Awesome Computer Vision: !Awesome (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg) (https://github.com/sindresorhus/awesome) A curated list of awesome computer vision resources, inspired by awesome-php (https://github.com/ziadoz/awesome-php). For a list people in computer vision listed with their academic genealogy, please visit here (https://github.com/jbhuang0604/awesome-computer-vision/blob/master/people.md) Contributing Please feel free to send me pull requests (https://github.com/jbhuang0604/awesome-computer-vision/pulls) or email (jbhuang@vt.edu) to add links. Table of Contents  - Awesome Lists (#awesome-lists)  - Books (#books)  - Courses (#courses)  - Papers (#papers)  - Software (#software)  - Datasets (#datasets)  - Pre-trained Computer Vision Models (#Pre-trained-Computer-Vision-Models)  - Tutorials and Talks (#tutorials-and-talks)  - Resources for students (#resources-for-students)  - Blogs (#blogs)  - Links (#links)  - Songs (#songs) Awesome Lists  - Awesome Machine Learning (https://github.com/josephmisiti/awesome-machine-learning)  - Awesome Deep Vision (https://github.com/kjw0612/awesome-deep-vision)  - Awesome Domain Adaptation (https://github.com/zhaoxin94/awesome-domain-adaptation)  - Awesome Object Detection (https://github.com/amusi/awesome-object-detection)  - Awesome 3D Machine Learning (https://github.com/timzhang642/3D-Machine-Learning)  - Awesome Action Recognition (https://github.com/jinwchoi/awesome-action-recognition)  - Awesome Scene Understanding (https://github.com/bertjiazheng/awesome-scene-understanding)  - Awesome Adversarial Machine Learning (https://github.com/yenchenlin/awesome-adversarial-machine-learning)  - Awesome Adversarial Deep Learning (https://github.com/chbrian/awesome-adversarial-examples-dl)  - Awesome Face (https://github.com/polarisZhao/awesome-face)  - Awesome Face Recognition (https://github.com/ChanChiChoi/awesome-Face_Recognition)  - Awesome Human Pose Estimation (https://github.com/wangzheallen/awesome-human-pose-estimation)  - Awesome medical imaging (https://github.com/fepegar/awesome-medical-imaging)  - Awesome Images (https://github.com/heyalexej/awesome-images)  - Awesome Graphics (https://github.com/ericjang/awesome-graphics)  - Awesome Neural Radiance Fields (https://github.com/yenchenlin/awesome-NeRF)  - Awesome Implicit Neural Representations (https://github.com/vsitzmann/awesome-implicit-representations)  - Awesome Neural Rendering (https://github.com/weihaox/awesome-neural-rendering)  - Awesome Public Datasets (https://github.com/awesomedata/awesome-public-datasets)  - Awesome Dataset Tools (https://github.com/jsbroks/awesome-dataset-tools)  - Awesome Robotics Datasets (https://github.com/sunglok/awesome-robotics-datasets)  - Awesome Mobile Machine Learning (https://github.com/fritzlabs/Awesome-Mobile-Machine-Learning)  - Awesome Explainable AI (https://github.com/wangyongjie-ntu/Awesome-explainable-AI)  - Awesome Fairness in AI (https://github.com/datamllab/awesome-fairness-in-ai)  - Awesome Machine Learning Interpretability (https://github.com/jphall663/awesome-machine-learning-interpretability)  - Awesome Production Machine Learning (https://github.com/EthicalML/awesome-production-machine-learning)  - Awesome Video Text Retrieval (https://github.com/danieljf24/awesome-video-text-retrieval)  - Awesome Image-to-Image Translation (https://github.com/weihaox/awesome-image-translation)  - Awesome Image Inpainting (https://github.com/1900zyh/Awesome-Image-Inpainting)  - Awesome Deep HDR (https://github.com/vinthony/awesome-deep-hdr)  - Awesome Video Generation (https://github.com/matthewvowels1/Awesome-Video-Generation)  - Awesome GAN applications (https://github.com/nashory/gans-awesome-applications)  - Awesome Generative Modeling (https://github.com/zhoubolei/awesome-generative-modeling)  - Awesome Image Classification (https://github.com/weiaicunzai/awesome-image-classification)  - Awesome Deep Learning (https://github.com/ChristosChristofidis/awesome-deep-learning)  - Awesome Machine Learning in Biomedical(Healthcare) Imaging (https://github.com/XindiWu/Awesome-Machine-Learning-in-Biomedical-Healthcare-Imaging)  - Awesome Deep Learning for Tracking and Detection (https://github.com/abhineet123/Deep-Learning-for-Tracking-and-Detection)  - Awesome Human Pose Estimation (https://github.com/wangzheallen/awesome-human-pose-estimation)  - Awesome Deep Learning for Video Analysis (https://github.com/HuaizhengZhang/Awsome-Deep-Learning-for-Video-Analysis)  - Awesome Vision + Language (https://github.com/yuewang-cuhk/awesome-vision-language-pretraining-papers)  - Awesome Robotics (https://github.com/kiloreux/awesome-robotics)  - Awesome Visual Transformer (https://github.com/dk-liang/Awesome-Visual-Transformer)  - Awesome Embodied Vision (https://github.com/ChanganVR/awesome-embodied-vision)  - Awesome Anomaly Detection (https://github.com/hoya012/awesome-anomaly-detection)  - Awesome Makeup Transfer (https://github.com/thaoshibe/awesome-makeup-transfer)  - Awesome Learning with Label Noise (https://github.com/subeeshvasu/Awesome-Learning-with-Label-Noise)  - Awesome Deblurring (https://github.com/subeeshvasu/Awesome-Deblurring)  - Awsome Deep Geometry Learning (https://github.com/subeeshvasu/Awsome_Deep_Geometry_Learning)  - Awesome Image Distortion Correction (https://github.com/subeeshvasu/Awesome-Image-Distortion-Correction)  - Awesome Neuron Segmentation in EM Images (https://github.com/subeeshvasu/Awesome-Neuron-Segmentation-in-EM-Images)  - Awsome Delineation (https://github.com/subeeshvasu/Awsome_Delineation)  - Awesome ImageHarmonization (https://github.com/subeeshvasu/Awesome-ImageHarmonization)  - Awsome GAN Training (https://github.com/subeeshvasu/Awsome-GAN-Training)  - Awesome Document Understanding (https://github.com/tstanislawek/awesome-document-understanding)   Books Computer Vision ⟡ Computer Vision: Models, Learning, and Inference (http://www.computervisionmodels.com/) - Simon J. D. Prince 2012 ⟡ Computer Vision: Theory and Application (http://szeliski.org/Book/) - Rick Szeliski 2010 ⟡ Computer Vision: A Modern Approach (2nd edition) (http://www.amazon.com/Computer-Vision-Modern-Approach-2nd/dp/013608592X/ref=dp_ob_title_bk) - David Forsyth and Jean Ponce 2011 ⟡ Multiple View Geometry in Computer Vision (http://www.robots.ox.ac.uk/~vgg/hzbook/) - Richard Hartley and Andrew Zisserman 2004 ⟡ Computer Vision (http://www.amazon.com/Computer-Vision-Linda-G-Shapiro/dp/0130307963) - Linda G. Shapiro 2001 ⟡ Vision Science: Photons to Phenomenology (http://www.amazon.com/Vision-Science-Phenomenology-Stephen-Palmer/dp/0262161834/) - Stephen E. Palmer 1999 ⟡ Visual Object Recognition synthesis lecture (http://www.morganclaypool.com/doi/abs/10.2200/S00332ED1V01Y201103AIM011) - Kristen Grauman and Bastian Leibe 2011 ⟡ Computer Vision for Visual Effects (http://cvfxbook.com/) - Richard J. Radke, 2012 ⟡ High dynamic range imaging: acquisition, display, and image-based lighting (http://www.amazon.com/High-Dynamic-Range-Imaging-Second/dp/012374914X) - Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., Myszkowski, K 2010 ⟡ Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics (https://people.csail.mit.edu/jsolomon/share/book/numerical_book.pdf) - Justin Solomon 2015 ⟡ Image Processing and Analysis (https://www.amazon.com/Processing-Analysis-Activate-Learning-Engineering/dp/1285179528) - Stan Birchfield 2018 ⟡ Computer Vision, From 3D Reconstruction to Recognition (http://web.stanford.edu/class/cs231a/) - Silvio Savarese 2018 OpenCV Programming ⟡ Learning OpenCV: Computer Vision with the OpenCV Library (http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134) - Gary Bradski and Adrian Kaehler ⟡ Practical Python and OpenCV (https://www.pyimagesearch.com/practical-python-opencv/) - Adrian Rosebrock ⟡ OpenCV Essentials (http://www.amazon.com/OpenCV-Essentials-Oscar-Deniz-Suarez/dp/1783984244/ref=sr_1_1?s=books&ie=UTF8&qid=1424594237&sr=1-1&keywords=opencv+essentials#) - Oscar Deniz Suarez, Mª del Milagro Fernandez Carrobles, Noelia Vallez Enano, Gloria Bueno Garcia, Ismael Serrano Gracia Machine Learning ⟡ Pattern Recognition and Machine Learning (http://research.microsoft.com/en-us/um/people/cmbishop/prml/index.htm) - Christopher M. Bishop 2007 ⟡ Neural Networks for Pattern Recognition (http://www.engineering.upm.ro/master-ie/sacpi/mat_did/info068/docum/Neural%20Networks%20for%20Pattern%20Recognition.pdf) - Christopher M. Bishop 1995 ⟡ Probabilistic Graphical Models: Principles and Techniques (http://pgm.stanford.edu/) - Daphne Koller and Nir Friedman 2009 ⟡ Pattern Classification (http://www.amazon.com/Pattern-Classification-2nd-Richard-Duda/dp/0471056693) - Peter E. Hart, David G. Stork, and Richard O. Duda 2000 ⟡ Machine Learning (http://www.amazon.com/Machine-Learning-Tom-M-Mitchell/dp/0070428077/) - Tom M. Mitchell 1997 ⟡ Gaussian processes for machine learning (http://www.gaussianprocess.org/gpml/) - Carl Edward Rasmussen and Christopher K. I. Williams 2005 ⟡ Learning From Data (https://work.caltech.edu/telecourse.html)- Yaser S. Abu-Mostafa, Malik Magdon-Ismail and Hsuan-Tien Lin 2012 ⟡ Neural Networks and Deep Learning (http://neuralnetworksanddeeplearning.com/) - Michael Nielsen 2014 ⟡ Bayesian Reasoning and Machine Learning (http://www.cs.ucl.ac.uk/staff/d.barber/brml/) - David Barber, Cambridge University Press, 2012 Fundamentals  ⟡ Linear Algebra and Its Applications (http://www.amazon.com/Linear-Algebra-Its-Applications-4th/dp/0030105676/ref=sr_1_4?ie=UTF8&qid=1421433773&sr=8-4&keywords=Linear+Algebra+and+Its+Applications) - Gilbert Strang 1995 Courses Computer Vision  ⟡ EENG 512 / CSCI 512 - Computer Vision (http://inside.mines.edu/~whoff/courses/EENG512/) - William Hoff (Colorado School of Mines)  ⟡ Visual Object and Activity Recognition (https://sites.google.com/site/ucbcs29443/) - Alexei A. Efros and Trevor Darrell (UC Berkeley)  ⟡ Computer Vision (http://courses.cs.washington.edu/courses/cse455/12wi/) - Steve Seitz (University of Washington)  ⟡ Visual Recognition Spring 2016 (http://vision.cs.utexas.edu/381V-spring2016/), Fall 2016 (http://vision.cs.utexas.edu/381V-fall2016/) - Kristen Grauman (UT Austin)  ⟡ Language and Vision (http://www.tamaraberg.com/teaching/Spring_15/) - Tamara Berg (UNC Chapel Hill)  ⟡ Convolutional Neural Networks for Visual Recognition (http://vision.stanford.edu/teaching/cs231n/) - Fei-Fei Li and Andrej Karpathy (Stanford University)  ⟡ Computer Vision (http://cs.nyu.edu/~fergus/teaching/vision/index.html) - Rob Fergus (NYU)  ⟡ Computer Vision (https://courses.engr.illinois.edu/cs543/sp2015/) - Derek Hoiem (UIUC)  ⟡ Computer Vision: Foundations and Applications (http://vision.stanford.edu/teaching/cs131_fall1415/index.html) - Kalanit Grill-Spector and Fei-Fei Li (Stanford University)  ⟡ High-Level Vision: Behaviors, Neurons and Computational Models (http://vision.stanford.edu/teaching/cs431_spring1314/) - Fei-Fei Li (Stanford University)  ⟡ Advances in Computer Vision (http://6.869.csail.mit.edu/fa15/) - Antonio Torralba and Bill Freeman (MIT)  ⟡ Computer Vision (http://www.vision.rwth-aachen.de/course/11/) - Bastian Leibe (RWTH Aachen University)  ⟡ Computer Vision 2 (http://www.vision.rwth-aachen.de/course/9/) - Bastian Leibe (RWTH Aachen University)  ⟡ Computer Vision (http://klewel.com/conferences/epfl-computer-vision/) Pascal Fua (EPFL):  ⟡ Computer Vision 1 (http://cvlab-dresden.de/courses/computer-vision-1/) Carsten Rother (TU Dresden):  ⟡ Computer Vision 2 (http://cvlab-dresden.de/courses/CV2/) Carsten Rother (TU Dresden):  ⟡ Multiple View Geometry (https://youtu.be/RDkwklFGMfo?list=PLTBdjV_4f-EJn6udZ34tht9EVIW7lbeo4) Daniel Cremers (TU Munich): Computational Photography ⟡ Image Manipulation and Computational Photography (http://inst.eecs.berkeley.edu/~cs194-26/fa14/) - Alexei A. Efros (UC Berkeley) ⟡ Computational Photography (http://graphics.cs.cmu.edu/courses/15-463/2012_fall/463.html) - Alexei A. Efros (CMU) ⟡ Computational Photography (https://courses.engr.illinois.edu/cs498dh3/) - Derek Hoiem (UIUC) ⟡ Computational Photography (http://cs.brown.edu/courses/csci1290/) - James Hays (Brown University) ⟡ Digital & Computational Photography (http://stellar.mit.edu/S/course/6/sp12/6.815/) - Fredo Durand (MIT) ⟡ Computational Camera and Photography (http://ocw.mit.edu/courses/media-arts-and-sciences/mas-531-computational-camera-and-photography-fall-2009/) - Ramesh Raskar (MIT Media Lab) ⟡ Computational Photography (https://www.udacity.com/course/computational-photography--ud955) - Irfan Essa (Georgia Tech) ⟡ Courses in Graphics (http://graphics.stanford.edu/courses/) - Stanford University ⟡ Computational Photography (http://cs.nyu.edu/~fergus/teaching/comp_photo/index.html) - Rob Fergus (NYU) ⟡ Introduction to Visual Computing (http://www.cs.toronto.edu/~kyros/courses/320/) - Kyros Kutulakos (University of Toronto) ⟡ Computational Photography (http://www.cs.toronto.edu/~kyros/courses/2530/) - Kyros Kutulakos (University of Toronto) ⟡ Computer Vision for Visual Effects (https://www.ecse.rpi.edu/~rjradke/cvfxcourse.html) - Rich Radke (Rensselaer Polytechnic Institute) ⟡ Introduction to Image Processing (https://www.ecse.rpi.edu/~rjradke/improccourse.html) - Rich Radke (Rensselaer Polytechnic Institute) Machine Learning and Statistical Learning  ⟡ Machine Learning (https://www.coursera.org/learn/machine-learning) - Andrew Ng (Stanford University)  ⟡ Learning from Data (https://work.caltech.edu/telecourse.html) - Yaser S. Abu-Mostafa (Caltech)  ⟡ Statistical Learning (https://class.stanford.edu/courses/HumanitiesandScience/StatLearning/Winter2015/about) - Trevor Hastie and Rob Tibshirani (Stanford University)  ⟡ Statistical Learning Theory and Applications (http://www.mit.edu/~9.520/fall14/) - Tomaso Poggio, Lorenzo Rosasco, Carlo Ciliberto, Charlie Frogner, Georgios Evangelopoulos, Ben Deen (MIT)  ⟡ Statistical Learning (http://www.stat.rice.edu/~gallen/stat640.html) - Genevera Allen (Rice University)  ⟡ Practical Machine Learning (http://www.cs.berkeley.edu/~jordan/courses/294-fall09/) - Michael Jordan (UC Berkeley)  ⟡ Course on Information Theory, Pattern Recognition, and Neural Networks (http://videolectures.net/course_information_theory_pattern_recognition/) - David MacKay (University of Cambridge)  ⟡ Methods for Applied Statistics: Unsupervised Learning (http://web.stanford.edu/~lmackey/stats306b/) - Lester Mackey (Stanford)  ⟡ Machine Learning (http://www.robots.ox.ac.uk/~az/lectures/ml/index.html) - Andrew Zisserman (University of Oxford)  ⟡ Intro to Machine Learning (https://www.udacity.com/course/intro-to-machine-learning--ud120) - Sebastian Thrun (Stanford University)  ⟡ Machine Learning (https://www.udacity.com/course/machine-learning--ud262) - Charles Isbell, Michael Littman (Georgia Tech)  ⟡ (Convolutional) Neural Networks for Visual Recognition (https://cs231n.github.io/) - Fei-Fei Li, Andrej Karphaty, Justin Johnson (Stanford University)  ⟡ Machine Learning for Computer Vision (https://youtu.be/QZmZFeZxEKI?list=PLTBdjV_4f-EIiongKlS9OKrBEp8QR47Wl) - Rudolph Triebel (TU Munich) Optimization  ⟡ Convex Optimization I (http://stanford.edu/class/ee364a/) - Stephen Boyd (Stanford University)  ⟡ Convex Optimization II (http://stanford.edu/class/ee364b/) - Stephen Boyd (Stanford University)  ⟡ Convex Optimization (https://class.stanford.edu/courses/Engineering/CVX101/Winter2014/about) - Stephen Boyd (Stanford University)  ⟡ Optimization at MIT (http://optimization.mit.edu/classes.php) - (MIT)  ⟡ Convex Optimization (http://www.stat.cmu.edu/~ryantibs/convexopt/) - Ryan Tibshirani (CMU) Papers Conference papers on the web  ⟡ CVPapers (http://www.cvpapers.com/) - Computer vision papers on the web  ⟡ SIGGRAPH Paper on the web (http://kesen.realtimerendering.com/) - Graphics papers on the web  ⟡ NIPS Proceedings (http://papers.nips.cc/) - NIPS papers on the web  ⟡ Computer Vision Foundation open access (http://www.cv-foundation.org/openaccess/menu.py)  ⟡ Annotated Computer Vision Bibliography (http://iris.usc.edu/Vision-Notes/bibliography/contents.html) - Keith Price (USC)  ⟡ Calendar of Computer Image Analysis, Computer Vision Conferences (http://iris.usc.edu/Information/Iris-Conferences.html) - (USC) Survey Papers  ⟡ Visionbib Survey Paper List (http://surveys.visionbib.com/index.html)  ⟡ Foundations and Trends® in Computer Graphics and Vision (http://www.nowpublishers.com/CGV)  ⟡ Computer Vision: A Reference Guide (http://link.springer.com/book/10.1007/978-0-387-31439-6)  ## Pre-trained Computer Vision Models  ⟡ List of Computer Vision models (https://github.com/shubham-shahh/Open-Source-Models) These models are trained on custom objects Tutorials and talks Computer Vision  ⟡ Computer Vision Talks (http://www.computervisiontalks.com/) - Lectures, keynotes, panel discussions on computer vision  ⟡ The Three R's of Computer Vision (https://www.youtube.com/watch?v=Mqg6eorYRIQ) - Jitendra Malik (UC Berkeley) 2013  ⟡ Applications to Machine Vision (http://videolectures.net/epsrcws08_blake_amv/) - Andrew Blake (Microsoft Research) 2008  ⟡ The Future of Image Search (http://videolectures.net/kdd08_malik_fis/?q=image) - Jitendra Malik (UC Berkeley) 2008  ⟡ Should I do a PhD in Computer Vision? (https://www.youtube.com/watch?v=M17oGxh3Ny8) - Fatih Porikli (Australian National University)  - Graduate Summer School 2013: Computer Vision (http://www.ipam.ucla.edu/programs/summer-schools/graduate-summer-school-computer-vision/?tab=schedule) - IPAM, 2013 Recent Conference Talks - CVPR 2015 (http://www.pamitc.org/cvpr15/) - Jun 2015 - ECCV 2014 (http://videolectures.net/eccv2014_zurich/) - Sep 2014 - CVPR 2014 (http://techtalks.tv/cvpr-2014-oral-talks/) - Jun 2014 - ICCV 2013 (http://techtalks.tv/iccv2013/) - Dec 2013 - ICML 2013 (http://techtalks.tv/icml/2013/) - Jul 2013 - CVPR 2013 (http://techtalks.tv/cvpr2013/) - Jun 2013 - ECCV 2012 (http://videolectures.net/eccv2012_firenze/) - Oct 2012 - ICML 2012 (http://techtalks.tv/icml/2012/orals/) - Jun 2012 - CVPR 2012 (http://techtalks.tv/cvpr2012webcast/) - Jun 2012 3D Computer Vision  ⟡ 3D Computer Vision: Past, Present, and Future (https://www.youtube.com/watch?v=kyIzMr917Rc) - Steve Seitz (University of Washington) 2011  ⟡ Reconstructing the World from Photos on the Internet (https://www.youtube.com/watch?v=04Kgg3QEXFI) - Steve Seitz (University of Washington) 2013 Internet Vision  ⟡ The Distributed Camera (http://www.technologyreview.com/video/426265/meet-2011-tr35-winner-noah-snavely/) - Noah Snavely (Cornell University) 2011  ⟡ Planet-Scale Visual Understanding (https://www.youtube.com/watch?v=UHkCa9-Z1Ps) - Noah Snavely (Cornell University) 2014  ⟡ A Trillion Photos (https://www.youtube.com/watch?v=6MWEfpKUfRc) - Steve Seitz (University of Washington) 2013 Computational Photography  ⟡ Reflections on Image-Based Modeling and Rendering (https://www.youtube.com/watch?v=j90_0Ndk7XM) - Richard Szeliski (Microsoft Research) 2013  ⟡ Photographing Events over Time (https://www.youtube.com/watch?v=ZvPaHZZVPRk) - William T. Freeman (MIT) 2011  ⟡ Old and New algorithm for Blind Deconvolution (http://videolectures.net/nipsworkshops2011_weiss_deconvolution/) - Yair Weiss (The Hebrew University of Jerusalem) 2011  ⟡ A Tour of Modern "Image Processing" (http://videolectures.net/nipsworkshops2010_milanfar_tmi/) - Peyman Milanfar (UC Santa Cruz/Google) 2010  ⟡ Topics in image and video processing (http://videolectures.net/mlss07_blake_tiivp/) Andrew Blake (Microsoft Research) 2007  ⟡ Computational Photography (https://www.youtube.com/watch?v=HJVNI0mkmqk) - William T. Freeman (MIT) 2012  ⟡ Revealing the Invisible (https://www.youtube.com/watch?v=_BWnIQY_X98) - Frédo Durand (MIT) 2012  ⟡ Overview of Computer Vision and Visual Effects (https://www.youtube.com/watch?v=rE-hVtytT-I) - Rich Radke (Rensselaer Polytechnic Institute) 2014 Learning and Vision  ⟡ Where machine vision needs help from machine learning (http://videolectures.net/colt2011_freeman_help/?q=computer%20vision) - William T. Freeman (MIT) 2011  ⟡ Learning in Computer Vision (http://videolectures.net/mlss08au_lucey_linv/) - Simon Lucey (CMU) 2008  ⟡ Learning and Inference in Low-Level Vision (http://videolectures.net/nips09_weiss_lil/?q=computer%20vision) - Yair Weiss (The Hebrew University of Jerusalem) 2009 Object Recognition  ⟡ Object Recognition (http://research.microsoft.com/apps/video/dl.aspx?id=231358) - Larry Zitnick (Microsoft Research)  ⟡ Generative Models for Visual Objects and Object Recognition via Bayesian Inference (http://videolectures.net/mlas06_li_gmvoo/?q=Fei-Fei%20Li) - Fei-Fei Li (Stanford University) Graphical Models  ⟡ Graphical Models for Computer Vision (http://videolectures.net/uai2012_felzenszwalb_computer_vision/?q=computer%20vision) - Pedro Felzenszwalb (Brown University) 2012  ⟡ Graphical Models (http://videolectures.net/mlss09uk_ghahramani_gm/) - Zoubin Ghahramani (University of Cambridge) 2009  ⟡ Machine Learning, Probability and Graphical Models (http://videolectures.net/mlss06tw_roweis_mlpgm/) - Sam Roweis (NYU) 2006  ⟡ Graphical Models and Applications (http://videolectures.net/mlss09us_weiss_gma/?q=Graphical%20Models) - Yair Weiss (The Hebrew University of Jerusalem) 2009 Machine Learning  ⟡ A Gentle Tutorial of the EM Algorithm (https://nikola-rt.ee.washington.edu/people/bulyko/papers/em.pdf) - Jeff A. Bilmes (UC Berkeley) 1998  ⟡ Introduction To Bayesian Inference (http://videolectures.net/mlss09uk_bishop_ibi/) - Christopher Bishop (Microsoft Research) 2009  ⟡ Support Vector Machines (http://videolectures.net/mlss06tw_lin_svm/) - Chih-Jen Lin (National Taiwan University) 2006  ⟡ Bayesian or Frequentist, Which Are You?  (http://videolectures.net/mlss09uk_jordan_bfway/) - Michael I. Jordan (UC Berkeley) Optimization  ⟡ Optimization Algorithms in Machine Learning (http://videolectures.net/nips2010_wright_oaml/) - Stephen J. Wright (University of Wisconsin-Madison)  ⟡ Convex Optimization (http://videolectures.net/mlss07_vandenberghe_copt/?q=convex%20optimization) - Lieven Vandenberghe (University of California, Los Angeles)  ⟡ Continuous Optimization in Computer Vision (https://www.youtube.com/watch?v=oZqoWozVDVg) - Andrew Fitzgibbon (Microsoft Research)  ⟡ Beyond stochastic gradient descent for large-scale machine learning (http://videolectures.net/sahd2014_bach_stochastic_gradient/) - Francis Bach (INRIA)  ⟡ Variational Methods for Computer Vision (https://www.youtube.com/playlist?list=PLTBdjV_4f-EJ7A2iIH5L5ztqqrWYjP2RI) - Daniel Cremers (Technische Universität München) (lecture 18 missing from playlist  (https://www.youtube.com/watch?v=GgcbVPNd3SI)) Deep Learning  ⟡ A tutorial on Deep Learning (http://videolectures.net/jul09_hinton_deeplearn/) - Geoffrey E. Hinton (University of Toronto)  ⟡ Deep Learning (http://videolectures.net/kdd2014_salakhutdinov_deep_learning/?q=Hidden%20Markov%20model#) - Ruslan Salakhutdinov (University of Toronto)  ⟡ Scaling up Deep Learning (http://videolectures.net/kdd2014_bengio_deep_learning/) - Yoshua Bengio (University of Montreal)  ⟡ ImageNet Classification with Deep Convolutional Neural Networks (http://videolectures.net/machine_krizhevsky_imagenet_classification/?q=deep%20learning) - Alex Krizhevsky (University of Toronto)  ⟡ The Unreasonable Effectivness Of Deep Learning (http://videolectures.net/sahd2014_lecun_deep_learning/) Yann LeCun (NYU/Facebook Research) 2014  ⟡ Deep Learning for Computer Vision (https://www.youtube.com/watch?v=qgx57X0fBdA) - Rob Fergus (NYU/Facebook Research)  ⟡ High-dimensional learning with deep network contractions (http://videolectures.net/sahd2014_mallat_dimensional_learning/) - Stéphane Mallat (Ecole Normale Superieure)  ⟡ Graduate Summer School 2012: Deep Learning, Feature Learning (http://www.ipam.ucla.edu/programs/summer-schools/graduate-summer-school-deep-learning-feature-learning/?tab=schedule) - IPAM, 2012  ⟡ Workshop on Big Data and Statistical Machine Learning (http://www.fields.utoronto.ca/programs/scientific/14-15/bigdata/machine/)  ⟡ Machine Learning Summer School (https://www.youtube.com/channel/UC3ywjSv5OsDiDAnOP8C1NiQ) - Reykjavik, Iceland 2014 * **Deep Learning Session 1** (https://www.youtube.com/watch?v=JuimBuvEWBg) - Yoshua Bengio (Universtiy of Montreal) * **Deep Learning Session 2** (https://www.youtube.com/watch?v=Fl-W7_z3w3o) - Yoshua Bengio (University of Montreal) * **Deep Learning Session 3** (https://www.youtube.com/watch?v=_cohR7LAgWA) - Yoshua Bengio (University of Montreal) Software Annotation tools ⟡ Comma Coloring (http://commacoloring.herokuapp.com/) ⟡ Annotorious (https://annotorious.github.io/) ⟡ LabelME (http://labelme.csail.mit.edu/Release3.0/) ⟡ gtmaker (https://github.com/sanko-shoko/gtmaker) External Resource Links  ⟡ Computer Vision Resources (https://sites.google.com/site/jbhuang0604/resources/vision) - Jia-Bin Huang (UIUC)  ⟡ Computer Vision Algorithm Implementations (http://www.cvpapers.com/rr.html) - CVPapers  ⟡ Source Code Collection for Reproducible Research (http://www.csee.wvu.edu/~xinl/reproducible_research.html) - Xin Li (West Virginia University)  ⟡ CMU Computer Vision Page (http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/v-source.html) General Purpose Computer Vision Library ⟡ Open CV (http://opencv.org/) ⟡ mexopencv (http://kyamagu.github.io/mexopencv/) ⟡ SimpleCV (http://simplecv.org/) ⟡ Open source Python module for computer vision (https://github.com/jesolem/PCV) ⟡ ccv: A Modern Computer Vision Library (https://github.com/liuliu/ccv) ⟡ VLFeat (http://www.vlfeat.org/) ⟡ Matlab Computer Vision System Toolbox (http://www.mathworks.com/products/computer-vision/) ⟡ Piotr's Computer Vision Matlab Toolbox (http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html) ⟡ PCL: Point Cloud Library (http://pointclouds.org/) ⟡ ImageUtilities (https://gitorious.org/imageutilities) Multiple-view Computer Vision ⟡ MATLAB Functions for Multiple View Geometry (http://www.robots.ox.ac.uk/~vgg/hzbook/code/) ⟡ Peter Kovesi's Matlab Functions for Computer Vision and Image Analysis (http://staffhome.ecm.uwa.edu.au/~00011811/Research/MatlabFns/index.html) ⟡ OpenGV  (http://laurentkneip.github.io/opengv/) - geometric computer vision algorithms ⟡ MinimalSolvers (http://cmp.felk.cvut.cz/mini/) - Minimal problems solver ⟡ Multi-View Environment (http://www.gcc.tu-darmstadt.de/home/proj/mve/) ⟡ Visual SFM (http://ccwu.me/vsfm/) ⟡ Bundler SFM (http://www.cs.cornell.edu/~snavely/bundler/) ⟡ openMVG: open Multiple View Geometry (http://imagine.enpc.fr/~moulonp/openMVG/) - Multiple View Geometry; Structure from Motion library & softwares ⟡ Patch-based Multi-view Stereo V2 (http://www.di.ens.fr/pmvs/) ⟡ Clustering Views for Multi-view Stereo (http://www.di.ens.fr/cmvs/) ⟡ Floating Scale Surface Reconstruction (http://www.gris.informatik.tu-darmstadt.de/projects/floating-scale-surface-recon/) ⟡ Large-Scale Texturing of 3D Reconstructions (http://www.gcc.tu-darmstadt.de/home/proj/texrecon/) ⟡ Awesome 3D reconstruction list (https://github.com/openMVG/awesome_3DReconstruction_list) Feature Detection and Extraction ⟡ VLFeat (http://www.vlfeat.org/) ⟡ SIFT (http://www.cs.ubc.ca/~lowe/keypoints/)   ⟡ David G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, 60, 2 (2004), pp. 91-110. ⟡ SIFT++ (http://www.robots.ox.ac.uk/~vedaldi/code/siftpp.html) ⟡ BRISK (http://www.asl.ethz.ch/people/lestefan/personal/BRISK)   ⟡ Stefan Leutenegger, Margarita Chli and Roland Siegwart, "BRISK: Binary Robust Invariant Scalable Keypoints", ICCV 2011 ⟡ SURF (http://www.vision.ee.ethz.ch/~surf/)   ⟡ Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, "SURF: Speeded Up Robust Features", Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3, pp. 346--359, 2008 ⟡ FREAK (http://www.ivpe.com/freak.htm)   ⟡ A. Alahi, R. Ortiz, and P. Vandergheynst, "FREAK: Fast Retina Keypoint", CVPR 2012 ⟡ AKAZE (http://www.robesafe.com/personal/pablo.alcantarilla/kaze.html)   ⟡ Pablo F. Alcantarilla, Adrien Bartoli and Andrew J. Davison, "KAZE Features", ECCV 2012 ⟡ Local Binary Patterns (https://github.com/nourani/LBP) High Dynamic Range Imaging ⟡ HDR_Toolbox (https://github.com/banterle/HDR_Toolbox) Semantic Segmentation ⟡ List of Semantic Segmentation algorithms (http://www.it-caesar.com/list-of-contemporary-semantic-segmentation-datasets/) Low-level Vision Stereo Vision  ⟡ Middlebury Stereo Vision (http://vision.middlebury.edu/stereo/)  ⟡ The KITTI Vision Benchmark Suite (http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stero)  ⟡ LIBELAS: Library for Efficient Large-scale Stereo Matching (http://www.cvlibs.net/software/libelas/)  ⟡ Ground Truth Stixel Dataset (http://www.6d-vision.com/ground-truth-stixel-dataset) Optical Flow  ⟡ Middlebury Optical Flow Evaluation (http://vision.middlebury.edu/flow/)  ⟡ MPI-Sintel Optical Flow Dataset and Evaluation (http://sintel.is.tue.mpg.de/)  ⟡ The KITTI Vision Benchmark Suite (http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow)  ⟡ HCI Challenge (http://hci.iwr.uni-heidelberg.de/Benchmarks/document/Challenging_Data_for_Stereo_and_Optical_Flow/)  ⟡ Coarse2Fine Optical Flow (http://people.csail.mit.edu/celiu/OpticalFlow/) - Ce Liu (MIT)  ⟡ Secrets of Optical Flow Estimation and Their Principles (http://cs.brown.edu/~dqsun/code/cvpr10_flow_code.zip)  ⟡ C++/MatLab Optical Flow by C. Liu (based on Brox et al. and Bruhn et al.) (http://people.csail.mit.edu/celiu/OpticalFlow/)  ⟡ Parallel Robust Optical Flow by Sánchez Pérez et al. (http://www.ctim.es/research_works/parallel_robust_optical_flow/) Image Denoising BM3D, KSVD, Super-resolution  ⟡ Multi-frame image super-resolution (http://www.robots.ox.ac.uk/~vgg/software/SR/) * Pickup, L. C. Machine Learning in Multi-frame Image Super-resolution, PhD thesis 2008  ⟡ Markov Random Fields for Super-Resolution (http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%20Fields%20for%20Super-Resolution.html) * W. T Freeman and C. Liu. Markov Random Fields for Super-resolution and Texture Synthesis. In A. Blake, P. Kohli, and C. Rother, eds., Advances in Markov Random Fields for Vision and Image Processing, Chapter 10. MIT Press, 2011  ⟡ Sparse regression and natural image prior (https://people.mpi-inf.mpg.de/~kkim/supres/supres.htm) * K. I. Kim and Y. Kwon, "Single-image super-resolution using sparse regression and natural image prior", IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 6, pp. 1127-1133, 2010.  ⟡ Single-Image Super Resolution via a Statistical Model (http://www.cs.technion.ac.il/~elad/Various/SingleImageSR_TIP14_Box.zip) * T. Peleg and M. Elad, A Statistical Prediction Model Based on Sparse Representations for Single Image Super-Resolution, IEEE Transactions on Image Processing, Vol. 23, No. 6, Pages 2569-2582, June 2014  ⟡ Sparse Coding for Super-Resolution (http://www.cs.technion.ac.il/~elad/Various/Single_Image_SR.zip) * R. Zeyde, M. Elad, and M. Protter On Single Image Scale-Up using Sparse-Representations, Curves & Surfaces, Avignon-France, June 24-30, 2010 (appears also in Lecture-Notes-on-Computer-Science - LNCS).  ⟡ Patch-wise Sparse Recovery (http://www.ifp.illinois.edu/~jyang29/ScSR.htm) * Jianchao Yang, John Wright, Thomas Huang, and Yi Ma. Image super-resolution via sparse representation. IEEE Transactions on Image Processing (TIP), vol. 19, issue 11, 2010.  ⟡ Neighbor embedding (http://www.jdl.ac.cn/user/hchang/doc/code.rar) * H. Chang, D.Y. Yeung, Y. Xiong. Super-resolution through neighbor embedding. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol.1, pp.275-282, Washington, DC, USA, 27 June - 2 Ju  ly 2004.   ⟡ Deformable Patches (https://sites.google.com/site/yuzhushome/single-image-super-resolution-using-deformable-patches) * Yu Zhu, Yanning Zhang and Alan Yuille, Single Image Super-resolution using Deformable Patches, CVPR 2014  ⟡ SRCNN (http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html) * Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Learning a Deep Convolutional Network for Image Super-Resolution, in ECCV 2014  ⟡ A+: Adjusted Anchored Neighborhood Regression (http://www.vision.ee.ethz.ch/~timofter/ACCV2014_ID820_SUPPLEMENTARY/index.html) * R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution, ACCV 2014  ⟡ Transformed Self-Exemplars (https://sites.google.com/site/jbhuang0604/publications/struct_sr) * Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja, Single Image Super-Resolution using Transformed Self-Exemplars, IEEE Conference on Computer Vision and Pattern Recognition, 2015 Image Deblurring Non-blind deconvolution  ⟡ Spatially variant non-blind deconvolution (http://homes.cs.washington.edu/~shanqi/work/spvdeconv/)  ⟡ Handling Outliers in Non-blind Image Deconvolution (http://cg.postech.ac.kr/research/deconv_outliers/)  ⟡ Hyper-Laplacian Priors (http://cs.nyu.edu/~dilip/research/fast-deconvolution/)  ⟡ From Learning Models of Natural Image Patches to Whole Image Restoration (http://people.csail.mit.edu/danielzoran/epllcode.zip)  ⟡ Deep Convolutional Neural Network for Image Deconvolution (http://lxu.me/projects/dcnn/)  ⟡ Neural Deconvolution (http://webdav.is.mpg.de/pixel/neural_deconvolution/) Blind deconvolution  ⟡ Removing Camera Shake From A Single Photograph (http://www.cs.nyu.edu/~fergus/research/deblur.html)  ⟡ High-quality motion deblurring from a single image (http://www.cse.cuhk.edu.hk/leojia/projects/motion_deblurring/)  ⟡ Two-Phase Kernel Estimation for Robust Motion Deblurring (http://www.cse.cuhk.edu.hk/leojia/projects/robust_deblur/)  ⟡ Blur kernel estimation using the radon transform (http://people.csail.mit.edu/taegsang/Documents/RadonDeblurringCode.zip)  ⟡ Fast motion deblurring (http://cg.postech.ac.kr/research/fast_motion_deblurring/)  ⟡ Blind Deconvolution Using a Normalized Sparsity Measure (http://cs.nyu.edu//~dilip/research/blind-deconvolution/)  ⟡ Blur-kernel estimation from spectral irregularities (http://www.cs.huji.ac.il/~raananf/projects/deblur/)  ⟡ Efficient marginal likelihood optimization in blind deconvolution (http://www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR2011Code.zip)  ⟡ Unnatural L0 Sparse Representation for Natural Image Deblurring (http://www.cse.cuhk.edu.hk/leojia/projects/l0deblur/)  ⟡ Edge-based Blur Kernel Estimation Using Patch Priors (http://cs.brown.edu/~lbsun/deblur2013/deblur2013iccp.html)  ⟡ Blind Deblurring Using Internal Patch Recurrence (http://www.wisdom.weizmann.ac.il/~vision/BlindDeblur.html) Non-uniform Deblurring  ⟡ Non-uniform Deblurring for Shaken Images (http://www.di.ens.fr/willow/research/deblurring/)  ⟡ Single Image Deblurring Using Motion Density Functions (http://grail.cs.washington.edu/projects/mdf_deblurring/)  ⟡ Image Deblurring using Inertial Measurement Sensors (http://research.microsoft.com/en-us/um/redmond/groups/ivm/imudeblurring/)  ⟡ Fast Removal of Non-uniform Camera Shake (http://webdav.is.mpg.de/pixel/fast_removal_of_camera_shake/) Image Completion  ⟡ GIMP Resynthesizer (http://registry.gimp.org/node/27986)  ⟡ Priority BP (http://lafarren.com/image-completer/)  ⟡ ImageMelding (http://www.ece.ucsb.edu/~psen/melding)  ⟡ PlanarStructureCompletion (https://sites.google.com/site/jbhuang0604/publications/struct_completion) Image Retargeting  ⟡ RetargetMe (http://people.csail.mit.edu/mrub/retargetme/) Alpha Matting  ⟡ Alpha Matting Evaluation (http://www.alphamatting.com/)  ⟡ Closed-form image matting (http://people.csail.mit.edu/alevin/matting.tar.gz)  ⟡ Spectral Matting (http://www.vision.huji.ac.il/SpectralMatting/)  ⟡ Learning-based Matting (http://www.mathworks.com/matlabcentral/fileexchange/31412-learning-based-digital-matting)  ⟡ Improving Image Matting using Comprehensive Sampling Sets (http://www.alphamatting.com/ImprovingMattingComprehensiveSamplingSets_CVPR2013.zip) Image Pyramid ⟡ The Steerable Pyramid (http://www.cns.nyu.edu/~eero/steerpyr/) ⟡ CurveLab (http://www.curvelet.org/) Edge-preserving image processing  ⟡ Fast Bilateral Filter (http://people.csail.mit.edu/sparis/bf/)  ⟡ O(1) Bilateral Filter (http://www.cs.cityu.edu.hk/~qiyang/publications/code/qx.cvpr09.ctbf.zip)  ⟡ Recursive Bilateral Filtering (http://www.cs.cityu.edu.hk/~qiyang/publications/eccv-12/)  ⟡ Rolling Guidance Filter (http://www.cse.cuhk.edu.hk/leojia/projects/rollguidance/)  ⟡ Relative Total Variation (http://www.cse.cuhk.edu.hk/leojia/projects/texturesep/index.html)  ⟡ L0 Gradient Optimization (http://www.cse.cuhk.edu.hk/leojia/projects/L0smoothing/index.html)  ⟡ Domain Transform (http://www.inf.ufrgs.br/~eslgastal/DomainTransform/)  ⟡ Adaptive Manifold (http://inf.ufrgs.br/~eslgastal/AdaptiveManifolds/)  ⟡ Guided image filtering (http://research.microsoft.com/en-us/um/people/kahe/eccv10/) Intrinsic Images ⟡ Recovering Intrinsic Images with a global Sparsity Prior on Reflectance (http://people.tuebingen.mpg.de/mkiefel/projects/intrinsic/) ⟡ Intrinsic Images by Clustering (http://giga.cps.unizar.es/~elenag/projects/EGSR2012_intrinsic/) Contour Detection and Image Segmentation  ⟡ Mean Shift Segmentation (http://coewww.rutgers.edu/riul/research/code/EDISON/)  ⟡ Graph-based Segmentation (http://cs.brown.edu/~pff/segment/)  ⟡ Normalized Cut (http://www.cis.upenn.edu/~jshi/software/)  ⟡ Grab Cut (http://grabcut.weebly.com/background--algorithm.html)  ⟡ Contour Detection and Image Segmentation (http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html)  ⟡ Structured Edge Detection (http://research.microsoft.com/en-us/downloads/389109f6-b4e8-404c-84bf-239f7cbf4e3d/)  ⟡ Pointwise Mutual Information (http://web.mit.edu/phillipi/pmi-boundaries/)  ⟡ SLIC Super-pixel (http://ivrl.epfl.ch/research/superpixels)  ⟡ QuickShift (http://www.vlfeat.org/overview/quickshift.html)  ⟡ TurboPixels (http://www.cs.toronto.edu/~babalex/research.html)  ⟡ Entropy Rate Superpixel (http://mingyuliu.net/)  ⟡ Contour Relaxed Superpixels (http://www.vsi.cs.uni-frankfurt.de/research/current-projects/research/superpixel-segmentation/)  ⟡ SEEDS (http://www.mvdblive.org/seeds/)  ⟡ SEEDS Revised (https://github.com/davidstutz/seeds-revised)  ⟡ Multiscale Combinatorial Grouping (http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/mcg/)  ⟡ Fast Edge Detection Using Structured Forests (https://github.com/pdollar/edges) Interactive Image Segmentation  ⟡ Random Walker (http://cns.bu.edu/~lgrady/software.html)  ⟡ Geodesic Segmentation (http://www.tc.umn.edu/~baixx015/)  ⟡ Lazy Snapping (http://research.microsoft.com/apps/pubs/default.aspx?id=69040)  ⟡ Power Watershed (http://powerwatershed.sourceforge.net/)  ⟡ Geodesic Graph Cut (http://www.adobe.com/technology/people/san-jose/brian-price.html)  ⟡ Segmentation by Transduction (http://www.cs.cmu.edu/~olivierd/) Video Segmentation  ⟡ Video Segmentation with Superpixels (http://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/image-and-video-segmentation/video-segmentation-with-superpixels/)  ⟡ Efficient hierarchical graph-based video segmentation (http://www.cc.gatech.edu/cpl/projects/videosegmentation/)  ⟡ Object segmentation in video (http://lmb.informatik.uni-freiburg.de/Publications/2011/OB11/)  ⟡ Streaming hierarchical video segmentation (http://www.cse.buffalo.edu/~jcorso/r/supervoxels/) Camera calibration  ⟡ Camera Calibration Toolbox for Matlab (http://www.vision.caltech.edu/bouguetj/calib_doc/)  ⟡ Camera calibration With OpenCV (http://docs.opencv.org/trunk/doc/tutorials/calib3d/camera_calibration/camera_calibration.html#)  ⟡ Multiple Camera Calibration Toolbox (https://sites.google.com/site/prclibo/toolbox) Simultaneous localization and mapping SLAM community:  ⟡ openSLAM (https://www.openslam.org/)  ⟡ Kitti Odometry: benchmark for outdoor visual odometry (codes may be available) (http://www.cvlibs.net/datasets/kitti/eval_odometry.php) Tracking/Odometry:  ⟡ LIBVISO2: C++ Library for Visual Odometry 2 (http://www.cvlibs.net/software/libviso/)  ⟡ PTAM: Parallel tracking and mapping (http://www.robots.ox.ac.uk/~gk/PTAM/)  ⟡ KFusion: Implementation of KinectFusion (https://github.com/GerhardR/kfusion)  ⟡ kinfu_remake: Lightweight, reworked and optimized version of Kinfu. (https://github.com/Nerei/kinfu_remake)  ⟡ LVR-KinFu: kinfu_remake based Large Scale KinectFusion with online reconstruction (http://las-vegas.uni-osnabrueck.de/related-projects/lvr-kinfu/)  ⟡ InfiniTAM: Implementation of multi-platform large-scale depth tracking and fusion (http://www.robots.ox.ac.uk/~victor/infinitam/)  ⟡ VoxelHashing: Large-scale KinectFusion (https://github.com/nachtmar/VoxelHashing)  ⟡ SLAMBench: Multiple-implementation of KinectFusion (http://apt.cs.manchester.ac.uk/projects/PAMELA/tools/SLAMBench/)  ⟡ SVO: Semi-direct visual odometry (https://github.com/uzh-rpg/rpg_svo)  ⟡ DVO: dense visual odometry (https://github.com/tum-vision/dvo_slam)  ⟡ FOVIS: RGB-D visual odometry (https://code.google.com/p/fovis/) Graph Optimization:  ⟡ GTSAM: General smoothing and mapping library for Robotics and SFM (https://collab.cc.gatech.edu/borg/gtsam?destination=node%2F299) -- Georgia Institute of Technology  ⟡ G2O: General framework for graph optomization (https://github.com/RainerKuemmerle/g2o) Loop Closure:  ⟡ FabMap: appearance-based loop closure system (http://www.robots.ox.ac.uk/~mjc/Software.htm) - also available in OpenCV2.4.11 (http://docs.opencv.org/2.4/modules/contrib/doc/openfabmap.html)  ⟡ DBoW2: binary bag-of-words loop detection system (http://webdiis.unizar.es/~dorian/index.php?p=32) Localization & Mapping:  ⟡ RatSLAM (https://code.google.com/p/ratslam/)  ⟡ LSD-SLAM (https://github.com/tum-vision/lsd_slam)  ⟡ ORB-SLAM (https://github.com/raulmur/ORB_SLAM) Single-view Spatial Understanding  ⟡ Geometric Context (http://web.engr.illinois.edu/~dhoiem/projects/software.html) - Derek Hoiem (CMU)  ⟡ Recovering Spatial Layout (http://web.engr.illinois.edu/~dhoiem/software/counter.php?Down=varsha_spatialLayout.zip) - Varsha Hedau (UIUC)  ⟡ Geometric Reasoning (http://www.cs.cmu.edu/~./dclee/code/index.html) - David C. Lee (CMU)  ⟡ RGBD2Full3D (https://github.com/arron2003/rgbd2full3d) - Ruiqi Guo (UIUC) Object Detection  ⟡ INRIA Object Detection and Localization Toolkit (http://pascal.inrialpes.fr/soft/olt/)  ⟡ Discriminatively trained deformable part models (http://www.cs.berkeley.edu/~rbg/latent/)  ⟡ VOC-DPM (https://github.com/rbgirshick/voc-dpm)  ⟡ Histograms of Sparse Codes for Object Detection (http://www.ics.uci.edu/~dramanan/software/sparse/)  ⟡ R-CNN: Regions with Convolutional Neural Network Features (https://github.com/rbgirshick/rcnn)  ⟡ SPP-Net (https://github.com/ShaoqingRen/SPP_net)  ⟡ BING: Objectness Estimation (http://mmcheng.net/bing/comment-page-9/)  ⟡ Edge Boxes (https://github.com/pdollar/edges)  ⟡ ReInspect (https://github.com/Russell91/ReInspect) Nearest Neighbor Search General purpose nearest neighbor search  ⟡ ANN: A Library for Approximate Nearest Neighbor Searching (http://www.cs.umd.edu/~mount/ANN/)  ⟡ FLANN - Fast Library for Approximate Nearest Neighbors (http://www.cs.ubc.ca/research/flann/)  ⟡ Fast k nearest neighbor search using GPU (http://vincentfpgarcia.github.io/kNN-CUDA/) Nearest Neighbor Field Estimation  ⟡ PatchMatch (http://gfx.cs.princeton.edu/gfx/pubs/Barnes_2009_PAR/index.php)  ⟡ Generalized PatchMatch (http://gfx.cs.princeton.edu/pubs/Barnes_2010_TGP/index.php)  ⟡ Coherency Sensitive Hashing (http://www.eng.tau.ac.il/~simonk/CSH/)  ⟡ PMBP: PatchMatch Belief Propagation (https://github.com/fbesse/pmbp)  ⟡ TreeCANN (http://www.eng.tau.ac.il/~avidan/papers/TreeCANN_code_20121022.rar) Visual Tracking ⟡ Visual Tracker Benchmark (https://sites.google.com/site/trackerbenchmark/benchmarks/v10) ⟡ Visual Tracking Challenge (http://www.votchallenge.net/) ⟡ Kanade-Lucas-Tomasi Feature Tracker (http://www.ces.clemson.edu/~stb/klt/) ⟡ Extended Lucas-Kanade Tracking (http://www.eng.tau.ac.il/~oron/ELK/ELK.html) ⟡ Online-boosting Tracking (http://www.vision.ee.ethz.ch/boostingTrackers/) ⟡ Spatio-Temporal Context Learning (http://www4.comp.polyu.edu.hk/~cslzhang/STC/STC.htm) ⟡ Locality Sensitive Histograms (http://www.shengfenghe.com/visual-tracking-via-locality-sensitive-histograms.html) ⟡ Enhanced adaptive coupled-layer LGTracker++ (http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W03/papers/Xiao_An_Enhanced_Adaptive_2013_ICCV_paper.pdf) ⟡ TLD: Tracking - Learning - Detection (http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html) ⟡ CMT: Clustering of Static-Adaptive Correspondences for Deformable Object Tracking (http://www.gnebehay.com/cmt/) ⟡ Kernelized Correlation Filters (http://home.isr.uc.pt/~henriques/circulant/) ⟡ Accurate Scale Estimation for Robust Visual Tracking (http://www.cvl.isy.liu.se/en/research/objrec/visualtracking/scalvistrack/index.html) ⟡ Multiple Experts using Entropy Minimization (http://cs-people.bu.edu/jmzhang/MEEM/MEEM.html) ⟡ TGPR (http://www.dabi.temple.edu/~hbling/code/TGPR.htm) ⟡ CF2: Hierarchical Convolutional Features for Visual Tracking (https://sites.google.com/site/jbhuang0604/publications/cf2) ⟡ Modular Tracking Framework (http://webdocs.cs.ualberta.ca/~vis/mtf/index.html) Saliency Detection Attributes Action Reconition Egocentric cameras Human-in-the-loop systems Image Captioning  ⟡ NeuralTalk (https://github.com/karpathy/neuraltalk) - Optimization  ⟡ Ceres Solver (http://ceres-solver.org/) - Nonlinear least-square problem and unconstrained optimization solver  ⟡ NLopt (http://ab-initio.mit.edu/wiki/index.php/NLopt)- Nonlinear least-square problem and unconstrained optimization solver  ⟡ OpenGM (http://hci.iwr.uni-heidelberg.de/opengm2/) - Factor graph based discrete optimization and inference solver  ⟡ GTSAM (https://collab.cc.gatech.edu/borg/gtsam/) - Factor graph based lease-square optimization solver Deep Learning  ⟡ Awesome Deep Vision (https://github.com/kjw0612/awesome-deep-vision) Machine Learning  ⟡ Awesome Machine Learning (https://github.com/josephmisiti/awesome-machine-learning)  ⟡ Bob: a free signal processing and machine learning toolbox for researchers (http://idiap.github.io/bob/)  ⟡ LIBSVM -- A Library for Support Vector Machines (https://www.csie.ntu.edu.tw/~cjlin/libsvm/) Datasets External Dataset Link Collection  ⟡ CV Datasets on the web (http://www.cvpapers.com/datasets.html) - CVPapers  ⟡ Are we there yet? (http://rodrigob.github.io/are_we_there_yet/build/) - Which paper provides the best results on standard dataset X?  ⟡ Computer Vision Dataset on the web (http://www.cvpapers.com/datasets.html)  ⟡ Yet Another Computer Vision Index To Datasets (http://riemenschneider.hayko.at/vision/dataset/)  ⟡ ComputerVisionOnline Datasets (http://www.computervisiononline.com/datasets)  ⟡ CVOnline Dataset (http://homepages.inf.ed.ac.uk/cgi/rbf/CVONLINE/entries.pl?TAG363)  ⟡ CV datasets (http://clickdamage.com/sourcecode/cv_datasets.php)  ⟡ visionbib (http://datasets.visionbib.com/info-index.html)  ⟡ VisualData (http://www.visualdata.io/) Low-level Vision Stereo Vision  ⟡ Middlebury Stereo Vision (http://vision.middlebury.edu/stereo/)  ⟡ The KITTI Vision Benchmark Suite (http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stero)  ⟡ LIBELAS: Library for Efficient Large-scale Stereo Matching (http://www.cvlibs.net/software/libelas/)  ⟡ Ground Truth Stixel Dataset (http://www.6d-vision.com/ground-truth-stixel-dataset) Optical Flow  ⟡ Middlebury Optical Flow Evaluation (http://vision.middlebury.edu/flow/)  ⟡ MPI-Sintel Optical Flow Dataset and Evaluation (http://sintel.is.tue.mpg.de/)  ⟡ The KITTI Vision Benchmark Suite (http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow)  ⟡ HCI Challenge (http://hci.iwr.uni-heidelberg.de/Benchmarks/document/Challenging_Data_for_Stereo_and_Optical_Flow/) Video Object Segmentation  ⟡ DAVIS: Densely Annotated VIdeo Segmentation (http://davischallenge.org/)  ⟡ SegTrack v2 (http://web.engr.oregonstate.edu/~lif/SegTrack2/dataset.html) Change Detection  ⟡ Labeled and Annotated Sequences for Integral Evaluation of SegmenTation Algorithms (http://www.gti.ssr.upm.es/data/LASIESTA)  ⟡ ChangeDetection.net (http://www.changedetection.net/) Image Super-resolutions  ⟡ Single-Image Super-Resolution: A Benchmark (https://eng.ucmerced.edu/people/cyang35/ECCV14/ECCV14.html) Intrinsic Images  ⟡ Ground-truth dataset and baseline evaluations for intrinsic image algorithms (http://www.mit.edu/~kimo/publications/intrinsic/)  ⟡ Intrinsic Images in the Wild (http://opensurfaces.cs.cornell.edu/intrinsic/)  ⟡ Intrinsic Image Evaluation on Synthetic Complex Scenes (http://www.cic.uab.cat/Datasets/synthetic_intrinsic_image_dataset/) Material Recognition  ⟡ OpenSurface (http://opensurfaces.cs.cornell.edu/)  ⟡ Flickr Material Database (http://people.csail.mit.edu/celiu/CVPR2010/)  ⟡ Materials in Context Dataset (http://opensurfaces.cs.cornell.edu/publications/minc/) Multi-view Reconsturction ⟡ Multi-View Stereo Reconstruction (http://vision.middlebury.edu/mview/) Saliency Detection Visual Tracking  ⟡ Visual Tracker Benchmark (https://sites.google.com/site/trackerbenchmark/benchmarks/v10)  ⟡ Visual Tracker Benchmark v1.1 (https://sites.google.com/site/benchmarkpami/)  ⟡ VOT Challenge (http://www.votchallenge.net/)  ⟡ Princeton Tracking Benchmark (http://tracking.cs.princeton.edu/)  ⟡ Tracking Manipulation Tasks (TMT) (http://webdocs.cs.ualberta.ca/~vis/trackDB/) Visual Surveillance  ⟡ VIRAT (http://www.viratdata.org/)  ⟡ CAM2 (https://cam2.ecn.purdue.edu/) Saliency Detection Change detection  ⟡ ChangeDetection.net (http://changedetection.net/) Visual Recognition Image Classification  ⟡ The PASCAL Visual Object Classes (http://pascallin.ecs.soton.ac.uk/challenges/VOC/)  ⟡ ImageNet Large Scale Visual Recognition Challenge (http://www.image-net.org/challenges/LSVRC/2014/) Self-supervised Learning ⟡ PASS: An An ImageNet replacement for self-supervised pretraining without humans (https://github.com/yukimasano/PASS) Scene Recognition  ⟡ SUN Database (http://groups.csail.mit.edu/vision/SUN/)  ⟡ Place Dataset (http://places.csail.mit.edu/) Object Detection  ⟡ The PASCAL Visual Object Classes (http://pascallin.ecs.soton.ac.uk/challenges/VOC/)  ⟡ ImageNet Object Detection Challenge (http://www.image-net.org/challenges/LSVRC/2014/)  ⟡ Microsoft COCO (http://mscoco.org/) Semantic labeling  ⟡ Stanford background dataset (http://dags.stanford.edu/projects/scenedataset.html)  ⟡ CamVid (http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/)  ⟡ Barcelona Dataset (http://www.cs.unc.edu/~jtighe/Papers/ECCV10/)  ⟡ SIFT Flow Dataset (http://www.cs.unc.edu/~jtighe/Papers/ECCV10/siftflow/SiftFlowDataset.zip) Multi-view Object Detection  ⟡ 3D Object Dataset (http://cvgl.stanford.edu/resources.html)  ⟡ EPFL Car Dataset (http://cvlab.epfl.ch/data/pose)  ⟡ KTTI Dection Dataset (http://www.cvlibs.net/datasets/kitti/eval_object.php)  ⟡ SUN 3D Dataset (http://sun3d.cs.princeton.edu/)  ⟡ PASCAL 3D+ (http://cvgl.stanford.edu/projects/pascal3d.html)  ⟡ NYU Car Dataset (http://nyc3d.cs.cornell.edu/) Fine-grained Visual Recognition  ⟡ Fine-grained Classification Challenge (https://sites.google.com/site/fgcomp2013/)  ⟡ Caltech-UCSD Birds 200 (http://www.vision.caltech.edu/visipedia/CUB-200.html) Pedestrian Detection  ⟡ Caltech Pedestrian Detection Benchmark (http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/)  ⟡ ETHZ Pedestrian Detection (https://data.vision.ee.ethz.ch/cvl/aess/dataset/) Action Recognition Image-based Video-based  ⟡ HOLLYWOOD2 Dataset (http://www.di.ens.fr/~laptev/actions/hollywood2/)  ⟡ UCF Sports Action Data Set (http://crcv.ucf.edu/data/UCF_Sports_Action.php) Image Deblurring  ⟡ Sun dataset (http://cs.brown.edu/~lbsun/deblur2013/deblur2013iccp.html)  ⟡ Levin dataset (http://www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR09Data.rar) Image Captioning  ⟡ Flickr 8K (http://nlp.cs.illinois.edu/HockenmaierGroup/Framing_Image_Description/KCCA.html)  ⟡ Flickr 30K (http://shannon.cs.illinois.edu/DenotationGraph/)  ⟡ Microsoft COCO (http://mscoco.org/) Scene Understanding  # SUN RGB-D (http://rgbd.cs.princeton.edu/) - A RGB-D Scene Understanding Benchmark Suite  # NYU depth v2 (http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html) - Indoor Segmentation and Support Inference from RGBD Images Aerial images  # Aerial Image Segmentation (https://zenodo.org/record/1154821#.WmN9kHWnHIp) - Learning Aerial Image Segmentation From Online Maps Resources for students Resource link collection  ⟡ Resources for students (http://people.csail.mit.edu/fredo/student.html) - Frédo Durand (MIT)  ⟡ Advice for Graduate Students (http://www.dgp.toronto.edu/~hertzman/advice/) - Aaron Hertzmann (Adobe Research)  ⟡ Graduate Skills Seminars (http://www.dgp.toronto.edu/~hertzman/courses/gradSkills/2010/) - Yashar Ganjali, Aaron Hertzmann (University of Toronto)  ⟡ Research Skills (http://research.microsoft.com/en-us/um/people/simonpj/papers/giving-a-talk/giving-a-talk.htm) - Simon Peyton Jones (Microsoft Research)  ⟡ Resource collection (http://web.engr.illinois.edu/~taoxie/advice.htm) - Tao Xie (UIUC) and Yuan Xie (UCSB) Writing  ⟡ Write Good Papers (http://people.csail.mit.edu/fredo/FredoGoodWriting.pdf) - Frédo Durand (MIT)  ⟡ Notes on writing (http://people.csail.mit.edu/fredo/PUBLI/writing.pdf) - Frédo Durand (MIT)  ⟡ How to Write a Bad Article (http://people.csail.mit.edu/fredo/FredoBadWriting.pdf) - Frédo Durand (MIT)  ⟡ How to write a good CVPR submission (http://billf.mit.edu/sites/default/files/documents/cvprPapers.pdf) - William T. Freeman (MIT)  ⟡ How to write a great research paper (https://www.youtube.com/watch?v=g3dkRsTqdDA) - Simon Peyton Jones (Microsoft Research)  ⟡ How to write a SIGGRAPH paper (http://www.slideshare.net/jdily/how-to-write-a-siggraph-paper) - SIGGRAPH ASIA 2011 Course  ⟡ Writing Research Papers (http://www.dgp.toronto.edu/~hertzman/advice/writing-technical-papers.pdf) - Aaron Hertzmann (Adobe Research)  ⟡ How to Write a Paper for SIGGRAPH (http://www.computer.org/csdl/mags/cg/1987/12/mcg1987120062.pdf) - Jim Blinn  ⟡ How to Get Your SIGGRAPH Paper Rejected (http://www.siggraph.org/sites/default/files/kajiya.pdf) - Jim Kajiya (Microsoft Research)  ⟡ How to write a SIGGRAPH paper (www.liyiwei.org/courses/how-siga11/liyiwei.pptx) - Li-Yi Wei (The University of Hong Kong)  ⟡ How to Write a Great Paper (http://www-hagen.informatik.uni-kl.de/~bertram/talks/getpublished.pdf) - Martin Martin Hering Hering--Bertram (Hochschule Bremen University of Applied Sciences)  ⟡ How to have a paper get into SIGGRAPH? (http://www-ui.is.s.u-tokyo.ac.jp/~takeo/writings/siggraph.html) - Takeo Igarashi (The University of Tokyo)  ⟡ Good Writing (http://www.cs.cmu.edu/~pausch/Randy/Randy/raibert.htm) - Marc H. Raibert (Boston Dynamics, Inc.)  ⟡ How to Write a Computer Vision Paper (http://web.engr.illinois.edu/~dhoiem/presentations/How%20to%20Write%20a%20Computer%20Vison%20Paper.ppt) - Derek Hoiem (UIUC)  ⟡ Common mistakes in technical writing (http://www.cs.dartmouth.edu/~wjarosz/writing.html) - Wojciech Jarosz (Dartmouth College) Presentation  ⟡ Giving a Research Talk (http://people.csail.mit.edu/fredo/TalkAdvice.pdf) - Frédo Durand (MIT)  ⟡ How to give a good talk (http://www.dgp.toronto.edu/~hertzman/courses/gradSkills/2010/GivingGoodTalks.pdf) - David Fleet (University of Toronto) and Aaron Hertzmann (Adobe Research)  ⟡ Designing conference posters (http://colinpurrington.com/tips/poster-design) - Colin Purrington Research  ⟡ How to do research (http://people.csail.mit.edu/billf/www/papers/doresearch.pdf) - William T. Freeman (MIT)  ⟡ You and Your Research (http://www.cs.virginia.edu/~robins/YouAndYourResearch.html) - Richard Hamming  ⟡ Warning Signs of Bogus Progress in Research in an Age of Rich Computation and Information (http://yima.csl.illinois.edu/psfile/bogus.pdf) - Yi Ma (UIUC)  ⟡ Seven Warning Signs of Bogus Science (http://www.quackwatch.com/01QuackeryRelatedTopics/signs.html) - Robert L. Park  ⟡ Five Principles for Choosing Research Problems in Computer Graphics (https://www.youtube.com/watch?v=v2Qaf8t8I6c) - Thomas Funkhouser (Cornell University)  ⟡ How To Do Research In the MIT AI Lab (http://www.cs.indiana.edu/mit.research.how.to.html) - David Chapman (MIT)  ⟡ Recent Advances in Computer Vision (http://www.slideshare.net/antiw/recent-advances-in-computer-vision) - Ming-Hsuan Yang (UC Merced)  ⟡ How to Come Up with Research Ideas in Computer Vision? (http://www.slideshare.net/jbhuang/how-to-come-up-with-new-research-ideas-4005840) - Jia-Bin Huang (UIUC)  ⟡ How to Read Academic Papers (http://www.slideshare.net/jbhuang/how-to-read-academic-papers) - Jia-Bin Huang (UIUC) Time Management  ⟡ Time Management (https://www.youtube.com/watch?v=oTugjssqOT0) - Randy Pausch (CMU) Blogs  ⟡ Learn OpenCV (http://www.learnopencv.com/) - Satya Mallick  ⟡ Tombone's Computer Vision Blog (http://www.computervisionblog.com/) - Tomasz Malisiewicz  ⟡ Computer vision for dummies (http://www.visiondummy.com/) - Vincent Spruyt  ⟡ Andrej Karpathy blog (http://karpathy.github.io/) - Andrej Karpathy  ⟡ AI Shack (http://aishack.in/) - Utkarsh Sinha  ⟡ Computer Vision Talks (http://computer-vision-talks.com/) - Eugene Khvedchenya  ⟡ Computer Vision Basics with Python Keras and OpenCV (https://github.com/jrobchin/Computer-Vision-Basics-with-Python-Keras-and-OpenCV) - Jason Chin (University of Western Ontario) Links ⟡ The Computer Vision Industry (http://www.cs.ubc.ca/~lowe/vision.html) - David Lowe ⟡ German Computer Vision Research Groups & Companies (http://hci.iwr.uni-heidelberg.de/Links/German_Vision/) ⟡ awesome-deep-learning (https://github.com/ChristosChristofidis/awesome-deep-learning) ⟡ awesome-machine-learning (https://github.com/josephmisiti/awesome-machine-learning) ⟡ Cat Paper Collection (http://www.eecs.berkeley.edu/~junyanz/cat/cat_papers.html) ⟡ Computer Vision News (http://www.rsipvision.com/computer-vision-news/) * Songs ⟡ The Fundamental Matrix Song (http://danielwedge.com/fmatrix/) ⟡ The RANSAC Song (http://danielwedge.com/ransac/) ⟡ Machine Learning A Cappella - Overfitting Thriller (https://www.youtube.com/watch?v=DQWI1kvmwRg) Licenses License !CC0 (http://i.creativecommons.org/p/zero/1.0/88x31.png) (http://creativecommons.org/publicdomain/zero/1.0/) To the extent possible under law, Jia-Bin Huang (www.jiabinhuang.com) has waived all copyright and related or neighboring rights to this work.