438 lines
21 KiB
HTML
438 lines
21 KiB
HTML
<h1 id="awesome-information-retrieval-awesome">Awesome Information
|
||
Retrieval <a href="https://github.com/sindresorhus/awesome"><img
|
||
src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg"
|
||
alt="Awesome" /></a></h1>
|
||
<p><a
|
||
href="https://gitter.im/awesome-information-retrieval/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge"><img
|
||
src="https://badges.gitter.im/awesome-information-retrieval/Lobby.svg"
|
||
alt="Join the chat at https://gitter.im/awesome-information-retrieval/Lobby" /></a></p>
|
||
<p>Curated list of information retrieval and web search resources from
|
||
all around the web. ## Introduction <a
|
||
href="https://en.wikipedia.org/wiki/Information_retrieval">Information
|
||
Retrieval</a> involves finding relevant information for user queries,
|
||
ranging from simple domain of database search to complicated aspects of
|
||
web search (Eg - Google, Bing, Yahoo). Currently, researchers are
|
||
developing algorithms to address <a
|
||
href="https://en.wikipedia.org/wiki/Information_needs">Information
|
||
Need</a> of user(s), by maximizing <a
|
||
href="https://en.wikipedia.org/wiki/Relevance_(information_retrieval)">User
|
||
and Topic Relevance</a> of retrieved results, while minimizing <a
|
||
href="https://en.wikipedia.org/wiki/Information_overload">Information
|
||
Overload</a> and retrieval time. ## Contributing Please feel free to
|
||
send me <a
|
||
href="https://github.com/harpribot/awesome-information-retrieval/pulls">pull
|
||
requests</a> or [email] (mailto:harshal.priyadarshi@utexas.edu) me to
|
||
add new links. I am very open to suggestions and corrections. Please
|
||
look at the <a href="contributing.md">contributions guide</a>.</p>
|
||
<h2 id="contents">Contents</h2>
|
||
<ul>
|
||
<li><a href="#books">Books</a></li>
|
||
<li><a href="#courses">Courses</a></li>
|
||
<li><a href="#software">Software</a></li>
|
||
<li><a href="#datasets">Datasets</a></li>
|
||
<li><a href="#talks">Talks</a></li>
|
||
<li><a href="#conferences">Conferences</a></li>
|
||
<li><a href="#blogs">Blogs</a>
|
||
<ul>
|
||
<li><a href="#interesting-reads">Interesting Reads</a></li>
|
||
</ul></li>
|
||
</ul>
|
||
<h2 id="books">Books</h2>
|
||
<ul>
|
||
<li><a href="http://www-nlp.stanford.edu/IR-book/">Introduction to
|
||
Information Retrieval</a> - C.D. Manning, P. Raghavan, H. Schütze.
|
||
Cambridge UP, 2008. (First book for getting started with Information
|
||
Retrieval).</li>
|
||
<li><a href="http://ciir.cs.umass.edu/downloads/SEIRiP.pdf">Search
|
||
Engines: Information Retrieval in Practice</a> - Bruce Croft, Don
|
||
Metzler, and Trevor Strohman. 2009. (Great book for readers interested
|
||
in knowing how Search Engines work. The book is very detailed).</li>
|
||
<li><a href="http://people.ischool.berkeley.edu/~hearst/irbook/">Modern
|
||
Information Retrieval</a> - R. Baeza-Yates, B. Ribeiro-Neto.
|
||
Addison-Wesley, 1999.</li>
|
||
<li><a href="http://www.search-engines-book.com/">Information Retrieval
|
||
in Practice</a> - B. Croft, D. Metzler, T. Strohman. Pearson Education,
|
||
2009.</li>
|
||
<li><a href="http://www.cse.iitb.ac.in/%7Esoumen/mining-the-web/">Mining
|
||
the Web: Analysis of Hypertext and Semi Structured Data</a> - S.
|
||
Chakrabarti. Morgan Kaufmann, 2002.</li>
|
||
<li><a
|
||
href="http://www.springer.com/prod/b/1-4020-1216-0?referer=www.wkap.nl">Language
|
||
Modeling for Information Retrieval</a> - W.B. Croft, J. Lafferty.
|
||
Springer, 2003. (Handles Language Modeling aspect of Information
|
||
Retrieval. It also extensively details probabilistic perspective in this
|
||
domain, which is interesting).</li>
|
||
<li><a
|
||
href="http://www.csee.umbc.edu/cadip/readings/IR.report.120600.book.pdf">Information
|
||
Retrieval: A Survey</a> - Ed Greengrass, 2000. (Comprehensive survey of
|
||
Conventional Information Retrieval, before Deep Learning era).</li>
|
||
<li><a
|
||
href="https://www.amazon.com/Introduction-Modern-Information-Retrieval-Third/dp/185604694X">Introduction
|
||
to Modern Information Retrieval</a> - G.G. Chowdhury. Neal-Schuman,
|
||
2003. (Intended for students of library and information studies).</li>
|
||
<li><a
|
||
href="https://www.amazon.com/Information-Retrieval-Systems-Library-Hardcover/dp/0123694124">Text
|
||
Information Retrieval Systems</a> - C.T. Meadow, B.R. Boyce, D.H. Kraft,
|
||
C.L. Barry. Academic Press, 2007 (library/information science
|
||
perspective).</li>
|
||
</ul>
|
||
<h2 id="courses">Courses</h2>
|
||
<ul>
|
||
<li><a
|
||
href="http://courses.ischool.utexas.edu/Lease_Matt/2016/Fall/INF384H/">INF384H
|
||
/ CS395T / INF350E: Concepts of Information Retrieval (and Web
|
||
Search)</a> - Matthew Lease (University of Texas at Austin).</li>
|
||
<li><a href="http://web.stanford.edu/class/cs276/">CS 276 / LING 286:
|
||
Information Retrieval and Web Search</a> - Chris Manning and Pandu Nayak
|
||
(Stanford University).</li>
|
||
<li><a href="https://www.cs.utexas.edu/~mooney/ir-course/">CS 371R:
|
||
Information Retrieval and Web Search</a> - Raymond J. Mooney (University
|
||
of Texas at Austin).</li>
|
||
<li><a href="http://www.cs.ucr.edu/~vagelis/classes/CS172/">CS 172:
|
||
Introduction to Information Retrieval</a> - Vagelis Hristidis
|
||
(University of California - Riverside).</li>
|
||
<li><a
|
||
href="http://www2.sims.berkeley.edu/academics/courses/is240/s06/">SIMS
|
||
240: Principles of Information Retrieval</a> - Ray R. Larson (UC
|
||
berkeley).</li>
|
||
<li><a href="http://boston.lti.cs.cmu.edu/classes/11-642/">11-442 /
|
||
11-642: Search Engines</a> - Jamie Callan (CMU).</li>
|
||
<li><a href="http://www.cs.jhu.edu/%7Eyarowsky/cs466.html">600.466:
|
||
Information Retrieval and Web Agents</a> - David Yarowsky (John Hopkins
|
||
University).</li>
|
||
<li><a
|
||
href="http://www.cs.princeton.edu/courses/archive/spring06/cos435/">CS
|
||
435: Information Retrieval, Discovery, and Delivery</a> - Andrea LaPaugh
|
||
(Princeton University).</li>
|
||
<li><a
|
||
href="https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/teaching/winter-semester-201516/information-retrieval-and-data-mining/">Information
|
||
Retrieval and Data Mining</a> - Dr. Jilles Vreeken , Prof. Dr. Gerhard
|
||
Weikum (MPI).</li>
|
||
<li><a href="https://www.coursera.org/learn/text-retrieval">Coursera -
|
||
Text Retrieval and Search Engines</a> - Prof. ChengXiang Zhai
|
||
(University of Illinois at Urbana-Champaign).</li>
|
||
</ul>
|
||
<h2 id="software">Software</h2>
|
||
<ul>
|
||
<li><a href="http://lucene.apache.org/core/">Apache Lucene</a> - Open
|
||
Source Search Engine that can be used to test Information Retrieval
|
||
Algorithm. Twitter uses this core for its real-time search.</li>
|
||
<li><a href="http://www.lemurproject.org">The Lemur Project</a> - The
|
||
Lemur Project develops search engines, browser toolbars, text analysis
|
||
tools, and data resources that support research and development of
|
||
information retrieval and text mining software.
|
||
<ul>
|
||
<li><a href="http://www.lemurproject.org/indri.php">Indri Search
|
||
Engine</a> - Another Open Source Search Engine competitor of Apache
|
||
Lucene.</li>
|
||
<li><a href="http://www.lemurproject.org/lemur.php">Lemur Toolkit</a> -
|
||
Open Source Toolkit for research in Language Modeling, filtering and
|
||
categorization.</li>
|
||
</ul></li>
|
||
</ul>
|
||
<h2 id="datasets">Datasets</h2>
|
||
<h4 id="standard-ir-collections">Standard IR Collections</h4>
|
||
<ul>
|
||
<li><a href="http://wiki.dbpedia.org/Downloads2015-10">DBPedia</a> -
|
||
Linked data web.</li>
|
||
<li><a
|
||
href="http://ir.dcs.gla.ac.uk/resources/test_collections/cran/">Cranfield
|
||
Collections</a> - This is one of the first collections in IR domain,
|
||
however the dataset is too small for any statistical significance
|
||
analysis, but is nevertheless suitable for pilot runs.</li>
|
||
<li><a href="http://trec.nist.gov/data.html">TREC Collections</a> - TREC
|
||
is the benchmark dataset used by most IR and Web search algorithms. It
|
||
has several tracks, each of which consists of dataset to test for a
|
||
specific task. The tracks along with suggested use-case are:
|
||
<ul>
|
||
<li><a href="http://trec.nist.gov/data/blog.html">Blog</a> - Explore
|
||
information seeking behavior in the blogosphere.</li>
|
||
<li><a href="http://trec.nist.gov/data/chem-ir.html">Chemical IR</a> -
|
||
Address challenges in building large chemical testbeds for chemical
|
||
IR.</li>
|
||
<li><a href="http://trec.nist.gov/data/clinical.html">Clinical Decision
|
||
Support</a> - Investigate techniques to link medical cases to
|
||
information relevant for patient care.</li>
|
||
<li><a href="http://trec.nist.gov/data/confusion.html">Confusion</a> -
|
||
Study <a href="http://trec.nist.gov/data/confusion/t5confusion.ps">Known
|
||
Item Searching</a> problem.</li>
|
||
<li><a href="http://trec.nist.gov/data/context.html">Contextual
|
||
Suggestion</a> - Investigate search techniques for complex information
|
||
needs (context and user interests based).</li>
|
||
<li><a href="http://trec.nist.gov/data/crowd.html">Crowdsourcing</a> -
|
||
Explore crowdsourcing methods for performing and evaluating search.</li>
|
||
<li><a href="http://trec.nist.gov/data/enterprise.html">Enterprise</a> -
|
||
Study search over the organization data.</li>
|
||
<li><a href="http://trec.nist.gov/data/entity.html">Entity</a> - Perform
|
||
entity-related search (find entities and their properties) on Web
|
||
data.</li>
|
||
<li><a href="http://trec.nist.gov/data/filtering.html">Filtering</a> -
|
||
Binarily decide retrieval of new incoming documents given a stable
|
||
information need.</li>
|
||
<li><a href="http://trec.nist.gov/data/federated.html">Federated Web
|
||
Search</a> - Study merge performance for results from various search
|
||
services.</li>
|
||
<li><a href="http://trec.nist.gov/data/genomics.html">Genomics</a> -
|
||
Study retrieval efficiency of genomics data and corresponding
|
||
documentation.</li>
|
||
<li><a href="http://trec.nist.gov/data/hard.html">HARD</a> - Obtain High
|
||
Accuracy Retrieval from Documents by leveraging searcher’s context.</li>
|
||
<li><a href="http://trec.nist.gov/data/interactive.html">Interactive
|
||
Track</a> - Study user interaction with text retrieval systems.</li>
|
||
<li><a href="http://trec.nist.gov/data/kba.html">Knowledge base
|
||
acceleration</a> - Study algorithms that improve efficiency of human
|
||
Knowledge Base.</li>
|
||
<li><a href="http://trec.nist.gov/data/legal.html">Legal Track</a> -
|
||
Study retrieval systems that have high recall for legal documents use
|
||
case.</li>
|
||
<li><a href="http://trec.nist.gov/data/medical.html">Medical Track</a> -
|
||
Explore unstructured search performance over patients record data.</li>
|
||
<li><a href="http://trec.nist.gov/data/microblog.html">Microblog
|
||
Track</a> - Examine satisfaction of real-time information need for
|
||
microblogging sites.</li>
|
||
<li><a href="http://trec.nist.gov/data/million.query.html">Million Query
|
||
Track</a> - Explore ad-hoc retrieval over large set of queries.</li>
|
||
<li><a href="http://trec.nist.gov/data/novelty.html">Novelty Track</a> -
|
||
Investigate systems’ abilities to locate new (non-redundant)
|
||
information.</li>
|
||
<li><a href="http://trec.nist.gov/data/qamain.html">Question Answering
|
||
Track</a> - Test systems that scale beyond document retrieval, to
|
||
retrieve answers to factoid, list and definition type questions.</li>
|
||
<li><a
|
||
href="http://trec.nist.gov/data/relevance.feedback.html">Relevance
|
||
Feedback Track</a> - For deep evaluation of relevance feedback
|
||
processes.</li>
|
||
<li><a href="http://trec.nist.gov/data/robust.html">Robust Track</a> -
|
||
Study individual topic’s effectiveness.</li>
|
||
<li><a href="http://trec.nist.gov/data/session.html">Session Track</a> -
|
||
Develop methods for measuring multiple-query sessions where information
|
||
needs drift.</li>
|
||
<li><a href="http://trec.nist.gov/data/spam.html">SPAM Track</a> -
|
||
Benchmark spam filtering approaches.</li>
|
||
<li><a href="http://trec.nist.gov/data/tasks.html">Tasks Track</a> -
|
||
Test if systems can induce possible tasks, users might be trying to
|
||
accomplish for the query.</li>
|
||
<li><a href="http://trec.nist.gov/data/tempsumm.html">Temporal
|
||
Summarization Track</a> - Develop systems that allow users to
|
||
efficiently monitor the information associated with an event over
|
||
time.</li>
|
||
<li><a href="http://trec.nist.gov/data/terabyte.html">Terabyte Track</a>
|
||
- Test scalability of IR systems to large scale collection.</li>
|
||
<li><a href="http://trec.nist.gov/data/webmain.html">Web Track</a> -
|
||
Explore information seeking behaviors common in general web search.</li>
|
||
</ul></li>
|
||
<li><a
|
||
href="http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm">GOV2
|
||
Test Collection</a> - This is one of the largest Web collection of
|
||
documents obtained from crawl of government websites by Charlie Clarke
|
||
and Ian Soboroff, using NIST hardware and network, then formatted by
|
||
Nick Craswel.</li>
|
||
<li><a href="http://research.nii.ac.jp/ntcir/data/data-en.html">NTCIR
|
||
Test Collection</a> - This is collection of wide variety of dataset
|
||
ranging from Ad-hoc collection, Chinese IR collection, mobile
|
||
clickthrough collections to medical collections. The focus of this
|
||
collection is mostly on east asian languages and cross language
|
||
information retrieval.
|
||
<ul>
|
||
<li><a
|
||
href="http://research.nii.ac.jp/ntcir/permission/ntcir-6/perm-en-CLIR.html">CLIR
|
||
Test Collections</a> - This dataset can be used for cross lingual IR
|
||
between CJKE (Chinese-Japanese-Korean-English) languages. It is suitable
|
||
for the following tasks:
|
||
<ul>
|
||
<li>Multilingual CLIR</li>
|
||
<li>Bilingual CLIR</li>
|
||
<li>Single Language CLIR</li>
|
||
</ul></li>
|
||
<li><a
|
||
href="http://research.nii.ac.jp/ntcir/permission/ntcir-6/perm-en-CLQA.html">Cross
|
||
Language Q&A (CLQA) dataset collection</a> - It supports following
|
||
bi-lingua and mono-lingua:
|
||
<ul>
|
||
<li>Bi-lingua
|
||
<ul>
|
||
<li>Japanese to English.</li>
|
||
<li>Chinese to English.</li>
|
||
<li>English to Japanese.</li>
|
||
<li>English to Chinese.</li>
|
||
</ul></li>
|
||
<li>Mono-lingua
|
||
<ul>
|
||
<li>Chinese to Chinese.</li>
|
||
<li>Japanese to Japanese.</li>
|
||
<li>English to English.</li>
|
||
</ul></li>
|
||
</ul></li>
|
||
<li><a
|
||
href="http://research.nii.ac.jp/ntcir/permission/ntcir-8/perm-en-ACLIA.html">Advanced
|
||
Cross Linugal Information Retrieval and Question Answering (ACLIA)</a> -
|
||
The dataset is used for the task of cross-lingual question answering but
|
||
the complexity of the task is higher than CLQA dataset.</li>
|
||
</ul></li>
|
||
<li><a
|
||
href="http://www.clef-initiative.eu/dataset/test-collection">Conference
|
||
and Labs of the Evaluation Forum (CLEF) dataset</a> - It contains a
|
||
multi-lingual document collection. The test suite includes:
|
||
<ul>
|
||
<li>AdHoc - News Test suite.</li>
|
||
<li>Domain Specific Test Suite - On collections of scientific
|
||
articles.</li>
|
||
<li>Question Answering Test Suite.</li>
|
||
</ul></li>
|
||
<li><a href="http://trec.nist.gov/data/reuters/reuters.html">Reuters
|
||
Corpora</a> - The corpora is now available through NIST. The corpora
|
||
includes following:
|
||
<ul>
|
||
<li>RCV1 (Reuter’s Corpus Volume 1) - Consists of only English language
|
||
News stories.</li>
|
||
<li>RCV2 (Reuter’s Corpus Volume 2) - Consists of stories in 13
|
||
languages (Dutch, French, German, Chinese, Japanese, Russian,
|
||
Portuguese, Spanish, Latin American Spanish, Italian, Danish, Norwegian,
|
||
and Swedish). Note that the stories are not parallel.</li>
|
||
<li>TRC (Thomson Reuters Text Research Collection) - This is a fairly
|
||
recent corpus consisting of 1,800,370 news stories covering the period
|
||
from 2008-01-01 00:00:03 to 2009-02-28 23:54:14.</li>
|
||
</ul></li>
|
||
<li><a
|
||
href="https://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html">20
|
||
Newsgroup dataset</a> - This data set consists of 20000 newsgroup
|
||
messages.posts taken from 20 newsgroup topics.</li>
|
||
<li><a href="https://catalog.ldc.upenn.edu/LDC2011T07">English Gigaword
|
||
Fifth Edition</a> - This data set is a comprehensive archive of English
|
||
newswire text data including headlines, datelines and articles.</li>
|
||
<li><a href="http://www-nlpir.nist.gov/projects/duc/data.html">Document
|
||
Understanding Conference (DUC) datasets</a> - Past newswire/paper
|
||
datasets (DUC 2001 - DUC 2007) are available upon request.</li>
|
||
</ul>
|
||
<h4 id="external-curation-links">External Curation Links</h4>
|
||
<ul>
|
||
<li><a href="http://boston.lti.cs.cmu.edu/callan/Data/#DIR">CMU
|
||
List</a></li>
|
||
<li><a
|
||
href="http://nlp.stanford.edu/IR-book/html/htmledition/standard-test-collections-1.html">Stanford
|
||
List</a></li>
|
||
<li><a href="http://web.eecs.utk.edu/research/lsi/corpa.html">University
|
||
of Tennesse Knoxville</a></li>
|
||
</ul>
|
||
<h2 id="talks">Talks</h2>
|
||
<h4 id="technical-talks">Technical Talks</h4>
|
||
<ul>
|
||
<li><a href="https://youtu.be/1X71fTx1LKA">Extreme Classification: A New
|
||
Paradigm for Ranking & Recommendation</a> - Manik Verma (Microsoft
|
||
Research)</li>
|
||
<li><a
|
||
href="https://www.ted.com/talks/tim_berners_lee_on_the_next_web">The
|
||
next web</a> - Tim Berners-Lee (Ted Talk) [Tim Berners-Lee invented the
|
||
World Wide Web. He leads the World Wide Web Consortium (W3C), overseeing
|
||
the Web’s standards and development].</li>
|
||
<li><a
|
||
href="https://www.ted.com/talks/gary_flake_is_pivot_a_turning_point_for_web_exploration?utm_source=tedcomshare&utm_medium=referral&utm_campaign=tedspread">Is
|
||
Pivot a turning point for web exploration?</a> - Gary Flake, Technical
|
||
Fellow at Microsoft (TED Talks).</li>
|
||
<li><a href="http://videolectures.net/wsdm09_dean_cblirs/">Challenges in
|
||
Building Large-Scale Information Retrieval Systems</a> - Jeff Dean (WSDM
|
||
Conference, 2009).</li>
|
||
<li><a href="https://youtu.be/NFCZuzA4cFc">Knowledge-based Information
|
||
Retrieval with Wikipedia</a> - David Wilne (The University of Waikato,
|
||
2008).</li>
|
||
<li><a
|
||
href="https://www.youtube.com/watch?v=SghMq1xBJPI&list=PLdktw5AjQqP2gpQNgHRJaSgEkHiaVLfTi&index=24">Music
|
||
Information Retrieval Using Locality Sensitive Hashing</a> - Steve Tjoa
|
||
(RackSpace Developers) [This talk shows that IR is not just text and
|
||
images].</li>
|
||
<li><a href="https://youtu.be/u6oqr3gMyxk">The Functional Web – The
|
||
Future of Apps and the Web</a> - Liron Shapira (Box Tech Talk).</li>
|
||
<li><a href="https://youtu.be/EnvtsbCfiAI">Information Experience -
|
||
Solution to Information Overload on Web</a> - Doug Imbruce (Techcrunch
|
||
Disrupt)[Doug Imbruce is the Founder of Qwiki, Inc, a technology startup
|
||
in New York, NY, acquired by Yahoo! in 2013].</li>
|
||
<li><a href="https://youtu.be/tnsyhKHalGs">Internet Privacy</a> -
|
||
Dr. Alma Whitten (Google Brussels Tech Talk).</li>
|
||
</ul>
|
||
<h4 id="philosophical-talks">Philosophical Talks</h4>
|
||
<ul>
|
||
<li><a
|
||
href="https://www.ted.com/talks/andreas_ekstrom_the_moral_bias_behind_your_search_results">The
|
||
moral bias behind your search results</a> - Andreas Ekström (Swedish
|
||
Author & Journalist, TED Talk).</li>
|
||
<li><a
|
||
href="https://www.ted.com/talks/eli_pariser_beware_online_filter_bubbles?language=en">Beware
|
||
online “filter bubbles”</a> - Eli Pariser (Author of the Filter Bubble,
|
||
TED Talk).</li>
|
||
<li><a
|
||
href="https://www.ted.com/talks/andy_yen_think_your_email_s_private_think_again">Think
|
||
your email’s private? Think again</a> - Andy Yen (CERN, TED Talk) [This
|
||
talk talks about privacy, which Search Engines intrude into, and how can
|
||
people protect it].</li>
|
||
<li><a href="https://youtu.be/YO0lbdhF30g">Do we have the right to be
|
||
forgotten?</a> - Michael Douglas [TEDx SouthBank].</li>
|
||
<li><a
|
||
href="https://www.ted.com/talks/christopher_m00t_poole_the_case_for_anonymity_online?utm_source=tedcomshare&utm_medium=referral&utm_campaign=tedspread">The
|
||
case for anonymity online</a> - Christopher “moot” Poole” (Ted Talks)
|
||
[Christopher “moot” Poole is founder of 4chan, an online imageboard
|
||
whose anonymous denizens have spawned the web’s most bewildering and
|
||
influential subculture].</li>
|
||
</ul>
|
||
<h2 id="conferences">Conferences</h2>
|
||
<ul>
|
||
<li>Web Search and Data Mining Conference - <a
|
||
href="http://www.wsdm-conference.org">WSDM</a>.</li>
|
||
<li>Special Interests Group on Information Retrieval - <a
|
||
href="http://sigir.org">SIGIR</a>.</li>
|
||
<li>Text REtrieval Conference - <a
|
||
href="http://trec.nist.gov">TREC</a>.</li>
|
||
<li>European Conference on Information Retrieval - <a
|
||
href="http://irsg.bcs.org/ecir.php">ECIR</a>.</li>
|
||
<li>World Wide Web Conference - <a
|
||
href="http://www.iw3c2.org">WWW</a>.</li>
|
||
<li>Conference on Information and Knowledge Management - <a
|
||
href="http://www.cikmconference.org">CIKM</a>.</li>
|
||
<li>Forum for Information Retrieval Evaluation - <a
|
||
href="http://fire.irsi.res.in/fire/2016/home">FIRE</a>.</li>
|
||
<li>Conference and Labs of the Evaluation Forum - <a
|
||
href="http://www.clef-initiative.eu/">CLEF</a>.</li>
|
||
<li>NII Testsbeds and Community for Information access Research - <a
|
||
href="http://research.nii.ac.jp/ntcir/index-en.html">NTCIR</a>.</li>
|
||
</ul>
|
||
<h2 id="blogs">Blogs</h2>
|
||
<ul>
|
||
<li><a
|
||
href="http://research.google.com/pubs/InformationRetrievalandtheWeb.html">Information
|
||
Retrieval and the Web</a> - Google Research.</li>
|
||
<li><a href="https://irthoughts.wordpress.com">IR Thoughts</a> -
|
||
Dr. Edel Garcia.</li>
|
||
</ul>
|
||
<h4 id="interesting-reads">Interesting Reads</h4>
|
||
<ul>
|
||
<li><a
|
||
href="https://www.technologyreview.com/s/602807/deep-neural-network-learns-to-judge-books-by-their-covers/?utm_campaign=socialflow&utm_source=facebook&utm_medium=post">Deep
|
||
Neural Network Learns to Judge Books by Their Covers</a> - Information
|
||
Extraction.</li>
|
||
<li><a
|
||
href="http://www.theverge.com/2016/11/7/13551210/ai-deep-learning-lip-reading-accuracy-oxford">Can
|
||
Deep Learning help solve Deep Learning</a> - Information Retrieval from
|
||
Lip Reading.</li>
|
||
<li><a
|
||
href="https://enterprisersproject.com/article/2016/9/reduce-biases-machine-learning-start-openly-discussing-problem?sc_cid=70160000000q8YTAAY">To
|
||
reduce biases in machine learning start with openly discussing the
|
||
problem</a> - Bias in Relevance.</li>
|
||
<li><a
|
||
href="https://www.wired.com/2016/11/woah-googles-ai-really-good-pictionary/">Whoa,
|
||
Google’s AI Is Really Good at Pictionary</a> - Sketch-based search.</li>
|
||
<li><a
|
||
href="https://www.technologyreview.com/s/602955/neural-network-learns-to-identify-criminals-by-their-faces/?utm_campaign=socialflow&utm_source=facebook&utm_medium=post">Neural
|
||
Network Learns to Identify Criminals by Their Faces</a> - Information
|
||
Extraction.</li>
|
||
</ul>
|
||
<h2 id="license">License</h2>
|
||
<p><a href="https://creativecommons.org/publicdomain/zero/1.0/"><img
|
||
src="http://mirrors.creativecommons.org/presskit/buttons/88x31/svg/cc-zero.svg"
|
||
alt="CC0" /></a></p>
|
||
<p>To the extent possible under law, <a
|
||
href="http://www.harshalpriyadarshi.com">Harshal Priyadarshi</a> and all
|
||
the contributors have waived all copyright and related or neighboring
|
||
rights to this work.</p>
|
||
<p><a
|
||
href="https://github.com/harpribot/awesome-information-retrieval">informationretrieval.md
|
||
Github</a></p>
|