182 lines
53 KiB
Plaintext
182 lines
53 KiB
Plaintext
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome Cytodata [0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mAwesome[0m[38;5;14m[1m[4m (https://awesome.re/badge.svg)[0m[38;2;255;187;0m[1m[4m (https://awesome.re)[0m
|
||
|
||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mA curated list of awesome cytodata resources.[39m
|
||
|
||
[38;5;12m![39m[38;5;14m[1mcytodata logo[0m[38;5;12m (cytodata-logo.png)[39m
|
||
|
||
[38;5;14m[1mCytodata[0m[38;5;12m (https://cytodata.org/) refers to a community of researchers and resources involved in the [39m[38;5;14m[1mimage-based profiling[0m[38;5;12m of [39m[38;5;14m[1mbiological phenotypes[0m[38;5;12m.[39m
|
||
[38;5;12mThese [39m[38;5;14m[1mbiological phenotypes[0m[38;5;12m are typically induced by genetic or chemical perturbations and often represent disease states.[39m
|
||
[38;5;14m[1mImage-based profiling[0m[38;5;12m is used to inspect these phenotypes to uncover biological insight including discovering the impact of genetic alterations and determining the mechanism of action of compounds.[39m
|
||
|
||
[38;5;12mThis page represents a curated list of software, datasets, landmark publications, and image-based profiling methods.[39m
|
||
[38;5;12mOur goal is to provide researchers, both new and established, a place to discover and document awesome Cytodata resources.[39m
|
||
|
||
[38;2;255;187;0m[4mContents[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mDatasets[0m[38;5;12m (#datasets)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mRaw Images[0m[38;5;12m (#raw-images)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mChemical Perturbations[0m[38;5;12m (#chemical-perturbations)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mGenetic Perturbations[0m[38;5;12m (#genetic-perturbations)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSoftware[0m[38;5;12m (#software)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPublications[0m[38;5;12m (#publications)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mReviews[0m[38;5;12m (#reviews)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mApplications[0m[38;5;12m (#applications)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mMethods[0m[38;5;12m (#methods)[39m
|
||
|
||
[38;2;255;187;0m[4mDatasets[0m
|
||
|
||
[38;5;12mAnnotated datasets, including [39m[38;5;14m[1mraw images[0m[38;5;12m and [39m[38;5;14m[1mprocessed profiles[0m[38;5;12m, for image-based profiling of chemical and genetic perturbations.[39m
|
||
|
||
[38;2;255;187;0m[4mRaw Images[0m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mThe[0m[38;5;14m[1m [0m[38;5;14m[1mCell[0m[38;5;14m[1m [0m[38;5;14m[1mPainting[0m[38;5;14m[1m [0m[38;5;14m[1mGallery[0m[38;5;12m [39m[38;5;12m(https://broad.io/CellPaintingGallery)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mCell[39m[38;5;12m [39m[38;5;12mPainting[39m[38;5;12m [39m[38;5;12mGallery[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcollection[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mimage[39m[38;5;12m [39m[38;5;12mdatasets[39m[38;5;12m [39m[38;5;12mcreated[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mCell[39m[38;5;12m [39m[38;5;12mPainting[39m[38;5;12m [39m[38;5;12massay[39m[38;5;12m [39m[38;5;12m(or[39m[38;5;12m [39m[38;5;12msimilar);[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mmaintained[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mCarpenter--Singh[39m[38;5;12m [39m[38;5;12mlab[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mBroad[39m[38;5;12m [39m
|
||
[38;5;12mInstitute.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mBroad[0m[38;5;14m[1m [0m[38;5;14m[1mBioimage[0m[38;5;14m[1m [0m[38;5;14m[1mBenchmark[0m[38;5;14m[1m [0m[38;5;14m[1mCollection[0m[38;5;12m [39m[38;5;12m(https://data.broadinstitute.org/bbbc/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mBroad[39m[38;5;12m [39m[38;5;12mBioimage[39m[38;5;12m [39m[38;5;12mBenchmark[39m[38;5;12m [39m[38;5;12mCollection[39m[38;5;12m [39m[38;5;12m(BBBC)[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcollection[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mfreely[39m[38;5;12m [39m[38;5;12mdownloadable[39m[38;5;12m [39m[38;5;12mmicroscopy[39m[38;5;12m [39m[38;5;12mimage[39m[38;5;12m [39m[38;5;12msets.[39m[38;5;12m [39m[38;5;12mIn[39m[38;5;12m [39m[38;5;12maddition[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mimages[39m[38;5;12m [39m[38;5;12mthemselves,[39m[38;5;12m [39m[38;5;12meach[39m[38;5;12m [39m[38;5;12mset[39m[38;5;12m [39m[38;5;12mincludes[39m[38;5;12m [39m[38;5;12ma[39m
|
||
[38;5;12mdescription[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbiological[39m[38;5;12m [39m[38;5;12mapplication[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m[38;5;12mtype[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12m"ground[39m[38;5;12m [39m[38;5;12mtruth"[39m[38;5;12m [39m[38;5;12m(expected[39m[38;5;12m [39m[38;5;12mresults).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mImage Data Resource[0m[38;5;12m (https://idr.openmicroscopy.org/) - Public repository of image datasets from published scientific studies.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mRxRx1[0m[38;5;12m [39m[38;5;12m(https://www.rxrx.ai/rxrx1)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mRxRx1[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mset[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12m125,514[39m[38;5;12m [39m[38;5;12mhigh-resolution[39m[38;5;12m [39m[38;5;12m512x512[39m[38;5;12m [39m[38;5;12m6-channel[39m[38;5;12m [39m[38;5;12mfluorescence[39m[38;5;12m [39m[38;5;12mmicroscopy[39m[38;5;12m [39m[38;5;12mimages[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mhuman[39m[38;5;12m [39m[38;5;12mcells[39m[38;5;12m [39m[38;5;12munder[39m[38;5;12m [39m[38;5;12m1,108[39m[38;5;12m [39m[38;5;12mgenetic[39m[38;5;12m [39m[38;5;12mperturbations[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12m51[39m[38;5;12m [39m[38;5;12mexperimental[39m[38;5;12m [39m[38;5;12mbatches[39m[38;5;12m [39m[38;5;12macross[39m[38;5;12m [39m[38;5;12mfour[39m[38;5;12m [39m[38;5;12mcell[39m[38;5;12m [39m[38;5;12mtypes.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mimages[39m[38;5;12m [39m[38;5;12mwere[39m[38;5;12m [39m
|
||
[38;5;12mproduced[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mRecursion[39m[38;5;12m [39m[38;5;12mPharmaceuticals[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m[38;5;12mlabs[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mSalt[39m[38;5;12m [39m[38;5;12mLake[39m[38;5;12m [39m[38;5;12mCity,[39m[38;5;12m [39m[38;5;12mUtah.[39m[38;5;12m [39m[38;5;12mResearchers[39m[38;5;12m [39m[38;5;12mwill[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mdataset[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mstudying[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mbenchmarking[39m[38;5;12m [39m[38;5;12mmethods[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mdealing[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mbiological[39m[38;5;12m [39m[38;5;12mbatch[39m[38;5;12m [39m[38;5;12meffects,[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mareas[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mdomain[39m[38;5;12m [39m
|
||
[38;5;12madaptation,[39m[38;5;12m [39m[38;5;12mtransfer[39m[38;5;12m [39m[38;5;12mlearning,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mk-shot[39m[38;5;12m [39m[38;5;12mlearning.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRxRx19[0m[38;5;12m (https://www.rxrx.ai/rxrx19) - RxRx19 is the first morphological dataset that demonstrates the rescue of morphological effects of COVID-19. [39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mHuman[0m[38;5;14m[1m [0m[38;5;14m[1mProtein[0m[38;5;14m[1m [0m[38;5;14m[1mAtlas[0m[38;5;12m [39m[38;5;12m(https://www.proteinatlas.org/humanproteome/subcellular)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAmong[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[38;5;12massays,[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mHPA[39m[38;5;12m [39m[38;5;12mperformed[39m[38;5;12m [39m[38;5;12mconfocal[39m[38;5;12m [39m[38;5;12mimaging[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdisplaying[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mlocation[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12mthan[39m[38;5;12m [39m[38;5;12m2/3[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mhuman[39m[38;5;12m [39m[38;5;12mproteins[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mcell[39m[38;5;12m [39m[38;5;12mlines.[39m[38;5;12m [39m[38;5;14m[1mRaw[0m[38;5;14m[1m [0m[38;5;14m[1mimages[0m[38;5;12m [39m
|
||
[38;5;12m(https://github.com/CellProfiling/HPA-competition#script-to-download-hpav18)[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;14m[1minfered[0m[38;5;14m[1m [0m[38;5;14m[1mprotein[0m[38;5;14m[1m [0m[38;5;14m[1msubcellular[0m[38;5;14m[1m [0m[38;5;14m[1mlocations[0m[38;5;12m [39m[38;5;12m(https://www.proteinatlas.org/about/download)[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mdownloaded.[39m
|
||
|
||
[38;2;255;187;0m[4mChemical Perturbations[0m
|
||
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mGustafsdottir[0m[38;5;14m[1m [0m[38;5;14m[1met[0m[38;5;14m[1m [0m[38;5;14m[1mal.[0m[38;5;14m[1m [0m[38;5;14m[1m2013[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1371/journal.pone.0080999)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mCell[39m[38;5;12m [39m[38;5;12mpainting[39m[38;5;12m [39m[38;5;12mprofiles[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12m1,600[39m[38;5;12m [39m[38;5;12mbioactive[39m[38;5;12m [39m[38;5;12mcompounds[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mU2OS[39m[38;5;12m [39m[38;5;12mcells[39m[38;5;12m [39m[38;5;12m(Access[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mpublic[39m[38;5;12m [39m[38;5;12mS3[39m[38;5;12m [39m[38;5;12mbucket:[39m[38;5;12m [39m
|
||
[48;5;235m[38;5;249ms3://cytodata/datasets/Bioactives-BBBC022-Gustafsdottir/profiles/Bioactives-BBBC022-Gustafsdottir/[49m[39m[38;5;12m).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mWawer et al. 2014[0m[38;5;12m (https://doi.org/10.1073/pnas.1410933111) - Cell painting profiles from 31,770 compounds in U2OS cells ([39m[38;5;14m[1mClick to download[0m[38;5;12m (http://www.broadinstitute.org/mlpcn/data/Broad.PNAS2014.ProfilingData.zip)).[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mBray[0m[38;5;14m[1m [0m[38;5;14m[1met[0m[38;5;14m[1m [0m[38;5;14m[1mal.[0m[38;5;14m[1m [0m[38;5;14m[1m2017[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1093/gigascience/giw014)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mCell[39m[38;5;12m [39m[38;5;12mpainting[39m[38;5;12m [39m[38;5;12mprofiles[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12m30,616[39m[38;5;12m [39m[38;5;12mcompounds[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mU2OS[39m[38;5;12m [39m[38;5;12mcells[39m[38;5;12m [39m[38;5;12m(Center[39m[38;5;12m [39m[38;5;12mDriven[39m[38;5;12m [39m[38;5;12mResearch[39m[38;5;12m [39m[38;5;12mProject[39m[38;5;12m [39m[38;5;12m_CDRP_)[39m[38;5;12m [39m[38;5;12m([39m[38;5;14m[1mDownload[0m[38;5;14m[1m [0m[38;5;14m[1mfrom[0m[38;5;14m[1m [0m[38;5;14m[1mGigaDB[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.5524/100351)[39m[38;5;12m [39m[38;5;12m|[39m[38;5;12m [39m[38;5;12mAccess[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mpublic[39m[38;5;12m [39m[38;5;12mS3[39m[38;5;12m [39m
|
||
[38;5;12mbucket:[39m[38;5;12m [39m[48;5;235m[38;5;249ms3://cytodata/datasets/CDRPBIO-BBBC036-Bray/profiles_cp/CDRPBIO-BBBC036-Bray/[49m[39m[38;5;12m).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHaghighi et al. 2021[0m[38;5;12m (https://doi.org/10.1038/s41592-022-01667-0) - Cell painting matched to L1000 profiles in 4 experiments, including compound and genetic screens ([39m[38;5;14m[1mDetails on GitHub[0m[38;5;12m (https://github.com/carpenterlab/2021_Haghighi_submitted)).[39m
|
||
|
||
[38;2;255;187;0m[4mGenetic Perturbations[0m
|
||
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mSingh[0m[38;5;14m[1m [0m[38;5;14m[1met[0m[38;5;14m[1m [0m[38;5;14m[1mal.[0m[38;5;14m[1m [0m[38;5;14m[1m2015[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1371/journal.pone.0131370)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12m3,072[39m[38;5;12m [39m[38;5;12mcell[39m[38;5;12m [39m[38;5;12mpainting[39m[38;5;12m [39m[38;5;12mprofiles[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12m41[39m[38;5;12m [39m[38;5;12mgenes[39m[38;5;12m [39m[38;5;12mknocked[39m[38;5;12m [39m[38;5;12mdown[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mRNA[39m[38;5;12m [39m[38;5;12minterference[39m[38;5;12m [39m[38;5;12m(RNAi)[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mU2OS[39m[38;5;12m [39m[38;5;12mcells[39m[38;5;12m [39m[38;5;12m([39m[38;5;14m[1mAccess[0m[38;5;14m[1m [0m[38;5;14m[1mfrom[0m[38;5;14m[1m [0m[38;5;14m[1mGitHub[0m[38;5;12m [39m
|
||
[38;5;12m(https://github.com/carpenterlab/2016_bray_natprot/blob/6dcdcf72cd90bb2dbf238b3ecf94691246d8f104/supplementary_files/profiles.csv.zip)).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRohban et al. 2017[0m[38;5;12m (https://doi.org/10.7554/eLife.24060.001) - Cell painting data from 220 overexpressed genes in U2OS cells (Access from public S3 bucket: [39m[48;5;235m[38;5;249ms3://cytodata/datasets/TA-ORF-BBBC037-Rohban/profiles_cp/TA-ORF-BBBC037-Rohban/[49m[39m[38;5;12m).[39m
|
||
[38;5;12m- Unpublished - Cell painting profiles of 596 overexpressed alleles from 53 genes in A549 cells (Access from public S3 bucket: [39m[48;5;235m[38;5;249ms3://cytodata/datasets/LUAD-BBBC043-Caicedo/profiles_cp/LUAD-BBBC043-Caicedo/[49m[39m[38;5;12m)[39m
|
||
[38;5;12m- Unpublished - 3,456 cell painting profiles from CRISPR experiments knocking down 59 genes in A549, ES2, and HCC44 cells ([39m[38;5;14m[1mAccess from GitHub[0m[38;5;12m (https://github.com/broadinstitute/cell-health/tree/master/0.generate-profiles/data/profiles)).[39m
|
||
|
||
[38;2;255;187;0m[4mSoftware[0m
|
||
|
||
[38;5;12mOpen source software packages for image-based profiling of biological phenotypes.[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAdvanced Cell Classifier[0m[38;5;12m (https://www.cellclassifier.org/) - A software package for exploration, annotation and classification of cells within large datasets using machine learning.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCellProfiler[0m[38;5;12m (http://cellprofiler.org/) - CellProfiler is a free open-source software for measuring and analyzing cell images.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCellProfiler Analyst[0m[38;5;12m (http://cellprofiler.org/cp-analyst/) - Interactive data exploration, analysis, and classification of large biological image sets.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCytominer[0m[38;5;12m (https://github.com/cytomining/cytominer) - Methods for image-based cell profiling in R.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mEBImage[0m[38;5;12m (https://github.com/aoles/EBImage) - Image processing toolbox for R.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHTSvis[0m[38;5;12m (http://htsvis.dkfz.de/HTSvis/) - A web app for exploratory data analysis and visualization of arrayed high-throughput screens.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBioProfiling.jl[0m[38;5;12m (https://github.com/menchelab/BioProfiling.jl) - Toolkit for filtering and curation of morphological profiles in Julia.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPyCytominer[0m[38;5;12m (https://github.com/cytomining/pycytominer) - Methods for image-based cell profiling in Python.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mImJoy[0m[38;5;12m (https://imjoy.io) - A platform compiling tool for deep-learning based image analyses with a GUI.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mhistoCAT[0m[38;5;12m (https://github.com/BodenmillerGroup/histoCAT) - Toolbox to extract quantitative phenotypic descriptors and contextual information for histology and multiplex imaging.[39m
|
||
|
||
[38;2;255;187;0m[4mPublications[0m
|
||
|
||
[38;5;12mPublications related to image-based profiling.[39m
|
||
|
||
[38;2;255;187;0m[4mReviews[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mImage-based profiling for drug discovery: due for a machine-learning upgrade?[0m[38;5;12m (https://www.nature.com/articles/s41573-020-00117-w) - 2020 review of applications in image-based profiling from a Carpenter lab/pharma perspective.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData-analysis strategies for image-based cell profiling[0m[38;5;12m (https://doi.org/10.1038/nmeth.4397) - Introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mHigh-content[0m[38;5;14m[1m [0m[38;5;14m[1mscreening[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mquantitative[0m[38;5;14m[1m [0m[38;5;14m[1mcell[0m[38;5;14m[1m [0m[38;5;14m[1mbiology[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1016/j.tcb.2016.03.008)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mDescribe[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m[38;5;12mrecent[39m[38;5;12m [39m[38;5;12mapplications[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mHCS,[39m[38;5;12m [39m[38;5;12mranging[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12midentification[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mgenes[39m[38;5;12m [39m[38;5;12mrequired[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mspecific[39m[38;5;12m [39m[38;5;12mbiological[39m[38;5;12m [39m[38;5;12mprocesses[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m
|
||
[38;5;12mcharacterization[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mgenetic[39m[38;5;12m [39m[38;5;12minteractions.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mMicroscopy-based[0m[38;5;14m[1m [0m[38;5;14m[1mhigh-content[0m[38;5;14m[1m [0m[38;5;14m[1mscreening[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1016/j.cell.2015.11.007)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mDescribe[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mstate[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mart[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mimage-based[39m[38;5;12m [39m[38;5;12mscreening[39m[38;5;12m [39m[38;5;12mexperiments[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdelineate[39m[38;5;12m [39m[38;5;12mexperimental[39m[38;5;12m [39m[38;5;12mapproaches[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mimage-analysis[39m[38;5;12m [39m[38;5;12mapproaches[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mdiscussing[39m
|
||
[38;5;12mchallenges[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mfuture[39m[38;5;12m [39m[38;5;12mdirections,[39m[38;5;12m [39m[38;5;12mincluding[39m[38;5;12m [39m[38;5;12mleveraging[39m[38;5;12m [39m[38;5;12mCRISPR/Cas9-mediated[39m[38;5;12m [39m[38;5;12mgenome[39m[38;5;12m [39m[38;5;12mengineering.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mApplications[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mimage-based[0m[38;5;14m[1m [0m[38;5;14m[1mprofiling[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mperturbations[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1016/j.copbio.2016.04.003)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mDescribe[39m[38;5;12m [39m[38;5;12mapplications[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mimage-based[39m[38;5;12m [39m[38;5;12mprofiling[39m[38;5;12m [39m[38;5;12mincluding[39m[38;5;12m [39m[38;5;12mtarget[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mMOA[39m[38;5;12m [39m[38;5;12midentification,[39m[38;5;12m [39m[38;5;12mlead[39m[38;5;12m [39m[38;5;12mhopping,[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12menrichment,[39m[38;5;12m [39m[38;5;12mgene[39m[38;5;12m [39m[38;5;12mannotation[39m[38;5;12m [39m
|
||
[38;5;12mand[39m[38;5;12m [39m[38;5;12midentification[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdisease-specific[39m[38;5;12m [39m[38;5;12mphenotypes[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLarge-scale image-based screening and profiling of cellular phenotypes[0m[38;5;12m (https://doi.org/10.1002/cyto.a.22909) - Overview of image-based profiling, including its applications and challenges.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHow cells explore shape space: A quantitative statistical perspective of cellular morphogenesis[0m[38;5;12m (https://dx.doi.org/10.1002%2Fbies.201400011) - Discussion on the biology of cell shape changes based on quantitative descriptors.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine learning and image-based profiling in drug discovery[0m[38;5;12m (https://doi.org/10.1016/J.COISB.2018.05.004) - Introduction to morphological profiling and discussion on what machine learning has to offer.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPooled genetic screens with image-based profiling[0m[38;5;12m (https://doi.org/10.15252/msb.202110768) - Review of the different modalities available for genetic screens and which ones are suitable for morphological profiling.[39m
|
||
|
||
[38;2;255;187;0m[4mCollections[0m
|
||
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mDeep[0m[38;5;14m[1m [0m[38;5;14m[1mlearning[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mmicroscopy[0m[38;5;12m [39m[38;5;12m(https://www.nature.com/collections/cfcdjceech)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mcollection[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mreview[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12marticles[39m[38;5;12m [39m[38;5;12mpublished[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mNature[39m[38;5;12m [39m[38;5;12mMethods[39m[38;5;12m [39m[38;5;12mrelated[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mmultiple[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;12mcases[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning,[39m[38;5;12m [39m[38;5;12mincluding[39m[38;5;12m [39m[38;5;12mnoise[39m[38;5;12m [39m[38;5;12mreduction,[39m[38;5;12m [39m[38;5;12msegmentation,[39m[38;5;12m [39m
|
||
[38;5;12mtracking[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mrepresentation[39m[38;5;12m [39m[38;5;12mlearning.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHigh-Content Imaging and Informatics[0m[38;5;12m (https://journals.sagepub.com/toc/jbxb/25/7) - A collection of high-content imaging method and application articles published in SLAS Discovery.[39m
|
||
|
||
[38;2;255;187;0m[4mApplications[0m
|
||
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mExpanding[0m[38;5;14m[1m [0m[38;5;14m[1mthe[0m[38;5;14m[1m [0m[38;5;14m[1mantibacterial[0m[38;5;14m[1m [0m[38;5;14m[1mselectivity[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mpolyether[0m[38;5;14m[1m [0m[38;5;14m[1mionophore[0m[38;5;14m[1m [0m[38;5;14m[1mantibiotics[0m[38;5;14m[1m [0m[38;5;14m[1mthrough[0m[38;5;14m[1m [0m[38;5;14m[1mdiversity-focused[0m[38;5;14m[1m [0m[38;5;14m[1msemisynthesis[0m[38;5;12m [39m[38;5;12m(https://rdcu.be/ccBFH)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mPoulsen[39m[38;5;12m [39m[38;5;12mlab[39m[38;5;12m [39m[38;5;12mpaper[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12m2020[39m[38;5;12m [39m[38;5;12mwhere[39m[38;5;12m [39m[38;5;12mantibiotics[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mtested[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m[38;5;12mability[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mleave[39m[38;5;12m [39m[38;5;12mmammalian[39m[38;5;12m [39m[38;5;12mcells[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m
|
||
[38;5;12mintact[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mpossible,[39m[38;5;12m [39m[38;5;12mper[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mCell[39m[38;5;12m [39m[38;5;12mPainting[39m[38;5;12m [39m[38;5;12massay.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mImage-based multivariate profiling of drug responses from single cells[0m[38;5;12m (https://doi.org/10.1038/nmeth1032) - A multivariate method for classifying untreated and treated human cancer cells based on ∼300 single-cell phenotypic measurements.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDiscovering metabolic disease gene interactions by correlated effects on cellular morphology[0m[38;5;12m (https://doi.org/10.1016/j.molmet.2019.03.001) - Profiling disease-gene interaction during adipocyte differentiation.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mPhenotypic[0m[38;5;14m[1m [0m[38;5;14m[1mprofiling[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mthe[0m[38;5;14m[1m [0m[38;5;14m[1mhuman[0m[38;5;14m[1m [0m[38;5;14m[1mgenome[0m[38;5;14m[1m [0m[38;5;14m[1mby[0m[38;5;14m[1m [0m[38;5;14m[1mtime-lapse[0m[38;5;14m[1m [0m[38;5;14m[1mmicroscopy[0m[38;5;14m[1m [0m[38;5;14m[1mreveals[0m[38;5;14m[1m [0m[38;5;14m[1mcell[0m[38;5;14m[1m [0m[38;5;14m[1mdivision[0m[38;5;14m[1m [0m[38;5;14m[1mgenes[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1038/nature08869)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mstudy[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12min-depth[39m[38;5;12m [39m[38;5;12manalysis[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mcell[39m[38;5;12m [39m[38;5;12mdivision[39m[38;5;12m [39m[38;5;12mphenotypes[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmakes[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mentire[39m[38;5;12m [39m[38;5;12mhigh-content[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m
|
||
[38;5;12mset[39m[38;5;12m [39m[38;5;12mavailable[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mresource[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mcommunity.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBioactivity screening of environmental chemicals using imaging-based high-throughput phenotypic profiling[0m[38;5;12m (https://doi.org/10.1016/j.taap.2019.114876) - Use of image-based profiling to screen the bioactivity of environmental chemicals[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mRepurposing[0m[38;5;14m[1m [0m[38;5;14m[1mHigh-Throughput[0m[38;5;14m[1m [0m[38;5;14m[1mImage[0m[38;5;14m[1m [0m[38;5;14m[1mAssays[0m[38;5;14m[1m [0m[38;5;14m[1mEnables[0m[38;5;14m[1m [0m[38;5;14m[1mBiological[0m[38;5;14m[1m [0m[38;5;14m[1mActivity[0m[38;5;14m[1m [0m[38;5;14m[1mPrediction[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mDrug[0m[38;5;14m[1m [0m[38;5;14m[1mDiscovery[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1016/j.chembiol.2018.01.015)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mUsing[39m[38;5;12m [39m[38;5;12mimage-based[39m[38;5;12m [39m[38;5;12mprofiles[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mpredict[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbioactivity[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12msmall[39m[38;5;12m [39m[38;5;12mmolecules[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[38;5;12munrelated[39m[38;5;12m [39m
|
||
[38;5;12massays.[39m[38;5;12m [39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mTales[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1m1,008[0m[38;5;14m[1m [0m[38;5;14m[1mSmall[0m[38;5;14m[1m [0m[38;5;14m[1mMolecules:[0m[38;5;14m[1m [0m[38;5;14m[1mPhenomic[0m[38;5;14m[1m [0m[38;5;14m[1mProfiling[0m[38;5;14m[1m [0m[38;5;14m[1mthrough[0m[38;5;14m[1m [0m[38;5;14m[1mLive-cell[0m[38;5;14m[1m [0m[38;5;14m[1mImaging[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1ma[0m[38;5;14m[1m [0m[38;5;14m[1mPanel[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mReporter[0m[38;5;14m[1m [0m[38;5;14m[1mCell[0m[38;5;14m[1m [0m[38;5;14m[1mLines[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1038/s41598-020-69354-8)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mDemonstrating[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12meffects[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mpolypharmacology[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mMOA[39m[38;5;12m [39m[38;5;12mprediction[39m[38;5;12m [39m[38;5;12mwhile[39m[38;5;12m [39m[38;5;12moffering[39m[38;5;12m [39m
|
||
[38;5;12msolutions[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12movercoming[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mfuture[39m[38;5;12m [39m[38;5;12mimage-based[39m[38;5;12m [39m[38;5;12mprofiling[39m[38;5;12m [39m[38;5;12mstudies.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMapping the perturbome network of cellular perturbations[0m[38;5;12m (https://doi.org/10.1038/s41467-019-13058-9) - Image-based profiling and network analysis of drug combinations.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMorphological profiling of human T and NK lymphocytes by high-content cell imaging[0m[38;5;12m (https://doi.org/10.1016/j.celrep.2021.109318) - Image-based profiling of actin organization at the immunological synapse.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mA subcellular map of the human proteome[0m[38;5;12m (https://doi.org/10.1126/science.aal3321) - Classification of protein subcellular location from confocal microscopy images of the Human Protein Atlas.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mA[0m[38;5;14m[1m [0m[38;5;14m[1mmulti-scale[0m[38;5;14m[1m [0m[38;5;14m[1mmap[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mcell[0m[38;5;14m[1m [0m[38;5;14m[1mstructure[0m[38;5;14m[1m [0m[38;5;14m[1mfusing[0m[38;5;14m[1m [0m[38;5;14m[1mprotein[0m[38;5;14m[1m [0m[38;5;14m[1mimages[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1minteractions[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1038/s41586-021-04115-9)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mCombining[39m[38;5;12m [39m[38;5;12mconfocal[39m[38;5;12m [39m[38;5;12mimaging[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmass[39m[38;5;12m [39m[38;5;12mspectrometry[39m[38;5;12m [39m[38;5;12mrepresentations[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mproteins[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mpredict[39m[38;5;12m [39m[38;5;12mphysical[39m[38;5;12m [39m[38;5;12mproximity[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||
[38;5;12mcharacterize[39m[38;5;12m [39m[38;5;12mcellular[39m[38;5;12m [39m[38;5;12morganization.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPredicting cell health phenotypes using image-based morphology profiling[0m[38;5;12m (https://doi.org/10.1091/mbc.E20-12-0784) - Image-based profiles as predictors of apoptosis, proliferation and other cell health descriptors.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mSystematic[0m[38;5;14m[1m [0m[38;5;14m[1mgenetics[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1msingle‐cell[0m[38;5;14m[1m [0m[38;5;14m[1mimaging[0m[38;5;14m[1m [0m[38;5;14m[1mreveal[0m[38;5;14m[1m [0m[38;5;14m[1mwidespread[0m[38;5;14m[1m [0m[38;5;14m[1mmorphological[0m[38;5;14m[1m [0m[38;5;14m[1mpleiotropy[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mcell‐to‐cell[0m[38;5;14m[1m [0m[38;5;14m[1mvariability[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.15252/msb.20199243)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAnalysis[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12msingle-cell[39m[38;5;12m [39m[38;5;12mprofiles[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcharacterize[39m[38;5;12m [39m[38;5;12mvariability,[39m[38;5;12m [39m[38;5;12mpleiotropy[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||
[38;5;12mincomplete[39m[38;5;12m [39m[38;5;12mpenetrance.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mLarge‐scale[0m[38;5;14m[1m [0m[38;5;14m[1mimage‐based[0m[38;5;14m[1m [0m[38;5;14m[1mprofiling[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1msingle‐cell[0m[38;5;14m[1m [0m[38;5;14m[1mphenotypes[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1marrayed[0m[38;5;14m[1m [0m[38;5;14m[1mCRISPR‐Cas9[0m[38;5;14m[1m [0m[38;5;14m[1mgene[0m[38;5;14m[1m [0m[38;5;14m[1mperturbation[0m[38;5;14m[1m [0m[38;5;14m[1mscreens[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.15252/msb.20178064)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mDemonstrates[39m[38;5;12m [39m[38;5;12mfeasibility[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mimaging[39m[38;5;12m [39m[38;5;12marrayed[39m[38;5;12m [39m[38;5;12mCRISPR[39m[38;5;12m [39m[38;5;12mscreens[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12moffers[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mway[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcharacterize[39m[38;5;12m [39m
|
||
[38;5;12mtransfection[39m[38;5;12m [39m[38;5;12mefficacy[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mindividual[39m[38;5;12m [39m[38;5;12mcells.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMultiparametric phenotyping of compound effects on patient derived organoids[0m[38;5;12m (https://doi.org/10.1038/s41467-022-30722-9) - Profiling chemical effects on patient-derived organoids.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mA chemical-genetic interaction map of small molecules using high-throughput imaging in cancer cells[0m[38;5;12m (https://doi.org/10.15252/MSB.20156400) - Profiling the morphological changes induced in 1280 compounds in 12 knockout cell lines.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTime-resolved mapping of genetic interactions to model rewiring of signaling pathways[0m[38;5;12m (https://doi.org/10.7554/eLife.40174) - Changes in genetic interactions across time based on multiple morphological descriptors.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHigh-Content Imaging of Unbiased Chemical Perturbations Reveals that the Phenotypic Plasticity of the Actin Cytoskeleton Is Constrained[0m[38;5;12m (https://doi.org/10.1016/j.cels.2019.09.002) - Defining morphological clusters in a large compound screen.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mA map of directional genetic interactions in a metazoan cell[0m[38;5;12m (https://doi.org/10.7554/eLife.05464) - Characterizing genetic interactions by integrating 21 phenotypic descriptors.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe phenotypic landscape of essential human genes[0m[38;5;12m (https://doi.org/10.1016/j.cell.2022.10.017) - Comparing morphological descriptors in a pooled CRISPR screen with in-situ sequencing[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mEvaluation[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mGene[0m[38;5;14m[1m [0m[38;5;14m[1mExpression[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mPhenotypic[0m[38;5;14m[1m [0m[38;5;14m[1mProfiling[0m[38;5;14m[1m [0m[38;5;14m[1mData[0m[38;5;14m[1m [0m[38;5;14m[1mas[0m[38;5;14m[1m [0m[38;5;14m[1mQuantitative[0m[38;5;14m[1m [0m[38;5;14m[1mDescriptors[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mPredicting[0m[38;5;14m[1m [0m[38;5;14m[1mDrug[0m[38;5;14m[1m [0m[38;5;14m[1mTargets[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mMechanisms[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mAction[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1101/580654)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mBenchmarking[39m[38;5;12m [39m[38;5;12mprofiling[39m[38;5;12m [39m[38;5;12mmodalities,[39m[38;5;12m [39m[38;5;12mincluding[39m[38;5;12m [39m[38;5;12mimage-based[39m[38;5;12m [39m[38;5;12mprofiles,[39m[38;5;12m [39m
|
||
[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmechanism[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12maction[39m[38;5;12m [39m[38;5;12mprediction.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe molecular architecture of cell cycle arrest[0m[38;5;12m (https://doi.org/10.15252/msb.202211087) - Comparing cellular features across stages of the cell cycle.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mIntegrated intracellular organization and its variations in human iPS cells[0m[38;5;12m (https://doi.org/10.1038/s41586-022-05563-7) - Decomposing cellular and nuclear shapes in 3D in multiple iPSC and studying association between cellular structures.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSingle-cell metabolic profiling of human cytotoxic T cells[0m[38;5;12m (https://doi.org/10.1038/s41587-020-0651-8) - Combining metabolic profiling and spatial information to define immune subsets in tumor microenvironments.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe single-cell pathology landscape of breast cancer[0m[38;5;12m (https://doi.org/10.1038/s41586-019-1876-x) - Defining cell populations and their interactions in breast cancer based on shape, intensity and contextual information from multiplexed imaging.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mIdentification of phenotype-specific networks from paired gene expression–cell shape imaging data[0m[38;5;12m (https://doi.org/10.1101%2Fgr.276059.121) - Looking for gene networks underlying cellular morphology by matching expression and imaging data.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mPredicting[0m[38;5;14m[1m [0m[38;5;14m[1mdrug[0m[38;5;14m[1m [0m[38;5;14m[1mpolypharmacology[0m[38;5;14m[1m [0m[38;5;14m[1mfrom[0m[38;5;14m[1m [0m[38;5;14m[1mcell[0m[38;5;14m[1m [0m[38;5;14m[1mmorphology[0m[38;5;14m[1m [0m[38;5;14m[1mreadouts[0m[38;5;14m[1m [0m[38;5;14m[1musing[0m[38;5;14m[1m [0m[38;5;14m[1mvariational[0m[38;5;14m[1m [0m[38;5;14m[1mautoencoder[0m[38;5;14m[1m [0m[38;5;14m[1mlatent[0m[38;5;14m[1m [0m[38;5;14m[1mspace[0m[38;5;14m[1m [0m[38;5;14m[1marithmetic[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1371/journal.pcbi.1009888)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mModel[39m[38;5;12m [39m[38;5;12mcell[39m[38;5;12m [39m[38;5;12mmorphology[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mautoencoders[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mestimate[39m[38;5;12m [39m[38;5;12meffects[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdrug[39m[38;5;12m [39m
|
||
[38;5;12mcombinations.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mDeep[0m[38;5;14m[1m [0m[38;5;14m[1mMorphology[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mEnhances[0m[38;5;14m[1m [0m[38;5;14m[1mEx[0m[38;5;14m[1m [0m[38;5;14m[1mVivo[0m[38;5;14m[1m [0m[38;5;14m[1mDrug[0m[38;5;14m[1m [0m[38;5;14m[1mProfiling-Based[0m[38;5;14m[1m [0m[38;5;14m[1mPrecision[0m[38;5;14m[1m [0m[38;5;14m[1mMedicine[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1158/2643-3230.BCD-21-0219)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mConcrete[39m[38;5;12m [39m[38;5;12mdescription[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mmorphological[39m[38;5;12m [39m[38;5;12minformation[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mextracted[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mpatient[39m[38;5;12m [39m[38;5;12mmaterial[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mguide[39m[38;5;12m [39m
|
||
[38;5;12mtreatment.[39m
|
||
|
||
[38;2;255;187;0m[4mMethods[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mCell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes[0m[38;5;12m (https://doi.org/10.1038/nprot.2016.105) - Protocol describing the design and execution of experiments using Cell Painting.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMultiplex Cytological Profiling Assay to Measure Diverse Cellular States[0m[38;5;12m (https://doi.org/10.1371/journal.pone.0080999) - Cell Painting assay.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCIDRE: an illumination-correction method for optical microscopy[0m[38;5;12m (https://doi.org/10.1038/nmeth.3323) - Retrospective method for illumination-correction based on energy minimization.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRetrospective shading correction based entropy minimization[0m[38;5;12m (https://doi.org/10.1046/j.1365-2818.2000.00669.x) - Method for retrospective shading correction based on entropy minimization.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCapturing single-cell heterogeneity via data fusion improves image-based profiling[0m[38;5;12m (https://doi.org/10.1038/s41467-019-10154-8) - Adds dispersion and covariances to population averages to capture single-cell heterogeneity.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMinimum redundancy feature selection from microarray gene expression data[0m[38;5;12m (https://doi.org/10.1142/S0219720005001004) - Minimum redundancy - maximum relevance feature selection framework.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1munsupervised[0m[38;5;14m[1m [0m[38;5;14m[1mfeature[0m[38;5;14m[1m [0m[38;5;14m[1mrepresentations[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1msingle[0m[38;5;14m[1m [0m[38;5;14m[1mcell[0m[38;5;14m[1m [0m[38;5;14m[1mmicroscopy[0m[38;5;14m[1m [0m[38;5;14m[1mimages[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1mpaired[0m[38;5;14m[1m [0m[38;5;14m[1mcell[0m[38;5;14m[1m [0m[38;5;14m[1minpainting[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1371/journal.pcbi.1007348)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mSelfsupervised[39m[38;5;12m [39m[38;5;12mmethod[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mlearn[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12mrepresentations[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12msingle[39m[38;5;12m [39m[38;5;12mcells[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mmicroscopy[39m[38;5;12m [39m
|
||
[38;5;12mimages[39m[38;5;12m [39m[38;5;12mwithout[39m[38;5;12m [39m[38;5;12mlabelled[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mdata.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mWeakly supervised learning of single-cell feature embeddings[0m[38;5;12m (https://doi.org/10.1109/CVPR.2018.00970) - Training CNNs using a weakly supervised approach for feature learning.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mAccurate[0m[38;5;14m[1m [0m[38;5;14m[1mPrediction[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mBiological[0m[38;5;14m[1m [0m[38;5;14m[1mAssays[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1mHigh-Throughput[0m[38;5;14m[1m [0m[38;5;14m[1mMicroscopy[0m[38;5;14m[1m [0m[38;5;14m[1mImages[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mConvolutional[0m[38;5;14m[1m [0m[38;5;14m[1mNetworks[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1021/acs.jcim.8b00670)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mEnd-to-end[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mCNNs[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mpredict[39m[38;5;12m [39m[38;5;12mbioactivity[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12msmall[39m[38;5;12m [39m[38;5;12mmolecules[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12munrelated[39m[38;5;12m [39m[38;5;12massays[39m[38;5;12m [39m
|
||
[38;5;12musing[39m[38;5;12m [39m[38;5;12mimage-based[39m[38;5;12m [39m[38;5;12mprofiles.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mEvaluation of Deep Learning Strategies for Nucleus Segmentation in Fluorescence Images[0m[38;5;12m (https://doi.org/10.1002/cyto.a.23863) - Comparing several deep learning methods for nuclear segmentation. [39m
|
||
[38;5;12m- [39m[38;5;14m[1mAutomating Morphological Profiling with Generic Deep Convolutional Networks[0m[38;5;12m (https://doi.org/10.1101/085118) - Transfer of activation features of generic CNNs to extract features for image-based profiling.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mA BaSiC tool for background and shading correction of optical microscopy images[0m[38;5;12m (https://doi.org/10.1038/ncomms14836) - Illumination-correction method accounting for space- and time-dependent biases.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCellpose: a generalist algorithm for cellular segmentation[0m[38;5;12m (https://doi.org/10.1038/s41592-020-01018-x) - Generalist deep learning model for cell and nucleus segmentation with pre-trained weights.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDeep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments[0m[38;5;12m (https://doi.org/10.1371/journal.pcbi.1005177) - DeepCell: collection of deep learning segmentation models.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mImproving Phenotypic Measurements in[0m
|
||
[38;5;12mHigh-Content Imaging Screens[39m[38;5;14m[1m (https://doi.org/10.1101/161422) - Embedding single-cell and compound profiles using transfer learning, examplified on mechanism of action prediction.[0m
|
||
[38;5;12m- [39m[38;5;14m[1mThe Multidimensional Perturbation Value[0m[38;5;12m (https://doi.org/10.1177/1087057112469257) - Proposing a score to define significant activity in screens.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLabel-Free Prediction of Cell Painting from Brightfield Images[0m[38;5;12m (https://doi.org/10.1038/s41598-022-12914-x) - Reconstructing images for Cell Painting dyes and ensuring corresponding morphological measurements are preserved.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mShapoGraphy: A User-Friendly Web Application for Creating Bespoke and Intuitive Visualisation of Biomedical Data[0m[38;5;12m (https://doi.org/10.3389/fbinf.2022.788607) - Method to visualize morphological profiles.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCytoGAN: Generative Modeling of Cell Images[0m[38;5;12m (https://doi.org/10.1101/227645) - Generative network displaying potential for learning latent representation of biological conditions from cell images.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSelf-supervised feature extraction from image time series in plant phenotyping using triplet networks[0m[38;5;12m (https://doi.org/https://doi.org/10.1093/bioinformatics/btaa905) - Direct extraction of phenotypic features from plant images.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mMorphology[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mgene[0m[38;5;14m[1m [0m[38;5;14m[1mexpression[0m[38;5;14m[1m [0m[38;5;14m[1mprofiling[0m[38;5;14m[1m [0m[38;5;14m[1mprovide[0m[38;5;14m[1m [0m[38;5;14m[1mcomplementary[0m[38;5;14m[1m [0m[38;5;14m[1minformation[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mmapping[0m[38;5;14m[1m [0m[38;5;14m[1mcell[0m[38;5;14m[1m [0m[38;5;14m[1mstate[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1016/j.cels.2022.10.001)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mComparison[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12minformation[39m[38;5;12m [39m[38;5;12mcontained[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mCell[39m[38;5;12m [39m[38;5;12mPainting[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mL1000[39m[38;5;12m [39m[38;5;12massays[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12msame[39m[38;5;12m [39m
|
||
[38;5;12mperturbations.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mFully[0m[38;5;14m[1m [0m[38;5;14m[1munsupervised[0m[38;5;14m[1m [0m[38;5;14m[1mdeep[0m[38;5;14m[1m [0m[38;5;14m[1mmode[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1maction[0m[38;5;14m[1m [0m[38;5;14m[1mlearning[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mphenotyping[0m[38;5;14m[1m [0m[38;5;14m[1mhigh-content[0m[38;5;14m[1m [0m[38;5;14m[1mcellular[0m[38;5;14m[1m [0m[38;5;14m[1mimages[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1093/bioinformatics/btab497)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mUnsupervised[39m[38;5;12m [39m[38;5;12mapproach[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mrepresent[39m[38;5;12m [39m[38;5;12mcellular[39m[38;5;12m [39m[38;5;12mmorphology[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mclusters[39m[38;5;12m [39m[38;5;12mcorresponding[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mmeaningful[39m[38;5;12m [39m
|
||
[38;5;12mrelations[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mmechanism[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12maction.[39m[38;5;12m [39m[38;5;12mWith[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12moverview[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mmethods[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmorphological[39m[38;5;12m [39m[38;5;12mprofiling[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mclassification.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mAutomated[0m[38;5;14m[1m [0m[38;5;14m[1mhigh-speed[0m[38;5;14m[1m [0m[38;5;14m[1m3D[0m[38;5;14m[1m [0m[38;5;14m[1mimaging[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1morganoid[0m[38;5;14m[1m [0m[38;5;14m[1mcultures[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1mmulti-scale[0m[38;5;14m[1m [0m[38;5;14m[1mphenotypic[0m[38;5;14m[1m [0m[38;5;14m[1mquantification[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1038/s41592-022-01508-0)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mExperimental[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcomputational[39m[38;5;12m [39m[38;5;12mworkflow[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mextract[39m[38;5;12m [39m[38;5;12m3D[39m[38;5;12m [39m[38;5;12mmorphological[39m[38;5;12m [39m[38;5;12mdescriptors[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12morganoids[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m
|
||
[38;5;12mlight-sheet[39m[38;5;12m [39m[38;5;12mmicroscopy.[39m
|
||
|
||
[38;2;255;187;0m[4mContribute[0m
|
||
|
||
[38;5;12mContributions welcome! Read the [39m[38;5;14m[1mcontribution guidelines[0m[38;5;12m (contributing.md) first.[39m
|
||
|
||
[38;2;255;187;0m[4mLicense[0m
|
||
|
||
[38;5;14m[1m![0m[38;5;12mCC0[39m[38;5;14m[1m (http://mirrors.creativecommons.org/presskit/buttons/88x31/svg/cc-zero.svg)[0m[38;5;12m (http://creativecommons.org/publicdomain/zero/1.0)[39m
|
||
|
||
[38;5;12mcytodata Github: https://github.com/cytodata/awesome-cytodata[39m
|