.uab.cat/Datasets/synthetic_intrinsic_image_dataset/)
 
Material Recognition
OpenSurface (http://opensurfaces.cs.cornell.edu/)
Flickr Material Database (http://people.csail.mit.edu/celiu/CVPR2010/)
Materials in Context Dataset (http://opensurfaces.cs.cornell.edu/publications/minc/)
 
Multi-view Reconsturction
Multi-View Stereo Reconstruction (http://vision.middlebury.edu/mview/)
 
Saliency Detection
 
Visual Tracking
Visual Tracker Benchmark (https://sites.google.com/site/trackerbenchmark/benchmarks/v10)
Visual Tracker Benchmark v1.1 (https://sites.google.com/site/benchmarkpami/)
VOT Challenge (http://www.votchallenge.net/)
Princeton Tracking Benchmark (http://tracking.cs.princeton.edu/)
Tracking Manipulation Tasks (TMT) (http://webdocs.cs.ualberta.ca/~vis/trackDB/)
 
Visual Surveillance
VIRAT (http://www.viratdata.org/)
CAM2 (https://cam2.ecn.purdue.edu/)
 
Saliency Detection
 
Change detection
ChangeDetection.net (http://changedetection.net/)
 
Visual Recognition
 
Image Classification
The PASCAL Visual Object Classes (http://pascallin.ecs.soton.ac.uk/challenges/VOC/)
ImageNet Large Scale Visual Recognition Challenge (http://www.image-net.org/challenges/LSVRC/2014/)
 
Self-supervised Learning
PASS: An An ImageNet replacement for self-supervised pretraining without humans (https://github.com/yukimasano/PASS)
 
Scene Recognition
SUN Database (http://groups.csail.mit.edu/vision/SUN/)
Place Dataset (http://places.csail.mit.edu/)
 
Object Detection
The PASCAL Visual Object Classes (http://pascallin.ecs.soton.ac.uk/challenges/VOC/)
ImageNet Object Detection Challenge (http://www.image-net.org/challenges/LSVRC/2014/)
Microsoft COCO (http://mscoco.org/)
 
Semantic labeling
Stanford background dataset (http://dags.stanford.edu/projects/scenedataset.html)
CamVid (http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/)
Barcelona Dataset (http://www.cs.unc.edu/~jtighe/Papers/ECCV10/)
SIFT Flow Dataset (http://www.cs.unc.edu/~jtighe/Papers/ECCV10/siftflow/SiftFlowDataset.zip)
 
Multi-view Object Detection
3D Object Dataset (http://cvgl.stanford.edu/resources.html)
EPFL Car Dataset (http://cvlab.epfl.ch/data/pose)
KTTI Dection Dataset (http://www.cvlibs.net/datasets/kitti/eval_object.php)
SUN 3D Dataset (http://sun3d.cs.princeton.edu/)
PASCAL 3D+ (http://cvgl.stanford.edu/projects/pascal3d.html)
NYU Car Dataset (http://nyc3d.cs.cornell.edu/)
 
Fine-grained Visual Recognition
Fine-grained Classification Challenge (https://sites.google.com/site/fgcomp2013/)
Caltech-UCSD Birds 200 (http://www.vision.caltech.edu/visipedia/CUB-200.html)
 
Pedestrian Detection
Caltech Pedestrian Detection Benchmark (http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/)
ETHZ Pedestrian Detection (https://data.vision.ee.ethz.ch/cvl/aess/dataset/)
 
Action Recognition
 
Image-based
 
Video-based
HOLLYWOOD2 Dataset (http://www.di.ens.fr/~laptev/actions/hollywood2/)
UCF Sports Action Data Set (http://crcv.ucf.edu/data/UCF_Sports_Action.php)
 
Image Deblurring
Sun dataset (http://cs.brown.edu/~lbsun/deblur2013/deblur2013iccp.html)
Levin dataset (http://www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR09Data.rar)
 
Image Captioning
Flickr 8K (http://nlp.cs.illinois.edu/HockenmaierGroup/Framing_Image_Description/KCCA.html)
Flickr 30K (http://shannon.cs.illinois.edu/DenotationGraph/)
Microsoft COCO (http://mscoco.org/)
 
Scene Understanding
# SUN RGB-D (http://rgbd.cs.princeton.edu/) - A RGB-D Scene Understanding Benchmark Suite
# NYU depth v2 (http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html) - Indoor Segmentation and Support Inference from RGBD Images
 
Aerial images
# Aerial Image Segmentation (https://zenodo.org/record/1154821#.WmN9kHWnHIp) - Learning Aerial Image Segmentation From Online Maps
 
 
Resources for students
 
Resource link collection
Resources for students (http://people.csail.mit.edu/fredo/student.html) - Frédo Durand (MIT)
Advice for Graduate Students (http://www.dgp.toronto.edu/~hertzman/advice/) - Aaron Hertzmann (Adobe Research)
Graduate Skills Seminars (http://www.dgp.toronto.edu/~hertzman/courses/gradSkills/2010/) - Yashar Ganjali, Aaron Hertzmann (University of Toronto)
Research Skills (http://research.microsoft.com/en-us/um/people/simonpj/papers/giving-a-talk/giving-a-talk.htm) - Simon Peyton Jones (Microsoft Research)
Resource collection (http://web.engr.illinois.edu/~taoxie/advice.htm) - Tao Xie (UIUC) and Yuan Xie (UCSB)
 
Writing
Write Good Papers (http://people.csail.mit.edu/fredo/FredoGoodWriting.pdf) - Frédo Durand (MIT)
Notes on writing (http://people.csail.mit.edu/fredo/PUBLI/writing.pdf) - Frédo Durand (MIT)
How to Write a Bad Article (http://people.csail.mit.edu/fredo/FredoBadWriting.pdf) - Frédo Durand (MIT)
How to write a good CVPR submission (http://billf.mit.edu/sites/default/files/documents/cvprPapers.pdf) - William T. Freeman (MIT)
How to write a great research paper (https://www.youtube.com/watch?v=g3dkRsTqdDA) - Simon Peyton Jones (Microsoft Research)
How to write a SIGGRAPH paper (http://www.slideshare.net/jdily/how-to-write-a-siggraph-paper) - SIGGRAPH ASIA 2011 Course
Writing Research Papers (http://www.dgp.toronto.edu/~hertzman/advice/writing-technical-papers.pdf) - Aaron Hertzmann (Adobe Research)
How to Write a Paper for SIGGRAPH (http://www.computer.org/csdl/mags/cg/1987/12/mcg1987120062.pdf) - Jim Blinn
How to Get Your SIGGRAPH Paper Rejected (http://www.siggraph.org/sites/default/files/kajiya.pdf) - Jim Kajiya (Microsoft Research)
How to write a SIGGRAPH paper (www.liyiwei.org/courses/how-siga11/liyiwei.pptx) - Li-Yi Wei (The University of Hong Kong)
How to Write a Great Paper (http://www-hagen.informatik.uni-kl.de/~bertram/talks/getpublished.pdf) - Martin Martin Hering Hering--Bertram (Hochschule Bremen University of Applied Sciences)
How to have a paper get into SIGGRAPH? (http://www-ui.is.s.u-tokyo.ac.jp/~takeo/writings/siggraph.html) - Takeo Igarashi (The University of Tokyo)
Good Writing (http://www.cs.cmu.edu/~pausch/Randy/Randy/raibert.htm) - Marc H. Raibert (Boston Dynamics, Inc.)
How to Write a Computer Vision Paper (http://web.engr.illinois.edu/~dhoiem/presentations/How%20to%20Write%20a%20Computer%20Vison%20Paper.ppt) - Derek Hoiem (UIUC)
Common mistakes in technical writing (http://www.cs.dartmouth.edu/~wjarosz/writing.html) - Wojciech Jarosz (Dartmouth College)
 
 
Presentation
Giving a Research Talk (http://people.csail.mit.edu/fredo/TalkAdvice.pdf) - Frédo Durand (MIT)
How to give a good talk (http://www.dgp.toronto.edu/~hertzman/courses/gradSkills/2010/GivingGoodTalks.pdf) - David Fleet (University of Toronto) and Aaron Hertzmann (Adobe Research)
Designing conference posters (http://colinpurrington.com/tips/poster-design) - Colin Purrington
 
Research
How to do research (http://people.csail.mit.edu/billf/www/papers/doresearch.pdf) - William T. Freeman (MIT)
You and Your Research (http://www.cs.virginia.edu/~robins/YouAndYourResearch.html) - Richard Hamming
Warning Signs of Bogus Progress in Research in an Age of Rich Computation and Information (http://yima.csl.illinois.edu/psfile/bogus.pdf) - Yi Ma (UIUC)
Seven Warning Signs of Bogus Science (http://www.quackwatch.com/01QuackeryRelatedTopics/signs.html) - Robert L. Park
Five Principles for Choosing Research Problems in Computer Graphics (https://www.youtube.com/watch?v=v2Qaf8t8I6c) - Thomas Funkhouser (Cornell University)
How To Do Research In the MIT AI Lab (http://www.cs.indiana.edu/mit.research.how.to.html) - David Chapman (MIT)
Recent Advances in Computer Vision (http://www.slideshare.net/antiw/recent-advances-in-computer-vision) - Ming-Hsuan Yang (UC Merced)
How to Come Up with Research Ideas in Computer Vision? (http://www.slideshare.net/jbhuang/how-to-come-up-with-new-research-ideas-4005840) - Jia-Bin Huang (UIUC)
How to Read Academic Papers (http://www.slideshare.net/jbhuang/how-to-read-academic-papers) - Jia-Bin Huang (UIUC)
 
Time Management
Time Management (https://www.youtube.com/watch?v=oTugjssqOT0) - Randy Pausch (CMU)
 
Blogs
Learn OpenCV (http://www.learnopencv.com/) - Satya Mallick
Tombone's Computer Vision Blog (http://www.computervisionblog.com/) - Tomasz Malisiewicz
Computer vision for dummies (http://www.visiondummy.com/) - Vincent Spruyt
Andrej Karpathy blog (http://karpathy.github.io/) - Andrej Karpathy
AI Shack (http://aishack.in/) - Utkarsh Sinha
Computer Vision Talks (http://computer-vision-talks.com/) - Eugene Khvedchenya
Computer Vision Basics with Python Keras and OpenCV (https://github.com/jrobchin/Computer-Vision-Basics-with-Python-Keras-and-OpenCV) - Jason Chin (University of Western Ontario)
 
 
Links
The Computer Vision Industry (http://www.cs.ubc.ca/~lowe/vision.html) - David Lowe
German Computer Vision Research Groups & Companies (http://hci.iwr.uni-heidelberg.de/Links/German_Vision/)
awesome-deep-learning (https://github.com/ChristosChristofidis/awesome-deep-learning)
awesome-machine-learning (https://github.com/josephmisiti/awesome-machine-learning)
Cat Paper Collection (http://www.eecs.berkeley.edu/~junyanz/cat/cat_papers.html)
Computer Vision News (http://www.rsipvision.com/computer-vision-news/)
*
Songs
The Fundamental Matrix Song (http://danielwedge.com/fmatrix/)
The RANSAC Song (http://danielwedge.com/ransac/)
Machine Learning A Cappella - Overfitting Thriller (https://www.youtube.com/watch?v=DQWI1kvmwRg)
 
Licenses
License
 
!CC0 (http://i.creativecommons.org/p/zero/1.0/88x31.png) (http://creativecommons.org/publicdomain/zero/1.0/)
 
To the extent possible under law, Jia-Bin Huang (www.jiabinhuang.com) has waived all copyright and related or neighboring rights to this work.