Files
awesome-awesomeness/html/xai.md2.html
2025-07-18 23:13:11 +02:00

383 lines
18 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<div data-align="center">
<!-- title -->
<!--lint ignore no-dead-urls-->
<h1 id="awesome-xai-awesome">Awesome XAI <a
href="https://awesome.re"><img src="https://awesome.re/badge.svg"
alt="Awesome" /></a></h1>
<!-- subtitle -->
<p>A curated list of XAI and Interpretable ML papers, methods,
critiques, and resources.</p>
<!-- image -->
<p><img src="https://raw.githubusercontent.com/altamiracorp/awesome-xai/main/images/icon.svg" width="256" style="max-width: 25% !important"/></p>
<!-- description -->
<p>Explainable AI (XAI) is a branch of machine learning research which
seeks to make various machine learning techniques more
understandable.</p>
</div>
<!-- TOC -->
<h2 id="contents">Contents</h2>
<ul>
<li><a href="#papers">Papers</a>
<ul>
<li><a href="#landmarks">Landmarks</a></li>
<li><a href="#surveys">Surveys</a></li>
<li><a href="#evaluations">Evaluations</a></li>
<li><a href="#xai-methods">XAI Methods</a></li>
<li><a href="#interpretable-models">Interpretable Models</a></li>
<li><a href="#critiques">Critiques</a></li>
</ul></li>
<li><a href="#repositories">Repositories</a></li>
<li><a href="#videos">Videos</a></li>
<li><a href="#follow">Follow</a></li>
</ul>
<!-- CONTENT -->
<h2 id="papers">Papers</h2>
<h3 id="landmarks">Landmarks</h3>
<p>These are some of our favorite papers. They are helpful to understand
the field and critical aspects of it. We believe this papers are worth
reading in their entirety.</p>
<ul>
<li><a href="https://arxiv.org/abs/1706.07269">Explanation in Artificial
Intelligence: Insights from the Social Sciences</a> - This paper
provides an introduction to the social science research into
explanations. The author provides 4 major findings: (1) explanations are
constrastive, (2) explanations are selected, (3) probabilities probably
dont matter, (4) explanations are social. These fit into the general
theme that explanations are -contextual-.</li>
<li><a href="https://arxiv.org/abs/1810.03292">Sanity Checks for
Saliency Maps</a> - An important read for anyone using saliency maps.
This paper proposes two experiments to determine whether saliency maps
are useful: (1) model parameter randomization test compares maps from
trained and untrained models, (2) data randomization test compares maps
from models trained on the original dataset and models trained on the
same dataset with randomized labels. They find that “some widely
deployed saliency methods are independent of both the data the model was
trained on, and the model parameters”.</li>
</ul>
<h3 id="surveys">Surveys</h3>
<ul>
<li><a href="https://arxiv.org/abs/2004.14545">Explainable Deep
Learning: A Field Guide for the Uninitiated</a> - An in-depth
description of XAI focused on technqiues for deep learning.</li>
</ul>
<h3 id="evaluations">Evaluations</h3>
<ul>
<li><a href="https://arxiv.org/abs/2009.02899">Quantifying
Explainability of Saliency Methods in Deep Neural Networks</a> - An
analysis of how different heatmap-based saliency methods perform based
on experimentation with a generated dataset.</li>
</ul>
<h3 id="xai-methods">XAI Methods</h3>
<ul>
<li><a href="https://arxiv.org/abs/2102.07799">Ada-SISE</a> - Adaptive
semantice inpute sampling for explanation.</li>
<li><a
href="https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12377">ALE</a>
- Accumulated local effects plot.</li>
<li><a
href="https://link.springer.com/chapter/10.1007/978-3-030-33607-3_49">ALIME</a>
- Autoencoder Based Approach for Local Interpretability.</li>
<li><a
href="https://ojs.aaai.org/index.php/AAAI/article/view/11491">Anchors</a>
- High-Precision Model-Agnostic Explanations.</li>
<li><a
href="https://link.springer.com/article/10.1007/s10115-017-1116-3">Auditing</a>
- Auditing black-box models.</li>
<li><a href="https://arxiv.org/abs/2012.03058">BayLIME</a> - Bayesian
local interpretable model-agnostic explanations.</li>
<li><a href="http://ema.drwhy.ai/breakDown.html#BDMethod">Break Down</a>
- Break down plots for additive attributions.</li>
<li><a
href="https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhou_Learning_Deep_Features_CVPR_2016_paper.pdf">CAM</a>
- Class activation mapping.</li>
<li><a
href="https://ieeexplore.ieee.org/abstract/document/4167900">CDT</a> -
Confident interpretation of Bayesian decision tree ensembles.</li>
<li><a
href="https://christophm.github.io/interpretable-ml-book/ice.html">CICE</a>
- Centered ICE plot.</li>
<li><a
href="https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.2710&amp;rep=rep1&amp;type=pdf">CMM</a>
- Combined multiple models metalearner.</li>
<li><a
href="https://www.sciencedirect.com/science/article/pii/B9781558603356500131">Conj
Rules</a> - Using sampling and queries to extract rules from trained
neural networks.</li>
<li><a
href="https://ieeexplore.ieee.org/abstract/document/6597214">CP</a> -
Contribution propogation.</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/775047.775113">DecText</a> -
Extracting decision trees from trained neural networks.</li>
<li><a
href="https://ieeexplore-ieee-org.ezproxy.libraries.wright.edu/abstract/document/9352498">DeepLIFT</a>
- Deep label-specific feature learning for image annotation.</li>
<li><a
href="https://www.sciencedirect.com/science/article/pii/S0031320316303582">DTD</a>
- Deep Taylor decomposition.</li>
<li><a
href="https://www.aaai.org/Papers/IAAI/2006/IAAI06-018.pdf">ExplainD</a>
- Explanations of evidence in additive classifiers.</li>
<li><a
href="https://link.springer.com/chapter/10.1007/978-3-642-04174-7_45">FIRM</a>
- Feature importance ranking measure.</li>
<li><a
href="https://openaccess.thecvf.com/content_iccv_2017/html/Fong_Interpretable_Explanations_of_ICCV_2017_paper.html">Fong,
et. al.</a> - Meaninful perturbations model.</li>
<li><a
href="https://www.academia.edu/download/51462700/s0362-546x_2896_2900267-220170122-9600-1njrpyx.pdf">G-REX</a>
- Rule extraction using genetic algorithms.</li>
<li><a
href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977175/">Gibbons,
et. al.</a> - Explain random forest using decision tree.</li>
<li><a
href="https://link-springer-com.ezproxy.libraries.wright.edu/article/10.1007/s10618-014-0368-8">GoldenEye</a>
- Exploring classifiers by randomization.</li>
<li><a href="https://arxiv.org/abs/0912.1128">GPD</a> - Gaussian process
decisions.</li>
<li><a
href="https://ieeexplore.ieee.org/abstract/document/4938655">GPDT</a> -
Genetic program to evolve decision trees.</li>
<li><a
href="https://openaccess.thecvf.com/content_iccv_2017/html/Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.html">GradCAM</a>
- Gradient-weighted Class Activation Mapping.</li>
<li><a
href="https://ieeexplore.ieee.org/abstract/document/8354201/">GradCAM++</a>
- Generalized gradient-based visual explanations.</li>
<li><a href="https://arxiv.org/abs/1606.05390">Hara, et. al.</a> -
Making tree ensembles interpretable.</li>
<li><a
href="https://www.tandfonline.com/doi/abs/10.1080/10618600.2014.907095">ICE</a>
- Individual conditional expectation plots.</li>
<li><a
href="http://proceedings.mlr.press/v70/sundararajan17a/sundararajan17a.pdf">IG</a>
- Integrated gradients.</li>
<li><a
href="https://link.springer.com/article/10.1007/s41060-018-0144-8">inTrees</a>
- Interpreting tree ensembles with inTrees.</li>
<li><a href="https://arxiv.org/abs/1611.04967">IOFP</a> - Iterative
orthoganol feature projection.</li>
<li><a href="https://arxiv.org/abs/1703.00810">IP</a> - Information
plane visualization.</li>
<li><a href="https://arxiv.org/abs/1810.02678">KL-LIME</a> -
Kullback-Leibler Projections based LIME.</li>
<li><a
href="https://www.sciencedirect.com/science/article/abs/pii/S0031320398001812">Krishnan,
et. al.</a> - Extracting decision trees from trained neural
networks.</li>
<li><a href="https://arxiv.org/abs/1606.04155">Lei, et. al.</a> -
Rationalizing neural predictions with generator and encoder.</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/2939672.2939778">LIME</a> -
Local Interpretable Model-Agnostic Explanations.</li>
<li><a
href="https://amstat.tandfonline.com/doi/abs/10.1080/01621459.2017.1307116#.YEkdZ7CSmUk">LOCO</a>
- Leave-one covariate out.</li>
<li><a href="https://arxiv.org/abs/1805.10820">LORE</a> - Local
rule-based explanations.</li>
<li><a href="https://dl.acm.org/doi/abs/10.1145/2487575.2487579">Lou,
et. al.</a> - Accurate intelligibile models with pairwise
interactions.</li>
<li><a
href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130140">LRP</a>
- Layer-wise relevance propogation.</li>
<li><a
href="https://www.jmlr.org/papers/volume20/18-760/18-760.pdf">MCR</a> -
Model class reliance.</li>
<li><a
href="https://ieeexplore.ieee.org/abstract/document/7738872">MES</a> -
Model explanation system.</li>
<li><a href="https://arxiv.org/abs/1611.07567">MFI</a> - Feature
importance measure for non-linear algorithms.</li>
<li><a
href="https://www.sciencedirect.com/science/article/abs/pii/S0304380002000649">NID</a>
- Neural interpretation diagram.</li>
<li><a href="https://arxiv.org/abs/2006.05714">OptiLIME</a> - Optimized
LIME.</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3077257.3077271">PALM</a> -
Partition aware local model.</li>
<li><a href="https://arxiv.org/abs/1702.04595">PDA</a> - Prediction
Difference Analysis: Visualize deep neural network decisions.</li>
<li><a
href="https://projecteuclid.org/download/pdf_1/euclid.aos/1013203451">PDP</a>
- Partial dependence plots.</li>
<li><a
href="https://academic.oup.com/bioinformatics/article/24/13/i6/233341">POIMs</a>
- Positional oligomer importance matrices for understanding SVM signal
detectors.</li>
<li><a href="https://arxiv.org/abs/1807.07506">ProfWeight</a> - Transfer
information from deep network to simpler model.</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/2858036.2858529">Prospector</a>
- Interactive partial dependence diagnostics.</li>
<li><a
href="https://ieeexplore.ieee.org/abstract/document/7546525">QII</a> -
Quantitative input influence.</li>
<li><a
href="https://content.iospress.com/articles/ai-communications/aic272">REFNE</a>
- Extracting symbolic rules from trained neural network ensembles.</li>
<li><a href="https://arxiv.org/abs/1608.05745">RETAIN</a> - Reverse time
attention model.</li>
<li><a href="https://arxiv.org/abs/1806.07421">RISE</a> - Randomized
input sampling for explanation.</li>
<li><a
href="https://link.springer.com/article/10.1007%2Fs11063-011-9207-8">RxREN</a>
- Reverse engineering neural networks for rule extraction.</li>
<li><a href="https://arxiv.org/abs/1705.07874">SHAP</a> - A unified
approach to interpretting model predictions.</li>
<li><a href="https://arxiv.org/abs/2101.10710">SIDU</a> - Similarity,
difference, and uniqueness input perturbation.</li>
<li><a href="https://arxiv.org/abs/1312.6034">Simonynan, et. al</a> -
Visualizing CNN classes.</li>
<li><a href="https://arxiv.org/abs/1611.07579">Singh, et. al</a> -
Programs as black-box explanations.</li>
<li><a href="https://arxiv.org/abs/1610.09036">STA</a> - Interpreting
models via Single Tree Approximation.</li>
<li><a
href="https://www.jmlr.org/papers/volume11/strumbelj10a/strumbelj10a.pdf">Strumbelj,
et. al.</a> - Explanation of individual classifications using game
theory.</li>
<li><a
href="https://www.academia.edu/download/2471122/3uecwtv9xcwxg6r.pdf">SVM+P</a>
- Rule extraction from support vector machines.</li>
<li><a href="https://openreview.net/forum?id=S1viikbCW">TCAV</a> -
Testing with concept activation vectors.</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3097983.3098039">Tolomei, et.
al.</a> - Interpretable predictions of tree-ensembles via actionable
feature tweaking.</li>
<li><a
href="https://www.researchgate.net/profile/Edward-George-2/publication/2610587_Making_Sense_of_a_Forest_of_Trees/links/55b1085d08aec0e5f430eb40/Making-Sense-of-a-Forest-of-Trees.pdf">Tree
Metrics</a> - Making sense of a forest of trees.</li>
<li><a href="https://arxiv.org/abs/1706.06060">TreeSHAP</a> - Consistent
feature attribute for tree ensembles.</li>
<li><a href="https://arxiv.org/abs/1611.07429">TreeView</a> -
Feature-space partitioning.</li>
<li><a
href="http://www.inf.ufrgs.br/~engel/data/media/file/cmp121/TREPAN_craven.nips96.pdf">TREPAN</a>
- Extracting tree-structured representations of trained networks.</li>
<li><a href="https://dl.acm.org/doi/abs/10.1145/3412815.3416893">TSP</a>
- Tree space prototypes.</li>
<li><a
href="http://www.columbia.edu/~aec2163/NonFlash/Papers/VisualBackProp.pdf">VBP</a>
- Visual back-propagation.</li>
<li><a
href="https://ieeexplore.ieee.org/abstract/document/5949423">VEC</a> -
Variable effect characteristic curve.</li>
<li><a href="https://dl.acm.org/doi/abs/10.1145/1014052.1014122">VIN</a>
- Variable interaction network.</li>
<li><a href="https://arxiv.org/abs/1508.07551">X-TREPAN</a> - Adapted
etraction of comprehensible decision tree in ANNs.</li>
<li><a href="http://proceedings.mlr.press/v37/xuc15">Xu, et. al.</a> -
Show, attend, tell attention model.</li>
</ul>
<h3 id="interpretable-models">Interpretable Models</h3>
<ul>
<li><a
href="https://christophm.github.io/interpretable-ml-book/rules.html">Decision
List</a> - Like a decision tree with no branches.</li>
<li><a href="https://en.wikipedia.org/wiki/Decision_tree">Decision
Trees</a> - The tree provides an interpretation.</li>
<li><a href="https://www.youtube.com/watch?v=MREiHgHgl0k">Explainable
Boosting Machine</a> - Method that predicts based on learned vector
graphs of features.</li>
<li><a
href="https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm">k-Nearest
Neighbors</a> - The prototypical clustering method.</li>
<li><a href="https://en.wikipedia.org/wiki/Linear_regression">Linear
Regression</a> - Easily plottable and understandable regression.</li>
<li><a href="https://en.wikipedia.org/wiki/Logistic_regression">Logistic
Regression</a> - Easily plottable and understandable
classification.</li>
<li><a href="https://en.wikipedia.org/wiki/Naive_Bayes_classifier">Naive
Bayes</a> - Good classification, poor estimation using conditional
probabilities.</li>
<li><a
href="https://christophm.github.io/interpretable-ml-book/rulefit.html">RuleFit</a>
- Sparse linear model as decision rules including feature
interactions.</li>
</ul>
<h3 id="critiques">Critiques</h3>
<ul>
<li><a href="https://arxiv.org/abs/1902.10186">Attention is not
Explanation</a> - Authors perform a series of NLP experiments which
argue attention does not provide meaningful explanations. They also
demosntrate that different attentions can generate similar model
outputs.</li>
<li><a href="https://arxiv.org/abs/1908.04626">Attention is not not
Explanation</a> - This is a rebutal to the above paper. Authors argue
that multiple explanations can be valid and that the and that attention
can produce <em>a</em> valid explanation, if not -the- valid
explanation.</li>
<li><a href="https://arxiv.org/abs/1903.11420">Do Not Trust Additive
Explanations</a> - Authors argue that addditive explanations (e.g. LIME,
SHAP, Break Down) fail to take feature ineractions into account and are
thus unreliable.</li>
<li><a href="https://arxiv.org/abs/1905.03151">Please Stop Permuting
Features An Explanation and Alternatives</a> - Authors demonstrate why
permuting features is misleading, especially where there is strong
feature dependence. They offer several previously described
alternatives.</li>
<li><a
href="https://www.nature.com/articles/s42256-019-0048-x?fbclid=IwAR3156gP-ntoAyw2sHTXo0Z8H9p-2wBKe5jqitsMCdft7xA0P766QvSthFs">Stop
Explaining Black Box Machine Learning Models for High States Decisions
and Use Interpretable Models Instead</a> - Authors present a number of
issues with explainable ML and challenges to interpretable ML: (1)
constructing optimal logical models, (2) constructing optimal sparse
scoring systems, (3) defining interpretability and creating methods for
specific methods. They also offer an argument for why interpretable
models might exist in many different domains.</li>
<li><a
href="https://link.springer.com/chapter/10.1007/978-3-030-28954-6_14">The
(Un)reliability of Saliency Methods</a> - Authors demonstrate how
saliency methods vary attribution when adding a constant shift to the
input data. They argue that methods should fulfill <em>input
invariance</em>, that a saliency method mirror the sensistivity of the
model with respect to transformations of the input.</li>
</ul>
<h2 id="repositories">Repositories</h2>
<ul>
<li><a href="https://github.com/EthicalML/xai">EthicalML/xai</a> - A
toolkit for XAI which is focused exclusively on tabular data. It
implements a variety of data and model evaluation techniques.</li>
<li><a href="https://github.com/MAIF/shapash">MAIF/shapash</a> - SHAP
and LIME-based front-end explainer.</li>
<li><a
href="https://github.com/PAIR-code/what-if-tool">PAIR-code/what-if-tool</a>
- A tool for Tensorboard or Notebooks which allows investigating model
performance and fairness.</li>
<li><a href="https://github.com/slundberg/shap">slundberg/shap</a> - A
Python module for using Shapley Additive Explanations.</li>
</ul>
<h2 id="videos">Videos</h2>
<ul>
<li><a href="https://www.youtube.com/watch?v=93Xv8vJ2acI">Debate:
Interpretability is necessary for ML</a> - A debate on whether
interpretability is necessary for ML with Rich Caruana and Patrice
Simard for and Kilian Weinberger and Yann LeCun against.</li>
</ul>
<h2 id="follow">Follow</h2>
<p>Their views arent necessarily our views. :wink:</p>
<ul>
<li><a href="https://ethical.institute/index.html">The Institute for
Ethical AI &amp; Machine Learning</a> - A UK-based research center that
performs research into ethical AI/ML, which frequently involves
XAI.</li>
<li><a href="https://twitter.com/tmiller_unimelb">Tim Miller</a> - One
of the preeminent researchers in XAI.</li>
<li><a
href="https://www.microsoft.com/en-us/research/people/rcaruana/">Rich
Caruana</a> - The man behind Explainable Boosting Machines.</li>
</ul>
<p>Who else should we be following!?</p>
<h2 id="contributing">Contributing</h2>
<p><a href="contributing.md">Contributions of any kind welcome, just
follow the guidelines</a>!</p>
<h3 id="contributors">Contributors</h3>
<p><a
href="https://github.com/altamiracorp/awesome-xai/graphs/contributors">Thanks
goes to these contributors</a>!</p>
<p><a href="https://github.com/altamiracorp/awesome-xai">xai.md
Github</a></p>