2011 lines
159 KiB
Plaintext
2011 lines
159 KiB
Plaintext
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome Gradient Boosting Research Papers.[0m
|
||
[38;5;14m[1m![0m[38;5;12mAwesome[39m[38;5;14m[1m [0m[38;5;14m[1m(https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)[0m[38;5;12m [39m[38;5;12m(https://github.com/sindresorhus/awesome)[39m[38;5;12m [39m[38;5;14m[1m![0m[38;5;12mPRs[39m[38;5;12m [39m[38;5;12mWelcome[39m[38;5;14m[1m [0m
|
||
[38;5;14m[1m(https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)[0m[38;5;12m [39m[38;5;12m(http://makeapullrequest.com)[39m[38;5;12m [39m[38;5;12m![39m[38;5;14m[1mLicense[0m[38;5;12m [39m
|
||
[38;5;12m(https://img.shields.io/github/license/benedekrozemberczki/awesome-gradient-boosting-papers.svg?color=blue)[39m[38;5;12m [39m[38;5;14m[1m![0m[38;5;12mrepo[39m[38;5;12m [39m[38;5;12msize[39m[38;5;14m[1m [0m
|
||
[38;5;14m[1m(https://img.shields.io/github/repo-size/benedekrozemberczki/awesome-gradient-boosting-papers.svg)[0m[38;5;12m [39m[38;5;12m(https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers/archive/master.zip)[39m
|
||
[38;5;14m[1m![0m[38;5;12mbenedekrozemberczki[39m[38;5;14m[1m [0m[38;5;14m[1m(https://img.shields.io/twitter/follow/benrozemberczki?style=social&logo=twitter)[0m[38;5;12m [39m[38;5;12m(https://twitter.com/intent/follow?screen_name=benrozemberczki)[39m
|
||
|
||
[38;5;12m [39m
|
||
|
||
|
||
[38;5;238m―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――[39m
|
||
|
||
[38;5;12mA curated list of gradient and adaptive boosting papers with implementations from the following conferences:[39m
|
||
|
||
[38;5;12m- Machine learning[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeurIPS[0m[38;5;12m (https://nips.cc/) [39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mICML[0m[38;5;12m (https://icml.cc/) [39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mICLR[0m[38;5;12m (https://iclr.cc/)[39m
|
||
[38;5;12m- Computer vision[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCVPR[0m[38;5;12m (http://cvpr2019.thecvf.com/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mICCV[0m[38;5;12m (http://iccv2019.thecvf.com/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mECCV[0m[38;5;12m (https://eccv2018.org/)[39m
|
||
[38;5;12m- Natural language processing[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mACL[0m[38;5;12m (http://www.acl2019.org/EN/index.xhtml)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNAACL[0m[38;5;12m (https://naacl2019.org/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEMNLP[0m[38;5;12m (https://www.emnlp-ijcnlp2019.org/) [39m
|
||
[38;5;12m- Data[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKDD[0m[38;5;12m (https://www.kdd.org/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCIKM[0m[38;5;12m (http://www.cikmconference.org/) [39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mICDM[0m[38;5;12m (http://icdm2019.bigke.org/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSDM[0m[38;5;12m (https://www.siam.org/Conferences/CM/Conference/sdm19) [39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPAKDD[0m[38;5;12m (http://pakdd2019.medmeeting.org)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPKDD/ECML[0m[38;5;12m (http://ecmlpkdd2019.org)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRECSYS[0m[38;5;12m (https://recsys.acm.org/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSIGIR[0m[38;5;12m (https://sigir.org/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mWWW[0m[38;5;12m (https://www2019.thewebconf.org/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mWSDM[0m[38;5;12m (www.wsdm-conference.org) [39m
|
||
[38;5;12m- Artificial intelligence[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAAAI[0m[38;5;12m (https://www.aaai.org/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAISTATS[0m[38;5;12m (https://www.aistats.org/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mICANN[0m[38;5;12m (https://e-nns.org/icann2019/) [39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIJCAI[0m[38;5;12m (https://www.ijcai.org/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mUAI[0m[38;5;12m (http://www.auai.org/)[39m
|
||
|
||
[38;5;12mSimilar[39m[38;5;12m [39m[38;5;12mcollections[39m[38;5;12m [39m[38;5;12mabout[39m[38;5;12m [39m[38;5;14m[1mgraph[0m[38;5;14m[1m [0m[38;5;14m[1mclassification[0m[38;5;12m [39m[38;5;12m(https://github.com/benedekrozemberczki/awesome-graph-classification),[39m[38;5;12m [39m[38;5;14m[1mclassification/regression[0m[38;5;14m[1m [0m[38;5;14m[1mtree[0m[38;5;12m [39m
|
||
[38;5;12m(https://github.com/benedekrozemberczki/awesome-decision-tree-papers),[39m[38;5;12m [39m[38;5;14m[1mfraud[0m[38;5;14m[1m [0m[38;5;14m[1mdetection[0m[38;5;12m [39m[38;5;12m(https://github.com/benedekrozemberczki/awesome-fraud-detection-papers),[39m[38;5;12m [39m[38;5;14m[1mMonte[0m[38;5;14m[1m [0m[38;5;14m[1mCarlo[0m[38;5;14m[1m [0m[38;5;14m[1mtree[0m[38;5;14m[1m [0m[38;5;14m[1msearch[0m[38;5;12m [39m
|
||
[38;5;12m(https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers),[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;14m[1mcommunity[0m[38;5;14m[1m [0m[38;5;14m[1mdetection[0m[38;5;12m [39m[38;5;12m(https://github.com/benedekrozemberczki/awesome-community-detection)[39m[38;5;12m [39m[38;5;12mpapers[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m
|
||
[38;5;12mimplementations.[39m
|
||
|
||
[38;2;255;187;0m[4m2023[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mComputing Abductive Explanations for Boosted Trees (AISTATS 2023)[0m
|
||
[38;5;12m - Gilles Audemard, Jean-Marie Lagniez, Pierre Marquis, Nicolas Szczepanski[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2209.07740)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosted Off-Policy Learning (AISTATS 2023)[0m
|
||
[38;5;12m - Ben London, Levi Lu, Ted Sandler, Thorsten Joachims[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2208.01148)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mVariational Boosted Soft Trees (AISTATS 2023)[0m
|
||
[38;5;12m - Tristan Cinquin, Tammo Rukat, Philipp Schmidt, Martin Wistuba, Artur Bekasov[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2302.10706)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mKrylov-Bellman boosting: Super-linear policy evaluation in general state spaces (AISTATS 2023)[0m
|
||
[38;5;12m - Eric Xia, Martin J. Wainwright[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2210.11377)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFairGBM: Gradient Boosting with Fairness Constraints (ICLR 2023)[0m
|
||
[38;5;12m - André Ferreira Cruz, Catarina Belém, João Bravo, Pedro Saleiro, Pedro Bizarro[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2209.07850)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mGradient Boosting Performs Gaussian Process Inference (ICLR 2023)[0m
|
||
[38;5;12m - Aleksei Ustimenko, Artem Beliakov, Liudmila Prokhorenkova[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2206.05608)[39m
|
||
|
||
|
||
[38;2;255;187;0m[4m2022[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mTransBoost: A Boosting-Tree Kernel Transfer Learning Algorithm for Improving Financial Inclusion (AAAI 2022)[0m
|
||
[38;5;12m - Yiheng Sun, Tian Lu, Cong Wang, Yuan Li, Huaiyu Fu, Jingran Dong, Yunjie Xu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2112.02365)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Resilient Distributed Boosting Algorithm (ICML 2022)[0m
|
||
[38;5;12m - Yuval Filmus, Idan Mehalel, Shay Moran[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2206.04713)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFast Provably Robust Decision Trees and Boosting (ICML 2022)[0m
|
||
[38;5;12m - Jun-Qi Guo, Ming-Zhuo Teng, Wei Gao, Zhi-Hua Zhou[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://proceedings.mlr.press/v162/guo22h.html)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBuilding Robust Ensembles via Margin Boosting (ICML 2022)[0m
|
||
[38;5;12m - Dinghuai Zhang, Hongyang Zhang, Aaron C. Courville, Yoshua Bengio, Pradeep Ravikumar, Arun Sai Suggala[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2206.03362)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mRetrieval-Based Gradient Boosting Decision Trees for Disease Risk Assessment (KDD 2022)[0m
|
||
[38;5;12m - Handong Ma, Jiahang Cao, Yuchen Fang, Weinan Zhang, Wenbo Sheng, Shaodian Zhang, Yong Yu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/doi/abs/10.1145/3534678.3539052)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFederated Functional Gradient Boosting (AISTATS 2022)[0m
|
||
[38;5;12m - Zebang Shen, Hamed Hassani, Satyen Kale, Amin Karbasi[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2103.06972)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mExactBoost: Directly Boosting the Margin in Combinatorial and Non-decomposable Metrics (AISTATS 2022)[0m
|
||
[38;5;12m - Daniel Csillag, Carolina Piazza, Thiago Ramos, João Vitor Romano, Roberto I. Oliveira, Paulo Orenstein[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://proceedings.mlr.press/v151/csillag22a.html)[39m
|
||
|
||
[38;2;255;187;0m[4m2021[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mPrecision-based Boosting (AAAI 2021)[0m
|
||
[38;5;12m - Mohammad Hossein Nikravan, Marjan Movahedan, Sandra Zilles[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ojs.aaai.org/index.php/AAAI/article/view/17105)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBNN: Boosting Neural Network Framework Utilizing Limited Amount of Data (CIKM 2021)[0m
|
||
[38;5;12m - Amit Livne, Roy Dor, Bracha Shapira, Lior Rokach[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/doi/abs/10.1145/3459637.3482414)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mUnsupervised Domain Adaptation for Static Malware Detection based on Gradient Boosting Trees (CIKM 2021)[0m
|
||
[38;5;12m - Panpan Qi, Wei Wang, Lei Zhu, See-Kiong Ng[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/doi/pdf/10.1145/3459637.3482400)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mIndividually Fair Gradient Boosting (ICLR 2021)[0m
|
||
[38;5;12m - Alexander Vargo, Fan Zhang, Mikhail Yurochkin, Yuekai Sun[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2103.16785)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAre Neural Rankers still Outperformed by Gradient Boosted Decision Trees (ICLR 2021)[0m
|
||
[38;5;12m - Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui Wang, Michael Bendersky, Marc Najork[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://iclr.cc/virtual/2021/spotlight/3536)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAdaGCN: Adaboosting Graph Convolutional Networks into Deep Models (ICLR 2021)[0m
|
||
[38;5;12m - Ke Sun, Zhanxing Zhu, Zhouchen Lin[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1908.05081)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/datake/AdaGCN)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mUncertainty in Gradient Boosting via Ensembles (ICLR 2021)[0m
|
||
[38;5;12m - Andrey Malinin, Liudmila Prokhorenkova, Aleksei Ustimenko[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2006.10562)[39m
|
||
[38;5;12m - [39m
|
||
[38;5;12m- [39m[38;5;14m[1mBoost then Convolve: Gradient Boosting Meets Graph Neural Networks (ICLR 2021)[0m
|
||
[38;5;12m - Sergei Ivanov, Liudmila Prokhorenkova[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2101.08543)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mGBHT: Gradient Boosting Histogram Transform for Density Estimation (ICML 2021)[0m
|
||
[38;5;12m - Jingyi Cui, Hanyuan Hang, Yisen Wang, Zhouchen Lin[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2106.05738)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting for Online Convex Optimization (ICML 2021)[0m
|
||
[38;5;12m - Elad Hazan, Karan Singh[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2102.09305)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAccuracy, Interpretability, and Differential Privacy via Explainable Boosting (ICML 2021)[0m
|
||
[38;5;12m - Harsha Nori, Rich Caruana, Zhiqi Bu, Judy Hanwen Shen, Janardhan Kulkarni[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2106.09680)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mSGLB: Stochastic Gradient Langevin Boosting (ICML 2021)[0m
|
||
[38;5;12m - Aleksei Ustimenko, Liudmila Prokhorenkova[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2001.07248)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mSelf-boosting for Feature Distillation (IJCAI 2021)[0m
|
||
[38;5;12m - Yulong Pei, Yanyun Qu, Junping Zhang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.ijcai.org/proceedings/2021/131)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Variational Inference With Locally Adaptive Step-Sizes (IJCAI 2021)[0m
|
||
[38;5;12m - Gideon Dresdner, Saurav Shekhar, Fabian Pedregosa, Francesco Locatello, Gunnar Rätsch[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2105.09240)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mProbabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression (KDD 2021)[0m
|
||
[38;5;12m - Olivier Sprangers, Sebastian Schelter, Maarten de Rijke[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2106.01682)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mTask-wise Split Gradient Boosting Trees for Multi-center Diabetes Prediction (KDD 2021)[0m
|
||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mMingcheng[39m[38;5;12m [39m[38;5;12mChen,[39m[38;5;12m [39m[38;5;12mZhenghui[39m[38;5;12m [39m[38;5;12mWang,[39m[38;5;12m [39m[38;5;12mZhiyun[39m[38;5;12m [39m[38;5;12mZhao,[39m[38;5;12m [39m[38;5;12mWeinan[39m[38;5;12m [39m[38;5;12mZhang,[39m[38;5;12m [39m[38;5;12mXiawei[39m[38;5;12m [39m[38;5;12mGuo,[39m[38;5;12m [39m[38;5;12mJian[39m[38;5;12m [39m[38;5;12mShen,[39m[38;5;12m [39m[38;5;12mYanru[39m[38;5;12m [39m[38;5;12mQu,[39m[38;5;12m [39m[38;5;12mJieli[39m[38;5;12m [39m[38;5;12mLu,[39m[38;5;12m [39m[38;5;12mMin[39m[38;5;12m [39m[38;5;12mXu,[39m[38;5;12m [39m[38;5;12mYu[39m[38;5;12m [39m[38;5;12mXu,[39m[38;5;12m [39m[38;5;12mTiange[39m[38;5;12m [39m[38;5;12mWang,[39m[38;5;12m [39m[38;5;12mMian[39m[38;5;12m [39m[38;5;12mLi,[39m[38;5;12m [39m[38;5;12mWeiwei[39m[38;5;12m [39m[38;5;12mTu,[39m[38;5;12m [39m[38;5;12mYong[39m[38;5;12m [39m[38;5;12mYu,[39m[38;5;12m [39m[38;5;12mYufang[39m[38;5;12m [39m[38;5;12mBi,[39m[38;5;12m [39m[38;5;12mWeiqing[39m[38;5;12m [39m[38;5;12mWang,[39m[38;5;12m [39m
|
||
[38;5;12mGuang[39m[38;5;12m [39m[38;5;12mNing[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2108.07107)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBetter Short than Greedy: Interpretable Models through Optimal Rule Boosting (SDM 2021)[0m
|
||
[38;5;12m - Mario Boley, Simon Teshuva, Pierre Le Bodic, Geoffrey I. Webb[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2101.08380)[39m
|
||
|
||
[38;2;255;187;0m[4m2020[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Unified Framework for Knowledge Intensive Gradient Boosting: Leveraging Human Experts for Noisy Sparse Domains (AAAI 2020)[0m
|
||
[38;5;12m - Harsha Kokel, Phillip Odom, Shuo Yang, Sriraam Natarajan[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://personal.utdallas.edu/~sriraam.natarajan/Papers/Kokel_AAAI20.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/harshakokel/KiGB)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mPractical Federated Gradient Boosting Decision Trees (AAAI 2020)[0m
|
||
[38;5;12m - Qinbin Li, Zeyi Wen, Bingsheng He[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1911.04206)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mPrivacy-Preserving Gradient Boosting Decision Trees (AAAI 2020)[0m
|
||
[38;5;12m - Qinbin Li, Zhaomin Wu, Zeyi Wen, Bingsheng He[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1911.04209)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mAccelerating Gradient Boosting Machines (AISTATS 2020)[0m
|
||
[38;5;12m - Haihao Lu, Sai Praneeth Karimireddy, Natalia Ponomareva, Vahab S. Mirrokni[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1903.08708)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mScalable Feature Selection for Multitask Gradient Boosted Trees (AISTATS 2020)[0m
|
||
[38;5;12m - Cuize Han, Nikhil Rao, Daria Sorokina, Karthik Subbian[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://proceedings.mlr.press/v108/han20a.html)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFunctional Gradient Boosting for Learning Residual-like Networks with Statistical Guarantees (AISTATS 2020)[0m
|
||
[38;5;12m - Atsushi Nitanda, Taiji Suzuki[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://proceedings.mlr.press/v108/nitanda20a.html)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mLearning Optimal Decision Trees with MaxSAT and its Integration in AdaBoost (IJCAI 2020)[0m
|
||
[38;5;12m - Hao Hu, Mohamed Siala, Emmanuel Hebrard, Marie-José Huguet[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.ijcai.org/Proceedings/2020/163)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMixBoost: Synthetic Oversampling using Boosted Mixup for Handling Extreme Imbalance (ICDM 2020)[0m
|
||
[38;5;12m - Anubha Kabra, Ayush Chopra, Nikaash Puri, Pinkesh Badjatiya, Sukriti Verma, Piyush Gupta, Balaji Krishnamurthy[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2009.01571)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting for Control of Dynamical Systems (ICML 2020)[0m
|
||
[38;5;12m - Naman Agarwal, Nataly Brukhim, Elad Hazan, Zhou Lu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1906.08720)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mQuantum Boosting (ICML 2020)[0m
|
||
[38;5;12m - Srinivasan Arunachalam, Reevu Maity[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2002.05056)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosted Histogram Transform for Regression (ICML 2020)[0m
|
||
[38;5;12m - Yuchao Cai, Hanyuan Hang, Hanfang Yang, Zhouchen Lin[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://proceedings.icml.cc/static/paper_files/icml/2020/2360-Paper.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Frank-Wolfe by Chasing Gradients (ICML 2020)[0m
|
||
[38;5;12m - Cyrille W. Combettes, Sebastian Pokutta[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2003.06369)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mNGBoost: Natural Gradient Boosting for Probabilistic Prediction (ICML 2020)[0m
|
||
[38;5;12m - Tony Duan, Avati Anand, Daisy Yi Ding, Khanh K. Thai, Sanjay Basu, Andrew Y. Ng, Alejandro Schuler[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1910.03225)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/stanfordmlgroup/ngboost)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mOnline Agnostic Boosting via Regret Minimization (NeurIPS 2020)[0m
|
||
[38;5;12m - Nataly Brukhim, Xinyi Chen, Elad Hazan, Shay Moran[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2003.01150)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting First-Order Methods by Shifting Objective: New Schemes with Faster Worst Case Rates (NeurIPS 2020)[0m
|
||
[38;5;12m - Kaiwen Zhou, Anthony Man-Cho So, James Cheng[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2005.12061)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOptimization and Generalization Analysis of Transduction through Gradient Boosting and Application to Multi-scale Graph Neural Networks (NeurIPS 2020)[0m
|
||
[38;5;12m - Kenta Oono, Taiji Suzuki[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2006.08550)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/delta2323/GB-GNN)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mGradient Boosted Normalizing Flows (NeurIPS 2020)[0m
|
||
[38;5;12m - Robert Giaquinto, Arindam Banerjee[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/2002.11896)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/robert-giaquinto/gradient-boosted-normalizing-flows)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mHyperML: A Boosting Metric Learning Approach in Hyperbolic Space for Recommender Systems (WSDM 2020)[0m
|
||
[38;5;12m - Lucas Vinh Tran, Yi Tay, Shuai Zhang, Gao Cong, Xiaoli Li[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1809.01703)[39m
|
||
|
||
[38;2;255;187;0m[4m2019[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mInduction of Non-Monotonic Logic Programs to Explain Boosted Tree Models Using LIME (AAAI 2019)[0m
|
||
[38;5;12m - Farhad Shakerin, Gopal Gupta[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1808.00629)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mVerifying Robustness of Gradient Boosted Models (AAAI 2019)[0m
|
||
[38;5;12m - Gil Einziger, Maayan Goldstein, Yaniv Sa'ar, Itai Segall[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/pdf/1906.10991.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOnline Multiclass Boosting with Bandit Feedback (AISTATS 2019)[0m
|
||
[38;5;12m - Daniel T. Zhang, Young Hun Jung, Ambuj Tewari[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1810.05290)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mAdaFair: Cumulative Fairness Adaptive Boosting (CIKM 2019)[0m
|
||
[38;5;12m - Vasileios Iosifidis, Eirini Ntoutsi[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1909.08982)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mInterpretable MTL from Heterogeneous Domains using Boosted Tree (CIKM 2019)[0m
|
||
[38;5;12m - Ya-Lin Zhang, Longfei Li[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/citation.cfm?id=3357384.3358072)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAdversarial Training of Gradient-Boosted Decision Trees (CIKM 2019)[0m
|
||
[38;5;12m - Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.dais.unive.it/~calzavara/papers/cikm19.pdf)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mFair Adversarial Gradient Tree Boosting (ICDM 2019)[0m
|
||
[38;5;12m - Vincent Grari, Boris Ruf, Sylvain Lamprier, Marcin Detyniecki[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1911.05369)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosted Density Estimation Remastered (ICML 2019)[0m
|
||
[38;5;12m - Zac Cranko, Richard Nock[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1803.08178)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mLossless or Quantized Boosting with Integer Arithmetic (ICML 2019)[0m
|
||
[38;5;12m - Richard Nock, Robert C. Williamson[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://proceedings.mlr.press/v97/nock19a.html)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOptimal Minimal Margin Maximization with Boosting (ICML 2019)[0m
|
||
[38;5;12m - Alexander Mathiasen, Kasper Green Larsen, Allan Grønlund[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1901.10789)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mKatalyst: Boosting Convex Katayusha for Non-Convex Problems with a Large Condition Number (ICML 2019)[0m
|
||
[38;5;12m - Zaiyi Chen, Yi Xu, Haoyuan Hu, Tianbao Yang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1809.06754)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting for Comparison-Based Learning (IJCAI 2019)[0m
|
||
[38;5;12m - Michaël Perrot, Ulrike von Luxburg[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1810.13333)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAugBoost: Gradient Boosting Enhanced with Step-Wise Feature Augmentation (IJCAI 2019)[0m
|
||
[38;5;12m - Philip Tannor, Lior Rokach[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.ijcai.org/proceedings/2019/0493.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mGradient Boosting with Piece-Wise Linear Regression Trees (IJCAI 2019)[0m
|
||
[38;5;12m - Yu Shi, Jian Li, Zhize Li[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1802.05640)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/GBDT-PL/GBDT-PL)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mSpiderBoost and Momentum: Faster Variance Reduction Algorithms (NeurIPS 2019)[0m
|
||
[38;5;12m - Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, Vahid Tarokh[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://papers.nips.cc/paper/8511-spiderboost-and-momentum-faster-variance-reduction-algorithms)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFaster Boosting with Smaller Memory (NeurIPS 2019)[0m
|
||
[38;5;12m - Julaiti Alafate, Yoav Freund[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1901.09047)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mRegularized Gradient Boosting (NeurIPS 2019)[0m
|
||
[38;5;12m - Corinna Cortes, Mehryar Mohri, Dmitry Storcheus[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/8784-regularized-gradient-boosting)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMargin-Based Generalization Lower Bounds for Boosted Classifiers (NeurIPS 2019)[0m
|
||
[38;5;12m - Allan Grønlund, Lior Kamma, Kasper Green Larsen, Alexander Mathiasen, Jelani Nelson[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1909.12518)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMinimal Variance Sampling in Stochastic Gradient Boosting (NeurIPS 2019)[0m
|
||
[38;5;12m - Bulat Ibragimov, Gleb Gusev[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/9645-minimal-variance-sampling-in-stochastic-gradient-boosting)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mUniversal Boosting Variational Inference (NeurIPS 2019)[0m
|
||
[38;5;12m - Trevor Campbell, Xinglong Li[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1906.01235)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mProvably Robust Boosted Decision Stumps and Trees against Adversarial Attacks (NeurIPS 2019)[0m
|
||
[38;5;12m - Maksym Andriushchenko, Matthias Hein[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1906.03526)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/max-andr/provably-robust-boosting)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mBlock-distributed Gradient Boosted Trees (SIGIR 2019)[0m
|
||
[38;5;12m - Theodore Vasiloudis, Hyunsu Cho, Henrik Boström[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1904.10522)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mLearning to Rank in Theory and Practice: From Gradient Boosting to Neural Networks and Unbiased Learning (SIGIR 2019)[0m
|
||
[38;5;12m - Claudio Lucchese, Franco Maria Nardini, Rama Kumar Pasumarthi, Sebastian Bruch, Michael Bendersky, Xuanhui Wang, Harrie Oosterhuis, Rolf Jagerman, Maarten de Rijke[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.researchgate.net/publication/334579610_Learning_to_Rank_in_Theory_and_Practice_From_Gradient_Boosting_to_Neural_Networks_and_Unbiased_Learning)[39m
|
||
|
||
[38;2;255;187;0m[4m2018[0m
|
||
[38;5;12m- [39m[38;5;14m[1mBoosted Generative Models (AAAI 2018)[0m
|
||
[38;5;12m - Aditya Grover, Stefano Ermon[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/pdf/1702.08484.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/ermongroup/bgm)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Variational Inference: an Optimization Perspective (AISTATS 2018)[0m
|
||
[38;5;12m - Francesco Locatello, Rajiv Khanna, Joydeep Ghosh, Gunnar Rätsch[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1708.01733)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/ratschlab/boosting-bbvi)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOnline Boosting Algorithms for Multi-label Ranking (AISTATS 2018)[0m
|
||
[38;5;12m - Young Hun Jung, Ambuj Tewari[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1710.08079)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/yhjung88/OnlineMLRBoostingWithVFDT)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mDualBoost: Handling Missing Values with Feature Weights and Weak Classifiers that Abstain (CIKM 2018)[0m
|
||
[38;5;12m - Weihong Wang, Jie Xu, Yang Wang, Chen Cai, Fang Chen[39m
|
||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||
[38;5;12m(http://delivery.acm.org/10.1145/3270000/3269319/p1543-wang.pdf?ip=129.215.164.203&id=3269319&acc=ACTIVE%20SERVICE&key=C2D842D97AC95F7A%2EEB9E991028F4E1F1%2E4D4702B0C3E38B35%2E4D4702B0C3E38B3[39m
|
||
[38;5;12m5&__acm__=1558633895_f01b39fd47b943fd01eade763a397e04)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFunctional Gradient Boosting based on Residual Network Perception (ICML 2018)[0m
|
||
[38;5;12m - Atsushi Nitanda, Taiji Suzuki[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1802.09031)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/anitan0925/ResFGB)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFinding Influential Training Samples for Gradient Boosted Decision Trees (ICML 2018)[0m
|
||
[38;5;12m - Boris Sharchilev, Yury Ustinovskiy, Pavel Serdyukov, Maarten de Rijke[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1802.06640)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mLearning Deep ResNet Blocks Sequentially using Boosting Theory (ICML 2018)[0m
|
||
[38;5;12m - Furong Huang, Jordan T. Ash, John Langford, Robert E. Schapire[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1706.04964)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/JordanAsh/boostresnet)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mUCBoost: A Boosting Approach to Tame Complexity and Optimality for Stochastic Bandits (IJCAI 2018)[0m
|
||
[38;5;12m - Fang Liu, Sinong Wang, Swapna Buccapatnam, Ness B. Shroff[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.ijcai.org/proceedings/2018/0338.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://smpybandits.github.io/docs/Policies.UCBoost.html)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAdaboost with Auto-Evaluation for Conversational Models (IJCAI 2018)[0m
|
||
[38;5;12m - Juncen Li, Ping Luo, Ganbin Zhou, Fen Lin, Cheng Niu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.ijcai.org/proceedings/2018/0580.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mEnsemble Neural Relation Extraction with Adaptive Boosting (IJCAI 2018)[0m
|
||
[38;5;12m - Dongdong Yang, Senzhang Wang, Zhoujun Li[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.ijcai.org/proceedings/2018/0630.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mCatBoost: Unbiased Boosting with Categorical Features (NIPS 2018)[0m
|
||
[38;5;12m - Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, Andrey Gulin[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/7898-catboost-unbiased-boosting-with-categorical-features.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/catboost/catboost)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMultitask Boosting for Survival Analysis with Competing Risks (NIPS 2018)[0m
|
||
[38;5;12m - Alexis Bellot, Mihaela van der Schaar[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/7413-multitask-boosting-for-survival-analysis-with-competing-risks)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMulti-Layered Gradient Boosting Decision Trees (NIPS 2018)[0m
|
||
[38;5;12m - Ji Feng, Yang Yu, Zhi-Hua Zhou[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/7614-multi-layered-gradient-boosting-decision-trees.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/kingfengji/mGBDT)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosted Sparse and Low-Rank Tensor Regression (NIPS 2018)[0m
|
||
[38;5;12m - Lifang He, Kun Chen, Wanwan Xu, Jiayu Zhou, Fei Wang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1811.01158)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/LifangHe/NeurIPS18_SURF)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mSelective Gradient Boosting for Effective Learning to Rank (SIGIR 2018)[0m
|
||
[38;5;12m - Claudio Lucchese, Franco Maria Nardini, Raffaele Perego, Salvatore Orlando, Salvatore Trani[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://quickrank.isti.cnr.it/selective-data/selective-SIGIR2018.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/hpclab/quickrank/blob/master/documentation/selective.md)[39m
|
||
|
||
[38;2;255;187;0m[4m2017[0m
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting for Real-Time Multivariate Time Series Classification (AAAI 2017)[0m
|
||
[38;5;12m - Haishuai Wang, Jun Wu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14852/14241)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mCross-Domain Sentiment Classification via Topic-Related TrAdaBoost (AAAI 2017)[0m
|
||
[38;5;12m - Xingchang Huang, Yanghui Rao, Haoran Xie, Tak-Lam Wong, Fu Lee Wang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/826c/c83d98a5c4c7dcc02be1f4dd9c27e2b99670.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/xchhuang/cross-domain-sentiment-classification)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mExtreme Gradient Boosting and Behavioral Biometrics (AAAI 2017)[0m
|
||
[38;5;12m - Benjamin Manning[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/8c6e/6c887d6d47dda3f0c73297fd4da516fef1ee.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFeaBoost: Joint Feature and Label Refinement for Semantic Segmentation (AAAI 2017)[0m
|
||
[38;5;12m - Yulei Niu, Zhiwu Lu, Songfang Huang, Xin Gao, Ji-Rong Wen[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/d566/73be998b3ed38ccbb53551e38758ae8cfc9d.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Complementary Hash Tables for Fast Nearest Neighbor Search (AAAI 2017)[0m
|
||
[38;5;12m - Xianglong Liu, Cheng Deng, Yadong Mu, Zhujin Li[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14336)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mGradient Boosting on Stochastic Data Streams (AISTATS 2017)[0m
|
||
[38;5;12m - Hanzhang Hu, Wen Sun, Arun Venkatraman, Martial Hebert, J. Andrew Bagnell[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1703.00377)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoostVHT: Boosting Distributed Streaming Decision Trees (CIKM 2017)[0m
|
||
[38;5;12m - Theodore Vasiloudis, Foteini Beligianni, Gianmarco De Francisci Morales[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://melmeric.files.wordpress.com/2010/05/boostvht-boosting-distributed-streaming-decision-trees.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFast Boosting Based Detection Using Scale Invariant Multimodal Multiresolution Filtered Features (CVPR 2017)[0m
|
||
[38;5;12m - Arthur Daniel Costea, Robert Varga, Sergiu Nedevschi[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://openaccess.thecvf.com/content_cvpr_2017/papers/Costea_Fast_Boosting_Based_CVPR_2017_paper.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBIER - Boosting Independent Embeddings Robustly (ICCV 2017)[0m
|
||
[38;5;12m - Michael Opitz, Georg Waltner, Horst Possegger, Horst Bischof[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://openaccess.thecvf.com/content_ICCV_2017/papers/Opitz_BIER_-_Boosting_ICCV_2017_paper.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/mop/bier)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAn Analysis of Boosted Linear Classifiers on Noisy Data with Applications to Multiple-Instance Learning (ICDM 2017)[0m
|
||
[38;5;12m - Rui Liu, Soumya Ray[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/8215501)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mVariational Boosting: Iteratively Refining Posterior Approximations (ICML 2017)[0m
|
||
[38;5;12m - Andrew C. Miller, Nicholas J. Foti, Ryan P. Adams[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1611.06585)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/andymiller/vboost)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosted Fitted Q-Iteration (ICML 2017)[0m
|
||
[38;5;12m - Samuele Tosatto, Matteo Pirotta, Carlo D'Eramo, Marcello Restelli[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://proceedings.mlr.press/v70/tosatto17a.html)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Simple Multi-Class Boosting Framework with Theoretical Guarantees and Empirical Proficiency (ICML 2017)[0m
|
||
[38;5;12m - Ron Appel, Pietro Perona[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://proceedings.mlr.press/v70/appel17a.html)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/GuillaumeCollin/A-Simple-Multi-Class-Boosting-Framework-with-Theoretical-Guarantees-and-Empirical-Proficiency)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mGradient Boosted Decision Trees for High Dimensional Sparse Output (ICML 2017)[0m
|
||
[38;5;12m - Si Si, Huan Zhang, S. Sathiya Keerthi, Dhruv Mahajan, Inderjit S. Dhillon, Cho-Jui Hsieh[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://proceedings.mlr.press/v70/si17a.html)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/springdaisy/GBDT)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mLocal Topic Discovery via Boosted Ensemble of Nonnegative Matrix Factorization (IJCAI 2017)[0m
|
||
[38;5;12m - Sangho Suh, Jaegul Choo, Joonseok Lee, Chandan K. Reddy[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://dmkd.cs.vt.edu/papers/IJCAI17.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/benedekrozemberczki/BoostedFactorization)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosted Zero-Shot Learning with Semantic Correlation Regularization (IJCAI 2017)[0m
|
||
[38;5;12m - Te Pi, Xi Li, Zhongfei (Mark) Zhang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1707.08008)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBDT: Gradient Boosted Decision Tables for High Accuracy and Scoring Efficiency (KDD 2017)[0m
|
||
[38;5;12m - Yin Lou, Mikhail Obukhov[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://yinlou.github.io/papers/lou-kdd17.pdf)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mCatBoost: Gradient Boosting with Categorical Features Support (NIPS 2017)[0m
|
||
[38;5;12m - Anna Veronika Dorogush, Vasily Ershov, Andrey Gulin[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1810.11363)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://catboost.ai/)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mCost Efficient Gradient Boosting (NIPS 2017)[0m
|
||
[38;5;12m - Sven Peter, Ferran Diego, Fred A. Hamprecht, Boaz Nadler[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/6753-cost-efficient-gradient-boosting)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/svenpeter42/LightGBM-CEGB)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAdaGAN: Boosting Generative Models (NIPS 2017)[0m
|
||
[38;5;12m - Ilya O. Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, Bernhard Schölkopf[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1701.02386)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/tolstikhin/adagan)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mLightGBM: A Highly Efficient Gradient Boosting Decision Tree (NIPS 2017)[0m
|
||
[38;5;12m - Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, Tie-Yan Liu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://lightgbm.readthedocs.io/en/latest/)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mEarly Stopping for Kernel Boosting Algorithms: A General Analysis with Localized Complexities (NIPS 2017)[0m
|
||
[38;5;12m - Yuting Wei, Fanny Yang, Martin J. Wainwright[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1707.01543)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/fanny-yang/EarlyStoppingRKHS)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOnline Multiclass Boosting (NIPS 2017)[0m
|
||
[38;5;12m - Young Hun Jung, Jack Goetz, Ambuj Tewari[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/6693-online-multiclass-boosting.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mStacking Bagged and Boosted Forests for Effective Automated Classification (SIGIR 2017)[0m
|
||
[38;5;12m - Raphael R. Campos, Sérgio D. Canuto, Thiago Salles, Clebson C. A. de Sá, Marcos André Gonçalves[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://homepages.dcc.ufmg.br/~rcampos/papers/sigir2017/appendix.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/raphaelcampos/stacking-bagged-boosted-forests)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mGB-CENT: Gradient Boosted Categorical Embedding and Numerical Trees (WWW 2017)[0m
|
||
[38;5;12m - Qian Zhao, Yue Shi, Liangjie Hong[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://papers.www2017.com.au.s3-website-ap-southeast-2.amazonaws.com/proceedings/p1311.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/grouplens/samantha)[39m
|
||
|
||
[38;2;255;187;0m[4m2016[0m
|
||
[38;5;12m- [39m[38;5;14m[1mGroup Cost-Sensitive Boosting for Multi-Resolution Pedestrian Detection (AAAI 2016)[0m
|
||
[38;5;12m - Chao Zhu, Yuxin Peng[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewFile/11898/12146)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/nnikolaou/Cost-sensitive-Boosting-Tutorial)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mCommunication Efficient Distributed Agnostic Boosting (AISTATS 2016)[0m
|
||
[38;5;12m - Shang-Tse Chen, Maria-Florina Balcan, Duen Horng Chau[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1506.06318)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mLogistic Boosting Regression for Label Distribution Learning (CVPR 2016)[0m
|
||
[38;5;12m - Chao Xing, Xin Geng, Hui Xue[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://zpascal.net/cvpr2016/Xing_Logistic_Boosting_Regression_CVPR_2016_paper.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mStructured Regression Gradient Boosting (CVPR 2016)[0m
|
||
[38;5;12m - Ferran Diego, Fred A. Hamprecht[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://hci.iwr.uni-heidelberg.de/sites/default/files/publications/files/1037872734/diego_16_structured.pdf)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mL-EnsNMF: Boosted Local Topic Discovery via Ensemble of Nonnegative Matrix Factorization (ICDM 2016)[0m
|
||
[38;5;12m - Sangho Suh, Jaegul Choo, Joonseok Lee, Chandan K. Reddy[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/7837872)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/benedekrozemberczki/BoostedFactorization)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMeta-Gradient Boosted Decision Tree Model for Weight and Target Learning (ICML 2016)[0m
|
||
[38;5;12m - Yury Ustinovskiy, Valentina Fedorova, Gleb Gusev, Pavel Serdyukov[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://proceedings.mlr.press/v48/ustinovskiy16.html)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mGeneralized Dictionary for Multitask Learning with Boosting (IJCAI 2016)[0m
|
||
[38;5;12m - Boyu Wang, Joelle Pineau[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.ijcai.org/Proceedings/16/Papers/299.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mSelf-Paced Boost Learning for Classification (IJCAI 2016)[0m
|
||
[38;5;12m - Te Pi, Xi Li, Zhongfei Zhang, Deyu Meng, Fei Wu, Jun Xiao, Yueting Zhuang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/31b6/ab4a0771d5b7405cacdd12c398b1c832729d.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mInteractive Martingale Boosting (IJCAI 2016)[0m
|
||
[38;5;12m - Ashish Kulkarni, Pushpak Burange, Ganesh Ramakrishnan[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.ijcai.org/Proceedings/16/Papers/124.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOptimal and Adaptive Algorithms for Online Boosting (IJCAI 2016)[0m
|
||
[38;5;12m - Alina Beygelzimer, Satyen Kale, Haipeng Luo[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.ijcai.org/Proceedings/16/Papers/614.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/VowpalWabbit/vowpal_wabbit/blob/master/vowpalwabbit/boosting.cc)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mRating-Boosted Latent Topics: Understanding Users and Items with Ratings and Reviews (IJCAI 2016)[0m
|
||
[38;5;12m - Yunzhi Tan, Min Zhang, Yiqun Liu, Shaoping Ma[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/db63/89e0ca49ec0e4686e40604e7489cb4c0729d.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mXGBoost: A Scalable Tree Boosting System (KDD 2016)[0m
|
||
[38;5;12m - Tianqi Chen, Carlos Guestrin[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/dmlc/xgboost)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosted Decision Tree Regression Adjustment for Variance Reduction in Online Controlled Experiments (KDD 2016)[0m
|
||
[38;5;12m - Alexey Poyarkov, Alexey Drutsa, Andrey Khalyavin, Gleb Gusev, Pavel Serdyukov[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.kdd.org/kdd2016/papers/files/adf0653-poyarkovA.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting with Abstention (NIPS 2016)[0m
|
||
[38;5;12m - Corinna Cortes, Giulia DeSalvo, Mehryar Mohri[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/6336-boosting-with-abstention)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mSEBOOST - Boosting Stochastic Learning Using Subspace Optimization Techniques (NIPS 2016)[0m
|
||
[38;5;12m - Elad Richardson, Rom Herskovitz, Boris Ginsburg, Michael Zibulevsky[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/6109-seboost-boosting-stochastic-learning-using-subspace-optimization-techniques.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/eladrich/seboost)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mIncremental Boosting Convolutional Neural Network for Facial Action Unit Recognition (NIPS 2016)[0m
|
||
[38;5;12m - Shizhong Han, Zibo Meng, Ahmed-Shehab Khan, Yan Tong[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1707.05395)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/sjsingh91/IB-CNN)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mGeneralized BROOF-L2R: A General Framework for Learning to Rank Based on Boosting and Random Forests (SIGIR 2016)[0m
|
||
[38;5;12m - Clebson C. A. de Sá, Marcos André Gonçalves, Daniel Xavier de Sousa, Thiago Salles[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/citation.cfm?id=2911540)[39m
|
||
|
||
[38;2;255;187;0m[4m2015[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOnline Boosting Algorithms for Anytime Transfer and Multitask Learning (AAAI 2015)[0m
|
||
[38;5;12m - Boyu Wang, Joelle Pineau[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cs.mcgill.ca/~jpineau/files/bwang-aaai15.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Boosted Multi-Task Model for Pedestrian Detection with Occlusion Handling (AAAI 2015)[0m
|
||
[38;5;12m - Chao Zhu, Yuxin Peng[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9879/9825)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mEfficient Second-Order Gradient Boosting for Conditional Random Fields (AISTATS 2015)[0m
|
||
[38;5;12m - Tianqi Chen, Sameer Singh, Ben Taskar, Carlos Guestrin[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://proceedings.mlr.press/v38/chen15b.html)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mTumblr Blog Recommendation with Boosted Inductive Matrix Completion (CIKM 2015)[0m
|
||
[38;5;12m - Donghyuk Shin, Suleyman Cetintas, Kuang-Chih Lee, Inderjit S. Dhillon[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/citation.cfm?id=2806578)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBasis mapping based boosting for object detection (CVPR 2015)[0m
|
||
[38;5;12m - Haoyu Ren, Ze-Nian Li[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/7298766)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mTracking-by-Segmentation with Online Gradient Boosting Decision Tree (ICCV 2015)[0m
|
||
[38;5;12m - Jeany Son, Ilchae Jung, Kayoung Park, Bohyung Han[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Son_Tracking-by-Segmentation_With_Online_ICCV_2015_paper.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (http://cvlab.postech.ac.kr/research/ogbdt_track/)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mLearning to Boost Filamentary Structure Segmentation (ICCV 2015)[0m
|
||
[38;5;12m - Lin Gu, Li Cheng[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://isg.nist.gov/BII_2015/webPages/pages/2015_BII_program/PDFs/Day_3/Session_9/Abstract_Gu_Lin.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOptimal and Adaptive Algorithms for Online Boosting (ICML 2015)[0m
|
||
[38;5;12m - Alina Beygelzimer, Satyen Kale, Haipeng Luo[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://proceedings.mlr.press/v37/beygelzimer15.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/VowpalWabbit/vowpal_wabbit/blob/master/vowpalwabbit/boosting.cc)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mRademacher Observations, Private Data, and Boosting (ICML 2015)[0m
|
||
[38;5;12m - Richard Nock, Giorgio Patrini, Arik Friedman[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1502.02322)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosted Categorical Restricted Boltzmann Machine for Computational Prediction of Splice Junctions (ICML 2015)[0m
|
||
[38;5;12m - Taehoon Lee, Sungroh Yoon[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/d0ad/beef3053e98dd88ff74f42744417bc65a729.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Direct Boosting Approach for Semi-supervised Classification (IJCAI 2015)[0m
|
||
[38;5;12m - Shaodan Zhai, Tian Xia, Zhongliang Li, Shaojun Wang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.ijcai.org/Proceedings/15/Papers/565.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Boosting Algorithm for Item Recommendation with Implicit Feedback (IJCAI 2015)[0m
|
||
[38;5;12m - Yong Liu, Peilin Zhao, Aixin Sun, Chunyan Miao[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.ijcai.org/Proceedings/15/Papers/255.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/microsoft/recommenders)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mTraining-Time Optimization of a Budgeted Booster (IJCAI 2015)[0m
|
||
[38;5;12m - Yi Huang, Brian Powers, Lev Reyzin[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.ijcai.org/Proceedings/15/Papers/504.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOptimal Action Extraction for Random Forests and Boosted Trees (KDD 2015)[0m
|
||
[38;5;12m - Zhicheng Cui, Wenlin Chen, Yujie He, Yixin Chen[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cse.wustl.edu/~ychen/public/OAE.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOnline Gradient Boosting (NIPS 2015)[0m
|
||
[38;5;12m - Alina Beygelzimer, Elad Hazan, Satyen Kale, Haipeng Luo[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1506.04820)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/crm416/online_boosting)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mBROOF: Exploiting Out-of-Bag Errors Boosting and Random Forests for Effective Automated Classification (SIGIR 2015)[0m
|
||
[38;5;12m - Thiago Salles, Marcos André Gonçalves, Victor Rodrigues, Leonardo C. da Rocha[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://homepages.dcc.ufmg.br/~tsalles/broof/appendix.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Search with Deep Understanding of Contents and Users (WSDM 2015)[0m
|
||
[38;5;12m - Kaihua Zhu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.researchgate.net/publication/282482189_Boosting_Search_with_Deep_Understanding_of_Contents_and_Users)[39m
|
||
|
||
[38;2;255;187;0m[4m2014[0m
|
||
[38;5;12m- [39m[38;5;14m[1mOn Boosting Sparse Parities (AAAI 2014)[0m
|
||
[38;5;12m - Lev Reyzin[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8587)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mJoint Coupled-Feature Representation and Coupled Boosting for AD Diagnosis (CVPR 2014)[0m
|
||
[38;5;12m - Yinghuan Shi, Heung-Il Suk, Yang Gao, Dinggang Shen[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Shi_Joint_Coupled-Feature_Representation_2014_CVPR_paper.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFrom Categories to Individuals in Real Time - A Unified Boosting Approach (CVPR 2014)[0m
|
||
[38;5;12m - David Hall, Pietro Perona[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/6909424)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (http://www.vision.caltech.edu/~dhall/projects/CategoriesToIndividuals/)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mEfficient Boosted Exemplar-Based Face Detection (CVPR 2014)[0m
|
||
[38;5;12m - Haoxiang Li, Zhe Lin, Jonathan Brandt, Xiaohui Shen, Gang Hua[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://users.eecs.northwestern.edu/~xsh835/assets/cvpr14_exemplarfacedetection.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFacial Expression Recognition via a Boosted Deep Belief Network (CVPR 2014)[0m
|
||
[38;5;12m - Ping Liu, Shizhong Han, Zibo Meng, Yan Tong[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/abstract/document/6909629)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mConfidence-Rated Multiple Instance Boosting for Object Detection (CVPR 2014)[0m
|
||
[38;5;12m - Karim Ali, Kate Saenko[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/6909708)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mThe Return of AdaBoost.MH: Multi-Class Hamming Trees (ICLR 2014)[0m
|
||
[38;5;12m - Balázs Kégl[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/pdf/1312.6086.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/aciditeam/acidano/blob/master/acidano/utils/cost.py)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mDeep Boosting (ICML 2014)[0m
|
||
[38;5;12m - Corinna Cortes, Mehryar Mohri, Umar Syed[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://proceedings.mlr.press/v32/cortesb14.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/google/deepboost)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Convergence Rate Analysis for LogitBoost, MART and Their Variant (ICML 2014)[0m
|
||
[38;5;12m - Peng Sun, Tong Zhang, Jie Zhou[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://proceedings.mlr.press/v32/sunc14.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting with Online Binary Learners for the Multiclass Bandit Problem (ICML 2014)[0m
|
||
[38;5;12m - Shang-Tse Chen, Hsuan-Tien Lin, Chi-Jen Lu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cc.gatech.edu/~schen351/paper/icml14boost.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Multi-Step Autoregressive Forecasts (ICML 2014)[0m
|
||
[38;5;12m - Souhaib Ben Taieb, Rob J. Hyndman[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://proceedings.mlr.press/v32/taieb14.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mDynamic Programming Boosting for Discriminative Macro-Action Discovery (ICML 2014)[0m
|
||
[38;5;12m - Leonidas Lefakis, François Fleuret[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://proceedings.mlr.press/v32/lefakis14.html)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mGuess-Averse Loss Functions For Cost-Sensitive Multiclass Boosting (ICML 2014)[0m
|
||
[38;5;12m - Oscar Beijbom, Mohammad J. Saberian, David J. Kriegman, Nuno Vasconcelos[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://proceedings.mlr.press/v32/beijbom14.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Multi-Class Boosting Method with Direct Optimization (KDD 2014)[0m
|
||
[38;5;12m - Shaodan Zhai, Tian Xia, Shaojun Wang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/citation.cfm?id=2623689)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mGradient Boosted Feature Selection (KDD 2014)[0m
|
||
[38;5;12m - Zhixiang Eddie Xu, Gao Huang, Kilian Q. Weinberger, Alice X. Zheng[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1901.04055)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/dmlc/xgboost)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMulti-Class Deep Boosting (NIPS 2014)[0m
|
||
[38;5;12m - Vitaly Kuznetsov, Mehryar Mohri, Umar Syed[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/5514-multi-class-deep-boosting)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mDeconvolution of High Dimensional Mixtures via Boosting with Application to Diffusion-Weighted MRI of Human Brain (NIPS 2014)[0m
|
||
[38;5;12m - Charles Y. Zheng, Franco Pestilli, Ariel Rokem[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/5506-deconvolution-of-high-dimensional-mixtures-via-boosting-with-application-to-diffusion-weighted-mri-of-human-brain)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Drifting-Games Analysis for Online Learning and Applications to Boosting (NIPS 2014)[0m
|
||
[38;5;12m - Haipeng Luo, Robert E. Schapire[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1406.1856)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Boosting Framework on Grounds of Online Learning (NIPS 2014)[0m
|
||
[38;5;12m - Tofigh Naghibi Mohamadpoor, Beat Pfister[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/5512-a-boosting-framework-on-grounds-of-online-learning.pdf)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mGradient Boosting Factorization Machines (RECSYS 2014)[0m
|
||
[38;5;12m - Chen Cheng, Fen Xia, Tong Zhang, Irwin King, Michael R. Lyu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://tongzhang-ml.org/papers/recsys14-fm.pdf)[39m
|
||
|
||
[38;2;255;187;0m[4m2013[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Binary Keypoint Descriptors (CVPR 2013)[0m
|
||
[38;5;12m - Tomasz Trzcinski, C. Mario Christoudias, Pascal Fua, Vincent Lepetit[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://cvlab.epfl.ch/research/page-90554-en-html/research-detect-binboost/)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/biotrump/cvlab-BINBOOST)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mPerturBoost: Practical Confidential Classifier Learning in the Cloud (ICDM 2013)[0m
|
||
[38;5;12m - Keke Chen, Shumin Guo[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/6729587)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMulticlass Semi-Supervised Boosting Using Similarity Learning (ICDM 2013)[0m
|
||
[38;5;12m - Jafar Tanha, Mohammad Javad Saberian, Maarten van Someren[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cse.msu.edu/~rongjin/publications/MultiClass-08.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mSaving Evaluation Time for the Decision Function in Boosting: Representation and Reordering Base Learner (ICML 2013)[0m
|
||
[38;5;12m - Peng Sun, Jie Zhou[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://proceedings.mlr.press/v28/sun13.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mGeneral Functional Matrix Factorization Using Gradient Boosting (ICML 2013)[0m
|
||
[38;5;12m - Tianqi Chen, Hang Li, Qiang Yang, Yong Yu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://w.hangli-hl.com/uploads/3/1/6/8/3168008/icml_2013.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMargins, Shrinkage, and Boosting (ICML 2013)[0m
|
||
[38;5;12m - Matus Telgarsky[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1303.4172)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mQuickly Boosting Decision Trees - Pruning Underachieving Features Early (ICML 2013)[0m
|
||
[38;5;12m - Ron Appel, Thomas J. Fuchs, Piotr Dollár, Pietro Perona[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://proceedings.mlr.press/v28/appel13.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/pdollar/toolbox/blob/master/classify/adaBoostTrain.m)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mHuman Boosting (ICML 2013)[0m
|
||
[38;5;12m - Harsh H. Pareek, Pradeep Ravikumar[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cs.cmu.edu/~pradeepr/paperz/humanboosting.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mCollaborative Boosting for Activity Classification in Microblogs (KDD 2013)[0m
|
||
[38;5;12m - Yangqiu Song, Zhengdong Lu, Cane Wing-ki Leung, Qiang Yang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://chbrown.github.io/kdd-2013-usb/kdd/p482.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mDirect 0-1 Loss Minimization and Margin Maximization with Boosting (NIPS 2013)[0m
|
||
[38;5;12m - Shaodan Zhai, Tian Xia, Ming Tan, Shaojun Wang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/5214-direct-0-1-loss-minimization-and-margin-maximization-with-boosting)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mReservoir Boosting : Between Online and Offline Ensemble Learning (NIPS 2013)[0m
|
||
[38;5;12m - Leonidas Lefakis, François Fleuret[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/5215-reservoir-boosting-between-online-and-offline-ensemble-learning)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mNon-Linear Domain Adaptation with Boosting (NIPS 2013)[0m
|
||
[38;5;12m - Carlos J. Becker, C. Mario Christoudias, Pascal Fua[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/5200-non-linear-domain-adaptation-with-boosting)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting in the Presence of Label Noise (UAI 2013)[0m
|
||
[38;5;12m - Jakramate Bootkrajang, Ata Kabán[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1309.6818)[39m
|
||
|
||
[38;2;255;187;0m[4m2012[0m
|
||
[38;5;12m- [39m[38;5;14m[1mContextual Boost for Pedestrian Detection (CVPR 2012)[0m
|
||
[38;5;12m - Yuanyuan Ding, Jing Xiao[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.5611&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mShrink Boost for Selecting Multi-LBP Histogram Features in Object Detection (CVPR 2012)[0m
|
||
[38;5;12m - Cher Keng Heng, Sumio Yokomitsu, Yuichi Matsumoto, Hajime Tamura[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/6248061)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Bottom-Up and Top-Down Visual Features for Saliency Estimation (CVPR 2012)[0m
|
||
[38;5;12m - Ali Borji[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://ilab.usc.edu/borji/papers/cvpr-2012-BUModel-v4.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Algorithms for Simultaneous Feature Extraction and Selection (CVPR 2012)[0m
|
||
[38;5;12m - Mohammad J. Saberian, Nuno Vasconcelos[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://svcl.ucsd.edu/publications/conference/2012/cvpr/SOPBoost.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mSharing Features in Multi-class Boosting via Group Sparsity (CVPR 2012)[0m
|
||
[38;5;12m - Sakrapee Paisitkriangkrai, Chunhua Shen, Anton van den Hengel[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://cs.adelaide.edu.au/~paulp/publications/pubs/sharing_cvpr2012.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFeature Weighting and Selection Using Hypothesis Margin of Boosting (ICDM 2012)[0m
|
||
[38;5;12m - Malak Alshawabkeh, Javed A. Aslam, Jennifer G. Dy, David R. Kaeli[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.ece.neu.edu/fac-ece/jdy/papers/alshawabkeh-ICDM2012.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAn AdaBoost Algorithm for Multiclass Semi-supervised Learning (ICDM 2012)[0m
|
||
[38;5;12m - Jafar Tanha, Maarten van Someren, Hamideh Afsarmanesh[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m https://ieeexplore.ieee.org/document/6413799)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mAOSO-LogitBoost: Adaptive One-Vs-One LogitBoost for Multi-Class Problem (ICML 2012)[0m
|
||
[38;5;12m - Peng Sun, Mark D. Reid, Jie Zhou[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (AOSO-LogitBoost: Adaptive One-Vs-One LogitBoost for Multi-Class Problem)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/pengsun/AOSOLogitBoost)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAn Online Boosting Algorithm with Theoretical Justifications (ICML 2012)[0m
|
||
[38;5;12m - Shang-Tse Chen, Hsuan-Tien Lin, Chi-Jen Lu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1206.6422)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mLearning Image Descriptors with the Boosting-Trick (NIPS 2012)[0m
|
||
[38;5;12m - Tomasz Trzcinski, C. Mario Christoudias, Vincent Lepetit, Pascal Fua[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/4848-learning-image-descriptors-with-the-boosting-trick.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/biotrump/cvlab-BINBOOST)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAccelerated Training for Matrix-norm Regularization: A Boosting Approach (NIPS 2012)[0m
|
||
[38;5;12m - Xinhua Zhang, Yaoliang Yu, Dale Schuurmans[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/4663-accelerated-training-for-matrix-norm-regularization-a-boosting-approach)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mLearning from Heterogeneous Sources via Gradient Boosting Consensus (SDM 2012)[0m
|
||
[38;5;12m - Xiaoxiao Shi, Jean-François Paiement, David Grangier, Philip S. Yu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://david.grangier.info/papers/2012/shi_sdm_2012.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/PriyeshV/GBDT-CC)[39m
|
||
|
||
[38;2;255;187;0m[4m2011[0m
|
||
[38;5;12m- [39m[38;5;14m[1mSelective Transfer Between Learning Tasks Using Task-Based Boosting (AAAI 2011)[0m
|
||
[38;5;12m - Eric Eaton, Marie desJardins[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cis.upenn.edu/~eeaton/papers/Eaton2011Selective.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mIncorporating Boosted Regression Trees into Ecological Latent Variable Models (AAAI 2011)[0m
|
||
[38;5;12m - Rebecca A. Hutchinson, Li-Ping Liu, Thomas G. Dietterich[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/viewFile/3711/4086)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFlowBoost - Appearance Learning from Sparsely Annotated Video (CVPR 2011)[0m
|
||
[38;5;12m - Karim Ali, David Hasler, François Fleuret[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.karimali.org/publications/AHF_CVPR11.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAdaBoost on Low-Rank PSD Matrices for Metric Learning (CVPR 2011)[0m
|
||
[38;5;12m - Jinbo Bi, Dijia Wu, Le Lu, Meizhu Liu, Yimo Tao, Matthias Wolf[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995363)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosted Local Structured HOG-LBP for Object Localization (CVPR 2011)[0m
|
||
[38;5;12m - Junge Zhang, Kaiqi Huang, Yinan Yu, Tieniu Tan[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cbsr.ia.ac.cn/users/ynyu/1682.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Direct Formulation for Totally-Corrective Multi-Class Boosting (CVPR 2011)[0m
|
||
[38;5;12m - Chunhua Shen, Zhihui Hao[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5995554)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mGated Classifiers: Boosting Under High Intra-class Variation (CVPR 2011)[0m
|
||
[38;5;12m - Oscar M. Danielsson, Babak Rasolzadeh, Stefan Carlsson[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.nada.kth.se/cvap/cvg/papers/danielssonCVPR11.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mTaylorBoost: First and Second-order Boosting Algorithms with Explicit Margin Control (CVPR 2011)[0m
|
||
[38;5;12m - Mohammad J. Saberian, Hamed Masnadi-Shirazi, Nuno Vasconcelos[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/5995605)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://pythonhosted.org/bob.learn.boosting/)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mRobust and Efficient Regularized Boosting Using Total Bregman Divergence (CVPR 2011)[0m
|
||
[38;5;12m - Meizhu Liu, Baba C. Vemuri[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/5995686)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mTreat Samples differently: Object Tracking with Semi-Supervised Online CovBoost (ICCV 2011)[0m
|
||
[38;5;12m - Guorong Li, Lei Qin, Qingming Huang, Junbiao Pang, Shuqiang Jiang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/6126297)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mLinkBoost: A Novel Cost-Sensitive Boosting Framework for Community-Level Network Link Prediction (ICDM 2011)[0m
|
||
[38;5;12m - Prakash Mandayam Comar, Pang-Ning Tan, Anil K. Jain[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cse.msu.edu/~ptan/papers/icdm2011.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mLearning Markov Logic Networks via Functional Gradient Boosting (ICDM 2011)[0m
|
||
[38;5;12m - Tushar Khot, Sriraam Natarajan, Kristian Kersting, Jude W. Shavlik[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/starling-lab/BoostSRL)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/6137236)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting on a Budget: Sampling for Feature-Efficient Prediction (ICML 2011)[0m
|
||
[38;5;12m - Lev Reyzin[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.icml-2011.org/papers/348_icmlpaper.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMulticlass Boosting with Hinge Loss based on Output Coding (ICML 2011)[0m
|
||
[38;5;12m - Tianshi Gao, Daphne Koller[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://ai.stanford.edu/~tianshig/papers/multiclassHingeBoost-ICML2011.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/memect/hao/blob/master/awesome/multiclass-boosting.md)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mGeneralized Boosting Algorithms for Convex Optimization (ICML 2011)[0m
|
||
[38;5;12m - Alexander Grubb, Drew Bagnell[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/pdf/1105.2054.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mImitation Learning in Relational Domains: A Functional-Gradient Boosting Approach (IJCAI 2011)[0m
|
||
[38;5;12m - Sriraam Natarajan, Saket Joshi, Prasad Tadepalli, Kristian Kersting, Jude W. Shavlik[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://ftp.cs.wisc.edu/machine-learning/shavlik-group/natarajan.ijcai11.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting with Maximum Adaptive Sampling (NIPS 2011)[0m
|
||
[38;5;12m - Charles Dubout, François Fleuret[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/4310-boosting-with-maximum-adaptive-sampling)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mThe Fast Convergence of Boosting (NIPS 2011)[0m
|
||
[38;5;12m - Matus Telgarsky[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/4343-the-fast-convergence-of-boosting)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mShareBoost: Efficient Multiclass Learning with Feature Sharing (NIPS 2011)[0m
|
||
[38;5;12m - Shai Shalev-Shwartz, Yonatan Wexler, Amnon Shashua[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/4213-shareboost-efficient-multiclass-learning-with-feature-sharing)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMulticlass Boosting: Theory and Algorithms (NIPS 2011)[0m
|
||
[38;5;12m - Mohammad J. Saberian, Nuno Vasconcelos[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/4450-multiclass-boosting-theory-and-algorithms.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mVariance Penalizing AdaBoost (NIPS 2011)[0m
|
||
[38;5;12m - Pannagadatta K. Shivaswamy, Tony Jebara[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/4207-variance-penalizing-adaboost.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMKBoost: A Framework of Multiple Kernel Boosting (SDM 2011)[0m
|
||
[38;5;12m - Hao Xia, Steven C. H. Hoi[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=3280&context=sis_research)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Boosting Approach to Improving Pseudo-Relevance Feedback (SIGIR 2011)[0m
|
||
[38;5;12m - Yuanhua Lv, ChengXiang Zhai, Wan Chen[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.tyr.unlu.edu.ar/tallerIR/2012/papers/pseudorelevance.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBagging Gradient-Boosted Trees for High Precision, Low Variance Ranking Models (SIGIR 2011)[0m
|
||
[38;5;12m - Yasser Ganjisaffar, Rich Caruana, Cristina Videira Lopes[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.ccs.neu.edu/home/vip/teach/MLcourse/4_boosting/materials/bagging_lmbamart_jforests.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting as a Product of Experts (UAI 2011)[0m
|
||
[38;5;12m - Narayanan Unny Edakunni, Gary Brown, Tim Kovacs[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1202.3716)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mParallel Boosted Regression Trees for Web Search Ranking (WWW 2011)[0m
|
||
[38;5;12m - Stephen Tyree, Kilian Q. Weinberger, Kunal Agrawal, Jennifer Paykin[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cs.cornell.edu/~kilian/papers/fr819-tyreeA.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/YS-L/pgbm)[39m
|
||
|
||
[38;2;255;187;0m[4m2010[0m
|
||
[38;5;12m- [39m[38;5;14m[1mThe Boosting Effect of Exploratory Behaviors (AAAI 2010)[0m
|
||
[38;5;12m - Jivko Sinapov, Alexander Stoytchev[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/download/1777/2265)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting-Based System Combination for Machine Translation (ACL 2010)[0m
|
||
[38;5;12m - Tong Xiao, Jingbo Zhu, Muhua Zhu, Huizhen Wang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.aclweb.org/anthology/P10-1076)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBagBoo: A Scalable Hybrid Bagging-the-Boosting Model (CIKM 2010)[0m
|
||
[38;5;12m - Dmitry Yurievich Pavlov, Alexey Gorodilov, Cliff A. Brunk[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://cache-default03h.cdn.yandex.net/download.yandex.ru/company/a_scalable_hybrid_bagging_the_boosting_model.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/arogozhnikov/infiniteboost)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAutomatic Detection of Craters in Planetary Images: an Embedded Framework Using Feature Selection and Boosting (CIKM 2010)[0m
|
||
[38;5;12m - Wei Ding, Tomasz F. Stepinski, Lourenço P. C. Bandeira, Ricardo Vilalta, Youxi Wu, Zhenyu Lu, Tianyu Cao[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.uh.edu/~rvilalta/papers/2010/cikm10.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFacial Point Detection Using Boosted Regression and Graph Models (CVPR 2010)[0m
|
||
[38;5;12m - Michel François Valstar, Brais Martínez, Xavier Binefa, Maja Pantic[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ibug.doc.ic.ac.uk/media/uploads/documents/CVPR-2010-ValstarEtAl-CAMERA.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting for Transfer Learning with Multiple Sources (CVPR 2010)[0m
|
||
[38;5;12m - Yi Yao, Gianfranco Doretto[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/5539857)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mEfficient Rotation Invariant Object Detection Using Boosted Random Ferns (CVPR 2010)[0m
|
||
[38;5;12m - Michael Villamizar, Francesc Moreno-Noguer, Juan Andrade-Cetto, Alberto Sanfeliu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.4002&rep=rep1&type=pdf)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mImplicit Hierarchical Boosting for Multi-view Object Detection (CVPR 2010)[0m
|
||
[38;5;12m - Xavier Perrotton, Marc Sturzel, Michel Roux[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/5540115)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOn-Line Semi-Supervised Multiple-Instance Boosting (CVPR 2010)[0m
|
||
[38;5;12m - Bernhard Zeisl, Christian Leistner, Amir Saffari, Horst Bischof[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/5539860)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOnline Multi-Class LPBoost (CVPR 2010)[0m
|
||
[38;5;12m - Amir Saffari, Martin Godec, Thomas Pock, Christian Leistner, Horst Bischof[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.8939&rep=rep1&type=pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/amirsaffari/online-multiclass-lpboost)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mHomotopy Regularization for Boosting (ICDM 2010)[0m
|
||
[38;5;12m - Zheng Wang, Yangqiu Song, Changshui Zhang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/5694094)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mExploiting Local Data Uncertainty to Boost Global Outlier Detection (ICDM 2010)[0m
|
||
[38;5;12m - Bo Liu, Jie Yin, Yanshan Xiao, Longbing Cao, Philip S. Yu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/5693984)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Classifiers with Tightened L0-Relaxation Penalties (ICML 2010)[0m
|
||
[38;5;12m - Noam Goldberg, Jonathan Eckstein[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/11df/aed4ec2a2f72878789fa3a54d588d693bdda.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting for Regression Transfer (ICML 2010)[0m
|
||
[38;5;12m - David Pardoe, Peter Stone[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cs.utexas.edu/~dpardoe/papers/ICML10.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/jay15summer/Two-stage-TrAdaboost.R2)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosted Backpropagation Learning for Training Deep Modular Networks (ICML 2010)[0m
|
||
[38;5;12m - Alexander Grubb, J. Andrew Bagnell[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://icml.cc/Conferences/2010/papers/451.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFast Boosting Using Adversarial Bandits (ICML 2010)[0m
|
||
[38;5;12m - Róbert Busa-Fekete, Balázs Kégl[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.lri.fr/~kegl/research/PDFs/BuKe10.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting with Structure Information in the Functional Space: an Application to Graph Classification (KDD 2010)[0m
|
||
[38;5;12m - Hongliang Fei, Jun Huan[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/citation.cfm?id=1835804.1835886)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMulti-task Learning for Boosting with Application to Web Search Ranking (KDD 2010)[0m
|
||
[38;5;12m - Olivier Chapelle, Pannagadatta K. Shivaswamy, Srinivas Vadrevu, Kilian Q. Weinberger, Ya Zhang, Belle L. Tseng[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/citation.cfm?id=1835953)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Theory of Multiclass Boosting (NIPS 2010)[0m
|
||
[38;5;12m - Indraneel Mukherjee, Robert E. Schapire[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://rob.schapire.net/papers/multiboost-journal.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Classifier Cascades (NIPS 2010)[0m
|
||
[38;5;12m - Mohammad J. Saberian, Nuno Vasconcelos[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/4033-boosting-classifier-cascades.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mJoint Cascade Optimization Using A Product Of Boosted Classifiers (NIPS 2010)[0m
|
||
[38;5;12m - Leonidas Lefakis, François Fleuret[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/4148-joint-cascade-optimization-using-a-product-of-boosted-classifiers)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mRobust LogitBoost and Adaptive Base Class (ABC) LogitBoost (UAI 2010)[0m
|
||
[38;5;12m - Ping Li[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1203.3491)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m (https://github.com/pengsun/AOSOLogitBoost)[39m
|
||
|
||
[38;2;255;187;0m[4m2009[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFeature Selection for Ranking Using Boosted Trees (CIKM 2009)[0m
|
||
[38;5;12m - Feng Pan, Tim Converse, David Ahn, Franco Salvetti, Gianluca Donato[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.francosalvetti.com/cikm09_camera2.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting KNN Text Classification Accuracy by Using Supervised Term Weighting Schemes (CIKM 2009)[0m
|
||
[38;5;12m - Iyad Batal, Milos Hauskrecht[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://people.cs.pitt.edu/~milos/research/CIKM_2009_boosting_KNN.pdf)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mStochastic Gradient Boosted Distributed Decision Trees (CIKM 2009)[0m
|
||
[38;5;12m - Jerry Ye, Jyh-Herng Chow, Jiang Chen, Zhaohui Zheng[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://cse.iitrpr.ac.in/ckn/courses/f2012/thomas.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA General Magnitude-Preserving Boosting Algorithm for Search Ranking (CIKM 2009)[0m
|
||
[38;5;12m - Chenguang Zhu, Weizhu Chen, Zeyuan Allen Zhu, Gang Wang, Dong Wang, Zheng Chen[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/cikm2009-1.pdf)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mReducing Joint Boost-Based Multiclass Classification to Proximity Search (CVPR 2009)[0m
|
||
[38;5;12m - Alexandra Stefan, Vassilis Athitsos, Quan Yuan, Stan Sclaroff[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.semanticscholar.org/paper/Reducing-JointBoost-based-multiclass-classification-Stefan-Athitsos/08ba1a7d91ce9b4ac26869bfe4bb7c955b0d1a24)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mImbalanced RankBoost for Efficiently Ranking Large-Scale Image-Video Collections (CVPR 2009)[0m
|
||
[38;5;12m - Michele Merler, Rong Yan, John R. Smith[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.semanticscholar.org/paper/Imbalanced-RankBoost-for-efficiently-ranking-Merler-Yan/031ba6bf0d6df8bd3aa686ce85791b7d74f0b6d5)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mRegularized Multi-Class Semi-Supervised Boosting (CVPR 2009)[0m
|
||
[38;5;12m - Amir Saffari, Christian Leistner, Horst Bischof[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/abstract/document/5206715)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mLearning to Associate: HybridBoosted Multi-Target Tracker for Crowded Scene (CVPR 2009)[0m
|
||
[38;5;12m - Yuan Li, Chang Huang, Ram Nevatia[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.8335&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosted Multi-task Learning for Face Verification with Applications to Web Image and Video Search (CVPR 2009)[0m
|
||
[38;5;12m - Xiaogang Wang, Cha Zhang, Zhengyou Zhang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.ee.cuhk.edu.hk/~xgwang/webface.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mLidarBoost: Depth Superresolution for ToF 3D Shape Scanning (CVPR 2009)[0m
|
||
[38;5;12m - Sebastian Schuon, Christian Theobalt, James E. Davis, Sebastian Thrun[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://ai.stanford.edu/~schuon/sr/cvpr09_poster_lidarboost.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mModel Adaptation via Model Interpolation and Boosting for Web Search Ranking (EMNLP 2009)[0m
|
||
[38;5;12m - Jianfeng Gao, Qiang Wu, Chris Burges, Krysta Marie Svore, Yi Su, Nazan Khan, Shalin Shah, Hongyan Zhou[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/7a82/66335d0b44596574588eabb090bfeae4ab35.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFinding Shareable Informative Patterns and Optimal Coding Matrix for Multiclass Boosting (ICCV 2009)[0m
|
||
[38;5;12m - Bang Zhang, Getian Ye, Yang Wang, Jie Xu, Gunawan Herman[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/5459146)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mRankBoost with L1 Regularization for Facial Expression Recognition and Intensity Estimation (ICCV 2009)[0m
|
||
[38;5;12m - Peng Yang, Qingshan Liu, Dimitris N. Metaxas[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/5459371)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Robust Boosting Tracker with Minimum Error Bound in a Co-Training Framework (ICCV 2009)[0m
|
||
[38;5;12m - Rong Liu, Jian Cheng, Hanqing Lu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://nlpr-web.ia.ac.cn/2009papers/gjhy/gh1.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mTutorial Summary: Survey of Boosting from an Optimization Perspective (ICML 2009)[0m
|
||
[38;5;12m - Manfred K. Warmuth, S. V. N. Vishwanathan[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.stat.purdue.edu/~vishy/erlpboost/manfred.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Products of Base Classifiers (ICML 2009)[0m
|
||
[38;5;12m - Balázs Kégl, Róbert Busa-Fekete[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://users.lal.in2p3.fr/kegl/research/PDFs/keglBusafekete09.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mABC-boost: Adaptive Base Class Boost for Multi-Class Classification (ICML 2009)[0m
|
||
[38;5;12m - Ping Li[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://icml.cc/Conferences/2009/papers/417.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting with Structural Sparsity (ICML 2009)[0m
|
||
[38;5;12m - John C. Duchi, Yoram Singer[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://web.stanford.edu/~jduchi/projects/DuchiSi09a.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Constrained Mutual Subspace Method for Robust Image-Set Based Object Recognition (IJCAI 2009)[0m
|
||
[38;5;12m - Xi Li, Kazuhiro Fukui, Nanning Zheng[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.researchgate.net/publication/220812439_Boosting_Constrained_Mutual_Subspace_Method_for_Robust_Image-Set_Based_Object_Recognition)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mInformation Theoretic Regularization for Semi-supervised Boosting (KDD 2009)[0m
|
||
[38;5;12m - Lei Zheng, Shaojun Wang, Yan Liu, Chi-Hoon Lee[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/5255/242d50851ce56354e10ae8fdcee6f47591c9.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mPotential-Based Agnostic Boosting (NIPS 2009)[0m
|
||
[38;5;12m - Adam Kalai, Varun Kanade[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/3676-potential-based-agnostic-boosting)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mPositive Semidefinite Metric Learning with Boosting (NIPS 2009)[0m
|
||
[38;5;12m - Chunhua Shen, Junae Kim, Lei Wang, Anton van den Hengel[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/3658-positive-semidefinite-metric-learning-with-boosting)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting with Spatial Regularization (NIPS 2009)[0m
|
||
[38;5;12m - Zhen James Xiang, Yongxin Taylor Xi, Uri Hasson, Peter J. Ramadge[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/3696-boosting-with-spatial-regularization)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mEffective Boosting of Na%C3%AFve Bayesian Classifiers by Local Accuracy Estimation (PAKDD 2009)[0m
|
||
[38;5;12m - Zhipeng Xie[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://link.springer.com/chapter/10.1007/978-3-642-01307-2_88)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMulti-resolution Boosting for Classification and Regression Problems (PAKDD 2009)[0m
|
||
[38;5;12m - Chandan K. Reddy, Jin Hyeong Park[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://dmkd.cs.vt.edu/papers/PAKDD09.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mEfficient Active Learning with Boosting (SDM 2009)[0m
|
||
[38;5;12m - Zheng Wang, Yangqiu Song, Changshui Zhang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/c8be/b70c37e4b4c4ad77e46b39060c977779d201.pdf)[39m
|
||
|
||
[38;2;255;187;0m[4m2008[0m
|
||
[38;5;12m- [39m[38;5;14m[1mGroup-Based Learning: A Boosting Approach (CIKM 2008)[0m
|
||
[38;5;12m - Weijian Ni, Jun Xu, Hang Li, Yalou Huang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.bigdatalab.ac.cn/~junxu/publications/CIKM2008_GroupLearn.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mSemi-Supervised Boosting Using Visual Similarity Learning (CVPR 2008)[0m
|
||
[38;5;12m - Christian Leistner, Helmut Grabner, Horst Bischof[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.7914&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMining Compositional Features for Boosting (CVPR 2008)[0m
|
||
[38;5;12m - Junsong Yuan, Jiebo Luo, Ying Wu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4587347)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosted Deformable Model for Human Body Alignment (CVPR 2008)[0m
|
||
[38;5;12m - Xiaoming Liu, Ting Yu, Thomas Sebastian, Peter H. Tu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cse.msu.edu/~liuxm/publication/Liu_Yu_Sebastian_Tu_cvpr08.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mDiscriminative Modeling by Boosting on Multilevel Aggregates (CVPR 2008)[0m
|
||
[38;5;12m - Jason J. Corso[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.409.3166&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFace Alignment via Boosted Ranking Model (CVPR 2008)[0m
|
||
[38;5;12m - Hao Wu, Xiaoming Liu, Gianfranco Doretto[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/4587753)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Adaptive Linear Weak Classifiers for Online Learning and Tracking (CVPR 2008)[0m
|
||
[38;5;12m - Toufiq Parag, Fatih Porikli, Ahmed M. Elgammal[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.merl.com/publications/docs/TR2008-065.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mDetection with Multi-Exit Asymmetric Boosting (CVPR 2008)[0m
|
||
[38;5;12m - Minh-Tri Pham, V-D. D. Hoang, Tat-Jen Cham[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.330.6364&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Ordinal Features for Accurate and Fast Iris Recognition (CVPR 2008)[0m
|
||
[38;5;12m - Zhaofeng He, Zhenan Sun, Tieniu Tan, Xianchao Qiu, Cheng Zhong, Wenbo Dong[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.researchgate.net/publication/224323296_Boosting_ordinal_features_for_accurate_and_fast_iris_recognition)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAdaptive and Compact Shape Descriptor by Progressive Feature Combination and Selection with Boosting (CVPR 2008)[0m
|
||
[38;5;12m - Cheng Chen, Yueting Zhuang, Jun Xiao, Fei Wu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/4587613)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Relational Sequence Alignments (ICDM 2008)[0m
|
||
[38;5;12m - Andreas Karwath, Kristian Kersting, Niels Landwehr[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cs.uni-potsdam.de/~landwehr/ICDM08boosting.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting with Incomplete Information (ICML 2008)[0m
|
||
[38;5;12m - Gholamreza Haffari, Yang Wang, Shaojun Wang, Greg Mori, Feng Jiao[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://users.monash.edu.au/~gholamrh/publications/boosting_icml08_slides.pdf)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mManifoldBoost: Stagewise Function Approximation for Fully-, Semi- and Un-supervised Learning (ICML 2008)[0m
|
||
[38;5;12m - Nicolas Loeff, David A. Forsyth, Deepak Ramachandran[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://reason.cs.uiuc.edu/deepak/manifoldboost.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mRandom Classification Noise Defeats All Convex Potential Boosters (ICML 2008)[0m
|
||
[38;5;12m - Philip M. Long, Rocco A. Servedio[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://phillong.info/publications/LS09_potential.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMulti-class Cost-Sensitive Boosting with P-norm Loss Functions (KDD 2008)[0m
|
||
[38;5;12m - Aurelie C. Lozano, Naoki Abe[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/citation.cfm?id=1401953)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMCBoost: Multiple Classifier Boosting for Perceptual Co-clustering of Images and Visual Features (NIPS 2008)[0m
|
||
[38;5;12m - Tae-Kyun Kim, Roberto Cipolla[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/3483-mcboost-multiple-classifier-boosting-for-perceptual-co-clustering-of-images-and-visual-features)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mPSDBoost: Matrix-Generation Linear Programming for Positive Semidefinite Matrices Learning (NIPS 2008)[0m
|
||
[38;5;12m - Chunhua Shen, Alan Welsh, Lei Wang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.879.7750&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOn the Design of Loss Functions for Classification: Theory, Robustness to Outliers, and SavageBoost (NIPS 2008)[0m
|
||
[38;5;12m - Hamed Masnadi-Shirazi, Nuno Vasconcelos[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/3591-on-the-design-of-loss-functions-for-classification-theory-robustness-to-outliers-and-savageboost)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAdaptive Martingale Boosting (NIPS 2008)[0m
|
||
[38;5;12m - Philip M. Long, Rocco A. Servedio[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://phillong.info/publications/LS08_adaptive_martingale_boosting.pdf)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mA Boosting Algorithm for Learning Bipartite Ranking Functions with Partially Labeled Data (SIGIR 2008)[0m
|
||
[38;5;12m - Massih-Reza Amini, Tuong-Vinh Truong, Cyril Goutte[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://ama.liglab.fr/~amini/Publis/SemiSupRanking_sigir08.pdf)[39m
|
||
|
||
[38;2;255;187;0m[4m2007[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mUsing Error-Correcting Output Codes with Model-Refinement to Boost Centroid Text Classifier (ACL 2007)[0m
|
||
[38;5;12m - Songbo Tan[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/citation.cfm?id=1557794)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression (CVPR 2007)[0m
|
||
[38;5;12m - Alessandro Bissacco, Ming-Hsuan Yang, Stefano Soatto[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://vision.ucla.edu/papers/bissaccoYS07.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mGeneric Face Alignment using Boosted Appearance Model (CVPR 2007)[0m
|
||
[38;5;12m - Xiaoming Liu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4270290)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mEigenboosting: Combining Discriminative and Generative Information (CVPR 2007)[0m
|
||
[38;5;12m - Helmut Grabner, Peter M. Roth, Horst Bischof[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.tugraz.at/fileadmin/user_upload/Institute/ICG/Documents/lrs/pubs/grabner_cvpr_07.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOnline Learning Asymmetric Boosted Classifiers for Object Detection (CVPR 2007)[0m
|
||
[38;5;12m - Minh-Tri Pham, Tat-Jen Cham[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/abstract/document/4270108)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mImproving Part based Object Detection by Unsupervised Online Boosting (CVPR 2007)[0m
|
||
[38;5;12m - Bo Wu, Ram Nevatia[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/4270173)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Specialized Processor Suitable for AdaBoost-Based Detection with Haar-like Features (CVPR 2007)[0m
|
||
[38;5;12m - Masayuki Hiromoto, Kentaro Nakahara, Hiroki Sugano, Yukihiro Nakamura, Ryusuke Miyamoto[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/4270413)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mSimultaneous Object Detection and Segmentation by Boosting Local Shape Feature based Classifier (CVPR 2007)[0m
|
||
[38;5;12m - Bo Wu, Ram Nevatia[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.9795&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mCompositional Boosting for Computing Hierarchical Image Structures (CVPR 2007)[0m
|
||
[38;5;12m - Tianfu Wu, Gui-Song Xia, Song Chun Zhu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/4270059)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Coded Dynamic Features for Facial Action Units and Facial Expression Recognition (CVPR 2007)[0m
|
||
[38;5;12m - Peng Yang, Qingshan Liu, Dimitris N. Metaxas[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/4270084)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mObject Classification in Visual Surveillance Using Adaboost (CVPR 2007)[0m
|
||
[38;5;12m - John-Paul Renno, Dimitrios Makris, Graeme A. Jones[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/abstract/document/4270512)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Boosting Regression Approach to Medical Anatomy Detection (CVPR 2007)[0m
|
||
[38;5;12m - Shaohua Kevin Zhou, Jinghao Zhou, Dorin Comaniciu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://ww.w.comaniciu.net/Papers/BoostingRegression_CVPR07.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mJoint Real-time Object Detection and Pose Estimation Using Probabilistic Boosting Network (CVPR 2007)[0m
|
||
[38;5;12m - Jingdan Zhang, Shaohua Kevin Zhou, Leonard McMillan, Dorin Comaniciu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://csbio.unc.edu/mcmillan/pubs/CVPR07_Zhang.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mKernel Sharing With Joint Boosting For Multi-Class Concept Detection (CVPR 2007)[0m
|
||
[38;5;12m - Wei Jiang, Shih-Fu Chang, Alexander C. Loui[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.ee.columbia.edu/~wjiang/references/jiangcvprws07.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mScale-Space Based Weak Regressors for Boosting (ECML 2007)[0m
|
||
[38;5;12m - Jin Hyeong Park, Chandan K. Reddy[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cs.wayne.edu/~reddy/Papers/ECML07.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAvoiding Boosting Overfitting by Removing Confusing Samples (ECML 2007)[0m
|
||
[38;5;12m - Alexander Vezhnevets, Olga Barinova[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://groups.inf.ed.ac.uk/calvin/hp_avezhnev/Pubs/AvoidingBoostingOverfitting.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mDynamicBoost: Boosting Time Series Generated by Dynamical Systems (ICCV 2007)[0m
|
||
[38;5;12m - René Vidal, Paolo Favaro[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://vision.jhu.edu/assets/VidalICCV07.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mIncremental Learning of Boosted Face Detector (ICCV 2007)[0m
|
||
[38;5;12m - Chang Huang, Haizhou Ai, Takayoshi Yamashita, Shihong Lao, Masato Kawade[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.9012&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mGradient Feature Selection for Online Boosting (ICCV 2007)[0m
|
||
[38;5;12m - Xiaoming Liu, Ting Yu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cse.msu.edu/~liuxm/publication/Liu_Yu_ICCV2007.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFast Training and Selection of Haar Features Using Statistics in Boosting-based Face Detection (ICCV 2007)[0m
|
||
[38;5;12m - Minh-Tri Pham, Tat-Jen Cham[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.6173&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mCluster Boosted Tree Classifier for Multi-View - Multi-Pose Object Detection (ICCV 2007)[0m
|
||
[38;5;12m - Bo Wu, Ramakant Nevatia[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.9885&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAsymmetric Boosting (ICML 2007)[0m
|
||
[38;5;12m - Hamed Masnadi-Shirazi, Nuno Vasconcelos[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.svcl.ucsd.edu/publications/conference/2007/icml07/AsymmetricBoosting.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting for Transfer Learning (ICML 2007)[0m
|
||
[38;5;12m - Wenyuan Dai, Qiang Yang, Gui-Rong Xue, Yong Yu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cs.ust.hk/~qyang/Docs/2007/tradaboost.pdf)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mGradient Boosting for Kernelized Output Spaces (ICML 2007)[0m
|
||
[38;5;12m - Pierre Geurts, Louis Wehenkel, Florence d'Alché-Buc[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.435.3970&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting a Complete Technique to Find MSS and MUS Thanks to a Local Search Oracle (IJCAI 2007)[0m
|
||
[38;5;12m - Éric Grégoire, Bertrand Mazure, Cédric Piette[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cril.univ-artois.fr/~piette/IJCAI07_HYCAM.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mTraining Conditional Random Fields Using Virtual Evidence Boosting (IJCAI 2007)[0m
|
||
[38;5;12m - Lin Liao, Tanzeem Choudhury, Dieter Fox, Henry A. Kautz[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.ijcai.org/Proceedings/07/Papers/407.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mSimple Training of Dependency Parsers via Structured Boosting (IJCAI 2007)[0m
|
||
[38;5;12m - Qin Iris Wang, Dekang Lin, Dale Schuurmans[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.ijcai.org/Proceedings/07/Papers/284.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mReal Boosting a la Carte with an Application to Boosting Oblique Decision Tree (IJCAI 2007)[0m
|
||
[38;5;12m - Claudia Henry, Richard Nock, Frank Nielsen[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.ijcai.org/Proceedings/07/Papers/135.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mManaging Domain Knowledge and Multiple Models with Boosting (IJCAI 2007)[0m
|
||
[38;5;12m - Peng Zang, Charles Lee Isbell Jr.[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.ijcai.org/Proceedings/07/Papers/185.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mModel-Shared Subspace Boosting for Multi-label Classification (KDD 2007)[0m
|
||
[38;5;12m - Rong Yan, Jelena Tesic, John R. Smith[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://rogerioferis.com/VisualRecognitionAndSearch2014/material/papers/IMARSKDD2007.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mRegularized Boost for Semi-Supervised Learning (NIPS 2007)[0m
|
||
[38;5;12m - Ke Chen, Shihai Wang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/3167-regularized-boost-for-semi-supervised-learning.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Algorithms for Maximizing the Soft Margin (NIPS 2007)[0m
|
||
[38;5;12m - Manfred K. Warmuth, Karen A. Glocer, Gunnar Rätsch[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/3374-boosting-algorithms-for-maximizing-the-soft-margin.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMcRank: Learning to Rank Using Multiple Classification and Gradient Boosting (NIPS 2007)[0m
|
||
[38;5;12m - Ping Li, Christopher J. C. Burges, Qiang Wu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/3270-mcrank-learning-to-rank-using-multiple-classification-and-gradient-boosting.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOne-Pass Boosting (NIPS 2007)[0m
|
||
[38;5;12m - Zafer Barutçuoglu, Philip M. Long, Rocco A. Servedio[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://phillong.info/publications/BLS07_one_pass.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting the Area under the ROC Curve (NIPS 2007)[0m
|
||
[38;5;12m - Philip M. Long, Rocco A. Servedio[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/3247-boosting-the-area-under-the-roc-curve.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFilterBoost: Regression and Classification on Large Datasets (NIPS 2007)[0m
|
||
[38;5;12m - Joseph K. Bradley, Robert E. Schapire[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://rob.schapire.net/papers/FilterBoost_paper.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA General Boosting Method and its Application to Learning Ranking Functions for Web Search (NIPS 2007)[0m
|
||
[38;5;12m - Zhaohui Zheng, Hongyuan Zha, Tong Zhang, Olivier Chapelle, Keke Chen, Gordon Sun[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/8f8d/874a3f0217289ba317b1f6175ac3b6f73d70.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mEfficient Multiclass Boosting Classification with Active Learning (SDM 2007)[0m
|
||
[38;5;12m - Jian Huang, Seyda Ertekin, Yang Song, Hongyuan Zha, C. Lee Giles[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://epubs.siam.org/doi/abs/10.1137/1.9781611972771.27)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAdaRank: a Boosting Algorithm for Information Retrieval (SIGIR 2007)[0m
|
||
[38;5;12m - Jun Xu, Hang Li[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.bigdatalab.ac.cn/~junxu/publications/SIGIR2007_AdaRank.pdf)[39m
|
||
|
||
[38;2;255;187;0m[4m2006[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mGradient Boosting for Sequence Alignment (AAAI 2006)[0m
|
||
[38;5;12m - Charles Parker, Alan Fern, Prasad Tadepalli[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://web.engr.oregonstate.edu/~afern/papers/aaai06-align.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Kernel Models for Regression (ICDM 2006)[0m
|
||
[38;5;12m - Ping Sun, Xin Yao[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cs.bham.ac.uk/~xin/papers/icdm06SunYao.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting for Learning Multiple Classes with Imbalanced Class Distribution (ICDM 2006)[0m
|
||
[38;5;12m - Yanmin Sun, Mohamed S. Kamel, Yang Wang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://people.ee.duke.edu/~lcarin/ImbalancedClassDistribution.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting the Feature Space: Text Classification for Unstructured Data on the Web (ICDM 2006)[0m
|
||
[38;5;12m - Yang Song, Ding Zhou, Jian Huang, Isaac G. Councill, Hongyuan Zha, C. Lee Giles[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://sonyis.me/paperpdf/icdm06_song.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mTotally Corrective Boosting Algorithms that Maximize the Margin (ICML 2006)[0m
|
||
[38;5;12m - Manfred K. Warmuth, Jun Liao, Gunnar Rätsch[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://users.soe.ucsc.edu/~manfred/pubs/C75.pdf)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mHow Boosting the Margin Can Also Boost Classifier Complexity (ICML 2006)[0m
|
||
[38;5;12m - Lev Reyzin, Robert E. Schapire[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://rob.schapire.net/papers/boost_complexity.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMulticlass Boosting with Repartitioning (ICML 2006)[0m
|
||
[38;5;12m - Ling Li[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://authors.library.caltech.edu/72259/1/p569-li.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAdaBoost is Consistent (NIPS 2006)[0m
|
||
[38;5;12m - Peter L. Bartlett, Mikhail Traskin[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://jmlr.csail.mit.edu/papers/volume8/bartlett07b/bartlett07b.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Structured Prediction for Imitation Learning (NIPS 2006)[0m
|
||
[38;5;12m - Nathan D. Ratliff, David M. Bradley, J. Andrew Bagnell, Joel E. Chestnutt[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/3154-boosting-structured-prediction-for-imitation-learning.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mChained Boosting (NIPS 2006)[0m
|
||
[38;5;12m - Christian R. Shelton, Wesley Huie, Kin Fai Kan[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/2981-chained-boosting)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mWhen Efficient Model Averaging Out-Performs Boosting and Bagging (PKDD 2006)[0m
|
||
[38;5;12m - Ian Davidson, Wei Fan[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://link.springer.com/chapter/10.1007/11871637_46)[39m
|
||
|
||
[38;2;255;187;0m[4m2005[0m
|
||
[38;5;12m- [39m[38;5;14m[1mSemantic Place Classification of Indoor Environments with Mobile Robots Using Boosting (AAAI 2005)[0m
|
||
[38;5;12m - Axel Rottmann, Óscar Martínez Mozos, Cyrill Stachniss, Wolfram Burgard[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www2.informatik.uni-freiburg.de/~stachnis/pdf/rottmann05aaai.pdf)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting-based Parse Reranking with Subtree Features (ACL 2005)[0m
|
||
[38;5;12m - Taku Kudo, Jun Suzuki, Hideki Isozaki[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://chasen.org/~taku/publications/acl2005.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mUsing RankBoost to Compare Retrieval Systems (CIKM 2005)[0m
|
||
[38;5;12m - Huyen-Trang Vu, Patrick Gallinari[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.9470&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mClassifier Fusion Using Shared Sampling Distribution for Boosting (ICDM 2005)[0m
|
||
[38;5;12m - Costin Barbu, Raja Tanveer Iqbal, Jing Peng[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/1565659)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mSemi-Supervised Mixture of Kernels via LPBoost Methods (ICDM 2005)[0m
|
||
[38;5;12m - Jinbo Bi, Glenn Fung, Murat Dundar, R. Bharat Rao[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/1565728)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mEfficient Discriminative Learning of Bayesian Network Classifier via Boosted Augmented Naive Bayes (ICML 2005)[0m
|
||
[38;5;12m - Yushi Jing, Vladimir Pavlovic, James M. Rehg[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://mrl.isr.uc.pt/pub/bscw.cgi/d27355/Jing05Efficient.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mUnifying the Error-Correcting and Output-Code AdaBoost within the Margin Framework (ICML 2005)[0m
|
||
[38;5;12m - Yijun Sun, Sinisa Todorovic, Jian Li, Dapeng Wu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.4246&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Smoothed Boosting Algorithm Using Probabilistic Output Codes (ICML 2005)[0m
|
||
[38;5;12m - Rong Jin, Jian Zhang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.stat.purdue.edu/~jianzhan/papers/icml05jin.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mRobust Boosting and its Relation to Bagging (KDD 2005)[0m
|
||
[38;5;12m - Saharon Rosset[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.tau.ac.il/~saharon/papers/bagboost.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mEfficient Computations via Scalable Sparse Kernel Partial Least Squares and Boosted Latent Features (KDD 2005)[0m
|
||
[38;5;12m - Michinari Momma[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.387.2078&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMultiple Instance Boosting for Object Detection (NIPS 2005)[0m
|
||
[38;5;12m - Paul A. Viola, John C. Platt, Cha Zhang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.8312&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mConvergence and Consistency of Regularized Boosting Algorithms with Stationary B-Mixing Observations (NIPS 2005)[0m
|
||
[38;5;12m - Aurelie C. Lozano, Sanjeev R. Kulkarni, Robert E. Schapire[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cs.princeton.edu/~schapire/papers/betamix.pdf)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mBoosted decision trees for word recognition in handwritten document retrieval (SIGIR 2005)[0m
|
||
[38;5;12m - Nicholas R. Howe, Toni M. Rath, R. Manmatha[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.152.1551&rep=rep1&type=pdf)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mObtaining Calibrated Probabilities from Boosting (UAI 2005)[0m
|
||
[38;5;12m - Alexandru Niculescu-Mizil, Rich Caruana[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cs.cornell.edu/~caruana/niculescu.scldbst.crc.rev4.pdf)[39m
|
||
|
||
[38;2;255;187;0m[4m2004[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOnline Parallel Boosting (AAAI 2004)[0m
|
||
[38;5;12m - Jesse A. Reichler, Harlan D. Harris, Michael A. Savchenko[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.aaai.org/Papers/AAAI/2004/AAAI04-059.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Boosting Approach to Multiple Instance Learning (ECML 2004)[0m
|
||
[38;5;12m - Peter Auer, Ronald Ortner[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://link.springer.com/chapter/10.1007/978-3-540-30115-8_9)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Boosting Algorithm for Classification of Semi-Structured Text (EMNLP 2004)[0m
|
||
[38;5;12m - Taku Kudo, Yuji Matsumoto[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.aclweb.org/anthology/W04-3239)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mText Classification by Boosting Weak Learners based on Terms and Concepts (ICDM 2004)[0m
|
||
[38;5;12m - Stephan Bloehdorn, Andreas Hotho[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/document/1410303)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Grammatical Inference with Confidence Oracles (ICML 2004)[0m
|
||
[38;5;12m - Jean-Christophe Janodet, Richard Nock, Marc Sebban, Henri-Maxime Suchier[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www1.univ-ag.fr/~rnock/Articles/Drafts/icml04-jnss.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mSurrogate Maximization/Minimization Algorithms for AdaBoost and the Logistic Regression Model (ICML 2004)[0m
|
||
[38;5;12m - Zhihua Zhang, James T. Kwok, Dit-Yan Yeung[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://icml.cc/Conferences/2004/proceedings/papers/77.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mTraining Conditional Random Fields via Gradient Tree Boosting (ICML 2004)[0m
|
||
[38;5;12m - Thomas G. Dietterich, Adam Ashenfelter, Yaroslav Bulatov[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://web.engr.oregonstate.edu/~tgd/publications/ml2004-treecrf.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Margin Based Distance Functions for Clustering (ICML 2004)[0m
|
||
[38;5;12m - Tomer Hertz, Aharon Bar-Hillel, Daphna Weinshall[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cs.huji.ac.il/~daphna/papers/distboost-icml.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mColumn-Generation Boosting Methods for Mixture of Kernels (KDD 2004)[0m
|
||
[38;5;12m - Jinbo Bi, Tong Zhang, Kristin P. Bennett[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.6359&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOptimal Aggregation of Classifiers and Boosting Maps in Functional Magnetic Resonance Imaging (NIPS 2004)[0m
|
||
[38;5;12m - Vladimir Koltchinskii, Manel Martínez-Ramón, Stefan Posse[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/2699-optimal-aggregation-of-classifiers-and-boosting-maps-in-functional-magnetic-resonance-imaging.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting on Manifolds: Adaptive Regularization of Base Classifiers (NIPS 2004)[0m
|
||
[38;5;12m - Balázs Kégl, Ligen Wang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/2613-boosting-on-manifolds-adaptive-regularization-of-base-classifiers)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mContextual Models for Object Detection Using Boosted Random Fields (NIPS 2004)[0m
|
||
[38;5;12m - Antonio Torralba, Kevin P. Murphy, William T. Freeman[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cs.ubc.ca/~murphyk/Papers/BRF-nips04-camera.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mGeneralization Error and Algorithmic Convergence of Median Boosting (NIPS 2004)[0m
|
||
[38;5;12m - Balázs Kégl[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.8990&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAn Application of Boosting to Graph Classification (NIPS 2004)[0m
|
||
[38;5;12m - Taku Kudo, Eisaku Maeda, Yuji Matsumoto[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/2739-an-application-of-boosting-to-graph-classification)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mLogistic Regression and Boosting for Labeled Bags of Instances (PAKDD 2004)[0m
|
||
[38;5;12m - Xin Xu, Eibe Frank[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cs.waikato.ac.nz/~ml/publications/2004/xu-frank.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFast and Light Boosting for Adaptive Mining of Data Streams (PAKDD 2004)[0m
|
||
[38;5;12m - Fang Chu, Carlo Zaniolo[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://web.cs.ucla.edu/~zaniolo/papers/NBCAJMW77MW0J8CP.pdf)[39m
|
||
|
||
[38;2;255;187;0m[4m2003[0m
|
||
[38;5;12m- [39m[38;5;14m[1mOn Boosting and the Exponential Loss (AISTATS 2003)[0m
|
||
[38;5;12m - Abraham J. Wyner[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www-stat.wharton.upenn.edu/~ajw/exploss.ps)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Support Vector Machines for Text Classification through Parameter-Free Threshold Relaxation (CIKM 2003)[0m
|
||
[38;5;12m - James G. Shanahan, Norbert Roma[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/citation.cfm?id=956911)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mLearning Cross-Document Structural Relationships Using Boosting (CIKM 2003)[0m
|
||
[38;5;12m - Zhu Zhang, Jahna Otterbacher, Dragomir R. Radev[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.128.7712&rep=rep1&type=pdf)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mOn Boosting Improvement: Error Reduction and Convergence Speed-Up (ECML 2003)[0m
|
||
[38;5;12m - Marc Sebban, Henri-Maxime Suchier[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://link.springer.com/chapter/10.1007/978-3-540-39857-8_32)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Lazy Decision Trees (ICML 2003)[0m
|
||
[38;5;12m - Xiaoli Zhang Fern, Carla E. Brodley[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.aaai.org/Papers/ICML/2003/ICML03-026.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOn the Convergence of Boosting Procedures (ICML 2003)[0m
|
||
[38;5;12m - Tong Zhang, Bin Yu[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/dd3f/901b232280533fbdb9e57f144f44723617cf.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mLinear Programming Boosting for Uneven Datasets (ICML 2003)[0m
|
||
[38;5;12m - Jure Leskovec, John Shawe-Taylor[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://cs.stanford.edu/people/jure/pubs/textbooster-icml03.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMonte Carlo Theory as an Explanation of Bagging and Boosting (IJCAI 2003)[0m
|
||
[38;5;12m - Roberto Esposito, Lorenza Saitta[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/citation.cfm?id=1630733)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOn the Dynamics of Boosting (NIPS 2003)[0m
|
||
[38;5;12m - Cynthia Rudin, Ingrid Daubechies, Robert E. Schapire[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/2535-on-the-dynamics-of-boosting)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMutual Boosting for Contextual Inference (NIPS 2003)[0m
|
||
[38;5;12m - Michael Fink, Pietro Perona[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/2520-mutual-boosting-for-contextual-inference)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Versus Covering (NIPS 2003)[0m
|
||
[38;5;12m - Kohei Hatano, Manfred K. Warmuth[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/2532-boosting-versus-covering)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMultiple-Instance Learning via Disjunctive Programming Boosting (NIPS 2003)[0m
|
||
[38;5;12m - Stuart Andrews, Thomas Hofmann[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/2478-multiple-instance-learning-via-disjunctive-programming-boosting)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAveraged Boosting: A Noise-Robust Ensemble Method (PAKDD 2003)[0m
|
||
[38;5;12m - Yongdai Kim[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://link.springer.com/chapter/10.1007/3-540-36175-8_38)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mSMOTEBoost: Improving Prediction of the Minority Class in Boosting (PKDD 2003)[0m
|
||
[38;5;12m - Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, Kevin W. Bowyer[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www3.nd.edu/~nchawla/papers/ECML03.pdf)[39m
|
||
|
||
[38;2;255;187;0m[4m2002[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMinimum Majority Classification and Boosting (AAAI 2002)[0m
|
||
[38;5;12m - Philip M. Long[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://phillong.info/publications/minmaj.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mRanking Algorithms for Named Entity Extraction: Boosting and the Voted Perceptron (ACL 2002)[0m
|
||
[38;5;12m - Michael Collins[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.aclweb.org/anthology/P02-1062)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting to Correct Inductive Bias in Text Classification (CIKM 2002)[0m
|
||
[38;5;12m - Yan Liu, Yiming Yang, Jaime G. Carbonell[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/citation.cfm?id=584792.584850)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mHow to Make AdaBoost.M1 Work for Weak Base Classifiers by Changing Only One Line of the Code (ECML 2002)[0m
|
||
[38;5;12m - Günther Eibl, Karl Peter Pfeiffer[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/citation.cfm?id=650068)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mScaling Boosting by Margin-Based Inclusionof Features and Relations (ECML 2002)[0m
|
||
[38;5;12m - Susanne Hoche, Stefan Wrobel[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://link.springer.com/chapter/10.1007/3-540-36755-1_13)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Robust Boosting Algorithm (ECML 2002)[0m
|
||
[38;5;12m - Richard Nock, Patrice Lefaucheur[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/citation.cfm?id=650081)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1miBoost: Boosting Using an instance-Based Exponential Weighting Scheme (ECML 2002)[0m
|
||
[38;5;12m - Stephen Kwek, Chau Nguyen[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.researchgate.net/publication/220516082_iBoost_Boosting_using_an_instance-based_exponential_weighting_scheme)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Density Function Estimators (ECML 2002)[0m
|
||
[38;5;12m - Franck Thollard, Marc Sebban, Philippe Ézéquel[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://link.springer.com/chapter/10.1007%2F3-540-36755-1_36)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mStatistical Behavior and Consistency of Support Vector Machines, Boosting, and Beyond (ICML 2002)[0m
|
||
[38;5;12m - Tong Zhang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.researchgate.net/publication/221344927_Statistical_Behavior_and_Consistency_of_Support_Vector_Machines_Boosting_and_Beyond)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Boosted Maximum Entropy Model for Learning Text Chunking (ICML 2002)[0m
|
||
[38;5;12m - Seong-Bae Park, Byoung-Tak Zhang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.researchgate.net/publication/221345636_A_Boosted_Maximum_Entropy_Model_for_Learning_Text_Chunking)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mTowards Large Margin Speech Recognizers by Boosting and Discriminative Training (ICML 2002)[0m
|
||
[38;5;12m - Carsten Meyer, Peter Beyerlein[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.semanticscholar.org/paper/Towards-Large-Margin-Speech-Recognizers-by-Boosting-Meyer-Beyerlein/8408479e36da812cdbf6bc15f7849c3e76a1016d)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mIncorporating Prior Knowledge into Boosting (ICML 2002)[0m
|
||
[38;5;12m - Robert E. Schapire, Marie Rochery, Mazin G. Rahim, Narendra K. Gupta[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://rob.schapire.net/papers/boostknowledge.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mModeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation (ICML 2002)[0m
|
||
[38;5;12m - Robert E. Schapire, Peter Stone, David A. McAllester, Michael L. Littman, János A. Csirik[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cs.utexas.edu/~ai-lab/pubs/ICML02-tac.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mMARK: A Boosting Algorithm for Heterogeneous Kernel Models (KDD 2002)[0m
|
||
[38;5;12m - Kristin P. Bennett, Michinari Momma, Mark J. Embrechts[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://homepages.rpiscrews.us/~bennek/papers/kdd2.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mPredicting rare classes: can boosting make any weak learner strong (KDD 2002)[0m
|
||
[38;5;12m - Mahesh V. Joshi, Ramesh C. Agarwal, Vipin Kumar[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.1159&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mKernel Design Using Boosting (NIPS 2002)[0m
|
||
[38;5;12m - Koby Crammer, Joseph Keshet, Yoram Singer[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/ff79/344807e972fdd7e5e1c3ed5c539dd1aeecbe.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFloatBoost Learning for Classification (NIPS 2002)[0m
|
||
[38;5;12m - Stan Z. Li, ZhenQiu Zhang, Heung-Yeung Shum, HongJiang Zhang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/8ccc/5ef87eab96a4cae226750eba8322b30606ea.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mDiscriminative Learning for Label Sequences via Boosting (NIPS 2002)[0m
|
||
[38;5;12m - Yasemin Altun, Thomas Hofmann, Mark Johnson[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://web.science.mq.edu.au/~mjohnson/papers/nips02.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Density Estimation (NIPS 2002)[0m
|
||
[38;5;12m - Saharon Rosset, Eran Segal[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/2298-boosting-density-estimation.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mSelf Supervised Boosting (NIPS 2002)[0m
|
||
[38;5;12m - Max Welling, Richard S. Zemel, Geoffrey E. Hinton[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/6a2a/f112a803e70c23b7055de2e73007cf42c301.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosted Dyadic Kernel Discriminants (NIPS 2002)[0m
|
||
[38;5;12m - Baback Moghaddam, Gregory Shakhnarovich[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.merl.com/publications/docs/TR2002-55.pdf)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mA Method to Boost Support Vector Machines (PAKDD 2002)[0m
|
||
[38;5;12m - Lili Diao, Keyun Hu, Yuchang Lu, Chunyi Shi[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://elkingarcia.github.io/Papers/MLDM07.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Method to Boost Naive Bayesian Classifiers (PAKDD 2002)[0m
|
||
[38;5;12m - Lili Diao, Keyun Hu, Yuchang Lu, Chunyi Shi[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://link.springer.com/chapter/10.1007/3-540-47887-6_11)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mPredicting Rare Classes: Comparing Two-Phase Rule Induction to Cost-Sensitive Boosting (PKDD 2002)[0m
|
||
[38;5;12m - Mahesh V. Joshi, Ramesh C. Agarwal, Vipin Kumar[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://link.springer.com/chapter/10.1007/3-540-45681-3_20)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mIterative Data Squashing for Boosting Based on a Distribution-Sensitive Distance (PKDD 2002)[0m
|
||
[38;5;12m - Yuta Choki, Einoshin Suzuki[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://link.springer.com/chapter/10.1007/3-540-45681-3_8)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mStaged Mixture Modelling and Boosting (UAI 2002)[0m
|
||
[38;5;12m - Christopher Meek, Bo Thiesson, David Heckerman[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/abs/1301.0586)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAdvances in Boosting (UAI 2002)[0m
|
||
[38;5;12m - Robert E. Schapire[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://rob.schapire.net/papers/uai02.pdf)[39m
|
||
|
||
[38;2;255;187;0m[4m2001[0m
|
||
[38;5;12m- [39m[38;5;14m[1mIs Regularization Unnecessary for Boosting? (AISTATS 2001)[0m
|
||
[38;5;12m - Wenxin Jiang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.researchgate.net/publication/2439718_Is_Regularization_Unnecessary_for_Boosting)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOnline Bagging and Boosting (AISTATS 2001)[0m
|
||
[38;5;12m - Nikunj C. Oza, Stuart J. Russell[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ti.arc.nasa.gov/m/profile/oza/files/ozru01a.pdf)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mText Categorization Using Transductive Boosting (ECML 2001)[0m
|
||
[38;5;12m - Hirotoshi Taira, Masahiko Haruno[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://link.springer.com/chapter/10.1007/3-540-44795-4_39)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mImproving Term Extraction by System Combination Using Boosting (ECML 2001)[0m
|
||
[38;5;12m - Jordi Vivaldi, Lluís Màrquez, Horacio Rodríguez[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/citation.cfm?id=3108351)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAnalysis of the Performance of AdaBoost.M2 for the Simulated Digit-Recognition-Example (ECML 2001)[0m
|
||
[38;5;12m - Günther Eibl, Karl Peter Pfeiffer[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://link.springer.com/chapter/10.1007/3-540-44795-4_10)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOn the Practice of Branching Program Boosting (ECML 2001)[0m
|
||
[38;5;12m - Tapio Elomaa, Matti Kääriäinen[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.researchgate.net/publication/221112522_On_the_Practice_of_Branching_Program_Boosting)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Mixture Models for Semi-supervised Learning (ICANN 2001)[0m
|
||
[38;5;12m - Yves Grandvalet, Florence d'Alché-Buc, Christophe Ambroise[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://link.springer.com/chapter/10.1007/3-540-44668-0_7[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Comparison of Stacking with Meta Decision Trees to Bagging, Boosting, and Stacking with other Methods (ICDM 2001)[0m
|
||
[38;5;12m - Bernard Zenko, Ljupco Todorovski, Saso Dzeroski[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.3118&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mUsing Boosting to Simplify Classification Models (ICDM 2001)[0m
|
||
[38;5;12m - Virginia Wheway[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://ieeexplore.ieee.org/abstract/document/989565)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mEvaluating Boosting Algorithms to Classify Rare Classes: Comparison and Improvements (ICDM 2001)[0m
|
||
[38;5;12m - Mahesh V. Joshi, Vipin Kumar, Ramesh C. Agarwal[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/b829/fe743e4beeeed65d32d2d7931354df7a2f60.pdf)[39m
|
||
[38;5;12m - [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;12m ( )[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Neighborhood-Based Classifiers (ICML 2001)[0m
|
||
[38;5;12m - Marc Sebban, Richard Nock, Stéphane Lallich[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.semanticscholar.org/paper/Boosting-Neighborhood-Based-Classifiers-Sebban-Nock/ee88e3bbe8a7e81cae7ee53da2c824de7c82f882)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Noisy Data (ICML 2001)[0m
|
||
[38;5;12m - Abba Krieger, Chuan Long, Abraham J. Wyner[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.researchgate.net/profile/Abba_Krieger/publication/221345435_Boosting_Noisy_Data/links/00463528a1ba641692000000.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mSome Theoretical Aspects of Boosting in the Presence of Noisy Data (ICML 2001)[0m
|
||
[38;5;12m - Wenxin Jiang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=2494A2C06ACA22FA971AC1C29B53FF62?doi=10.1.1.27.7231&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFilters, Wrappers and a Boosting-Based Hybrid for Feature Selection (ICML 2001)[0m
|
||
[38;5;12m - Sanmay Das[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/93b6/25a0e35b59fa6a3e7dc1cbdb31268d62d69f.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mThe Distributed Boosting Algorithm (KDD 2001)[0m
|
||
[38;5;12m - Aleksandar Lazarevic, Zoran Obradovic[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.researchgate.net/publication/2488971_The_Distributed_Boosting_Algorithm)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mExperimental Comparisons of Online and Batch Versions of Bagging and Boosting (KDD 2001)[0m
|
||
[38;5;12m - Nikunj C. Oza, Stuart J. Russell[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://people.eecs.berkeley.edu/~russell/papers/kdd01-online.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mSemi-supervised MarginBoost (NIPS 2001)[0m
|
||
[38;5;12m - Florence d'Alché-Buc, Yves Grandvalet, Christophe Ambroise[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/2197/f1c2d55827b6928cc80030922569acce2d6c.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting and Maximum Likelihood for Exponential Models (NIPS 2001)[0m
|
||
[38;5;12m - Guy Lebanon, John D. Lafferty[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/2042-boosting-and-maximum-likelihood-for-exponential-models.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFast and Robust Classification using Asymmetric AdaBoost and a Detector Cascade (NIPS 2001)[0m
|
||
[38;5;12m - Paul A. Viola, Michael J. Jones[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.4306&rep=rep1&type=pdf)[39m
|
||
[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Localized Classifiers in Heterogeneous Databases (SDM 2001)[0m
|
||
[38;5;12m - Aleksandar Lazarevic, Zoran Obradovic[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://epubs.siam.org/doi/abs/10.1137/1.9781611972719.14)[39m
|
||
|
||
[38;2;255;187;0m[4m2000[0m
|
||
[38;5;12m- [39m[38;5;14m[1mBoosted Wrapper Induction (AAAI 2000)[0m
|
||
[38;5;12m - Dayne Freitag, Nicholas Kushmerick[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/d009/a2bd48a9d1971fbc0d99f6df00539a62048a.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAn Improved Boosting Algorithm and its Application to Text Categorization (CIKM 2000)[0m
|
||
[38;5;12m - Fabrizio Sebastiani, Alessandro Sperduti, Nicola Valdambrini[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://nmis.isti.cnr.it/sebastiani/Publications/CIKM00.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting for Document Routing (CIKM 2000)[0m
|
||
[38;5;12m - Raj D. Iyer, David D. Lewis, Robert E. Schapire, Yoram Singer, Amit Singhal[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://singhal.info/cikm-2000.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mOn the Boosting Pruning Problem (ECML 2000)[0m
|
||
[38;5;12m - Christino Tamon, Jie Xiang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://link.springer.com/chapter/10.1007/3-540-45164-1_41)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Applied to Word Sense Disambiguation (ECML 2000)[0m
|
||
[38;5;12m - Gerard Escudero, Lluís Màrquez, German Rigau[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/citation.cfm?id=649539)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAn Empirical Study of MetaCost Using Boosting Algorithms (ECML 2000)[0m
|
||
[38;5;12m - Kai Ming Ting[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.218.1624&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mFeatureBoost: A Meta-Learning Algorithm that Improves Model Robustness (ICML 2000)[0m
|
||
[38;5;12m - Joseph O'Sullivan, John Langford, Rich Caruana, Avrim Blum[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.researchgate.net/publication/221345746_FeatureBoost_A_Meta-Learning_Algorithm_that_Improves_Model_Robustness)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mComparing the Minimum Description Length Principle and Boosting in the Automatic Analysis of Discourse (ICML 2000)[0m
|
||
[38;5;12m - Tadashi Nomoto, Yuji Matsumoto[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.researchgate.net/publication/221344998_Comparing_the_Minimum_Description_Length_Principle_and_Boosting_in_the_Automatic_Analysis_of_Discourse)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Boosting Approach to Topic Spotting on Subdialogues (ICML 2000)[0m
|
||
[38;5;12m - Kary Myers, Michael J. Kearns, Satinder P. Singh, Marilyn A. Walker[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cis.upenn.edu/~mkearns/papers/topicspot.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Comparative Study of Cost-Sensitive Boosting Algorithms (ICML 2000)[0m
|
||
[38;5;12m - Kai Ming Ting[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/citation.cfm?id=657944)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting a Positive-Data-Only Learner (ICML 2000)[0m
|
||
[38;5;12m - Andrew R. Mitchell[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.3669)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Column Generation Algorithm For Boosting (ICML 2000)[0m
|
||
[38;5;12m - Kristin P. Bennett, Ayhan Demiriz, John Shawe-Taylor[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1828D5853F656BD6892E9C2C446ECC68?doi=10.1.1.16.9612&rep=rep1&type=pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Gradient-Based Boosting Algorithm for Regression Problems (NIPS 2000)[0m
|
||
[38;5;12m - Richard S. Zemel, Toniann Pitassi[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/c41a/9417f5605b55bdd216d119e47669a92f5c50.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mWeak Learners and Improved Rates of Convergence in Boosting (NIPS 2000)[0m
|
||
[38;5;12m - Shie Mannor, Ron Meir[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/1906-weak-learners-and-improved-rates-of-convergence-in-boosting.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAdaptive Boosting for Spatial Functions with Unstable Driving Attributes (PAKDD 2000)[0m
|
||
[38;5;12m - Aleksandar Lazarevic, Tim Fiez, Zoran Obradovic[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.dabi.temple.edu/~zoran/papers/lazarevic01j.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mScaling Up a Boosting-Based Learner via Adaptive Sampling (PAKDD 2000)[0m
|
||
[38;5;12m - Carlos Domingo, Osamu Watanabe[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://link.springer.com/chapter/10.1007/3-540-45571-X_37)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mLearning First Order Logic Time Series Classifiers: Rules and Boosting (PKDD 2000)[0m
|
||
[38;5;12m - Juan J. Rodríguez Diez, Carlos Alonso González, Henrik Boström[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://people.dsv.su.se/~henke/papers/rodriguez00b.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBagging and Boosting with Dynamic Integration of Classifiers (PKDD 2000)[0m
|
||
[38;5;12m - Alexey Tsymbal, Seppo Puuronen[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://link.springer.com/chapter/10.1007/3-540-45372-5_12)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mText Filtering by Boosting Naive Bayes Classifiers (SIGIR 2000)[0m
|
||
[38;5;12m - Yu-Hwan Kim, Shang-Yoon Hahn, Byoung-Tak Zhang[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.researchgate.net/publication/221299823_Text_filtering_by_boosting_Naive_Bayes_classifiers)[39m
|
||
|
||
[38;2;255;187;0m[4m1999[0m
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Methodology for Regression Problems (AISTATS 1999)[0m
|
||
[38;5;12m - Greg Ridgeway, David Madigan, Thomas Richardson[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/5f19/6a8baa281b2190c4519305bec8f5c91c8e5a.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Applied to Tagging and PP Attachment (EMNLP 1999)[0m
|
||
[38;5;12m - Steven Abney, Robert E. Schapire, Yoram Singer[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.aclweb.org/anthology/W99-0606)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mLazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees (ICML 1999)[0m
|
||
[38;5;12m - Zijian Zheng, Geoffrey I. Webb, Kai Ming Ting[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/067e/86836ddbcb5e2844e955c16e058366a18c77.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAdaCost: Misclassification Cost-Sensitive Boosting (ICML 1999)[0m
|
||
[38;5;12m - Wei Fan, Salvatore J. Stolfo, Junxin Zhang, Philip K. Chan[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/9ddf/bc2cc5c1b13b80a1a487b9caa57e80edd863.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting a Strong Learner: Evidence Against the Minimum Margin (ICML 1999)[0m
|
||
[38;5;12m - Michael Bonnell Harries[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://dl.acm.org/citation.cfm?id=657480)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Algorithms as Gradient Descent (NIPS 1999)[0m
|
||
[38;5;12m - Llew Mason, Jonathan Baxter, Peter L. Bartlett, Marcus R. Frean[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/1766-boosting-algorithms-as-gradient-descent.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting with Multi-Way Branching in Decision Trees (NIPS 1999)[0m
|
||
[38;5;12m - Yishay Mansour, David A. McAllester[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/1659-boosting-with-multi-way-branching-in-decision-trees.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mPotential Boosters (NIPS 1999)[0m
|
||
[38;5;12m - Nigel Duffy, David P. Helmbold[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/4884/c765b6ceab7bdfb6703489810c8a386fd2a8.pdf)[39m
|
||
|
||
[38;2;255;187;0m[4m1998[0m
|
||
[38;5;12m- [39m[38;5;14m[1mAn Efficient Boosting Algorithm for Combining Preferences (ICML 1998)[0m
|
||
[38;5;12m - Yoav Freund, Raj D. Iyer, Robert E. Schapire, Yoram Singer[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://jmlr.csail.mit.edu/papers/volume4/freund03a/freund03a.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mQuery Learning Strategies Using Boosting and Bagging (ICML 1998)[0m
|
||
[38;5;12m - Naoki Abe, Hiroshi Mamitsuka[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.bic.kyoto-u.ac.jp/pathway/mami/pubs/Files/icml98.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mRegularizing AdaBoost (NIPS 1998)[0m
|
||
[38;5;12m - Gunnar Rätsch, Takashi Onoda, Klaus-Robert Müller[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/0afc/9de245547c675d40ad29240e2788c0416f91.pdf)[39m
|
||
|
||
[38;2;255;187;0m[4m1997[0m
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting the Margin: A New Explanation for the Effectiveness of Voting Methods (ICML 1997)[0m
|
||
[38;5;12m - Robert E. Schapire, Yoav Freund, Peter Barlett, Wee Sun Lee[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cc.gatech.edu/~isbell/tutorials/boostingmargins.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mUsing Output Codes to Boost Multiclass Learning Problems (ICML 1997)[0m
|
||
[38;5;12m - Robert E. Schapire[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://rob.schapire.net/papers/Schapire97.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mImproving Regressors Using Boosting Techniques (ICML 1997)[0m
|
||
[38;5;12m - Harris Drucker[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/8d49/e2dedb817f2c3330e74b63c5fc86d2399ce3.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mPruning Adaptive Boosting (ICML 1997)[0m
|
||
[38;5;12m - Dragos D. Margineantu, Thomas G. Dietterich[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://pdfs.semanticscholar.org/b25f/615fc139fbdeccc3bcf4462f908d7f8e37f9.pdf)[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mTraining Methods for Adaptive Boosting of Neural Networks (NIPS 1997)[0m
|
||
[38;5;12m - Holger Schwenk, Yoshua Bengio[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/1335-training-methods-for-adaptive-boosting-of-neural-networks.pdf)[39m
|
||
|
||
[38;2;255;187;0m[4m1996[0m
|
||
[38;5;12m- [39m[38;5;14m[1mExperiments with a New Boosting Algorithm (ICML 1996)[0m
|
||
[38;5;12m - Yoav Freund, Robert E. Schapire[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://cseweb.ucsd.edu/~yfreund/papers/boostingexperiments.pdf)[39m
|
||
|
||
[38;2;255;187;0m[4m1995[0m
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting Decision Trees (NIPS 1995)[0m
|
||
[38;5;12m - Harris Drucker, Corinna Cortes[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://papers.nips.cc/paper/1059-boosting-decision-trees.pdf)[39m
|
||
|
||
[38;2;255;187;0m[4m1994[0m
|
||
[38;5;12m- [39m[38;5;14m[1mBoosting and Other Machine Learning Algorithms (ICML 1994)[0m
|
||
[38;5;12m - Harris Drucker, Corinna Cortes, Lawrence D. Jackel, Yann LeCun, Vladimir Vapnik[39m
|
||
[38;5;12m - [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.sciencedirect.com/science/article/pii/B9781558603356500155)[39m
|
||
|
||
[38;5;238m―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――[39m
|
||
|
||
[38;5;14m[1mLicense[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mCC0 Universal[0m[38;5;12m (https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers/blob/master/LICENSE)[39m
|