184 lines
40 KiB
Plaintext
184 lines
40 KiB
Plaintext
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome Information Retrieval [0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mAwesome[0m[38;5;14m[1m[4m (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)[0m[38;2;255;187;0m[1m[4m (https://github.com/sindresorhus/awesome)[0m
|
||
|
||
[38;5;14m[1m![0m[38;5;12mJoin[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mchat[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mhttps://gitter.im/awesome-information-retrieval/Lobby[39m[38;5;14m[1m [0m[38;5;14m[1m(https://badges.gitter.im/awesome-information-retrieval/Lobby.svg)[0m[38;5;12m [39m
|
||
[38;5;12m(https://gitter.im/awesome-information-retrieval/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)[39m
|
||
|
||
[38;5;12mCurated list of information retrieval and web search resources from all around the web.[39m
|
||
[38;2;255;187;0m[4mIntroduction[0m
|
||
[38;5;14m[1mInformation[0m[38;5;14m[1m [0m[38;5;14m[1mRetrieval[0m[38;5;12m [39m[38;5;12m(https://en.wikipedia.org/wiki/Information_retrieval)[39m[38;5;12m [39m[38;5;12minvolves[39m[38;5;12m [39m[38;5;12mfinding[39m[38;5;12m [39m[38;5;12mrelevant[39m[38;5;12m [39m[38;5;12minformation[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12muser[39m[38;5;12m [39m[38;5;12mqueries,[39m[38;5;12m [39m[38;5;12mranging[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12msimple[39m[38;5;12m [39m[38;5;12mdomain[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdatabase[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcomplicated[39m[38;5;12m [39m[38;5;12maspects[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mweb[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12m(Eg[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mGoogle,[39m[38;5;12m [39m[38;5;12mBing,[39m[38;5;12m [39m[38;5;12mYahoo).[39m[38;5;12m [39m
|
||
[38;5;12mCurrently,[39m[38;5;12m [39m[38;5;12mresearchers[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mdeveloping[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12maddress[39m[38;5;12m [39m[38;5;14m[1mInformation[0m[38;5;14m[1m [0m[38;5;14m[1mNeed[0m[38;5;12m [39m[38;5;12m(https://en.wikipedia.org/wiki/Information_needs)[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12muser(s),[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mmaximizing[39m[38;5;12m [39m[38;5;14m[1mUser[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mTopic[0m[38;5;14m[1m [0m[38;5;14m[1mRelevance[0m[38;5;12m [39m[38;5;12m(https://en.wikipedia.org/wiki/Relevance_(information_retrieval))[39m[38;5;12m [39m[38;5;12mof[39m
|
||
[38;5;12mretrieved[39m[38;5;12m [39m[38;5;12mresults,[39m[38;5;12m [39m[38;5;12mwhile[39m[38;5;12m [39m[38;5;12mminimizing[39m[38;5;12m [39m[38;5;14m[1mInformation[0m[38;5;14m[1m [0m[38;5;14m[1mOverload[0m[38;5;12m [39m[38;5;12m(https://en.wikipedia.org/wiki/Information_overload)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mretrieval[39m[38;5;12m [39m[38;5;12mtime.[39m
|
||
[38;2;255;187;0m[4mContributing[0m
|
||
[38;5;12mPlease[39m[38;5;12m [39m[38;5;12mfeel[39m[38;5;12m [39m[38;5;12mfree[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12msend[39m[38;5;12m [39m[38;5;12mme[39m[38;5;12m [39m[38;5;14m[1mpull[0m[38;5;14m[1m [0m[38;5;14m[1mrequests[0m[38;5;12m [39m[38;5;12m(https://github.com/harpribot/awesome-information-retrieval/pulls)[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;14m[1memail[0m[38;5;12m [39m[38;5;12m(mailto:harshal.priyadarshi@utexas.edu)[39m[38;5;12m [39m[38;5;12mme[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12madd[39m[38;5;12m [39m[38;5;12mnew[39m[38;5;12m [39m[38;5;12mlinks.[39m[38;5;12m [39m[38;5;12mI[39m[38;5;12m [39m[38;5;12mam[39m[38;5;12m [39m[38;5;12mvery[39m[38;5;12m [39m[38;5;12mopen[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12msuggestions[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcorrections.[39m[38;5;12m [39m[38;5;12mPlease[39m[38;5;12m [39m[38;5;12mlook[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m
|
||
[38;5;14m[1mcontributions[0m[38;5;14m[1m [0m[38;5;14m[1mguide[0m[38;5;12m [39m[38;5;12m(contributing.md).[39m
|
||
|
||
[38;2;255;187;0m[4mContents[0m
|
||
[38;5;12m - [39m[38;5;14m[1mBooks[0m[38;5;12m (#books)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mCourses[0m[38;5;12m (#courses)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mSoftware[0m[38;5;12m (#software)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mDatasets[0m[38;5;12m (#datasets)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mTalks[0m[38;5;12m (#talks)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mConferences[0m[38;5;12m (#conferences)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mBlogs[0m[38;5;12m (#blogs)[39m
|
||
[48;5;235m[38;5;249m- **Interesting Reads** (#interesting-reads)[49m[39m
|
||
|
||
[38;2;255;187;0m[4mBooks[0m
|
||
[38;5;12m- [39m[38;5;14m[1mIntroduction to Information Retrieval[0m[38;5;12m (http://www-nlp.stanford.edu/IR-book/) - C.D. Manning, P. Raghavan, H. Schütze. Cambridge UP, 2008. (First book for getting started with Information Retrieval).[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mSearch[0m[38;5;14m[1m [0m[38;5;14m[1mEngines:[0m[38;5;14m[1m [0m[38;5;14m[1mInformation[0m[38;5;14m[1m [0m[38;5;14m[1mRetrieval[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mPractice[0m[38;5;12m [39m[38;5;12m(http://ciir.cs.umass.edu/downloads/SEIRiP.pdf)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mBruce[39m[38;5;12m [39m[38;5;12mCroft,[39m[38;5;12m [39m[38;5;12mDon[39m[38;5;12m [39m[38;5;12mMetzler,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mTrevor[39m[38;5;12m [39m[38;5;12mStrohman.[39m[38;5;12m [39m[38;5;12m2009.[39m[38;5;12m [39m[38;5;12m(Great[39m[38;5;12m [39m[38;5;12mbook[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mreaders[39m[38;5;12m [39m[38;5;12minterested[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mknowing[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mSearch[39m[38;5;12m [39m[38;5;12mEngines[39m[38;5;12m [39m[38;5;12mwork.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mbook[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mvery[39m[38;5;12m [39m
|
||
[38;5;12mdetailed).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mModern Information Retrieval[0m[38;5;12m (http://people.ischool.berkeley.edu/~hearst/irbook/) - R. Baeza-Yates, B. Ribeiro-Neto. Addison-Wesley, 1999.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mInformation Retrieval in Practice[0m[38;5;12m (http://www.search-engines-book.com/) - B. Croft, D. Metzler, T. Strohman. Pearson Education, 2009.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMining the Web: Analysis of Hypertext and Semi Structured Data[0m[38;5;12m (http://www.cse.iitb.ac.in/%7Esoumen/mining-the-web/) - S. Chakrabarti. Morgan Kaufmann, 2002.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mLanguage[0m[38;5;14m[1m [0m[38;5;14m[1mModeling[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mInformation[0m[38;5;14m[1m [0m[38;5;14m[1mRetrieval[0m[38;5;12m [39m[38;5;12m(http://www.springer.com/prod/b/1-4020-1216-0?referer=www.wkap.nl)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mW.B.[39m[38;5;12m [39m[38;5;12mCroft,[39m[38;5;12m [39m[38;5;12mJ.[39m[38;5;12m [39m[38;5;12mLafferty.[39m[38;5;12m [39m[38;5;12mSpringer,[39m[38;5;12m [39m[38;5;12m2003.[39m[38;5;12m [39m[38;5;12m(Handles[39m[38;5;12m [39m[38;5;12mLanguage[39m[38;5;12m [39m[38;5;12mModeling[39m[38;5;12m [39m[38;5;12maspect[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mInformation[39m[38;5;12m [39m[38;5;12mRetrieval.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mextensively[39m[38;5;12m [39m[38;5;12mdetails[39m[38;5;12m [39m
|
||
[38;5;12mprobabilistic[39m[38;5;12m [39m[38;5;12mperspective[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mdomain,[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12minteresting).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mInformation Retrieval: A Survey[0m[38;5;12m (http://www.csee.umbc.edu/cadip/readings/IR.report.120600.book.pdf) - Ed Greengrass, 2000. (Comprehensive survey of Conventional Information Retrieval, before Deep Learning era).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mIntroduction to Modern Information Retrieval[0m[38;5;12m ( https://www.amazon.com/Introduction-Modern-Information-Retrieval-Third/dp/185604694X) - G.G. Chowdhury. Neal-Schuman, 2003. (Intended for students of library and information studies).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mText Information Retrieval Systems[0m[38;5;12m (https://www.amazon.com/Information-Retrieval-Systems-Library-Hardcover/dp/0123694124) - C.T. Meadow, B.R. Boyce, D.H. Kraft, C.L. Barry. Academic Press, 2007 (library/information science perspective).[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mCourses[0m
|
||
[38;5;12m- [39m[38;5;14m[1mINF384H / CS395T / INF350E: Concepts of Information Retrieval (and Web Search)[0m[38;5;12m (http://courses.ischool.utexas.edu/Lease_Matt/2016/Fall/INF384H/) - Matthew Lease (University of Texas at Austin).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCS 276 / LING 286: Information Retrieval and Web Search[0m[38;5;12m (http://web.stanford.edu/class/cs276/) - Chris Manning and Pandu Nayak (Stanford University).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCS 371R: Information Retrieval and Web Search[0m[38;5;12m (https://www.cs.utexas.edu/~mooney/ir-course/) - Raymond J. Mooney (University of Texas at Austin).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCS 172: Introduction to Information Retrieval[0m[38;5;12m (http://www.cs.ucr.edu/~vagelis/classes/CS172/) - Vagelis Hristidis (University of California - Riverside).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSIMS 240: Principles of Information Retrieval[0m[38;5;12m (http://www2.sims.berkeley.edu/academics/courses/is240/s06/) - Ray R. Larson (UC berkeley).[39m
|
||
[38;5;12m- [39m[38;5;14m[1m11-442 / 11-642: Search Engines[0m[38;5;12m (http://boston.lti.cs.cmu.edu/classes/11-642/) - Jamie Callan (CMU).[39m
|
||
[38;5;12m- [39m[38;5;14m[1m600.466: Information Retrieval and Web Agents[0m[38;5;12m (http://www.cs.jhu.edu/%7Eyarowsky/cs466.html) - David Yarowsky (John Hopkins University).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCS 435: Information Retrieval, Discovery, and Delivery[0m[38;5;12m (http://www.cs.princeton.edu/courses/archive/spring06/cos435/) - Andrea LaPaugh (Princeton University).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mInformation Retrieval and Data Mining[0m[38;5;12m (https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/teaching/winter-semester-201516/information-retrieval-and-data-mining/) - Dr. Jilles Vreeken , Prof. Dr. Gerhard Weikum (MPI).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCoursera - Text Retrieval and Search Engines[0m[38;5;12m (https://www.coursera.org/learn/text-retrieval) - Prof. ChengXiang Zhai (University of Illinois at Urbana-Champaign).[39m
|
||
|
||
[38;2;255;187;0m[4mSoftware[0m
|
||
[38;5;12m- [39m[38;5;14m[1mApache Lucene[0m[38;5;12m (http://lucene.apache.org/core/) - Open Source Search Engine that can be used to test Information Retrieval Algorithm. Twitter uses this core for its real-time search.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe Lemur Project[0m[38;5;12m (http://www.lemurproject.org) - The Lemur Project develops search engines, browser toolbars, text analysis tools, and data resources that support research and development of information retrieval and text mining software.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mIndri Search Engine[0m[38;5;12m (http://www.lemurproject.org/indri.php) - Another Open Source Search Engine competitor of Apache Lucene.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mLemur Toolkit[0m[38;5;12m (http://www.lemurproject.org/lemur.php) - Open Source Toolkit for research in Language Modeling, filtering and categorization.[39m
|
||
|
||
[38;2;255;187;0m[4mDatasets[0m
|
||
[38;2;255;187;0m[4mStandard IR Collections[0m
|
||
[38;5;12m- [39m[38;5;14m[1mDBPedia[0m[38;5;12m (http://wiki.dbpedia.org/Downloads2015-10) - Linked data web.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mCranfield[0m[38;5;14m[1m [0m[38;5;14m[1mCollections[0m[38;5;12m [39m[38;5;12m(http://ir.dcs.gla.ac.uk/resources/test_collections/cran/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mone[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mfirst[39m[38;5;12m [39m[38;5;12mcollections[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mIR[39m[38;5;12m [39m[38;5;12mdomain,[39m[38;5;12m [39m[38;5;12mhowever[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mdataset[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mtoo[39m[38;5;12m [39m[38;5;12msmall[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12many[39m[38;5;12m [39m[38;5;12mstatistical[39m[38;5;12m [39m[38;5;12msignificance[39m[38;5;12m [39m[38;5;12manalysis,[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mnevertheless[39m[38;5;12m [39m[38;5;12msuitable[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m
|
||
[38;5;12mpilot[39m[38;5;12m [39m[38;5;12mruns.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mTREC[0m[38;5;14m[1m [0m[38;5;14m[1mCollections[0m[38;5;12m [39m[38;5;12m(http://trec.nist.gov/data.html)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mTREC[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbenchmark[39m[38;5;12m [39m[38;5;12mdataset[39m[38;5;12m [39m[38;5;12mused[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mmost[39m[38;5;12m [39m[38;5;12mIR[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mWeb[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12malgorithms.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mhas[39m[38;5;12m [39m[38;5;12mseveral[39m[38;5;12m [39m[38;5;12mtracks,[39m[38;5;12m [39m[38;5;12meach[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mconsists[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdataset[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mtest[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mspecific[39m[38;5;12m [39m[38;5;12mtask.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mtracks[39m[38;5;12m [39m[38;5;12malong[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12msuggested[39m[38;5;12m [39m
|
||
[38;5;12muse-case[39m[38;5;12m [39m[38;5;12mare:[39m
|
||
[38;5;12m - [39m[38;5;14m[1mBlog[0m[38;5;12m (http://trec.nist.gov/data/blog.html) - Explore information seeking behavior in the blogosphere.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mChemical IR[0m[38;5;12m (http://trec.nist.gov/data/chem-ir.html) - Address challenges in building large chemical testbeds for chemical IR.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mClinical Decision Support[0m[38;5;12m (http://trec.nist.gov/data/clinical.html) - Investigate techniques to link medical cases to information relevant for patient care.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mConfusion[0m[38;5;12m (http://trec.nist.gov/data/confusion.html) - Study [39m[38;5;14m[1mKnown Item Searching[0m[38;5;12m (http://trec.nist.gov/data/confusion/t5confusion.ps) problem.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mContextual Suggestion[0m[38;5;12m (http://trec.nist.gov/data/context.html) - Investigate search techniques for complex information needs (context and user interests based).[39m
|
||
[38;5;12m - [39m[38;5;14m[1mCrowdsourcing[0m[38;5;12m (http://trec.nist.gov/data/crowd.html) - Explore crowdsourcing methods for performing and evaluating search.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mEnterprise[0m[38;5;12m (http://trec.nist.gov/data/enterprise.html) - Study search over the organization data.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mEntity[0m[38;5;12m (http://trec.nist.gov/data/entity.html) - Perform entity-related search (find entities and their properties) on Web data.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mFiltering[0m[38;5;12m (http://trec.nist.gov/data/filtering.html) - Binarily decide retrieval of new incoming documents given a stable information need.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mFederated Web Search[0m[38;5;12m (http://trec.nist.gov/data/federated.html) - Study merge performance for results from various search services.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mGenomics[0m[38;5;12m (http://trec.nist.gov/data/genomics.html) - Study retrieval efficiency of genomics data and corresponding documentation.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mHARD[0m[38;5;12m (http://trec.nist.gov/data/hard.html) - Obtain High Accuracy Retrieval from Documents by leveraging searcher's context.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mInteractive Track[0m[38;5;12m (http://trec.nist.gov/data/interactive.html) - Study user interaction with text retrieval systems.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mKnowledge base acceleration[0m[38;5;12m (http://trec.nist.gov/data/kba.html) - Study algorithms that improve efficiency of human Knowledge Base.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mLegal Track[0m[38;5;12m (http://trec.nist.gov/data/legal.html) - Study retrieval systems that have high recall for legal documents use case.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mMedical Track[0m[38;5;12m (http://trec.nist.gov/data/medical.html) - Explore unstructured search performance over patients record data.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mMicroblog Track[0m[38;5;12m (http://trec.nist.gov/data/microblog.html) - Examine satisfaction of real-time information need for microblogging sites.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mMillion Query Track[0m[38;5;12m (http://trec.nist.gov/data/million.query.html) - Explore ad-hoc retrieval over large set of queries.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mNovelty Track[0m[38;5;12m (http://trec.nist.gov/data/novelty.html) - Investigate systems' abilities to locate new (non-redundant) information.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mQuestion Answering Track[0m[38;5;12m (http://trec.nist.gov/data/qamain.html) - Test systems that scale beyond document retrieval, to retrieve answers to factoid, list and definition type questions.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mRelevance Feedback Track[0m[38;5;12m (http://trec.nist.gov/data/relevance.feedback.html) - For deep evaluation of relevance feedback processes.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mRobust Track[0m[38;5;12m (http://trec.nist.gov/data/robust.html) - Study individual topic's effectiveness.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mSession Track[0m[38;5;12m (http://trec.nist.gov/data/session.html) - Develop methods for measuring multiple-query sessions where information needs drift.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mSPAM Track[0m[38;5;12m (http://trec.nist.gov/data/spam.html) - Benchmark spam filtering approaches.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mTasks Track[0m[38;5;12m (http://trec.nist.gov/data/tasks.html) - Test if systems can induce possible tasks, users might be trying to accomplish for the query.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mTemporal Summarization Track[0m[38;5;12m (http://trec.nist.gov/data/tempsumm.html) - Develop systems that allow users to efficiently monitor the information associated with an event over time.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mTerabyte Track[0m[38;5;12m (http://trec.nist.gov/data/terabyte.html) - Test scalability of IR systems to large scale collection.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mWeb Track[0m[38;5;12m (http://trec.nist.gov/data/webmain.html) - Explore information seeking behaviors common in general web search.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mGOV2[0m[38;5;14m[1m [0m[38;5;14m[1mTest[0m[38;5;14m[1m [0m[38;5;14m[1mCollection[0m[38;5;12m [39m[38;5;12m(http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mone[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mlargest[39m[38;5;12m [39m[38;5;12mWeb[39m[38;5;12m [39m[38;5;12mcollection[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdocuments[39m[38;5;12m [39m[38;5;12mobtained[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mcrawl[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mgovernment[39m[38;5;12m [39m[38;5;12mwebsites[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mCharlie[39m[38;5;12m [39m[38;5;12mClarke[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mIan[39m[38;5;12m [39m[38;5;12mSoboroff,[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mNIST[39m[38;5;12m [39m[38;5;12mhardware[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||
[38;5;12mnetwork,[39m[38;5;12m [39m[38;5;12mthen[39m[38;5;12m [39m[38;5;12mformatted[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mNick[39m[38;5;12m [39m[38;5;12mCraswel.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mNTCIR[0m[38;5;14m[1m [0m[38;5;14m[1mTest[0m[38;5;14m[1m [0m[38;5;14m[1mCollection[0m[38;5;12m [39m[38;5;12m(http://research.nii.ac.jp/ntcir/data/data-en.html)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mcollection[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mwide[39m[38;5;12m [39m[38;5;12mvariety[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdataset[39m[38;5;12m [39m[38;5;12mranging[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mAd-hoc[39m[38;5;12m [39m[38;5;12mcollection,[39m[38;5;12m [39m[38;5;12mChinese[39m[38;5;12m [39m[38;5;12mIR[39m[38;5;12m [39m[38;5;12mcollection,[39m[38;5;12m [39m[38;5;12mmobile[39m[38;5;12m [39m[38;5;12mclickthrough[39m[38;5;12m [39m[38;5;12mcollections[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mmedical[39m[38;5;12m [39m[38;5;12mcollections.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mfocus[39m[38;5;12m [39m
|
||
[38;5;12mof[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mcollection[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mmostly[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12meast[39m[38;5;12m [39m[38;5;12masian[39m[38;5;12m [39m[38;5;12mlanguages[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcross[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12minformation[39m[38;5;12m [39m[38;5;12mretrieval.[39m
|
||
[38;5;12m - [39m[38;5;14m[1mCLIR Test Collections[0m[38;5;12m (http://research.nii.ac.jp/ntcir/permission/ntcir-6/perm-en-CLIR.html) - This dataset can be used for cross lingual IR between CJKE (Chinese-Japanese-Korean-English) languages. It is suitable for the following tasks:[39m
|
||
[48;5;235m[38;5;249m- Multilingual CLIR[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- Bilingual CLIR[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- Single Language CLIR[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mCross Language Q&A (CLQA) dataset collection[0m[38;5;12m (http://research.nii.ac.jp/ntcir/permission/ntcir-6/perm-en-CLQA.html) - It supports following bi-lingua and mono-lingua:[39m
|
||
[48;5;235m[38;5;249m- Bi-lingua[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - Japanese to English.[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - Chinese to English.[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - English to Japanese.[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - English to Chinese.[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- Mono-lingua[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - Chinese to Chinese.[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - Japanese to Japanese.[49m[39m
|
||
[48;5;235m[38;5;249m - English to English.[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mAdvanced[0m[38;5;14m[1m [0m[38;5;14m[1mCross[0m[38;5;14m[1m [0m[38;5;14m[1mLinugal[0m[38;5;14m[1m [0m[38;5;14m[1mInformation[0m[38;5;14m[1m [0m[38;5;14m[1mRetrieval[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mQuestion[0m[38;5;14m[1m [0m[38;5;14m[1mAnswering[0m[38;5;14m[1m [0m[38;5;14m[1m(ACLIA)[0m[38;5;12m [39m[38;5;12m(http://research.nii.ac.jp/ntcir/permission/ntcir-8/perm-en-ACLIA.html)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mdataset[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mused[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mtask[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mcross-lingual[39m[38;5;12m [39m[38;5;12mquestion[39m[38;5;12m [39m[38;5;12manswering[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mcomplexity[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m
|
||
[38;5;12mthe[39m[38;5;12m [39m[38;5;12mtask[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mhigher[39m[38;5;12m [39m[38;5;12mthan[39m[38;5;12m [39m[38;5;12mCLQA[39m[38;5;12m [39m[38;5;12mdataset.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mConference and Labs of the Evaluation Forum (CLEF) dataset[0m[38;5;12m (http://www.clef-initiative.eu/dataset/test-collection) - It contains a multi-lingual document collection. The test suite includes:[39m
|
||
[38;5;12m - AdHoc - News Test suite.[39m
|
||
[38;5;12m - Domain Specific Test Suite - On collections of scientific articles.[39m
|
||
[38;5;12m - Question Answering Test Suite.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mReuters Corpora[0m[38;5;12m (http://trec.nist.gov/data/reuters/reuters.html) - The corpora is now available through NIST. The corpora includes following:[39m
|
||
[38;5;12m - RCV1 (Reuter's Corpus Volume 1) - Consists of only English language News stories.[39m
|
||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mRCV2[39m[38;5;12m [39m[38;5;12m(Reuter's[39m[38;5;12m [39m[38;5;12mCorpus[39m[38;5;12m [39m[38;5;12mVolume[39m[38;5;12m [39m[38;5;12m2)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mConsists[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mstories[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12m13[39m[38;5;12m [39m[38;5;12mlanguages[39m[38;5;12m [39m[38;5;12m(Dutch,[39m[38;5;12m [39m[38;5;12mFrench,[39m[38;5;12m [39m[38;5;12mGerman,[39m[38;5;12m [39m[38;5;12mChinese,[39m[38;5;12m [39m[38;5;12mJapanese,[39m[38;5;12m [39m[38;5;12mRussian,[39m[38;5;12m [39m[38;5;12mPortuguese,[39m[38;5;12m [39m[38;5;12mSpanish,[39m[38;5;12m [39m[38;5;12mLatin[39m[38;5;12m [39m[38;5;12mAmerican[39m[38;5;12m [39m[38;5;12mSpanish,[39m[38;5;12m [39m[38;5;12mItalian,[39m[38;5;12m [39m[38;5;12mDanish,[39m[38;5;12m [39m[38;5;12mNorwegian,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mSwedish).[39m[38;5;12m [39m[38;5;12mNote[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mstories[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mnot[39m[38;5;12m [39m
|
||
[38;5;12mparallel.[39m
|
||
[38;5;12m - TRC (Thomson Reuters Text Research Collection) - This is a fairly recent corpus consisting of 1,800,370 news stories covering the period from 2008-01-01 00:00:03 to 2009-02-28 23:54:14.[39m
|
||
[38;5;12m- [39m[38;5;14m[1m20 Newsgroup dataset[0m[38;5;12m (https://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html) - This data set consists of 20000 newsgroup messages.posts taken from 20 newsgroup topics.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mEnglish Gigaword Fifth Edition[0m[38;5;12m (https://catalog.ldc.upenn.edu/LDC2011T07) - This data set is a comprehensive archive of English newswire text data including headlines, datelines and articles.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDocument Understanding Conference (DUC) datasets[0m[38;5;12m (http://www-nlpir.nist.gov/projects/duc/data.html) - Past newswire/paper datasets (DUC 2001 - DUC 2007) are available upon request.[39m
|
||
|
||
[38;2;255;187;0m[4mExternal Curation Links[0m
|
||
[38;5;12m- [39m[38;5;14m[1mCMU List[0m[38;5;12m (http://boston.lti.cs.cmu.edu/callan/Data/#DIR)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mStanford List[0m[38;5;12m (http://nlp.stanford.edu/IR-book/html/htmledition/standard-test-collections-1.html)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mUniversity of Tennesse Knoxville[0m[38;5;12m (http://web.eecs.utk.edu/research/lsi/corpa.html)[39m
|
||
|
||
[38;2;255;187;0m[4mTalks[0m
|
||
[38;2;255;187;0m[4mTechnical Talks[0m
|
||
[38;5;12m- [39m[38;5;14m[1mExtreme Classification: A New Paradigm for Ranking & Recommendation[0m[38;5;12m (https://youtu.be/1X71fTx1LKA) - Manik Verma (Microsoft Research)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe next web[0m[38;5;12m (https://www.ted.com/talks/tim_berners_lee_on_the_next_web) - Tim Berners-Lee (Ted Talk) [39m[38;5;14m[1mTim Berners-Lee invented the World Wide Web. He leads the World Wide Web Consortium (W3C), overseeing the Web's standards and development[0m[38;5;12m .[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mIs[0m[38;5;14m[1m [0m[38;5;14m[1mPivot[0m[38;5;14m[1m [0m[38;5;14m[1ma[0m[38;5;14m[1m [0m[38;5;14m[1mturning[0m[38;5;14m[1m [0m[38;5;14m[1mpoint[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mweb[0m[38;5;14m[1m [0m[38;5;14m[1mexploration?[0m[38;5;12m [39m[38;5;12m(https://www.ted.com/talks/gary_flake_is_pivot_a_turning_point_for_web_exploration?utm_source=tedcomshare&utm_medium=referral&utm_campaign=tedspread)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mGary[39m[38;5;12m [39m[38;5;12mFlake,[39m[38;5;12m [39m[38;5;12mTechnical[39m[38;5;12m [39m[38;5;12mFellow[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mMicrosoft[39m[38;5;12m [39m[38;5;12m(TED[39m
|
||
[38;5;12mTalks).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mChallenges in Building Large-Scale Information Retrieval Systems[0m[38;5;12m (http://videolectures.net/wsdm09_dean_cblirs/) - Jeff Dean (WSDM Conference, 2009).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mKnowledge-based Information Retrieval with Wikipedia[0m[38;5;12m (https://youtu.be/NFCZuzA4cFc) - David Wilne (The University of Waikato, 2008).[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mMusic[0m[38;5;14m[1m [0m[38;5;14m[1mInformation[0m[38;5;14m[1m [0m[38;5;14m[1mRetrieval[0m[38;5;14m[1m [0m[38;5;14m[1mUsing[0m[38;5;14m[1m [0m[38;5;14m[1mLocality[0m[38;5;14m[1m [0m[38;5;14m[1mSensitive[0m[38;5;14m[1m [0m[38;5;14m[1mHashing[0m[38;5;12m [39m[38;5;12m(https://www.youtube.com/watch?v=SghMq1xBJPI&list=PLdktw5AjQqP2gpQNgHRJaSgEkHiaVLfTi&index=24)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mSteve[39m[38;5;12m [39m[38;5;12mTjoa[39m[38;5;12m [39m[38;5;12m(RackSpace[39m[38;5;12m [39m[38;5;12mDevelopers)[39m[38;5;12m [39m[38;5;14m[1mThis[0m[38;5;14m[1m [0m[38;5;14m[1mtalk[0m[38;5;14m[1m [0m[38;5;14m[1mshows[0m[38;5;14m[1m [0m[38;5;14m[1mthat[0m[38;5;14m[1m [0m[38;5;14m[1mIR[0m[38;5;14m[1m [0m[38;5;14m[1mis[0m[38;5;14m[1m [0m[38;5;14m[1mnot[0m[38;5;14m[1m [0m[38;5;14m[1mjust[0m[38;5;14m[1m [0m[38;5;14m[1mtext[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mimages[0m[38;5;12m [39m
|
||
[38;5;12m.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe Functional Web -- The Future of Apps and the Web[0m[38;5;12m (https://youtu.be/u6oqr3gMyxk) - Liron Shapira (Box Tech Talk).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mInformation Experience - Solution to Information Overload on Web[0m[38;5;12m (https://youtu.be/EnvtsbCfiAI) - Doug Imbruce (Techcrunch Disrupt)[39m[38;5;14m[1mDoug Imbruce is the Founder of Qwiki, Inc, a technology startup in New York, NY, acquired by Yahoo! in 2013[0m[38;5;12m .[39m
|
||
[38;5;12m- [39m[38;5;14m[1mInternet Privacy[0m[38;5;12m (https://youtu.be/tnsyhKHalGs) - Dr. Alma Whitten (Google Brussels Tech Talk).[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mPhilosophical Talks[0m
|
||
[38;5;12m- [39m[38;5;14m[1mThe moral bias behind your search results[0m[38;5;12m (https://www.ted.com/talks/andreas_ekstrom_the_moral_bias_behind_your_search_results) - Andreas Ekström (Swedish Author & Journalist, TED Talk).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBeware online "filter bubbles"[0m[38;5;12m (https://www.ted.com/talks/eli_pariser_beware_online_filter_bubbles?language=en) - Eli Pariser (Author of the Filter Bubble, TED Talk).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThink your email's private? Think again[0m[38;5;12m (https://www.ted.com/talks/andy_yen_think_your_email_s_private_think_again) - Andy Yen (CERN, TED Talk) [39m[38;5;14m[1mThis talk talks about privacy, which Search Engines intrude into, and how can people protect it[0m[38;5;12m .[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDo we have the right to be forgotten?[0m[38;5;12m (https://youtu.be/YO0lbdhF30g) - Michael Douglas [39m[38;5;14m[1mTEDx SouthBank[0m[38;5;12m .[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mThe[0m[38;5;14m[1m [0m[38;5;14m[1mcase[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1manonymity[0m[38;5;14m[1m [0m[38;5;14m[1monline[0m[38;5;12m [39m[38;5;12m(https://www.ted.com/talks/christopher_m00t_poole_the_case_for_anonymity_online?utm_source=tedcomshare&utm_medium=referral&utm_campaign=tedspread)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mChristopher[39m[38;5;12m [39m[38;5;12m"moot"[39m[38;5;12m [39m[38;5;12mPoole"[39m[38;5;12m [39m[38;5;12m(Ted[39m[38;5;12m [39m[38;5;12mTalks)[39m[38;5;12m [39m[38;5;14m[1mChristopher[0m[38;5;14m[1m [0m[38;5;14m[1m"moot"[0m[38;5;14m[1m [0m[38;5;14m[1mPoole[0m[38;5;14m[1m [0m[38;5;14m[1mis[0m
|
||
[38;5;14m[1mfounder[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1m4chan,[0m[38;5;14m[1m [0m[38;5;14m[1man[0m[38;5;14m[1m [0m[38;5;14m[1monline[0m[38;5;14m[1m [0m[38;5;14m[1mimageboard[0m[38;5;14m[1m [0m[38;5;14m[1mwhose[0m[38;5;14m[1m [0m[38;5;14m[1manonymous[0m[38;5;14m[1m [0m[38;5;14m[1mdenizens[0m[38;5;14m[1m [0m[38;5;14m[1mhave[0m[38;5;14m[1m [0m[38;5;14m[1mspawned[0m[38;5;14m[1m [0m[38;5;14m[1mthe[0m[38;5;14m[1m [0m[38;5;14m[1mweb's[0m[38;5;14m[1m [0m[38;5;14m[1mmost[0m[38;5;14m[1m [0m[38;5;14m[1mbewildering[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1minfluential[0m[38;5;14m[1m [0m[38;5;14m[1msubculture[0m[38;5;12m [39m[38;5;12m.[39m
|
||
|
||
[38;2;255;187;0m[4mConferences[0m
|
||
[38;5;12m- Web Search and Data Mining Conference - [39m[38;5;14m[1mWSDM[0m[38;5;12m (http://www.wsdm-conference.org).[39m
|
||
[38;5;12m- Special Interests Group on Information Retrieval - [39m[38;5;14m[1mSIGIR[0m[38;5;12m (http://sigir.org).[39m
|
||
[38;5;12m- Text REtrieval Conference - [39m[38;5;14m[1mTREC[0m[38;5;12m (http://trec.nist.gov).[39m
|
||
[38;5;12m- European Conference on Information Retrieval - [39m[38;5;14m[1mECIR[0m[38;5;12m (http://irsg.bcs.org/ecir.php).[39m
|
||
[38;5;12m- World Wide Web Conference - [39m[38;5;14m[1mWWW[0m[38;5;12m (http://www.iw3c2.org).[39m
|
||
[38;5;12m- Conference on Information and Knowledge Management - [39m[38;5;14m[1mCIKM[0m[38;5;12m (http://www.cikmconference.org).[39m
|
||
[38;5;12m- Forum for Information Retrieval Evaluation - [39m[38;5;14m[1mFIRE[0m[38;5;12m (http://fire.irsi.res.in/fire/2016/home).[39m
|
||
[38;5;12m- Conference and Labs of the Evaluation Forum - [39m[38;5;14m[1mCLEF[0m[38;5;12m (http://www.clef-initiative.eu/).[39m
|
||
[38;5;12m- NII Testsbeds and Community for Information access Research - [39m[38;5;14m[1mNTCIR[0m[38;5;12m (http://research.nii.ac.jp/ntcir/index-en.html).[39m
|
||
|
||
[38;2;255;187;0m[4mBlogs[0m
|
||
[38;5;12m- [39m[38;5;14m[1mInformation Retrieval and the Web[0m[38;5;12m (http://research.google.com/pubs/InformationRetrievalandtheWeb.html) - Google Research.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mIR Thoughts[0m[38;5;12m (https://irthoughts.wordpress.com) - Dr. Edel Garcia.[39m
|
||
|
||
[38;2;255;187;0m[4mInteresting Reads [0m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mDeep[0m[38;5;14m[1m [0m[38;5;14m[1mNeural[0m[38;5;14m[1m [0m[38;5;14m[1mNetwork[0m[38;5;14m[1m [0m[38;5;14m[1mLearns[0m[38;5;14m[1m [0m[38;5;14m[1mto[0m[38;5;14m[1m [0m[38;5;14m[1mJudge[0m[38;5;14m[1m [0m[38;5;14m[1mBooks[0m[38;5;14m[1m [0m[38;5;14m[1mby[0m[38;5;14m[1m [0m[38;5;14m[1mTheir[0m[38;5;14m[1m [0m[38;5;14m[1mCovers[0m[38;5;12m [39m[38;5;12m(https://www.technologyreview.com/s/602807/deep-neural-network-learns-to-judge-books-by-their-covers/?utm_campaign=socialflow&utm_source=facebook&utm_medium=post)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mInformation[39m[38;5;12m [39m
|
||
[38;5;12mExtraction.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCan Deep Learning help solve Deep Learning[0m[38;5;12m (http://www.theverge.com/2016/11/7/13551210/ai-deep-learning-lip-reading-accuracy-oxford) - Information Retrieval from Lip Reading.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTo reduce biases in machine learning start with openly discussing the problem[0m[38;5;12m (https://enterprisersproject.com/article/2016/9/reduce-biases-machine-learning-start-openly-discussing-problem?sc_cid=70160000000q8YTAAY) - Bias in Relevance.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mWhoa, Google’s AI Is Really Good at Pictionary[0m[38;5;12m (https://www.wired.com/2016/11/woah-googles-ai-really-good-pictionary/) - Sketch-based search.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mNeural[0m[38;5;14m[1m [0m[38;5;14m[1mNetwork[0m[38;5;14m[1m [0m[38;5;14m[1mLearns[0m[38;5;14m[1m [0m[38;5;14m[1mto[0m[38;5;14m[1m [0m[38;5;14m[1mIdentify[0m[38;5;14m[1m [0m[38;5;14m[1mCriminals[0m[38;5;14m[1m [0m[38;5;14m[1mby[0m[38;5;14m[1m [0m[38;5;14m[1mTheir[0m[38;5;14m[1m [0m[38;5;14m[1mFaces[0m[38;5;12m [39m[38;5;12m(https://www.technologyreview.com/s/602955/neural-network-learns-to-identify-criminals-by-their-faces/?utm_campaign=socialflow&utm_source=facebook&utm_medium=post)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mInformation[39m[38;5;12m [39m
|
||
[38;5;12mExtraction.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mLicense[0m
|
||
[38;5;14m[1m![0m[38;5;12mCC0[39m[38;5;14m[1m (http://mirrors.creativecommons.org/presskit/buttons/88x31/svg/cc-zero.svg)[0m[38;5;12m (https://creativecommons.org/publicdomain/zero/1.0/)[39m
|
||
|
||
[38;5;12mTo the extent possible under law, [39m[38;5;14m[1mHarshal Priyadarshi[0m[38;5;12m (http://www.harshalpriyadarshi.com) and all the contributors have waived all copyright and related or neighboring rights to this work.[39m
|
||
|
||
[38;5;12minformationretrieval Github: https://github.com/harpribot/awesome-information-retrieval[39m
|