Files
awesome-awesomeness/html/agicocosci.html
2024-04-20 19:22:54 +02:00

6638 lines
370 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<div data-align="center">
<pre><code>&lt;img width=&quot;400&quot; height=&quot;253&quot; src=&quot;assets/abd_map.png&quot; alt=&quot;Roadmap of studying Abduction&quot;&gt;</code></pre>
</div>
<h1
id="awesome-artificial-general-intelligence-and-computational-cognitive-sciences-awesome">Awesome
Artificial General Intelligence and Computational Cognitive Sciences <a
href="https://awesome.re"><img src="https://awesome.re/badge.svg"
alt="Awesome" /></a></h1>
<p>An <strong>awesome &amp; curated</strong> list for <strong>Artificial
General Intelligence</strong>, an emerging inter-discipline field that
combines artificial intelligence and computational cognitive sciences as
majority, alone with probability and statistics, formal logic, cognitive
and developmental psychology, computational philosophy, cognitive
neuroscience, and computational sociology. We are promoting high-level
machine intelligence by getting inspirations from the way that human
learns and thinks, while obtaining a deeper understanding of human
cognition simultaneously. We believe that this kind of reciprocative
research is a potential way towards our big picture: building
human-level intelligent systems with capabilities such as abstracting,
explaining, learning, planning, and making decisions. And such
intelligence may generally help people improve scientific research,
engineering, and the arts, which are the hallmarks of human
intelligence.</p>
<p><strong><em>Awesome AGI &amp; CoCoSci</em></strong> is an all-in-one
collection, consisting of recources from basic courses and tutorials, to
papers and books around diverse topics in mutiple perspectives. Both
junior and senior researchers, whether learning, working on, or working
around AGI and CoCoSci, meet their interest here.</p>
<h2 id="contributing">Contributing</h2>
<p>Contributions are greatly welcomed! Please refer to <a
href="Contributing.md">Contribution Guidelines</a> before taking any
action.</p>
<p><span id="c"></span> ## Contents * <a href="#academic-tools">Academic
Tools</a> * <a href="#courses">Courses</a> * <a
href="#programming">Programming</a> * <a href="#paper-writing">Paper
Writing</a> * <a href="#paper-reading">Paper Reading</a> * <a
href="#literature-management">Literature Management</a> * <a
href="#knowledge-management">Knowledge Management</a> * <a
href="#papers">Papers</a> * <a href="#abduction">Abduction</a> * <a
href="#explanation">Explanation</a> * <a
href="#scientific-discovery">Scientific Discovery</a> * <a
href="#rationalization">Rationalization</a> * <a
href="#applications-in-ai">Applications in AI</a> * <a
href="#bayesian-modeling">Bayesian Modeling</a> * <a
href="#bayesian-induction">Bayesian Induction</a> * <a
href="#generative-model">Generative Model</a> * <a
href="#nonparametric-model">Nonparametric Model</a> * <a
href="#bayesian-optimization">Bayesian Optimization</a> * <a
href="#concepts">Concepts</a> * <a href="#theory-of-concepts">Theory of
Concepts</a> * <a href="#human-concept-representation">Human Concept
Represenataion</a> * <a href="#ai-concept-representation">AI Concept
Representation</a> * <a
href="#complexity--information-theory">Complexity &amp; Information
Theory</a> * <a href="#theory">Theory</a> * <a
href="#dimensionality-reduction">Dimensionality Reduction</a> * <a
href="#visual-complexity">Visual Complexity</a> * <a
href="#communications">Communications</a> * <a
href="#non-verbal-communication">Non-Verbal Communication</a> * <a
href="#pragmatics">Pragmatics</a> * <a
href="#language-compositionality">Language Compositionality</a> * <a
href="#coordination">Coordination</a> * <a
href="#domain-specific-language">Domain Specific Language</a> * <a
href="#design-theory">Design Theory</a> * <a
href="#design-practises">Design Practises</a> * <a
href="#domain-specified-applications">Domain Specified Applications</a>
* <a href="#dsl-program-synthesis">DSL Program Synthesis</a> * <a
href="#problem-solving">Problem Solving</a> * <a
href="#human-level-problem-solving">Human-Level Problem Solving</a> * <a
href="#planning">Planning</a> * <a
href="#intrinsic-motivation">Intrinsic Motivation</a> * <a
href="#reinforcement-learning">Reinforcement Learning</a> * <a
href="#inverse-reinforcement-learning">Inverse Reinforcement
Learning</a> * <a href="#system-1--system-2">System 1 &amp; System 2</a>
* <a href="#dual-coding-theory">Dual-Coding Theory</a> * <a
href="#neural-symbolic-ai">Neural-Symbolic AI</a> * <a
href="#explainability">Explainability</a> * <a
href="#trustworthy-ai">Trustworthy AI</a> * <a
href="#strong-machine-learning">Strong Machine Learning</a> * <a
href="#explainable-deep-learning">Explainable Deep Learning</a> * <a
href="#embodied-intelligence">Embodied Intelligence</a> * <a
href="#evolutionary-intelligence">Evolutionary Intelligence</a> * <a
href="#methodologies-for-experiments">Methodologies for Experiments</a>
* <a href="#quantitative-analysis">Quantitative Analysis</a> * <a
href="#scaling-up-behavioral-studies">Scaling Up Behavioral Studies</a>
* <a href="#decision-making">Decision Making</a> * <a
href="#question-answering">Question Answering</a> * <a
href="#human-machine-comparison">Human-Machine Comparison</a> * <a
href="#association-test">Association Test</a> * <a
href="#virtual-reality">Virtual Reality</a> * <a
href="#meta-level-considerations">Meta-Level Considerations</a> * <a
href="#meta-learning">Meta Learning</a> * <a
href="#marrs-levels-of-analysis">Marrs Levels of Analysis</a> * <a
href="#gestalt">Gestalt</a> * <a href="#the-aha-moment">The Aha!
Moment</a> * <a href="#rationality">Rationality</a> * <a
href="#cognitive-architecture">Cognitive Architecture</a> * <a
href="#science-logology">Science Logology</a> * <a
href="#philosophy-of-science">Philosophy of Science</a> * <a
href="#science-of-science">Science of Science</a> * <a
href="#literature-mining">Literature Mining</a> * <a
href="#literature-visualization">Literature Visualization</a> * <a
href="#scientific-writing">Scientific Writing</a> * <a
href="#science-education">Science Education</a> * <a
href="#democratization-of-science">Democratization of Science</a> * <a
href="#laboratory-automation">Laboratory Automation</a> * <a
href="#theory-of-mind">Theory of Mind</a> * <a
href="#analogy">Analogy</a> * <a href="#causality">Causality</a> * <a
href="#commonsense">Commonsense</a> * <a
href="#intuitive-physics">Intuitive Physics</a> * <a
href="#ai-commonsense-reasoning">AI Commonsense Reasoning</a> * <a
href="#commonsense-knowledgebase">Commonsense Knowledgebase</a> * <a
href="#inductive-logic--program-synthesis">Inductive Logic &amp; Program
Synthesis</a> * <a href="#knowledge-representation">Knowledge
Representation</a> * <a href="#cognitive-development">Cognitive
Development</a> * <a href="#learning-in-the-open-world">Learning in the
Open World</a> * <a
href="#learning-with-cognitive-plausibility">Learning with Cognitive
Plausibility</a> <!--* [Tasks & Environments](#te)--> * <a
href="#institute--researcher">Institute &amp; Researcher</a> * <a
href="#mit">MIT</a> * <a href="#stanford">Stanford</a> * <a
href="#princeton">Princeton</a> * <a href="#harvard">Harvard</a> * <a
href="#ucla">UCLA</a> * <a href="#uc-berkeley">UC Berkeley</a> * <a
href="#bnu">BNU</a> * <a href="#pku">PKU</a> * <a href="#ucsd">UCSD</a>
* <a href="#nyu">NYU</a> * <a href="#jhu">JHU</a> * <a
href="#sit">SIT</a> * <a href="#people--book">People &amp; Book</a> * <a
href="#ulf-grenander">Ulf Grenander</a> * <a href="#david-marr">David
Marr</a> * <a href="#michael-tomasello">Michael Tomasello</a> * <a
href="#judea-pearl">Judea Pearl</a> * <a href="#susan-carey">Susan
Carey</a> * <a href="#daniel-kahneman">Daniel Kahneman</a> * <a
href="#karl-popper">Karl Popper</a> * <a href="#john-hopcroft">John
Hopcroft</a> * <a href="#about">About</a></p>
<h2 id="academic-tools">Academic Tools</h2>
<h3 id="courses">Courses</h3>
<ul>
<li><p><a
href="https://cbmm.mit.edu/education/courses/computational-cognitive-science">Computational
Cognitive Science Courses</a> - <strong><em>MIT</em></strong>. Courses
on computational cognitive science from MIT, Harvard, and
Stanford.</p></li>
<li><p><a
href="https://people.csail.mit.edu/asolar/SynthesisCourse/index.htm">Introduction
to Program Synthesis</a> - <strong><em>MIT</em></strong>. Armando
Solar-Lezamas elementary course on program synthesis.</p></li>
<li><p><a href="https://web.mit.edu/6.001/6.037/">Structure and
Interpretation of Computer Programs</a> - <strong><em>MIT</em></strong>.
[<a href="https://web.mit.edu/6.001/6.037/sicp.pdf">Book: SICP</a>]. [<a
href="https://scholar.google.com/scholar?cluster=7488066943428166450&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Classic course on applying structural, procedural, and
meta-linguistic abstraction to solve computational problems.</p></li>
<li><p><a
href="https://faculty.ksu.edu.sa/sites/default/files/rosen_discrete_mathematics_and_its_applications_7th_edition.pdf">Discrete
Mathematics and Its Applications</a>. Classic course on basic discrete
mathematics, including matheatical logic, set theory, graph theory,
formal language (and automata), basic number theory (e.g., counting),
and other related topics.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="programming">Programming</h3>
<ul>
<li><a href="https://probmods.org/">Probabilistic Models of
Cognition</a> - <strong><em>MIT</em></strong>. The probabilistic
approach to cognitive science, which models learning and reasoning as
inference in complex probabilistic models.</li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="paper-writing">Paper Writing</h3>
<ul>
<li><p><a href="LaTex/config.sty">LaTex Configuration</a> -
<strong><em>LaTex</em></strong>. LaTex template for configuration file
with elegant reference style (gray-colored reference, page backward
reference).</p></li>
<li><p><a href="BibTex/references_header.bib">BibTex Template</a> -
<strong><em>BibTex</em></strong>. BibTex template for including
abbreviations of journals and conferences in AI, Mathematics, and
Cognitive Sciences.</p></li>
<li><p><a href="https://www.biorender.com/">bioRender</a> -
<strong><em>bioRender</em></strong>. Create professional science figures
in minutes by browsing thousands of pre-made icons and templates from
more than 30 fields of life sciences.</p></li>
<li><p><a
href="https://www.nature.com/documents/nature-summary-paragraph.pdf">How
to construct a Nature summary paragraph</a> -
<strong><em>Nature</em></strong>. Nature official guidelines for
composing abstracts.</p></li>
<li><p><a href="https://www.nature.com/articles/d41586-020-03422-x">How
to write a superb literature review</a> -
<strong><em>Nature</em></strong>, 2020. Nature speaks to old hands and
first timers about the work they did to make their reviews
sing.</p></li>
<li><p><a
href="https://www.nature.com/scitable/topicpage/scientific-papers-13815490/">Scientific
Papers</a> - <strong><em>Nature</em></strong>. Nature guidance on
writing scientific papers.</p></li>
<li><p><a
href="https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf">The
Machine Learning Reproducibility Checklist</a> - <strong><em>McGill
University</em></strong>. Guidelines for introducing a machine learning
algorithm with guarantee of reproducibility.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="paper-reading">Paper Reading</h3>
<ul>
<li><p><a
href="https://www.cs.uni-potsdam.de/bs/teaching/docs/courses/ss2020/scn/material/p83-keshavA.pdf">How
to Read a Paper</a> - <strong><em>ACM SIGCOMM Computer Communication
Review</em></strong>, 2007. [<a
href="https://scholar.google.com/scholar?cluster=7234542241721187587&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A comprehensive tutorial on reading scientific
papers.</p></li>
<li><p><a
href="https://www.science.org/content/article/how-seriously-read-scientific-paper">How
to (seriously) read a scientific paper</a> -
<strong><em>Science</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0%2C5&amp;q=How+to+%28seriously%29+read+a+scientific+paper&amp;btnG=">All
Versions</a>]. Science interview on reading scientific papers.</p></li>
<li><p><a href="https://www.nature.com/articles/nature.2017.21751">Its
not just you: science papers are getting harder to read</a> -
<strong><em>Nature</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=4409814498614719804&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Nature perspective on reading scientific papers.</p></li>
<li><p><a
href="https://be.mit.edu/sites/default/files/documents/HowToReadAScientificPaper.pdf">How
to navigate a scientific paper with time constraints: a graphics
approach</a> - <strong><em>MIT</em></strong>. MIT guidance on strategies
for reading papers given different time constraints.</p></li>
<li><p><a href="https://textvis.lnu.se/">Text Visualization Browser</a>
- <strong><em>ISOVIS group</em></strong>, 2015. [<a
href="https://cs.lnu.se/isovis/pubs/docs/kucher-pacificvis15-postprint.pdf">Paper</a>].
[<a
href="https://scholar.google.com/scholar?cluster=7000995325728444282&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A Hub of Text Visualization Techniques.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="literature-management">Literature Management</h3>
<ul>
<li><p><a
href="https://www.science.org/content/article/how-keep-scientific-literature">How
to keep up with the scientific literature</a> -
<strong><em>Science</em></strong>, 2016. Science interview on organizing
scientific papers.</p></li>
<li><p><a href="https://www.nature.com/articles/nj7612-457a">Scientific
literature: Information overload</a> - <strong><em>Nature</em></strong>,
2016. [<a
href="https://scholar.google.com/scholar?cluster=9898832432826237365&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Perspective on handling overloaded information from
scientific literature.</p></li>
<li><p><a
href="https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/">Microsoft
Academic Graph</a> - <strong><em>Microsoft Research</em></strong>.
Heterogeneous graph containing scientific publication records, citation
relationships between those publications, as well as authors,
institutions, journals, conferences, and fields of study.</p></li>
<li><p><a
href="http://sonyis.me/paperpdf/Microsoft%20Academic%20Graph%20WWW%202015.pdf">An
Overview of Microsoft Academic Service (MAS) and Applications</a> -
<strong><em>WWW15</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=9075899176667058496&amp;hl=en&amp;as_sdt=0,5">All
Versios</a>]. Original paper on Microsoft Academic Graph.</p></li>
<li><p><a
href="https://blogs.lse.ac.uk/impactofsocialsciences/2021/05/27/goodbye-microsoft-academic-hello-open-research-infrastructure/">Goodbye,
Microsoft Academic Hello, open research infrastructure?</a> -
<strong><em>LSE Impact Blog</em></strong>, 2021. An interpretation of
Microsofts strategy on research infrastructure.</p></li>
<li><p><a href="https://www.semanticscholar.org/">Semantic Scholar</a> -
<strong><em>Allen Institute for AI Research</em></strong>. AI-powered
scientific literature research tool.</p></li>
<li><p><a href="https://aclanthology.org/N18-3011/">Construction of the
Literature Graph in Semantic Scholar</a> -
<strong><em>NAACL18</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=5500969515339734950&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Semantic Scholar with extracting feature and metadata
from raw paper data.</p></li>
<li><p><a href="https://aclanthology.org/2020.acl-main.447/">S2ORC: The
Semantic Scholar Open Research Corpus</a> -
<strong><em>ACL20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=11978464475399626925&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. An open corpus of academic papers released by Semantic
Scholar.</p></li>
<li><p><a href="https://www.litmaps.com/">Litmaps</a> -
<strong><em>Litmap Ltd</em></strong>. For interactive literature map
construction and linked document management.</p></li>
<li><p><a href="https://www.vosviewer.com/">VOSviewer</a> -
<strong><em>Leiden University</em></strong>. For constructing and
visualizing bibliometric networks.</p></li>
<li><p><a href="https://www.stateoftheart.ai/">StateOfTheArt.AI</a> -
<strong><em>StateOfTheArtAI</em></strong>. For tracking, collecting and
visualizing the development of AI research.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="knowledge-management">Knowledge Management</h3>
<ul>
<li><p><a
href="https://www.loc.gov/aba/publications/FreeLCC/freelcc.html">Library
of Congress Classification</a> - <strong><em>Library of
Congress</em></strong>. Classification system of USA (PDF
only).</p></li>
<li><p><a href="http://cct.nlc.cn/">Chinese Library Classification</a> -
<strong><em>National Library of China</em></strong>. Classification
system of P. R. China (online user interface in Chinese). [<a
href="https://www.isko.org/cyclo/clc">English introduction at ISKO</a>].
[<a
href="https://en.wikipedia.org/wiki/Chinese_Library_Classification">Wikipedia-EN</a>].</p></li>
<li><p><a
href="https://rvk.uni-regensburg.de/regensburger-verbundklassifikation-online">DDC
at German National Library</a> - <strong><em>Deutsche National
Bibliothek</em></strong>. Deway Decimal Classification (DDC) based
classification system of Germany (online user interface). [<a
href="https://www.dnb.de/EN/Professionell/DDC-Deutsch/DDCinDNB/ddcindnb_node.html">DNB
Website</a>].</p></li>
<li><p><a
href="https://www.ndl.go.jp/jp/data/catstandards/classification_subject/ndlc.html">National
Dite Library Classification</a> - <strong><em>National Diet Library of
Japan</em></strong>. Classification system of Japan (PDF only).</p></li>
<li><p><a
href="https://en.wikipedia.org/wiki/List_of_Dewey_Decimal_classes">DDC
at OCLC (Wikipedia)</a> - <strong><em>Online Computer Library Center
(OCLC)</em></strong>. [<a href="https://www.oclc.org/en/home.html">OCLC
Website</a>]. [<a
href="https://www.oclc.org/content/dam/oclc/dewey/versions/print/intro.pdf">Introduction
to DDC</a>]. [<a
href="https://www.oclc.org/content/dam/oclc/webdewey/help/full_manual.pdf">DDC
Manual</a>]. Dewey Decimal Classification (DDC) system for worldwide
library resouce construction. [<a
href="https://www.oclc.org/content/dam/oclc/webdewey/help/000.pdf">DDC
Class 000 (PDF only)</a>]. [<a
href="https://www.oclc.org/content/dam/oclc/webdewey/help/100.pdf">DDC
Class 100 (PDF only)</a>]. [<a
href="https://www.oclc.org/content/dam/oclc/webdewey/help/200.pdf">DDC
Class 200 (PDF only)</a>]. [<a
href="https://www.oclc.org/content/dam/oclc/webdewey/help/300.pdf">DDC
Class 300 (PDF only)</a>]. [<a
href="https://www.oclc.org/content/dam/oclc/webdewey/help/400.pdf">DDC
Class 400 (PDF only)</a>]. [<a
href="https://www.oclc.org/content/dam/oclc/webdewey/help/500.pdf">DDC
Class 500 (PDF only)</a>]. [<a
href="https://www.oclc.org/content/dam/oclc/webdewey/help/600.pdf">DDC
Class 600 (PDF only)</a>]. [<a
href="https://www.oclc.org/content/dam/oclc/webdewey/help/700.pdf">DDC
Class 700 (PDF only)</a>]. [<a
href="https://www.oclc.org/content/dam/oclc/webdewey/help/800.pdf">DDC
Class 800 (PDF only)</a>]. [<a
href="https://www.oclc.org/content/dam/oclc/webdewey/help/900.pdf">DDC
Class 900 (PDF only)</a>].</p></li>
<li><p><a
href="https://en.wikipedia.org/wiki/Knowledge_organization">Knowledge
organization</a> - <strong><em>Wikipedia</em></strong>. Wikipedia on
knowledge organization methods.</p></li>
<li><p><a href="https://zettelkasten.de/">The Zettelkasten Method</a> -
<strong><em>Bielefeld University</em></strong>. Relating ideas in graphs
and multi-labels.</p></li>
<li><p><a
href="https://en.wikipedia.org/wiki/Zettelkasten">Zettelkasten</a> -
<strong><em>Wikipedia</em></strong>. Wikipedia on the Zettelkasten
method.</p></li>
<li><p><a href="https://roamresearch.com/">Roam Research</a> -
<strong><em>Roam Research</em></strong>. For linked document management,
visualization, and sharing.</p></li>
<li><p><a href="https://foambubble.github.io/foam/">Foam</a> -
<strong><em>Foambubble</em></strong>. For linked document management,
visualization, and sharing, opensourced softward built on
VSCode.</p></li>
<li><p><a href="https://www.buildingasecondbrain.com/">Building a Second
Brain</a> - <strong><em>Forte Labs, LLC</em></strong>. Connecting ideas
in graphs.</p></li>
<li><p><a href="https://www.zotero.org/">Zotero</a> -
<strong><em>Digital Scholar</em></strong>. For reference management to
manage bibliographic data and research related materials.</p></li>
<li><p><a
href="https://pdfs.semanticscholar.org/88f8/fa9dfbc0c2b296758dd932b871917c5c775a.pdf%C2%A0">Niklas
Luhmanns Card Index: Thinking Tool, Communication Partner, Publication
Machine</a> - <strong><em>Forgetting Machines: Knowledge Management
Evolution in Early Modern Europe, Brill</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=1786807670077004336&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://culturemachine.net/wp-content/uploads/2019/01/373-604-1-PB.pdf">The
card index as creativity machine</a> - <strong><em>Culture
Machine</em></strong>, 2010. [<a
href="https://scholar.google.com/scholar?cluster=9767873312286889264&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.researchgate.net/profile/Alberto-Cevolini/publication/328624186_Where_Does_Niklas_Luhmann%27s_Card_Index_Come_From/links/609f818e299bf147699a401d/Where-Does-Niklas-Luhmanns-Card-Index-Come-From.pdf">Where
Does Niklas Luhmanns Card Index Come From?</a> - <strong><em>Erudition
and the Republic of Letters</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=8279465066043884141&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A simplified introduction on Luhmanns
Zettelkasten.</p></li>
<li><p><a
href="https://www.uni-bielefeld.de/fakultaeten/soziologie/forschung/luhmann-archiv/pdf/jschmidt_niklas-luhmanns-card-index_-sociologica_2018_12-1.pdf">Niklas
Luhmanns Card Index: The Fabrication of Serendipity</a> -
<strong><em>Sociologica</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=12440286698665929622&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://luhmann.surge.sh/communicating-with-slip-boxes">Communicating
with Slip Boxes</a> - 2019. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0%2C5&amp;q=Communicating+with+slip+boxes+luhmann&amp;btnG=">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h2 id="papers">Papers</h2>
<h3 id="abduction">Abduction</h3>
<h4 id="explanation">Explanation</h4>
<ul>
<li><p><a
href="https://plato.stanford.edu/entries/abduction/index.html">Abduction</a>
- <strong><em>Plato Stanford</em></strong>. A computational philosophy
account on Abduction, one of the three thinking patterns besides
Induction and Deduction, being unique for its potential to introduce new
ideas into current knowledge.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/scientific-explanation/">Scientific
Explanation</a> - <strong><em>Plato Stanford</em></strong>. A
computational philosophy account on Scientific Explanation, a canonical
application of Abduction.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/scientific-reduction/">Scientific
Reduction</a> - <strong><em>Plato Stanford</em></strong>. A
computational philosophy account on Scientific Reduction, which comes
with no explicit boundary with Explanation.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/logic-nonmonotonic/">Non-monotonic
Logic</a> - <strong><em>Plato Stanford</em></strong>. A computational
philosophy account on Non-monotonic Logic, a family of formal frameworks
devised to capture and represent defeasible inference.</p></li>
<li><p><a href="https://4lib.org/book/702071/e8ffe8">Philosophical
Writings of Peirce</a> - <strong><em>Courier Corporation</em></strong>,
1955. [<a
href="https://scholar.google.com/scholar?cluster=3917019015464129592&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Original writings by C. S. Peirce, the establisher of
Abduction.</p></li>
<li><p><a href="https://www.jstor.org/stable/2183532">The Inference to
the Best Explanation</a> - <strong><em>Philosophical
Review</em></strong>, 1965. [<a
href="https://scholar.google.com/scholar?cluster=1416627814151433560&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Liptons original paper on Inference to the Best
Explanation as a special case of Abduction.</p></li>
<li><p><a
href="https://hk1lib.org/book/3594789/f39e15?id=3594789&amp;secret=f39e15">Inference
to the Best Explanation</a> - <strong><em>Routledge</em></strong>, 1991.
[<a
href="https://scholar.google.com/scholar?cluster=6494546505729177895&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Liptons book on Inference to the Best Explanation as a
special case of Abduction.</p></li>
<li><p><a
href="https://www.taylorfrancis.com/books/mono/10.4324/9781315083223/study-thinking-jerome-bruner-jacqueline-goodnow-george-austin">A
Study of Thinking</a> - <strong><em>Routledge</em></strong>, 1956. [<a
href="https://scholar.google.com/scholar?cluster=17466297915128086930&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A classic book on thinking patterns.</p></li>
<li><p><a
href="https://link.springer.com/book/10.1007/978-94-017-1733-5">Abductive
Reasoning and Learning</a> - <strong><em>Springer</em></strong>, 2000.
[<a
href="https://scholar.google.com/scholar?cluster=12074269365138058159&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. An introductory account on abductive reasoning.</p></li>
<li><p><a
href="https://link.springer.com/book/10.1007%2F1-4020-3907-7#authorsandaffiliationsbook">Abductive
Reasoning: Logical Investigations into Discovery and Explanation</a> -
<strong><em>Springer</em></strong>, 2006. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0%2C5&amp;q=Abductive+Reasoning%3A+Logical+Investigations+into+Discovery+and+Explanation&amp;btnG=">All
Versions</a>]. An introductory account on abductive reasoning.</p></li>
<li><p><a
href="https://link.springer.com/book/10.1007%2F978-3-642-03631-6">Abductive
Cognition: The Epistemological and Eco-Cognitive Dimensions of
Hypothetical Reasoning</a> - <strong><em>Springer</em></strong>, 2009.
[<a
href="https://scholar.google.com/scholar?cluster=8707351442527595188&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://cognition.princeton.edu/sites/default/files/cognition/files/explanation_abductive_inference.pdf">Explanation
and Abductive Inference</a> - <strong><em>The Oxford Handbook of
Thinking and Reasoning</em></strong>, 2012. [<a
href="https://scholar.google.com/scholar?cluster=16126850654692681562&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A handbook on the formulations of Abduction.</p></li>
<li><p><a
href="https://www.cs.jhu.edu/~ayuille/JHUcourses/ProbabilisticModelsOfVisualCognition2020/Lec7/chater2006probabilistica.pdf">Probabilistic
models of cognition: Conceptual foundations</a> - <strong><em>Trends in
Cognitive Sciences</em></strong>, 2006. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=12857321660837478492">All
Versions</a>]. A Bayesian account of Abduction.</p></li>
<li><p><a
href="https://cognition.princeton.edu/sites/default/files/cognition/files/tics_explanation.pdf">The
structure and function of explanations</a> - <strong><em>Trends in
Cognitive Sciences</em></strong>, 2006. [<a
href="https://scholar.google.com/scholar?cluster=2849189270394400667&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Basic computation modes of Abduction.</p></li>
<li><p><a
href="https://scholar.princeton.edu/sites/default/files/cognition/files/explanatory_prefs_tics.pdf">Explanatory
Preferences Shape Learning and Inference</a> - <strong><em>Trends in
Cognitive Sciences</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=2040551538203889465&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. An account showing that inductive bias is critical for
explanation.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0010027715000955">The
Role of Explanatory Considerations in Updating</a> -
<strong><em>Cognition</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=3089358487428261042&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.tandfonline.com/doi/full/10.1080/20445911.2016.1230122">Explanation,
updating, and accuracy</a> - <strong><em>Journal of Cognitive
Psychology</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=967127146748155733&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://psycnet.apa.org/record/2018-03972-001">Best,
second-best, and good-enough explanations: How they matter to
reasoning</a> - <strong><em>Journal of Experimental
Psychology</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?start=0&amp;hl=en&amp;as_sdt=0,5&amp;cluster=3067550385175104201">All
Versions</a>]. A subjective probability account of Abduction.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S1364661321001790">How
explanation guides belief change</a> - <strong><em>Trends in Cognitive
Sciences</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=15240531165875981526&amp;hl=en&amp;as_sdt=2005&amp;sciodt=2005">All
Versions</a>]. A review on the subjective probability account of
Abduction.</p></li>
<li><p><a
href="https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog2506_2">Use
of current explanations in multicausal abductive reasoning</a> -
<strong><em>Cognitive Science</em></strong>, 2001. [<a
href="https://scholar.google.com/scholar?cluster=7816050625957759346&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.pnas.org/content/110/42/16766.short">Kinematic mental
simulations in abduction and deduction</a> - <strong><em>Proceedings of
the National Academy of Sciences</em></strong>, 2013. [<a
href="https://scholar.google.com/scholar?cluster=11864820390497230588&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007/s11229-007-9223-4">Patterns
of abduction</a> - <strong><em>Synthese</em></strong>, 2007. [<a
href="https://scholar.google.com/scholar?cluster=15230540023076470385&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A categorization for Abduction in the account of pure
philosophy.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S1570868314000895">Abduction:
A categorical characterization</a> - <strong><em>Journal of Applied
Logic</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=17834260152484836885&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.journals.uchicago.edu/doi/abs/10.1086/392744">Defending
Abduction</a> - <strong><em>Philosophy of Science</em></strong>, 1999.
[<a
href="https://scholar.google.com/scholar?cluster=13895790050138832555&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007/s11229-009-9709-3">On
the distinction between Peirces abduction and Liptons Inference to the
best explanation</a> - <strong><em>Synthese</em></strong>, 2011. [<a
href="https://scholar.google.com/scholar?cluster=7865291004729010145&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007/s11229-019-02337-z">Abductionthe
context of discovery+underdetermination=inference to the best
explanation</a> - <strong><em>Synthese</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=4261649938116694095&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/chapter/10.1007%2F3-540-45004-1_14">Towards
an Architecture for Cognitive Vision Using Qualitative Spatio-temporal
Representations and Abduction</a> - <strong><em>Spatial
Cognition</em></strong>, 2002. [<a
href="https://scholar.google.com/scholar?cluster=8072265283930278310&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007/s11229-018-1824-6">Abductive
inference within a pragmatic framework</a> -
<strong><em>Synthese</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=10285954503043361393&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007/s00354-019-00059-x">Disjunctive
Abduction</a> - <strong><em>New Generation Computing</em></strong>,
2019. [<a
href="https://scholar.google.com/scholar?cluster=6664745483675209831&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00459/full">Probabilistic
alternatives to Bayesianism: the case of explanationism</a> -
<strong><em>Frontiers in Psychology</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=9016714668469830914&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A non-Bayesian account of Abduction.</p></li>
<li><p><a
href="https://www.scitepress.org/Link.aspx?doi=10.5220/0010195405620571">A
Probabilistic Theory of Abductive Reasoning</a> -
<strong><em>ICAART</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=450937566244876051&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A probabilistic perspective for interpreting Abductive
Reasoning.</p></li>
<li><p><a
href="https://www.tandfonline.com/doi/full/10.1080/09528130600558141?scroll=top&amp;needAccess=true">The
order effect in human abductive reasoning: an empirical and
computational study</a> - <strong><em>Journal of Experimental &amp;
Theoretical Artificial Intelligence</em></strong>, 2006. [<a
href="https://scholar.google.com/scholar?cluster=3803536062463585043&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/chapter/10.1007%2F978-3-642-15223-8_5">Abduction,
Induction, and Analogy</a> - <strong><em>Model-Based Reasoning in
Science and Technology</em></strong>, 2010. [<a
href="https://scholar.google.com/scholar?cluster=14979764682921693390&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The distinctions and relations between Abduction,
Induction, and Analogy.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/abs/pii/S0010027718301094">Remembrance
of inferences past: Amortization in human hypothesis generation</a> -
<strong><em>Cognition</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=190340622765037472&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. A rational account of human hypothesis
generation.</p></li>
<li><p><a
href="https://onlinelibrary.wiley.com/doi/full/10.1111/j.1551-6709.2010.01142.x">The
AHA! Experience: Creativity Through Emergent Binding in Neural
Networks</a> - <strong><em>Cognitive Science</em></strong>, 2012. [<a
href="https://scholar.google.com/scholar?cluster=10006889101167052798&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S2352154620300851">Explanation-seeking
curiosity in childhood</a> - <strong><em>Current Opinion in Behavioral
Sciences</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=4167956555501133663&amp;hl=en&amp;as_sdt=2005">All
Versions</a>]. A piece of developmental pshchological evidence for
Abduction in young children.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="scientific-discovery">Scientific Discovery</h4>
<ul>
<li><p><a
href="https://plato.stanford.edu/entries/scientific-discovery/">Scientific
Discovery</a> - <strong><em>Plato Stanford</em></strong>. A
computational philosophy account on Scientific Discovery, the process or
product of successful scientific inquiry, sometimes an Abduction-like
(Explanation) thinking pattern.</p></li>
<li><p><a
href="https://hk1lib.org/book/2241843/c5d7b3?id=2241843&amp;secret=c5d7b3">Models
of Discovery: And Other Topics in the Methods of Science</a> -
<strong><em>Springer</em></strong>, 1977. [<a
href="https://scholar.google.com/scholar?cluster=9932701864897299105&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original book on search as scientific
thinking.</p></li>
<li><p><a
href="https://hk1lib.org/book/970300/6b0ff7?id=970300&amp;secret=6b0ff7">Scientific
discovery: Computational explorations of the creative processes</a> -
<strong><em>MIT Press</em></strong>, 1987. [<a
href="https://scholar.google.com/scholar?cluster=11327000316248254911&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A computational account unifying Scientific Discovery
with the creativity feature of Abduction.</p></li>
<li><p><a
href="https://hk1lib.org/book/701605/02b32a?id=701605&amp;secret=02b32a">Induction:
Processes of Inference, Learning, and Discovery</a> - <strong><em>MIT
Press</em></strong>, 1989. [<a
href="https://scholar.google.com/scholar?cluster=12402938838725132707&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. An Induction account of Scientific Discovery.</p></li>
<li><p><a href="https://psycnet.apa.org/record/2000-03968-000">Exploring
science: The cognition and development of discovery processes</a> -
<strong><em>MIT Press</em></strong>, 2000. [<a
href="https://scholar.google.com/scholar?cluster=13091264356550286420&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1201_1">Dual
Space Search During Scientific Reasoning</a> - <strong><em>Cognitive
Science</em></strong>, 1988. [<a
href="https://scholar.google.com/scholar?cluster=17542852673494089523&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. The original paper on the dual space search as scientific
thinking theory.</p></li>
<li><p><a
href="https://www.cmu.edu/dietrich/psychology/pdf/klahr/PDFs/schunn-klahr.pdf">Complexity
Management in a Discovery Task</a> -
<strong><em>CogSci92</em></strong>, 1992. [<a
href="https://scholar.google.com/scholar?cluster=18138712608977258974&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. Advanced experiments on dual space search.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S1071581996900324">A
dual-space model of iteratively deepening exploratory learning</a> -
<strong><em>International Journal of Human-Computer
Studies</em></strong>, 1996. [<a
href="https://scholar.google.com/scholar?cluster=17337189265334825678&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. Iterative version (in depth and in width) of dual space
search.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/abs/pii/S0010028583710030">Heuristics
for Scientific Experimentation: A Developmental Study</a> -
<strong><em>Cognitive Psychology</em></strong>, 1993. [<a
href="https://scholar.google.com/scholar?cluster=2469515962071844494&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. A piece of evidence on children have basic scientific
thinking skills.</p></li>
<li><p><a
href="https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.645.248&amp;rep=rep1&amp;type=pdf">A
4-Space Model of Scientific Discovery</a> -
<strong><em>CogSci95</em></strong>, 1995. [<a
href="https://scholar.google.com/scholar?cluster=1063157789682040473&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. Extending the dual space search.</p></li>
<li><p><a
href="https://link.springer.com/article/10.3758/BF03201090">When to
trust the data: Further investigations of system error in a scientific
reasoning task</a> - <strong><em>Memory &amp; Cognition</em></strong>,
1996. [<a
href="https://scholar.google.com/scholar?cluster=3131191372086488656&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. A behavioral account on the shift between bottom-up
observation and top-down reasoning.</p></li>
<li><p><a
href="https://psycnet.apa.org/record/1987-20689-001">Confirmation,
disconfirmation, and information in hypothesis testing</a> -
<strong><em>Psychological Review</em></strong>, 1987. [<a
href="https://scholar.google.com/scholar?cluster=1954141597807453515&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A psychological account on hypothesis testing.</p></li>
<li><p><a
href="https://psycnet.apa.org/record/2010-22980-001">Hypothesis
generation, sparse categories, and the positive test strategy</a> -
<strong><em>Psychological Review</em></strong>, 2011. [<a
href="https://scholar.google.com/scholar?cluster=4329636480235863472&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://psycnet.apa.org/record/1990-03504-001">Children
and adults as intuitive scientists</a> - <strong><em>Psychological
Review</em></strong>, 1989. [<a
href="https://scholar.google.com/scholar?cluster=9577945454476127070&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. A perspective against search as scientific
thinking.</p></li>
<li><p><a
href="https://link.springer.com/content/pdf/10.1007/s11229-019-02127-7.pdf">Abduction
and styles of scientific thinking</a> -
<strong><em>Synthese</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=9336871656706514469&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A computational philosophy account connecting Abduction
and scientific thinking.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="rationalization">Rationalization</h4>
<ul>
<li><p><a
href="https://www.sciencedirect.com/science/article/abs/pii/S0885201414000744">Imagination
and the generation of new ideas</a> - <strong><em>Cognitive
Development</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=16920774374067505248&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. A piece of evidence for rationalization in
childhood.</p></li>
<li><p><a
href="http://web.mit.edu/maxs/www/papers/cogsci_2016_vapors.pdf">Coalescing
the Vapors of Human Experience into a Viable and Meaningful
Comprehension</a> - <strong><em>CogSci16</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=5460385008324352958&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. Constrainted thinking as rationalization.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S1364661319302311">How
We Know What Not To Think</a> - <strong><em>Trends in Cognitive
Sciences</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=13106919756521743226&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. A comprehensive review on rationalization.</p></li>
<li><p><a
href="https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/abs/rationalization-is-rational/2A13B99ED09BD802C0924D3681FEC55B">Rationalization
is rational</a> - <strong><em>Behavioral and Brain
Sciences</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=5165464589274056844&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. A rationality account on rationalization.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S1364661321001480">Rationalizing
constraints on the capacity for cognitive control</a> -
<strong><em>Trends in Cognitive Sciences</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=13065113821339619145&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/abs/why-imaginary-worlds/CA2AB4B1E1EDD8FE965E6DDB4A047B35">Why
Imaginary Worlds? The psychological foundations and cultural evolution
of fictions with imaginary worlds</a> - <strong><em>Behavioral and Brain
Sciences</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=11677245106477509648&amp;hl=en&amp;as_sdt=2005&amp;sciodt=2005">All
Versions</a>]. A review of rationalization as imaginary worlds in
fictions.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="applications-in-ai">Applications in AI</h4>
<ul>
<li><p><a href="https://www.nature.com/articles/nature02236">Functional
genomic hypothesis generation and experimentation by a robot
scientist</a> - <strong><em>Nature</em></strong>, 2004. [<a
href="https://scholar.google.com/scholar?cluster=17461972625475533182&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A canonical application of logical abduction on
biodesign.</p></li>
<li><p><a
href="https://www.nature.com/articles/s41586-021-03819-2">Highly
accurate protein structure prediction with AlphaFold</a> -
<strong><em>Nature</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=6286436358625670901&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A canonical application of observation- and explanation-
based method for protein structure prediction instead of
first-principle-based methods.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/abs/pii/0004370293900154?via%3Dihub">Interpretation
as abduction</a> - <strong><em>Artificial Intelligence</em></strong>,
1993. [<a
href="https://scholar.google.com/scholar?cluster=12658433318211361322&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A computational account on interpretation as
Abduction.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/abs/pii/000437029390061F?via%3Dihub">Probabilistic
Horn abduction and Bayesian networks</a> - <strong><em>Artificial
Intelligence</em></strong>, 1993. [<a
href="https://scholar.google.com/scholar?cluster=7728248035489349629&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Casual abduction in Bayesian networks.</p></li>
<li><p><a
href="https://link.springer.com/chapter/10.1007/978-3-540-39879-0_6">Abductive
Inference in Bayesian Networks: A Review</a> - <strong><em>Advances in
Bayesian Networks</em></strong>, 2004. [<a
href="https://scholar.google.com/scholar?cluster=8502276402734843212&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://academic.oup.com/logcom/article-abstract/2/6/719/942121?redirectedFrom=fulltext">Abductive
Logic Programming</a> - <strong><em>Journal of Logic
Computation</em></strong>, 1992. [<a
href="https://scholar.google.com/scholar?cluster=18119357517656745518&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper in ALP.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0743106699000758">ACLP:
Abductive Constraint Logic Programming</a> - <strong><em>The Journal of
Logic Programming</em></strong>, 1999. [<a
href="https://scholar.google.com/scholar?cluster=14319574550421192429&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper in ACLP.</p></li>
<li><p><a
href="https://web.stanford.edu/class/cs227/Readings/Abudction%20in%20LP.pdf">Abduction
in Logic Programming</a> - <strong><em>Computational
Logic</em></strong>, 2002. [<a
href="https://scholar.google.com/scholar?cluster=902643678163312237&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The revised version of the ALP paper.</p></li>
<li><p><a
href="https://www.cs.utexas.edu/~ml/papers/raghavan.starai10.pdf">Bayesian
Abductive Logic Programs: A Probabilistic Logic for Abductive
Reasoning</a> - <strong><em>IJCAI11</em></strong>, 2011. [<a
href="https://scholar.google.com/scholar?cluster=4453424083730209198&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.cs.utexas.edu/~ml/papers/raghavan.ecml11.pdf">Abductive
Plan Recognition by Extending Bayesian Logic Programs</a> -
<strong><em>ECML11</em></strong>, 2011. [<a
href="https://scholar.google.com/scholar?cluster=7276511797197017483&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6624/6619">An
Approach to Abductive Reasoning in Equational Logic</a> -
<strong><em>IJCAI13</em></strong>, 2013. [<a
href="https://scholar.google.com/scholar?cluster=686895264429811190&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://ojs.aaai.org//index.php/AAAI/article/view/3964">Abduction-Based
Explanations for Machine Learning Models</a> -
<strong><em>AAAI19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=7355960657107994022&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2105.10118.pdf">Probabilistic
Sufficient Explanations</a> - <strong><em>IJCAI21</em></strong>, 2021.
[<a
href="https://scholar.google.com/scholar?cluster=1874102360688341104&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://www.aclweb.org/anthology/H91-1024.pdf">Machine
Translation Using Abductive Inference</a> -
<strong><em>COLING</em></strong>, 1990. [<a
href="https://scholar.google.com/scholar?cluster=15275163177548183539&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. An application of abduction in language
translating.</p></li>
<li><p><a href="https://dspace.mit.edu/handle/1721.1/129250">Anomaly
detection through explanations</a> - <strong><em>Ph.D Dissertation
MIT</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0%2C5&amp;q=Anomaly+detection+through+explanations&amp;btnG=">All
Versions</a>]. An application of abduction in anomaly
detection.</p></li>
<li><p><a href="https://arxiv.org/abs/2105.07758">Automated Biodesign
Engineering by Abductive Meta-Interpretive Learning</a> -
<strong><em>AAAI Spring Symposium Series 2021 on Artificial Intelligence
for Synthetic Biology</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=543730388062329581&amp;as_sdt=0,5">All
Versions</a>]. This work proposes an automated biodesign engineering
framework empowered by Abductive Meta-Interpretive Learning (MetaAbd), a
novel machine learning approach that combines symbolic and sub-symbolic
machine learning, to further enhance the design-build-test-learn cycle
by enabling the learning machine to 1) exploit domain knowledge and
learn human-interpretable models that are expressed by formal languages
such as first-order logic; 2) simultaneously optimise the structure and
parameters of the models to make accurate numerical predictions; 3)
reduce the cost of experiments and effort on data annotation by actively
generating hypotheses and examples.</p></li>
<li><p><a href="https://arxiv.org/abs/2308.12740">Human Comprehensible
Active Learning of Genome-Scale Metabolic Networks</a> -
<strong><em>AAAI Spring Symposium Series 2023 on Computational
Scientific Discovery</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;cluster=10875437066608527790">All
Versions</a>]. [<a
href="http://cogsys.org/symposium/discovery-2023/abstracts/Abstract_3169.pdf">Extended
Abstract</a>]. [<a
href="http://cogsys.org/symposium/discovery-2023/talks/Ai.pdf">Slides</a>].
This work introduces a novel machine learning framework ILP-iML1515
based on Inductive Logic Programming (ILP) that performs abductive
logical reasoning and actively learns from training examples. The
ILP-iML1515 framework 1) allows high-throughput simulations and 2)
actively selects experiments that reduce the experimental cost of
learning gene functions in comparison to randomly selected
experiments.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="bayesian-modeling">Bayesian Modeling</h3>
<h4 id="bayesian-induction">Bayesian Induction</h4>
<ul>
<li><p><a
href="https://plato.stanford.edu/entries/epistemology-bayesian/">Bayesian
Epistemology</a> - <strong><em>Plato Stanford</em></strong>. A
computational philosophy account on the nature of uncertainty modeling
in Bayesian Epistemology.</p></li>
<li><p><a
href="https://www.nature.com/articles/nature14541.pdf">Probabilistic
machine learning and artificial intelligence</a> -
<strong><em>Nature</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=1783282361269717744&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Zoubin Ghahramanis review on Bayesian machine
learning.</p></li>
<li><p><a
href="http://web.mit.edu/cocosci/archive/Papers/tenenbaum_griffiths01.pdf">Generalization,
similarity, and Bayesian inference</a> - <strong><em>Behavioral and
Brain Sciences</em></strong>, 2001. [<a
href="https://scholar.google.com/scholar?cluster=14074987155133342565&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Josh Tenenbaums review on Bayesian
generalization.</p></li>
<li><p><a
href="http://web.mit.edu/cocosci/archive/Papers/bayes.pdf">Bayesian
modeling of human concept learning</a> -
<strong><em>NeurIPS98</em></strong>, 1998. [<a
href="https://scholar.google.com/scholar?cluster=12185543141957001794&amp;hl=en&amp;as_sdt=0,5&amp;as_vis=1">All
Versions</a>]. Original paper on Bayesian generalization.</p></li>
<li><p><a
href="http://web.mit.edu/cocosci/archive/Papers/nips99preprint.pdf">Rules
and Similarity in Concept Learning</a> -
<strong><em>NeurIPS99</em></strong>, 1999. [<a
href="https://scholar.google.com/scholar?cluster=10968021160883668417&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Unifying rule-based and similarity-based generalization
via Bayesian generalization.</p></li>
<li><p><a
href="http://www.charleskemp.com/papers/TenenbaumGK06.pdf">Theory-based
Bayesian models of inductive learning and reasoning</a> -
<strong><em>Trends in Cognitive Sciences</em></strong>, 2006. [<a
href="https://scholar.google.com/scholar?cluster=6741344960992898446&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Josh Tenenbaums review on Bayesian theory
induction.</p></li>
<li><p><a
href="https://tallinzen.net/media/readings/xu_tenenbaum_2007.pdf">Word
learning as Bayesian inference</a> - <strong><em>Psychological
Review</em></strong>, 2007. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=5476233692839102256">All
Versions</a>]. [<a
href="https://psycnet.apa.org/doiLanding?doi=10.1037%2F0033-295X.114.2.245">APA</a>].
Fei Xus review on Bayesian word learning.</p></li>
<li><p><a
href="https://cocosci.princeton.edu/tom/papers/growamind.pdf">How to
Grow a Mind: Statistics, Structure, and Abstraction</a> -
<strong><em>Science</em></strong>, 2011. [<a
href="https://scholar.google.com/scholar?cluster=2667398573353002097&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Josh Tenenbaums review on Bayesian theory
induction.</p></li>
<li><p><a
href="https://ai6034.mit.edu/wiki/images/LakeDec2015.pdf">Human-level
concept learning through probabilistic program induction.</a> -
<strong><em>Science</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=11844685101409624506&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://cims.nyu.edu/~brenden/LakeEtAl2015Science_supp.pdf">Supplementary
Material</a>]. Bayesian program induction for few-shot
learning.</p></li>
<li><p><a
href="https://leylaroksancaglar.github.io/Caglar_Hanson_2017.pdf">Building
Machines That Learn and Think Like People</a> - <strong><em>Behavioral
and Brain Sciences</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=8504723689348856287&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Brenden Lake and Josh Tenenbaums review on Bayesian
modeling.</p></li>
<li><p><a
href="http://web.mit.edu/cocosci/archive/Papers/cogsci01_final.pdf">The
rational basis of representativeness</a> -
<strong><em>CogSci01</em></strong>, 2001. [<a
href="https://scholar.google.com/scholar?cluster=11464039134248091466&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2011/hash/2c89109d42178de8a367c0228f169bf8-Abstract.html">Testing
a Bayesian Measure of Representativeness Using a Large Image
Database</a> - <strong><em>NeurIPS11</em></strong>, 2011. [<a
href="https://scholar.google.com/scholar?cluster=8576570792794301292&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://cocosci.princeton.edu/tom/papers/abbott_cogsci2012_wordnet.pdf">Constructing
a hypothesis space from the Web for large-scale Bayesian word
learning</a> - <strong><em>CogSci12</em></strong>, 2012. [<a
href="https://scholar.google.com/scholar?cluster=9266416266046851766&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://escholarship.org/content/qt1md755ng/qt1md755ng.pdf">Modeling
rules and similarity in colexification</a> -
<strong><em>CogSci21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=11578380234126546169">All
Versions</a>]. Rule- and similarity-based generalization in
colexification.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="generative-model">Generative Model</h4>
<ul>
<li><p><a
href="https://github.com/YuzheSHI/generative-modeling-explained">Generative
Modeling Explained</a> - <strong><em>Statistical Machine Learning
Tutorials</em></strong>, 2022. This tutorial on generative modeling is
in part of Statistical Machine Learning Tutorial by Ying Nian Wu at UCLA
Statistics. The tutorial goes over the key equations and algorithms for
learning recent generative models, including energy-based models,
diffusion/score-based models, autoregressive/flow-based models, VAEs,
and GANs, and explains the connections between these models.</p></li>
<li><p><a
href="https://www.taylorfrancis.com/books/mono/10.1201/9780429258411/bayesian-data-analysis-andrew-gelman-donald-rubin-john-carlin-hal-stern">Bayesian
Data Analysis</a> - <strong><em>Chapman and Hall/CRC</em></strong>,
1995. [<a
href="https://scholar.google.com/scholar?cluster=5067275302121330689&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Don Rubins introductory book on Bayesian
models.</p></li>
<li><p><a
href="https://dash.harvard.edu/bitstream/handle/1/3637117/Mumford_FRAME.pdf?sequence=1">Filters,
random fields and maximum entropy (FRAME): Towards a unified theory for
texture modeling</a> - <strong><em>International Journal of Computer
Vision</em></strong>, 1998. [<a
href="https://scholar.google.com/scholar?cluster=11604954524863138240&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Song-Chun Zhus original paper on energy-based generative
texture modeling.</p></li>
<li><p><a
href="https://www.cs.jhu.edu/~ayuille/pubs/ucla/A189_dkersten_ARP2004.pdf">Object
Perception as Bayesian Inference</a> - <strong><em>Annual Review of
Psychology</em></strong>, 2004. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=1611451804975333652">All
Versions</a>]. Alan Yuilles review on Bayesian object
perception.</p></li>
<li><p><a href="http://www.stat.ucla.edu/~ywu/QAM2018.pdf">A tale of
three probabilistic families: Discriminative, descriptive, and
generative models</a> - <strong><em>Quarterly of Applied
Mathematics</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=6129609629126793774">All
Versions</a>]. Ying Nian Wus review on three families of statistical
modeling.</p></li>
<li><p><a
href="http://www.stat.ucla.edu/~sczhu/papers/Quarterly_final.pdf">From
information scaling of natural images to regimes of statistical
models</a> - <strong><em>Quarterly of Applied Mathematics</em></strong>,
2008. [<a
href="https://scholar.google.com/scholar?start=0&amp;hl=en&amp;as_sdt=0,5&amp;cluster=17387130978932998303">All
Versions</a>]. A statistical account for the shift from textons to
texture.</p></li>
<li><p><a href="https://proceedings.mlr.press/v48/xiec16.html">A Theory
of Generative ConvNet</a> - <strong><em>ICML16</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=11062907630625111054&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://ieeexplore.ieee.org/ielaam/34/8922815/8519332-aam.pdf">Cooperative
Training of Descriptor and Generator Networks</a> - <strong><em>IEEE
Transactions on Pattern Analysis and Machine Intelligence</em></strong>,
2018. [<a
href="https://scholar.google.com/scholar?cluster=18202808849093155435&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2020/hash/fa3060edb66e6ff4507886f9912e1ab9-Abstract.html">Learning
Latent Space Energy-Based Prior Model</a> -
<strong><em>NeurIPS20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=9945264852135249894">All
Versions</a>]. [<a
href="https://bpucla.github.io/latent-space-ebm-prior-project/">Project</a>].
[<a href="https://github.com/bpucla/latent-space-EBM-prior">Code</a>]. A
milestone paper on Latent Energy-Based Model.</p></li>
<li><p><a href="https://openreview.net/forum?id=v_1Soh8QUNc">Learning
Energy-Based Models by Diffusion Recovery Likelihood</a> -
<strong><em>ICLR21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=4399294843209736764">All
Versions</a>]. [<a
href="https://github.com/ruiqigao/recovery_likelihood">Code</a>].</p></li>
<li><p><a
href="https://openreview.net/forum?id=PxTIG12RRHS&amp;utm_campaign=NLP%20News&amp;utm_medium=email&amp;utm_source=Revue%20newsletter">Score-Based
Generative Modeling through Stochastic Differential Equations</a> -
<strong><em>ICLR21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=14592788616550656262">All
Versions</a>].</p></li>
<li><p><a href="http://proceedings.mlr.press/v119/li20i.html">Latent
Space Factorisation and Manipulation via Matrix Subspace Projection</a>
- <strong><em>ICML20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=9592355331559392684&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.dam.brown.edu/people/mumford/vision/papers/1997e--MinimaxEntropy-NC.pdf">Minimax
entropy principle and its application to texture modeling</a> -
<strong><em>Neural Computing</em></strong>, 1997. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=407872717119429940">All
Versions</a>].</p></li>
<li><p><a
href="http://www.stat.ucla.edu/~ywu/research/papers/PXDA.pdf">Parameter
Expansion for Data Augmentation</a> - <strong><em>Journal of the
American Statistical Association</em></strong>, 1999. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=15342818142955984734">All
Versions</a>].</p></li>
<li><p><a
href="http://www.stat.ucla.edu/~sczhu/papers/DDMCMC_reprint.pdf">Image
segmentation by data-driven markov chain monte carlo</a> -
<strong><em>IEEE Transactions on Pattern Analysis and Machine
Intelligence</em></strong>, 2002. [<a
href="https://scholar.google.com/scholar?cluster=3461400072144667491&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Classic method for image segmentation via generative
modeling.</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2006/file/87f4d79e36d68c3031ccf6c55e9bbd39-Paper.pdf">Efficient
Learning of Sparse Representations with an Energy-Based Model</a> -
<strong><em>NeurIPS06</em></strong>, 2006. [<a
href="https://scholar.google.com/scholar?cluster=2247668190782691760&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="http://yann.lecun.com/exdb/publis/orig/lecun-06.pdf">A
Tutorial on Energy-Based Learning</a> - <strong><em>Predicting
Structured Data, MIT Press</em></strong>, 2006. [<a
href="https://scholar.google.com/scholar?cluster=8819502341081664768&amp;hl=en&amp;as_sdt=0,5">All
Versiosn</a>]. Yann LeCuns tutorial on energy-based learning.</p></li>
<li><p><a href="https://arxiv.org/abs/1511.06434">Unsupervised
Representaton Learning with Deep Convolutional Generative Adversarial
Networks</a> - <strong><em>ICLR16</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=3321343160055675528&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.jmlr.org/papers/volume20/18-173/18-173.pdf">Analysis
of Langevin Monte Carlo via Convex Optimization</a> -
<strong><em>Journal of Machine Learning Research</em></strong>, 2019.
[<a
href="https://scholar.google.com/scholar?cluster=5305860199396047317&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.cs.jhu.edu/~ayuille/JHUcourses/ProbabilisticModelsOfVisualCognition2020/Lec22/GeorgeCAPCHAS.pdf">A
generative vision model that trains with high data efficiency and breaks
text-based CAPTCHAs</a> - <strong><em>Science</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=1478382321633671444&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://gershmanlab.com/pubs/Dasgupta17.pdf">Where do
hypotheses come from?</a> - <strong><em>Cognitive
Psychology</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=17480320046655923235&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. A Bayesian account for modeling basic rules as the
hypothesis space.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="nonparametric-model">Nonparametric Model</h4>
<ul>
<li><p><a
href="https://people.stat.sc.edu/hansont/stat740/Ferguson1973.pdf">A
Bayesian Analysis of Some Non-parametric Problems</a> - <strong><em>The
Annals of Statistics</em></strong>, 1973. [<a
href="https://scholar.google.com/scholar?cluster=3969163427460060902&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A classic review on non-parametric problems.</p></li>
<li><p><a
href="https://people.eecs.berkeley.edu/~jordan/courses/281B-spring04/readings/antoniak.pdf">Mixtures
of Dirichlet Process with Applications to Bayesian Nonparametric
Problems</a> - <strong><em>The Annals of Statistics</em></strong>, 1974.
[<a
href="https://scholar.google.com/scholar?cluster=17937202534282344046&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on Dirichlet Process modeling for
non-parametric problems.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0022000000917112">Latent
Semantic Indexing: A Probabilistic Analysis</a> - <strong><em>Journal of
Computer and System Sciences</em></strong>, 2000. [<a
href="https://scholar.google.com/scholar?cluster=7296120469860429813&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on hierarchical topic model.</p></li>
<li><p><a
href="https://projecteuclid.org/journals/statistical-science/volume-19/issue-1/Nonparametric-Bayesian-Data-Analysis/10.1214/088342304000000017.full">Nonparametric
Bayesian Data Analysis</a> - <strong><em>Statistical
Science</em></strong>, 2004. [<a
href="https://scholar.google.com/scholar?cluster=13476170780072319995&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.pnas.org/doi/abs/10.1073/pnas.0307752101">Finding
scientific topics</a> - <strong><em>Proceedings of the National Academy
of Sciences</em></strong>, 2004. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=17382767110929995134">All
Versions</a>]. Application on scientific paper ananlysis for
hierarchical topic model.</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2003/file/7b41bfa5085806dfa24b8c9de0ce567f-Paper.pdf">Hierarchical
topic models and the nested Chinese restaurant process</a> -
<strong><em>NeurIPS03</em></strong>, 2003. [<a
href="https://scholar.google.com/scholar?cluster=15040818675282958700&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper for nested Chinese restaurant
process.</p></li>
<li><p><a
href="https://www.aaai.org/Papers/AAAI/2006/AAAI06-061.pdf">Learning
Systems of Concepts with an Infinite Relational Model</a> -
<strong><em>AAAI06</em></strong>, 2006. [<a
href="https://scholar.google.com/scholar?cluster=3207350432755252565&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://dl.acm.org/doi/abs/10.1145/1667053.1667056">The
nested chinese restaurant process and bayesian nonparametric inference
of topic hierarchies</a> - <strong><em>Journal of the ACM</em></strong>,
2010. [<a
href="https://scholar.google.com/scholar?cluster=8216933258869737505&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://mlg.eng.cam.ac.uk/zoubin/papers/ibptr.pdf">Infinite Latent
Feature Models and the Indian Buffet Process</a> - <strong><em>Gatsby
Computational Neuroscience Unit Technical Report 2005-001</em></strong>,
2005. [<a
href="https://scholar.google.com/scholar?cluster=13180738480564152907&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://jmlr.org/papers/v12/griffiths11a.html">The
Indian Buffet Process: An Introduction and Review</a> -
<strong><em>Journal of Machine Learning Research</em></strong>, 2011.
[<a
href="https://scholar.google.com/scholar?cluster=6301314251995890943&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Tom Griffiths and Zoubin Ghahramanis review on infinite
models, including the Chinese Restaurant Process (CRP) and the Indian
Buffet Process (IBP).</p></li>
<li><p><a
href="https://www.cs.ubc.ca/~nando/papers/npblog.pdf">Nonparametric
Bayesian Logic</a> - <strong><em>UAI05</em></strong>, 2005. [<a
href="https://scholar.google.com/scholar?cluster=18267211625980322095&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The first paper integrating logic into non-parametric
model.</p></li>
<li><p><a
href="https://www.dbs.ifi.lmu.de/~yu_k/uai06_relation.pdf">Infinite
Hidden Relational Models</a> - <strong><em>UAI06</em></strong>, 2006.
[<a
href="https://scholar.google.com/scholar?cluster=2143172296528388141&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://alchemy.cs.washington.edu/papers/kok07/kok07.pdf">Statistical
Predicate Invention</a> - <strong><em>ICML07</em></strong>, 2007. [<a
href="https://scholar.google.com/scholar?cluster=17009312281859401704&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. Treating predicate invention as a non-parametric problem,
in the account of statistics.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="bayesian-optimization">Bayesian Optimization</h4>
<ul>
<li><p><a
href="https://www.cs.princeton.edu/~rpa/pubs/shahriari2016loop.pdf">Taking
the Human Out of the Loop: A Review of Bayesian Optimization</a> -
<strong><em>Proceedings of the IEEE</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=2039456143890648437&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf">Practical
Bayesian Optimization of Machine Learning Algorithms</a> -
<strong><em>NeurIPS12</em></strong>, 2012. [<a
href="https://scholar.google.com/scholar?cluster=14442949298925775705&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper for applying Bayesian optimization to
machine learning hyperparameter selection.</p></li>
<li><p><a href="https://arxiv.org/abs/1807.02811">A Tutorial on Bayesian
Optimization</a> - 2018. [<a
href="https://scholar.google.com/scholar?cluster=7971934771645047583&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="concepts">Concepts</h3>
<h4 id="theory-of-concepts">Theory of Concepts</h4>
<ul>
<li><p><a
href="https://plato.stanford.edu/entries/concepts/">Concepts</a> -
<strong><em>Plato Stanford</em></strong>. A collection of the
computational philosophical debates about the concepts.</p></li>
<li><p><a
href="https://en.wikipedia.org/wiki/Theory-theory">Theory-theory</a> -
<strong><em>Wikipedia</em></strong>. Wikipedia for the Theory theory, a
perspective that contextualizes concepts in theoretical (or empirical)
systems.</p></li>
<li><p><a href="https://hk1lib.org/book/3659332/11fa44">Conceptual
Change in Childhood</a> - <strong><em>MIT Press</em></strong>, 1985. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0%2C5&amp;q=conceptual+change+in+childhood+susan+carey&amp;btnG=">All
Versions</a>]. Susan Careys book on the theory theory of concepts in
child development.</p></li>
<li><p><a
href="http://library.lol/main/6A8215E9BAEB77F198C98CD75C517E02">Words,
thoughts, and theories</a> - <strong><em>MIT Press</em></strong>, 1997.
[<a
href="https://scholar.google.com/scholar?cluster=16726462136203686735&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Alison Gopniks book that articulates and defends the
“theory theory” of cognitive and semantic development, the idea that
infants and young children, like scientists, learn about the world by
forming and revising theories-a view of the origins of knowledge and
meaning that has broad implications for cognitive science.</p></li>
<li><p><a href="https://psycnet.apa.org/record/1994-97940-009">The
Theory Theory</a> - <strong><em>Mapping the mind: Domain specificity in
cognition and culture, Cambridge University Press</em></strong>, 1994.
[<a
href="https://scholar.google.com/scholar?cluster=9397889700764191662&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Alison Gopniks original paper on the theory
theory.</p></li>
<li><p><a
href="https://hk1lib.org/book/844457/42178f?id=844457&amp;secret=42178f">The
Origin of Concepts</a> - <strong><em>Oxford University
Press</em></strong>, 2009. [<a
href="https://scholar.google.com/scholar?cluster=11493102398422813821&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Susan Careys extended book on the theory theory of
concepts in child development.</p></li>
<li><p><a href="https://osf.io/preprints/psyarxiv/xrnb2">What we mean
when we say semantic: A Consensus statement on the nomenclature of
semantic memory</a> - 2023. [<a
href="https://scholar.google.com/scholar?cluster=7464626532716945232&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The aim of this multidisciplinary workgroup was to
establish consensus definitions for some of the major recurring
constructs in semantic research (e.g., concept, amodal, abstract). These
efforts yielded a glossary consisting of succinct definitions,
agreement, subjective confidence ratings, relevant theoretical
background, and principled dissenting views. These core definitions will
potentially yield benchmarks for aligning perspectives and improving
cross-disciplinary communication in semantic research.</p></li>
<li><p><a
href="https://psycnet.apa.org/record/2012-12791-001">Reconstructing
constructivism: Causal models, Bayesian learning mechanisms, and the
theory theory</a> - <strong><em>Psychological Bulletin</em></strong>,
2012. [<a
href="https://scholar.google.com/scholar?cluster=11218217347365817167&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Alison Gopniks review on the constructivism idea of
developmental research, including the theory theory of
concepts.</p></li>
<li><p><a
href="https://groups.psych.northwestern.edu/gentner/newpdfpapers/MedinGoldstoneGentner90.pdf">Similarity
involving attributes and relations: Judgments of similarity and
difference are not inverses</a> - <strong><em>Psychological
Science</em></strong>, 1990. [<a
href="https://scholar.google.com/scholar?cluster=13205938250772079784&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Theory on similarity judgement by attributes and
relations.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="human-concept-representation">Human Concept Representation</h4>
<ul>
<li><p><a
href="http://behavioralhealth2000.com/wp-content/uploads/2017/01/Organizing-conceptual-knowledge-in-humans-with-a-gridlike-code.pdf">Organizing
conceptual knowledge in humans with a gridlike code</a> -
<strong><em>Science</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=10995575332310321503&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Original findings suggest that global relational codes
may be used to organize nonspatial conceptual representations and that
these codes may have a hexagonal gridlike pattern when conceptual
knowledge is laid out in two continuous dimensions.</p></li>
<li><p><a
href="https://pure.mpg.de/rest/items/item_3007836/component/file_3379059/content">Navigating
cognition: Spatial codes for human thinking</a> -
<strong><em>Science</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=1407237757770081862&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A framework that operates across information domains to
support a wide spectrum of cognitive functions, where place and grid
cell population codes provide a representational format to map variable
dimensions of cognitive spaces.</p></li>
<li><p><a
href="https://www.sas.upenn.edu/psych/epsteinlab/pdfs/Peer%20Brunec%20Newcombe%20Epstein%20TiCS%202020%20Cog%20maps%20and%20cog%20graphs.pdf">Structuring
Knowledge with Cognitive Maps and Cognitive Graphs</a> -
<strong><em>Trends in Cognitive Sciences</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=7196012353183004425&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Russel Epsteins review on evidence suggesting that both
map-like and graph-like representations exist in the mind/brain that
rely on partially overlapping neural systems.</p></li>
<li><p><a
href="https://www.polyu.edu.hk/cbs/rclcn/images/cdl_articles/H/Huth_et_al._2016.pdf">Natural
speech reveals the semantic maps that tile human cerebral cortex</a> -
<strong><em>Nature</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=14997953800741854188&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://github.com/HuthLab/speechmodeltutorial">Code &amp;
Tutorial</a>]. Systematically mapping semantic selectivity across the
cortex using voxel-wise modelling of functional MRI data collected while
subjects listened to hours of narrative stories, showing that the
semantic system is organized into intricate patterns that seem to be
consistent across individuals.</p></li>
<li><p><a
href="http://bilab.bnu.edu.cn/paper/2021/Wang_2021_Psychology%20Science.pdf">Idiosyncratic
Tower of Babel: Individual differences in word-meaning representation
increase as word abstractness increases</a> - <strong><em>Psychological
Science</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=18214600097352809308&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Uncovering the cognitive and neural origins of
word-meaning disagreements across individuals.</p></li>
<li><p><a
href="https://cap.csail.mit.edu/sites/default/files/research-pdfs/Semantic%20projection%20recovers%20rich%20human%20knowledge%20of%20multiple%20object%20features%20from%20word%20embeddings.pdf">Semantic
projection recovers rich human knowledge of multiple object features
from word embeddings</a> - <strong><em>Nature Human
Behavior</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=2499199921371106654&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Proposing a domain-general method to extract
context-dependent relationships from word embeddings: semantic
projection of word-vectors onto lines that represent multiple
dimensions of features, which recovers human judgements across various
object categories and properties.</p></li>
<li><p><a
href="https://www.frontiersin.org/articles/10.3389/fpsyg.2014.00385/full">Using
a high-dimensional graph of semantic space to model relationships among
words</a> - <strong><em>Frontiers in Psychology</em></strong>, 2014. [<a
href="https://scholar.google.com/scholar?cluster=472523411548302295&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. First-order similarity and second-order relation metrics
for word embedding.</p></li>
<li><p><a
href="http://bilab.bnu.edu.cn/paper/2023/Tian_2023_CC.pdf">Simple shape
feature computation across modalities: convergence and divergence
between the ventral and dorsal visual streams</a> - <strong><em>Cerebral
Cortex</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=5977822802446917081&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Visual and haptic shape perception fMRI experiments
suggesting that mid-level shape features are represented in a
modality-independent manner in both the ventral and dorsal
streams.</p></li>
<li><p><a href="https://www.nature.com/articles/s41597-019-0341-x">The
Database of Cross-Linguistic Colexifications, reproducible analysis of
cross-linguistic polysemies</a> - <strong><em>Scientific
Data</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=4039754406289857135&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a href="https://clics.clld.org/">Project</a>]. CLICS
tackles interconnected interdisciplinary research questions about the
colexifcation of words across semantic categories in the worlds
languages, and show-cases best practices for preparing data for
cross-linguistic research.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S001002772300183X">Locating
what comes to mind in empirically derived representational spaces</a> -
<strong><em>Cognition</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=57834483230365927&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. An evidence-based study concluding that people call
category members to mind according to their location in representational
space, specifically based on the predicted usefulness of considering
category members with particular features.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="ai-concept-representation">AI Concept Representation</h4>
<ul>
<li><p><a
href="https://www.science.org/doi/full/10.1126/science.ade4401">A
principal odor map unifies diverse tasks in olfactory perception</a> -
<strong><em>Science</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=17847258457660438418&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://github.com/osmoai/publications/tree/main/lee_et_al_2023">Code</a>].
[<a
href="https://www.kaggle.com/datasets/aryanamitbarsainyan/multi-labelled-smiles-odors-dataset">Data
(Reproduced)</a>]. [<a
href="https://centaur.reading.ac.uk/113304/1/Mayhew%20et%20al%20for%20Centaur.pdf">Preprint</a>].
[<a href="https://www.thegoodscentscompany.com/">GoodScents
Database</a>]. [<a
href="http://www.leffingwell.com/bacispmp.htm">Leffingwell
Database</a>]. A Principal Odor Map (POM) that preserves perceptual
relationships and enables odor quality prediction for novel
odorants.</p></li>
<li><p><a href="https://elifesciences.org/articles/82502">Metabolic
activity organizes olfactory representations</a> -
<strong><em>eLife</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=8857896396450033667&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://github.com/osmoai/publications/tree/main/qian_et_al_2023">Code
&amp; Data</a>]. Odorous compounds with similar POM representations are
more likely to co-occur within a substance and be metabolically closely
related; metabolic reaction sequences also follow smooth paths in POM
despite large jumps in molecular structure.</p></li>
<li><p><a href="https://ieeexplore.ieee.org/abstract/document/9136877">A
Review of Tactile Information: Perception and Action Through Touch</a> -
<strong><em>IEEE Transactions on Robotics</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=15493221881484741343&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://www.researchgate.net/profile/Qiang-Li-110/publication/342797645_A_Review_of_Tactile_Information_Perception_and_Action_Through_Touch/links/602f95bc92851c4ed5806e9f/A-Review-of-Tactile-Information-Perception-and-Action-Through-Touch.pdf">ResearchGate</a>].
A hierarchy consisting of raw, contact, object, and action levels to
structure the tactile information.</p></li>
<li><p><a
href="https://openaccess.thecvf.com/content/CVPR2023/html/Girdhar_ImageBind_One_Embedding_Space_To_Bind_Them_All_CVPR_2023_paper.html">ImageBind:
One Embedding Space To Bind Them All</a> -
<strong><em>CVPR23</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=1657173986906232916&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://github.com/facebookresearch/ImageBind">Project</a>].
Cross-modality representation fusion by aligning all other modalities to
the visual modality.</p></li>
<li><p><a href="https://escholarship.org/uc/item/44s454ng">Semantic
features of object concepts generated with GPT-3</a> -
<strong><em>CogSci22</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=16958563995984242923&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Testing the semantic attributes of the concepts generated
by the large language model GPT-3.</p></li>
<li><p><a href="https://ieeexplore.ieee.org/document/8953737">Connecting
Touch and Vision via Cross-Modal Prediction</a> -
<strong><em>CVPR19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=17326564895972374001&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://github.com/YunzhuLi/VisGel">Project</a>].</p></li>
<li><p><a href="https://aclanthology.org/2022.tacl-1.69/">Unit Testing
for Concepts in Neural Networks</a> - <strong><em>Transactions of the
Association for Computational Linguistics</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=3036662275506971282&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Testing the concept representation by neural networks
through Fodors theory of concepts.</p></li>
<li><p><a href="https://arxiv.org/abs/2402.10588">Do Llamas Work in
English? On the Latent Language of Multilingual Transformers</a> - 2024.
[<a
href="https://scholar.google.com/scholar?cluster=5847238732288003106&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A preliminary work empirically showing that the
intermediate embeddings of multilingual Transformers (1) start far away
from output token embeddings; (2) already allow for decoding a
semantically correct next token in the middle layers, but give higher
probability to its version in English than in the input language; (3)
finally move into an input-language-specific region of the embedding
space. Also, the embedding of abstract concept space lies closer to
English than to other languages.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="complexity-information-theory">Complexity &amp; Information
Theory</h3>
<h4 id="theory">Theory</h4>
<ul>
<li><p><a
href="http://www.cs.yale.edu/homes/yry/readings/general/shannon1948.pdf">A
Mathematical Theory of Communication</a> - <strong><em>The Bell System
Technical Journal</em></strong>, 1948. [<a
href="https://scholar.google.com/scholar?cluster=8313213127749369813&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Shannons original paper on Information Theory.</p></li>
<li><p><a
href="https://link.springer.com/content/pdf/10.1007/978-3-030-11298-1.pdf">An
introduction to Kolmogorov complexity and its applications</a> -
<strong><em>Springer</em></strong>, 2008. [<a
href="https://scholar.google.com/scholar?cluster=8746708322477453221&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The introductory book for Algorithmic Information Theory,
especially the Kolmogorov complexity theory.</p></li>
<li><p><a
href="https://psycnet.apa.org/record/1973-01647-001">Complexity and the
representation of patterned sequences of symbols</a> -
<strong><em>Psychological Review</em></strong>, 1972. [<a
href="https://scholar.google.com/scholar?cluster=3426861135318645138&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Herbert Simons review on subjective complexity.</p></li>
<li><p><a
href="https://ieeexplore.ieee.org/abstract/document/1057698">Visual
Pattern Discrimination</a> - <strong><em>IRE Transactions on Information
Theory</em></strong>, 1962. [<a
href="https://scholar.google.com/scholar?cluster=10729525966103382864&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&amp;arnumber=5390997">Algorithmic
Information Theory</a> - <strong><em>IBM Journal of Research and
Development</em></strong>, 1977. [<a
href="https://scholar.google.com/scholar?cluster=14735710867906424793&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Chaitins original paper on Algorithmic Information
Theory.</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2003/hash/b06b5541a62ed438f956b662b4e1ec28-Abstract.html">From
Algorithmic to Subjective Randomness</a> -
<strong><em>NeurIPS03</em></strong>, 2003. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=14721764738308036578">All
Versions</a>].</p></li>
<li><p><a href="https://proceedings.mlr.press/v202/shi23i.html">On the
Complexity of Bayesian Generalization</a> -
<strong><em>ICML23</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=5817813824878811147&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://github.com/YuzheSHI/bayesian-generalization-complexity">Code</a>].
[<a
href="https://drive.google.com/file/d/1eCuFqBYN8kuiAmoVtXWedXW0r0TdY55W/view">Models</a>].
A concept complexity account for rule- and similarity-based Bayesian
concept generalization.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="dimensionality-reduction">Dimensionality Reduction</h4>
<ul>
<li><p><a
href="https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1084.4695&amp;rep=rep1&amp;type=pdf">A
global geometric framework for nonlinear dimensionality reduction</a> -
<strong><em>Science</em></strong>, 2000. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=14602426245887619907">All
Versions</a>]. The original paper on spectrum clustering.</p></li>
<li><p><a
href="https://asset-pdf.scinapse.io/prod/2100495367/2100495367.pdf">Reducing
the dimensionality of data with neural networks</a> -
<strong><em>Science</em></strong>, 2006. [<a
href="https://scholar.google.com/scholar?cluster=15344645275208957628&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on Variational Autoencoder.</p></li>
<li><p><a href="https://arxiv.org/pdf/1206.5538.pdf">Representation
Learning: A Review and New Perspectives</a> - <strong><em>IEEE
Transactions on Pattern Analysis and Machine Intelligence</em></strong>,
2013. [<a
href="https://scholar.google.com/scholar?cluster=559463397382443088&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Yoshua Bengios review on representation
learning.</p></li>
<li><p><a
href="http://www.stat.ucla.edu/~jxie/personalpage_file/publications/representation_learning_Review.pdf">Representation
Learning: A Statistical Perspective</a> - <strong><em>Annual Review of
Statistics and Its Application</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=14358027809538175293&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. Song-Chun Zhu and Ying Nian Wus review on representation
learning, in an account of statistics.</p></li>
<li><p><a
href="http://robotics.caltech.edu/wiki/images/8/8f/DeepLearningBottleneck.pdf">Deep
Learning and the Information Bottleneck Principle</a> - <strong><em>IEEE
Information Theory Workshop15</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=13152354842433826281&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The first paper identifying the problem of information
bottleneck in representation learning.</p></li>
<li><p><a
href="https://artemyk.github.io/assets/pdf/papers/Saxe%20et%20al_2019_On%20the%20information%20bottleneck%20theory%20of%20deep%20learning.pdf">On
the information bottleneck theory of deep learning</a> -
<strong><em>Journal of Statistical Mechanics: Theory and
Experiment</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=12271240925674881982&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="visual-complexity">Visual Complexity</h4>
<ul>
<li><p><a
href="https://www.researchgate.net/profile/Don-Donderi-2/publication/7337589_Visual_Complexity_A_Review/links/5f0875ed45851550509a3a7a/Visual-Complexity-A-Review.pdf">Visual
complexity: a review</a> - <strong><em>Psychological
Bulletin</em></strong>, 2006. [<a
href="https://scholar.google.com/scholar?cluster=10747901143387624939&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://psycnet.apa.org/record/2006-00818-005">APA</a>]. A
psychological account on visual complexity.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0141938205000120">Compressed
File Length Predicts Search Time and Errors on Visual Displays</a> -
<strong><em>Displays</em></strong>, 2005. [<a
href="https://scholar.google.com/scholar?cluster=15600966633648834042&amp;as_sdt=0,5">All
Versions</a>]. Compressed file size, an objective, easily obtained
measure of display complexity, predicts both subjective complexity
judgments and objective search performance. It is analogous to
algorithmic complexity, a theoretical but impractical measure of bit
string complexity. The data suggest that it may be possible to use the
compressed file size measure to predict display performance in applied
tasks.</p></li>
<li><p><a
href="https://stefan.winklerbros.net/Publications/qomex2013si.pdf">Image
complexity and spatial information</a> - <strong><em>International
Workshop on Quality of Multimedia Experience</em></strong>, 2013. [<a
href="https://scholar.google.com/scholar?cluster=16011036229039693102&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://perception.jhu.edu/files/PDFs/21_Complexity_Speaking/SunFirestone_SpeakingSeeing_2021_JEPG.pdf">Seeing
and speaking: How verbal “description length” encodes visual
complexity</a> - <strong><em>Journal of Experimental
Psychology</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=246820603191585233&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://psycnet.apa.org/record/2021-83037-001">APA</a>]. Empirical
evidencs showing the relation between visual complexity and description
length.</p></li>
<li><p><a
href="https://pure.mpg.de/rest/items/item_3380375/component/file_3383568/content">How
variability shapes learning and generalization</a> - <strong><em>Trends
in Cognitive Sciences</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=10940775338620708972&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A comprehensive review on the trade-off between
variability and generalization ability.</p></li>
<li><p><a href="https://arxiv.org/pdf/2205.05666.pdf">Identifying
concept libraries from language about object structure</a> -
<strong><em>CogSci22</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=4019205027627496528&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0010027722003158">Show
or tell? Exploring when (and why) teaching with language outperforms
demonstration</a> - <strong><em>Cognition</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=11837154580063293174&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The findings of this paper suggest that language
communicates complex concepts by directly transmitting abstract rules.
In contrast, demonstrations transmit examples, requiring the learner to
infer the rules.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="communications">Communications</h3>
<h4 id="non-verbal-communication">Non-Verbal Communication</h4>
<ul>
<li><p><a
href="https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1551-6709.2009.01090.x">The
Interactive Evolution of Human Communication Systems</a> -
<strong><em>Cognitive Science</em></strong>, 2010. [<a
href="https://scholar.google.com/scholar?cluster=6689941517686043970&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Nicolas Fays original paper on iconicity.</p></li>
<li><p><a href="https://benjamins.com/catalog/pc.22.2.05fay">Iconicity:
From sign to system in human communication and language</a> -
<strong><em>Pragmatics &amp; Cognition</em></strong>, 2014. [<a
href="https://scholar.google.com/scholar?cluster=8525760321117094567&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Nicolas Fays account on the emergence of iconic
language.</p></li>
<li><p><a
href="https://journals.sagepub.com/doi/abs/10.1177/108835769400900301">The
Picture Exchange Communication System</a> - <strong><em>Behavior
Modification</em></strong>, 1994. [<a
href="https://scholar.google.com/scholar?cluster=18113491434570143349&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://onlinelibrary.wiley.com/doi/full/10.1080/15326900701221363">Graphical
Language Games: Interactional Constraints on Representational Form</a> -
<strong><em>Cognitive Science</em></strong>, 2007. [<a
href="https://scholar.google.com/scholar?cluster=280214578402050136&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The first paper introducing the graphical language
game.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0378216614001830">A
multimodal discourse theory of visual narrative</a> -
<strong><em>Journal of Pragmatics</em></strong>, 2014. [<a
href="https://scholar.google.com/scholar?cluster=912273653379961242&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://ayankumarbhunia.github.io/pixelor/image/pixelor.pdf">Pixelor:
A Competitive Sketching AI Agent. So you think you can beat me?</a> -
<strong><em>ACM SIGGRAPH20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=6676723059377806081&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a href="http://sketchx.ai/pixelor">Project</a>].
Rationality in feature sketching.</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007/s42113-019-00058-7">Pragmatic
Inference and Visual Abstraction Enable Contextual Flexibility During
Visual Communication</a> - <strong><em>Computational Brain &amp;
Behavior</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=17971107104483505071&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A computational account on the rational behavior in
graphical language games.</p></li>
<li><p><a href="https://arxiv.org/abs/2111.14210">Emergent Graphical
Conventions in a Visual Communication Game</a> - 2021. [<a
href="https://scholar.google.com/scholar?cluster=6476453985812346727&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A computational account on the emergence of iconic
language.</p></li>
<li><p><a href="https://dl.acm.org/doi/abs/10.1145/3610591.3616427">AI
Nüshu: An Exploration of Language Emergence in Sisterhood Through the
Lens of Computational Linguistics</a> - <strong><em>ACM SIGGRAPH
Asia23</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=6849286654402017109&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. By continually observing their environment and
communicating, AI agents trained in the Chinese dictionary and the Nüshu
corpus collaborate towards creating a standard writing system to encode
Chinese.</p></li>
<li><p><a
href="https://www.pnas.org/content/118/12/e2016569118">Communicating
artificial neural networks develop efficient color-naming systems</a> -
<strong><em>Proceedings of the National Academy of
Sciences</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=1640459156303560508&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Simulating the emergence of code as the communication
bottleneck in color learning task.</p></li>
<li><p><a
href="https://escholarship.org/content/qt9p70d5s9/qt9p70d5s9.pdf">Bridging
cultural and cognitive perspectives on similarity reasoning</a> -
<strong><em>CogSci22</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0%2C5&amp;q=Bridging+cultural+and+cognitive+perspectives+on+similarity+reasoning&amp;btnG=">All
Versions</a>].</p></li>
<li><p><a
href="https://www.eva.mpg.de/documents/Elsevier/Liszkowski_Twelve_Cognition_2008_1554509.pdf">Twelve-month-olds
communicate helpfully and appropriately for knowledgeable and ignorant
partners</a> - <strong><em>Cognition</em></strong>, 2008. [<a
href="https://scholar.google.com/scholar?cluster=8202048572661677635&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on child pointing.</p></li>
<li><p><a
href="https://pure.mpg.de/rest/items/item_64467_4/component/file_64468/content">12-
and 18-Month-Olds Point to Provide Information for Others</a> -
<strong><em>Journal of Cognition and Development</em></strong>, 2009.
[<a
href="https://scholar.google.com/scholar?cluster=7322772656439413984&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007/s10115-006-0062-2">Toward
understanding the importance of gesture in distributed scientific
collaboration</a> - <strong><em>Knowledge and Information
Systems</em></strong>, 2006. [<a
href="https://scholar.google.com/scholar?cluster=3145646721897130511&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="pragmatics">Pragmatics</h4>
<ul>
<li><p><a
href="https://plato.stanford.edu/entries/pragmatics/">Pragmatics</a> -
<strong><em>Plato Stanford</em></strong>. A computational philosophy
account of Pragmatics, whilch studies utterances in specific
contexts.</p></li>
<li><p><a
href="https://langcog.stanford.edu/papers_new/frank-2012-science.pdf">Predicting
Pragmatic Reasoning in Language Games</a> -
<strong><em>Science</em></strong>, 2012. [<a
href="https://scholar.google.com/scholar?cluster=15533081031935746054&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on Rational Speech Act (RSA).</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S136466131630122X">Pragmatic
Language Interpretation as Probabilistic Inference</a> -
<strong><em>Trends in Cognitive Sciences</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=11393505968563356130&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Noah Goodman and Micheal Franks review on Rational
Speech Act.</p></li>
<li><p><a
href="http://cocolab.stanford.edu/papers/BergenLevyGoodman-LexUnc.pdf">Pragmatic
Reasoning through Semantic Inference</a> - <strong><em>Semantics &amp;
Pragmatics</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=1433855075217315997&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://semantics.uchicago.edu/kennedy/docs/processing.pdf">Processing
gradable adjectives in context: A visual world study</a> -
<strong><em>Semantics and Linguistic Theory</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=13426776838629402579&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. Adjective understanding as a rational inference in the
context.</p></li>
<li><p><a
href="https://transacl.org/index.php/tacl/article/view/1142">Colors in
Context: A Pragmatic Neural Model for Grounded Language
Understanding</a> - <strong><em>Transactions of the Association for
Computational Linguistics</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=11119271811833503059&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://compdevlab.yale.edu/docs/2019/2019_ChildDev_Pragmatics.pdf">Social
Pragmatics: Preschoolers Rely on Commonsense Psychology to Resolve
Referential Underspecification</a> - <strong><em>Child
Development</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=16352913537004112920&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A piece of evidence for childrens capability on social
pragmatics.</p></li>
<li><p><a
href="http://cocolab.stanford.edu/papers/CohnGordonEtAl2018_NAACL.pdf">Pragmatically
Informative Image Captioning with Character-Level Inference</a> -
<strong><em>NAACL18</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=1670953084401884599&amp;hl=en&amp;as_sdt=2005">All
Versions</a>].</p></li>
<li><p><a
href="https://aclanthology.org/2020.findings-emnlp.173/?ref=https://githubhelp.com">Pragmatic
Issue-Sensitive Image Captioning</a> - <strong><em>ACL Findings:
EMNLP20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=10608257248144445301&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Application of Rational Speech Act to Image
Captioning.</p></li>
<li><p><a
href="https://cogsci.mindmodeling.org/2019/papers/0091/0091.pdf">Disentangling
contributions of visual information and interaction history in the
formation of graphical conventions</a> -
<strong><em>CogSci19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=15046353579508199394&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://www.nature.com/articles/s41562-021-01145-1">How
young children integrate information sources to infer the meaning of
words</a> - <strong><em>Nature</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=10144794357802769844&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://semprag.org/index.php/sp/article/view/sp.5.6/pdf">Information
Structure in Discourse: Towards an Integrated Formal Theory of
Pragmatics</a> - <strong><em>Semantics and Pragmatics</em></strong>,
1998. [<a
href="https://scholar.google.com/scholar?cluster=9127222314768938599&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007/s11098-020-01490-3">When
Lingens meets Frege: communication without common ground</a> -
<strong><em>Philosophical Studies</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=10912415595149303257&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2307.07871">The SocialAI School:
Insights from Developmental Psychology Towards Artificial Socio-Cultural
Agents</a> - <strong><em>ICML23 Workshop on
Theory-of-Mind</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=11933410239580707313&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://sites.google.com/view/socialai-school">Project</a>].</p></li>
<li><p><a
href="https://www.nature.com/articles/s41599-020-0404-9.pdf">Language as
shaped by the environment: linguistic construal in a collaborative
spatial task</a> - <strong><em>Nature Humanities and Social Sciences
Communications</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=7842508027049437987&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a href="https://osf.io/sxtaq">Code &amp; Data</a>]. [<a
href="https://dialoguetoolkit.github.io/chattool/">Dialogue Experimental
Toolkit(DiET)</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2008.12142">Exploring Urban Form
Through Openstreetmap Data: A Visual Introduction</a> -
<strong><em>Urban Experience and Design: Contemporary Perspectives on
Improving the Public Realm</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=7094530618542001733&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a href="https://github.com/gboeing/osmnx">OSMnx
Tool</a>]. [<a href="https://www.openstreetmap.org/">OpenStreetMap
Website</a>].</p></li>
<li><p><a
href="https://www.speech.kth.se/~edlund/bielefeld/references/garrod-and-anderson-1987.pdf">Saying
what you mean in dialogue: A study in conceptual and semantic
co-ordination</a> - <strong><em>Cognition</em></strong>, 1987. [<a
href="https://scholar.google.com/scholar?cluster=15377075954534820544&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://www.sfs.uni-tuebingen.de/~gjaeger/lehre/ws0708/spieltheorie/garrod.pdf">Conversation,
co-ordination and convention: an empirical investigation of how groups
establish linguistic conventions</a> -
<strong><em>Cognition</em></strong>, 1994. [<a
href="https://scholar.google.com/scholar?cluster=3784850469297049700&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="language-compositionality">Language Compositionality</h4>
<ul>
<li><p><a
href="https://plato.stanford.edu/entries/compositionality/">Compositionality</a>
- <strong><em>Plato Stanford</em></strong>. A computational philosophy
account on compositionality, one of the distinctive feature of
language.</p></li>
<li><p><a
href="https://link.springer.com/content/pdf/10.1007/BF00763644.pdf">The
Principle of Semantic Compositionality</a> -
<strong><em>Topoi</em></strong>, 1994. [<a
href="https://scholar.google.com/scholar?cluster=10899040818001759322&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on the principle of semantic
compositionality.</p></li>
<li><p><a
href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.3235">On
The Emergence Of Compositionality</a> - <strong><em>Proceedings of the
Evolution of Language Conference06</em></strong>, 2006. [<a
href="https://scholar.google.com/scholar?cluster=16315741180717951222&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on the emergence of
compositionality.</p></li>
<li><p><a href="https://arxiv.org/pdf/1612.07182.pdf">Multi-Agent
Cooperation and the Emergence of (Natural) Language</a> -
<strong><em>ICLR17</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=1931070702879918446&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on the emergence of language in
multi-agent reinforcement learning.</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2017/hash/70222949cc0db89ab32c9969754d4758-Abstract.html">Emergence
of Language with Multi-agent Games: Learning to Communicate with
Sequences of Symbols</a> - <strong><em>NeurIPS18</em></strong>, 2018.
[<a
href="https://scholar.google.com/scholar?cluster=17308624474306270808&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/1804.03980">Emergent communication
through negotiation</a> - <strong><em>ICLR18</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=8825869866742501521&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://psycnet.apa.org/record/2019-07481-001">The
language of generalization</a> - <strong><em>Psychological
Review</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=7723877614160376324&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2004.09124">Compositionality and
Generalization in Emergent Languages</a> -
<strong><em>ACL20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=5792073344743965767&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://escholarship.org/uc/item/5kv636c5">Word
formation supports efficient communication: The case of compounds</a> -
<strong><em>CogSci22</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=17465553221758916299&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2311.17227">War and Peace
(WarAgent): Large Language Model-based Multi-Agent Simulation of World
Wars</a> - 2023. [<a
href="https://scholar.google.com/scholar?cluster=3598519753107761968&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="coordination">Coordination</h4>
<ul>
<li><a href="https://arxiv.org/pdf/2304.14656.pdf">From Explicit
Communication to Tacit Cooperation: A Novel Paradigm for Cooperative
MARL</a> - 2023. [<a
href="https://scholar.google.com/scholar?cluster=12114270828108588849&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="domain-specific-language">Domain Specific Language</h3>
<h4 id="design-theory">Design Theory</h4>
<ul>
<li><p><a
href="https://en.wikipedia.org/wiki/Domain-specific_language">Domain-Specific
Language</a> - <strong><em>Wikipedia</em></strong>. Wikipedia
encyclopedia entry on Domain Specific Languages.</p></li>
<li><p><a href="https://en.wikipedia.org/wiki/Domain_engineering">Domain
Engineering</a> - <strong><em>Wikipedia</em></strong>. Wikipedia
encyclopedia entry on Domain Engineering.</p></li>
<li><p><a
href="https://dl.acm.org/doi/pdf/10.1145/947955.1083808">Epigrams on
programming</a> - <strong><em>ACM SIGPLAN Notices</em></strong>, 1982.
[<a
href="https://scholar.google.com/scholar?cluster=6439127299132936476&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://tomassetti.me/domain-specific-languages/">The
complete guide to (external) Domain Specific Languages</a>. An
introduction to Domain Specific Languages (DSL) based on 19 DSL
cases.</p></li>
<li><p><a
href="https://people.cs.ksu.edu/~schmidt/505f14/Lectures/WhenDSL.pdf">When
and How to Develop Domain-Specific Languages</a> - <strong><em>ACM
Computing Surveys</em></strong>, 2005. [<a
href="https://scholar.google.com/scholar?cluster=8598236436890577027&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A review on DSL development methodologies that identify
patterns in the decision, analysis, design, and implementation phases of
DSL development.</p></li>
<li><p><a href="https://arxiv.org/abs/1409.2378">Design Guidelines for
Domain Specific Languages</a> - <strong><em>OOPSLA Workshop on
Domain-Specific Modeling (DSM 09)</em></strong>, 2009. [<a
href="https://scholar.google.com/scholar?cluster=1962567819031018744&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Guidelines to support a DSL developer to achieve better
quality of the language design and a better acceptance among its
users.</p></li>
<li><p><a
href="https://dl.acm.org/doi/abs/10.1145/352029.352035">Domain-specific
languages: an annotated bibliography</a> - <strong><em>ACM SIGPLAN
Notices</em></strong>, 2000. [<a
href="https://scholar.google.com/scholar?cluster=8845429548327315750&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A survey on the topic of domain-specific languages as
used for the construction and maintenance of software systems.</p></li>
<li><p><a
href="http://www-ctp.di.fct.unl.pt/QUASAR/Resources/Papers/2012/Barisic2012SEDES.pdf">Usability
Evaluation of Domain-Specific Languages</a> -
<strong><em>ICQICT12</em></strong>, 2012. [<a
href="https://scholar.google.com/scholar?cluster=3047215455890195199&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. An initiative arguing that a systematic approach based on
User Interface experimental validation techniques should be used to
assess the impact of new DSLs.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="design-practises">Design Practises</h4>
<ul>
<li><p><a
href="https://ieeexplore.ieee.org/abstract/document/9904438">No Grammar
to Rule Them All: A Survey of JSON-style DSLs for Visualization</a> -
<strong><em>IEEE Transactions on Visualization and Computer
Graphics</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=17206818917381447796">All
Versions</a>]. A survey on the design and implementation of 57
JSON-style DSLs for a variety of visualization and visual interaction
tasks, suggesting that no one DSL will be able to capture all of them
without compromising essential parts of its domain design.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0164121214002799">Quantifying
usability of domain-specific languages: An empirical study on software
maintenance</a> - <strong><em>Journal of Systems and
Software</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=3450893039446010260&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A study to compare the usability of textual DSLs under
the perspective of software maintenance, suggesting that the proposed
metrics were useful: (1) to early identify DSL usability limitations,
(2) to reveal specific DSL features favoring maintenance tasks, and (3)
to successfully analyze eight critical DSL usability
dimensions.</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper_files/paper/2022/hash/182aed0379591ebd1d655b2bdc152075-Abstract-Datasets_and_Benchmarks.html">Communicating
Natural Programs to Humans and Machines</a> -
<strong><em>NeurIPS22</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=13381039702346039142&amp;as_sdt=0,5">All
Versions</a>]. While humans readily generate and interpret instructions
in a general language, computer systems are shackled to a narrow
domain-specific language that they can precisely execute. This makes
building intelligent systems that can generalize to novel situations
such as ARC difficult. Human-generated instructions are referred as
`natural programs. While they resemble computer programs, they are
distinct in two ways: First, they contain a wide range of primitives;
Second, they frequently leverage communicative strategies beyond
directly executable codes.</p></li>
<li><p><a href="https://dl.acm.org/doi/abs/10.1145/3622851">How Domain
Experts Use an Embedded DSL</a> - <strong><em>OOPSLA23</em></strong>,
2023. This work conducts a thematic analysis identified five key themes,
including: the interaction between the eDSL and the host language has
significant and sometimes unexpected impacts on eDSL user experience,
and users preferentially engage with domain-specific communities and
code templates rather than host language resources.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="domain-specified-applications">Domain Specified
Applications</h4>
<ul>
<li><p><a
href="https://jbioleng.biomedcentral.com/track/pdf/10.1186/1754-1611-4-13.pdf">Biocoder:
A programming language for standardizing and automating biology
protocols</a> - <strong><em>Journal of Biological
Engineering</em></strong>, 2010. [<a
href="https://scholar.google.com/scholar?start=0&amp;hl=en&amp;as_sdt=0,5&amp;cluster=15572197190838916795">All
Versions</a>]. [<a
href="https://github.com/nmz787/BioCoder">Project</a>]. [<a
href="https://www.microsoft.com/en-us/download/details.aspx?id=52556">Microsoft
Page</a>] Microsofts programming language for representing biology
protocols.</p></li>
<li><p><a
href="https://www.science.org/doi/full/10.1126/science.abd7331">Learning
the language of viral evolution and escape</a> -
<strong><em>Science</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=13862653184613223515">All
Versions</a>]. Natural language processing with two components: grammar
(or syntax) and meaning (or semantics) for predicting which viral
mutations may lead to viral escape.</p></li>
<li><p><a
href="https://www.biorxiv.org/content/10.1101/2022.12.21.521526v1">A
high-level programming language for generative protein design</a> -
2022. [<a
href="https://scholar.google.com/scholar?cluster=11732741354610784314&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A high-level programming language based on modular
building blocks that allows a designer to easily compose a set of
desired properties. Along with the programming language, there is an
energy-based generative model, built on atomic resolution structure
prediction with a language model, that realizes all-atom structure
designs that have the programmed properties.</p></li>
<li><p><a
href="https://www.nature.com/articles/s44160-023-00473-6">Universal
chemical programming language for robotic synthesis repeatability</a> -
<strong><em>Nature Synthesis</em></strong>, 2024. [<a
href="https://scholar.google.com/scholar?cluster=3455106495990439366">All
Versions</a>]. [<a
href="https://www.chem.gla.ac.uk/cronin/images/pubs/rauschen-natsynthesisjan24.pdf">Preprint</a>].
This paper presents an approach that uses a universal chemical
programming language (χDL) to encode and execute synthesis procedures
for a variety of chemical reactions, including reductive amination, ring
formation, esterification, carboncarbon bond formation and amide
coupling on four different hardware systems in two laboratories. With
around 50 lines of code per reaction, the approach uses abstraction to
efficiently compress chemical protocols.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0950584921002081">iContractML
2.0: A domain-specific language for modeling and deploying smart
contracts onto multiple blockchain platforms</a> -
<strong><em>Information and Software Technology</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=1548144959305241494&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A reference model and platform agnostic language for
smart contracts.</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007/s10994-021-06120-5">Scenic:
a language for scenario specification and data generation</a> -
<strong><em>Machine Learning</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=13790565080942515865">All
Versions</a>]. Thie paper proposes a domain-specific language, Scenic,
for describing scenarios that are distributions over scenes and the
behaviors of their agents over time. Scenic combines concise, readable
syntax for spatiotemporal relationships with the ability to
declaratively impose hard and soft constraints over the
scenario.</p></li>
<li><p><a
href="https://openaccess.thecvf.com/content/CVPR2023/html/Raistrick_Infinite_Photorealistic_Worlds_Using_Procedural_Generation_CVPR_2023_paper.html">Infinite
Photorealistic Worlds Using Procedural Generation</a> -
<strong><em>CVPR23</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=11620922717915489091&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a href="https://infinigen.org/">Website</a>]. [<a
href="https://openaccess.thecvf.com/content/CVPR2023/supplemental/Raistrick_Infinite_Photorealistic_Worlds_CVPR_2023_supplemental.pdf">Supplementary
Text</a>]. This paper introduces Infinigen, a procedural generator of
photorealistic 3D scenes of the natural world. Infinigen is entirely
procedural: every asset, from shape to texture, is generated from
scratch via randomized mathematical rules, using no external source and
allowing infinite variation and composition.</p></li>
<li><p><a href="https://docs.openlaw.io/">OpenLaw</a> -
<strong><em>OpenLaw.io</em></strong>. It is now possible to model all or
parts of legal agreements using code (smart contracts), decreasing the
cost and friction of creating, securing, and generating binding legal
agreements. Lawyers lack basic tools to build these dynamic, “smart”
contracts in a way that is enforceable and understandable to a legal
professional. OpenLaw is a technology stack to help power next
generation “smart” legal agreements, with a domain-specific markup
language, a integration framework, and a series of general
applications.</p></li>
<li><p><a href="https://proceedings.mlr.press/v130/lew21a.html">PClean:
Bayesian Data Cleaning at Scale with Domain-Specific Probabilistic
Programming</a> - <strong><em>ICML21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=2892523061439714130">All
Versions</a>]. This work presents PClean, a probabilistic programming
language (PPL) for leveraging dataset-specific knowledge to automate
Bayesian cleaning, automating Bayesian approaches given the diversity of
real-world error patterns and the hardness of inference.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="dsl-program-synthesis">DSL Program Synthesis</h4>
<ul>
<li><p><a
href="https://dl.acm.org/doi/abs/10.1145/3220134.3220135">pix2code:
Generating Code from a Graphical User Interface Screenshot</a> -
<strong><em>ACM SIGCHI Symposium on Engineering Interactive Computing
Systems</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=8296741513177971931&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://github.com/tonybeltramelli/pix2code">Code</a>]. [<a
href="https://uizard.io/research/">Website</a>]. This paper shows that
deep learning methods can be leveraged to train a model end-to-end to
automatically reverse engineer user interfaces and generate code from a
single input image with over 77% of accuracy for three different
platforms (i.e. iOS, Android and web-based technologies).</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2018/hash/6788076842014c83cedadbe6b0ba0314-Abstract.html">Learning
to Infer Graphics Programs from Hand-Drawn Images</a> -
<strong><em>NeurIPS18</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=14065112485794121024&amp;as_sdt=0,5">All
Versions</a>]. The method learns a model that uses program synthesis
techniques to recover a graphics program from drawing primitives. These
programs have constructs like variable bindings, iterative loops, or
simple kinds of conditionals. With a graphics program in hand, we can
correct errors made by the deep network and extrapolate
drawings.</p></li>
<li><p><a href="https://dl.acm.org/doi/abs/10.1145/3571207">babble:
Learning Better Abstractions with E-Graphs and Anti-unification</a> -
<strong><em>POPL23</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=7935064016901049715&amp;as_sdt=0,5">All
Versions</a>]. This paper proposes library learning modulo theory
(LLMT), a new library learning algorithm that additionally takes as
input an equational theory for a given problem domain. LLMT uses
e-graphs and equality saturation to compactly represent the space of
programs equivalent modulo the theory, and uses a novel e-graph
anti-unification technique to find common patterns in the corpus more
directly and efficiently.</p></li>
<li><p><a href="https://arxiv.org/abs/2303.14100">Errors are Useful
Prompts: Instruction Guided Task Programming with Verifier-Assisted
Iterative Prompting</a> - 2023. [<a
href="https://scholar.google.com/scholar?cluster=8063693456660536915">All
Versions</a>]. [<a
href="https://github.com/ac-rad/xdl-generation">Code</a>]. [<a
href="https://ac-rad.github.io/clairify/">Website</a>]. This paper
proposes CLAIRIFY, an approach that combines automatic iterative
prompting with program verification to ensure programs written in
data-scarce domain-specific language are syntactically valid and
incorporate environment constraints.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="problem-solving">Problem Solving</h3>
<h4 id="human-level-problem-solving">Human-Level Problem Solving</h4>
<ul>
<li><p><a href="https://psycnet.apa.org/record/1959-07883-001">Elements
of a theory of human problem solving</a> - <strong><em>Psychological
Review</em></strong>, 1958. [<a
href="https://scholar.google.com/scholar?cluster=6226995019045187501&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Herbert Simons original idea on human problem
solving.</p></li>
<li><p><a href="https://psycnet.apa.org/record/1973-10478-000">Human
Problem Solving</a> - <strong><em>Englewood Cliffs, NJ:
Prentice-hall</em></strong>, 1972. [<a
href="https://scholar.google.com/scholar?cluster=3996229083126262536&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Herbert Simons classic idea of human problem solving as
search.</p></li>
<li><p><a
href="http://196.223.158.148/bitstream/handle/123456789/2978/596.pdf?sequence=1&amp;isAllowed=y">Learning
to Solve Problems: A Handbook for Designing Problem-Solving Learning
Environments</a> - <strong><em>Taylorfrancis</em></strong>, 2010. [<a
href="https://scholar.google.com/scholar?cluster=13262690779319271809&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.science.org/doi/abs/10.1126/science.185.4157.1124">Judgment
under Uncertainty: Heuristics and Biases: Biases in judgments reveal
some heuristics of thinking under uncertainty</a> -
<strong><em>Science</em></strong>, 1974. [<a
href="https://scholar.google.com/scholar?cluster=17040257859216791312&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Daniel Kahnemans classic idea of prospective
theory.</p></li>
<li><p><a
href="https://www.pnas.org/content/117/47/29381.short">Computational
evidence for hierarchically structured reinforcement learning in
humans</a> - <strong><em>Proceedings of the National Academy of
Sciences</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=5731363475904675608&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A piece of evidence on hierarchical human
planning.</p></li>
<li><p><a
href="https://www.cnbc.cmu.edu/braingroup/papers/sarafyazd_jazayeri_2019.pdf">Hierarchical
reasoning by neural circuits in the frontal cortex</a> -
<strong><em>Science</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=9875733886908769773&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Neuroscience evidence supporting rule switch.</p></li>
<li><p><a href="https://oar.princeton.edu/rt4ds/file/11875/2161">The
importance of mixed selectivity in complex cognitive tasks</a> -
<strong><em>Nature</em></strong>, 2013. [<a
href="https://scholar.google.com/scholar?cluster=2707751672275136220&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper introducing mixed selectivity with
high-dimensional neural representations.</p></li>
<li><p><a
href="https://www.nature.com/articles/s41586-022-04743-9">People
construct simplified mental representations to plan</a> -
<strong><em>Nature</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=12068944400080889789&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A computational account on rational problem
representation in human planning.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S1364661322002819">Goals,
usefulness and abstraction in value-based choice</a> -
<strong><em>Trends in Cognitive Sciences</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=6256990098976657651&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. A review that outlines the computational and biological
principles that enable the brain to compute the usefulness of an option
or action by creating abstractions that flexibly adapt to changing
goals.</p></li>
<li><p><a href="https://elifesciences.org/articles/68943">Value signals
guide abstraction during learning</a> - <strong><em>eLife</em></strong>,
2022. [<a
href="https://scholar.google.com/scholar?cluster=10324834842795908439&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007/BF00058926">Learning to
perceive and act by trial and error</a> - <strong><em>Machine
Learning</em></strong>, 1991. [<a
href="https://scholar.google.com/scholar?cluster=1987606770603964473&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1801_3">Representations
in distributed cognitive tasks</a> - <strong><em>Cognitive
Science</em></strong>, 1994. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=14781266698447195483">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/abs/pii/S0364021399800226">The
nature of external representations in problem solving</a> -
<strong><em>Cognitive Science</em></strong>, 1997. [<a
href="https://scholar.google.com/scholar?cluster=10698887231200401430&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.pnas.org/content/pnas/117/47/29302.full.pdf">Rapid
trail-and-error learning with simulation supports flexible tool use and
physical reasoning.</a> - <strong><em>Proceedings of the National
Academy of Sciences</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=14400178089019636923&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://sites.google.com/view/virtualtoolsgame/home">Project</a>].
[<a
href="https://www.pnas.org/content/pnas/suppl/2020/11/20/1912341117.DCSupplemental/pnas.1912341117.sapp.pdf">Appendix</a>].
A computational account on rapid trail-and-error problem solving with a
noisy prior model.</p></li>
<li><p><a
href="https://cognitivesciencesociety.org/cogsci20/papers/0765/0765.pdf">Abstract
strategy learning underlies flexible transfer in physical problem
solving</a> - <strong><em>CogSci20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0%2C5&amp;q=Abstract+strategy+learning+underlies+flexible+transfer+in+physical+problem+solving.&amp;btnG=">All
Versions</a>].</p></li>
<li><p><a href="https://openreview.net/forum?id=CXyZrKPz4CU">Physion:
Evaluating Physical Prediction from Vision in Humans and Machines</a> -
<strong><em>NeurIPS21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=8733318111076645893&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S2352154620301236">Exploration:
from machines to humans</a> - <strong><em>Current Opinion in Behavioral
Sciences</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=8015078432419172621&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S2352154620301467">Balancing
exploration and exploitation with information and randomization</a> -
<strong><em>Current Opinion in Behavioral Sciences</em></strong>, 2021.
[<a
href="https://scholar.google.com/scholar?cluster=8164388137243077863&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0092867421008369">Hippocampal
neurons construct a map of an abstract value space</a> -
<strong><em>Cell</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=12658820581876003172&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.pnas.org/content/106/25/10370.short">Insightful
problem solving and creative tool modification by captive nontool-using
rooks</a> - <strong><em>Proceedings of the National Academy of
Sciences</em></strong>, 2009. [<a
href="https://scholar.google.com/scholar?cluster=6776471679661065229&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://www.pnas.org/content/suppl/2009/05/28/0901008106.DCSupplemental">Supplementary
Material</a>]. A piece of evidence on creative tool use in intelligent
animals.</p></li>
<li><p><a
href="https://cpilab.org/pubs/Dasgupta2018Learning.pdf">Learning to act
by integrating mental simulations and physical experiments</a> -
<strong><em>CogSci18</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=7342920174595829739&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://github.com/ishita-dg/SimulationVSAction">Code</a>].</p></li>
<li><p><a href="https://gershmanlab.com/pubs/Momennejad17.pdf">The
successor representation in human reinforcement learning</a> -
<strong><em>Nature Human Behavior</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=7317529612823134939&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="planning">Planning</h4>
<ul>
<li><p><a href="https://jair.org/index.php/jair/article/view/11175">From
Skills to Symbols: Learning Symbolic Representations for Abstract
High-Level Planning</a> - <strong><em>Journal of Artificial Intelligence
Research</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=17962480659445514879&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Leslie Kaelblings review on hierarchical
Task-and-Motion-Planning (hierarchical TAMP).</p></li>
<li><p><a
href="https://www.annualreviews.org/doi/abs/10.1146/annurev-control-091420-084139">Integrated
Task and Motion Planning</a> - <strong><em>Annual Review of Control,
Robotics, and Autonomous Systems</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=478421650694199529&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Leslie Kaelblings review on Task-and-Motion-Planning
(TAMP).</p></li>
<li><p><a
href="https://dspace.mit.edu/handle/1721.1/126626">Differentiable
Physics and Stable Modes for Tool-Use and Manipulation Planning</a> -
<strong><em>Robotics: Science and Systems</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=10342169019935480143&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://gershmanlab.com/pubs/Dasgupta18_simulation.pdf">Learning
to act by integrating mental simulations and physical experiments</a> -
<strong><em>CogSci21</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=7342920174595829739&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://onlinelibrary.wiley.com/doi/ftr/10.1111/cogs.12928">What
Is the Model in Model-Based Planning?</a> - <strong><em>Cognitive
Science</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=10598397017491369972&amp;hl=en&amp;scisbd=1&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2109.11082.pdf">Discovering State
and Action Abstractions for Generalized Task and Motion Planning</a> -
<strong><em>AAAI22</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=1054368060554971920">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="intrinsic-motivation">Intrinsic Motivation</h4>
<ul>
<li><p><a
href="https://proceedings.neurips.cc/paper/2004/hash/4be5a36cbaca8ab9d2066debfe4e65c1-Abstract.html">Intrinsically
Motivated Reinforcement Learning</a> -
<strong><em>NeurIPS04</em></strong>, 2004. [<a
href="https://scholar.google.com/scholar?cluster=9736217847061704054&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A comprehensive review on intrinsic reward functions in
classic reinforcement learning.</p></li>
<li><p><a
href="https://www.frontiersin.org/articles/10.3389/neuro.12.006.2007/full">What
is intrinsic motivation? A typology of computational approaches</a> -
<strong><em>Frontiers in Neurorobotics</em></strong>, 2009. [<a
href="https://scholar.google.com/scholar?cluster=11901343819872275353&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.jair.org/index.php/jair/article/view/12087">Adapting
Behavior via Intrinsic Reward: A Survey and Empirical Study</a> -
<strong><em>Journal of Artificial Intelligence Research</em></strong>,
2020. [<a
href="https://scholar.google.com/scholar?cluster=5309595875334344707&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://proceedings.mlr.press/v70/pathak17a.html">Curiosity-driven
Exploration by Self-supervised Prediction</a> -
<strong><em>ICML17</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=9379743003299559904&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on curiosity as intrinsic
motivation.</p></li>
<li><p><a href="https://arxiv.org/abs/1706.01502">UCB Exploration via
Q-Ensembles</a> - 2017. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=13260404166621290240">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2010.03110">Causal Curiosity: RL
Agents Discovering Self-supervised Experiments for Causal Representation
Learning</a> - <strong><em>ICML21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=4880520597219138666&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2015/hash/e00406144c1e7e35240afed70f34166a-Abstract.html">Variational
Information Maximisation for Intrinsically Motivated Reinforcement
Learning</a> - <strong><em>NeurIPS15</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=9262504233068870193&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on empowerment as intrinsic
motivation.</p></li>
<li><p><a href="https://psyarxiv.com/ybs7g/">Intrinsic Exploration as
Empowerment in a Richly Structured Online Game</a> - 2022. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=12321757821600526668">All
Versions</a>].</p></li>
<li><p><a href="https://gershmanlab.com/pubs/Tomov21.pdf">Multi-task
reinforcement learning in humans</a> - <strong><em>Nature Human
Behavior</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=14589018692074515644&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="reinforcement-learning">Reinforcement Learning</h4>
<ul>
<li><p><a
href="https://www.andrew.cmu.edu/user/rmorina/papers/SuttonBook.pdf">Reinforcement
learning: An introduction</a> - <strong><em>MIT Press</em></strong>,
2018. [<a
href="https://scholar.google.com/scholar?cluster=8821915215029978039&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Richard Suttons comprehensive book on reinforcement
learning.</p></li>
<li><p><a
href="https://www.jair.org/index.php/jair/article/view/10166">Reinforcement
learning: A survey</a> - <strong><em>Journal of Artificial Intelligence
Research</em></strong>, 1996. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=4983604491168613713">All
Versions</a>]. Leslie Kaelblings review on reinforcement
learning.</p></li>
<li><p><a href="https://arxiv.org/pdf/2011.00583.pdf">An overview of
multi-agent reinforcement learning from game theoretical perspective</a>
- 2020. [<a
href="https://scholar.google.com/scholar?cluster=16197919002723407603&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Yaodong Yangs review on multi-agent reinforcement
learning from the perspective of game theory.</p></li>
<li><p><a
href="https://klab.tch.harvard.edu/academia/classes/Neuro230/ReadingAssignments/MnihEtAlHassibis15NatureControlDeepRL.pdf">Human-level
control through deep reinforcement learning</a> -
<strong><em>Nature</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=12439121588427761338&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on solving Atari games via Deep
Q-Network.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0004370299000521">Between
MDPs and semi-MDPs: A framework for temporal abstraction in
reinforcement learning</a> - <strong><em>Artificial
Intelligence</em></strong>, 1999. [<a
href="https://scholar.google.com/scholar?cluster=1471968208408231068&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on operation reinforcement
learning.</p></li>
<li><p><a
href="http://oucsace.cs.ohio.edu/~chelberg/classes/680/paperPresentations/NathanPaperToPresent.pdf">On
Monte Carlo Tree Search and Reinforcement Learning</a> -
<strong><em>Journal of Artificial Intelligence Research</em></strong>,
2017. [<a
href="https://scholar.google.com/scholar?cluster=5805718077259491860&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/1805.00909">Reinforcement Learning
and Control as Probabilistic Inference: Tutorial and Review</a> - 2018.
[<a
href="https://scholar.google.com/scholar?cluster=16437288987337534404&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="http://rail.eecs.berkeley.edu/deeprlcourse-fa18/static/slides/lec-15.pdf">Slides</a>].
Sergey Levines tutorial on treating reinforcement learning
probabilisticly.</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2019/hash/4a46fbfca3f1465a27b210f4bdfe6ab3-Abstract.html">A
Generalized Algorithm for Multi-Objective Reinforcement Learning and
Policy Adaptation</a> - <strong><em>NeurIPS19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=7721047641895252765&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://openreview.net/forum?id=9SS69KwomAM">Solving
Compositional Reinforcement Learning Problems via Task Reduction</a> -
<strong><em>ICLR21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=15628616147808752058&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&amp;arnumber=8460689">Neural
Task Programming: Learning to Generalize Across Hierarchical Tasks</a> -
<strong><em>ICRA18</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=7155333517647976638&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://academic.oup.com/logcom/article-abstract/28/2/337/4695480">Learning
to act: qualitative learning of deterministic action models</a> -
<strong><em>Journal of Logic and Computation</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=14570482854600886953&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2109.06076">Learning to Act and
Observe in Partially Observable Domains</a> - 2021. [<a
href="https://scholar.google.com/scholar?cluster=2258600434630687063&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2107.06277">Why Generalization in
RL is Difficult: Epistemic POMDPs and Implicit Partial Observability</a>
- <strong><em>NeurIPS21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=9640851185758072663&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A formal treatment on the generalization problem in
reinforcement learning.</p></li>
<li><p><a href="https://openreview.net/forum?id=r1nTpv9eg">Learning to
Perform Physics Experiments via Deep Reinforcement Learning</a> -
<strong><em>ICLR17</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=13142558595749186250&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://ieeexplore.ieee.org/abstract/document/9387127">Data-Efficient
Learning for Complex and Real-Time Physical Problem Solving Using
Augmented Simulation</a> - <strong><em>Robotics and Automation
Letters</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=3140653562829320759&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.jmlr.org/papers/volume18/16-634/16-634.pdf">A Survey
of Preference-Based Reinforcement Learning Methods</a> -
<strong><em>Journal of Machine Learning Research</em></strong>, 2017.
[<a
href="https://scholar.google.com/scholar?cluster=13278778479251450967&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://papers.NeurIPS.cc/paper/2021/file/4079016d940210b4ae9ae7d41c4a2065-Paper.pdf">On
the Expressivity of Markov Reward</a> -
<strong><em>NeurIPS21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=4524686816939437211&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A formal treatment of tasks and rewards in reinforcement
learning modeling.</p></li>
<li><p><a href="https://proceedings.mlr.press/v37/schulman15.html">Trust
Region Policy Optimization</a> - <strong><em>ICML15</em></strong>,
2015. [<a
href="https://scholar.google.com/scholar?cluster=4215501129336400677&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper introducing TRPO, a method for
optimizing control policies, with guaranteed monotonic
improvement.</p></li>
<li><p><a
href="http://proceedings.mlr.press/v70/achiam17a/achiam17a.pdf">Constrained
Policy Optimization</a> - <strong><em>ICML17</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=6114366704163518185&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on constrained reinforcement learning
(safe reinforcement learning).</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper_files/paper/2019/hash/5faf461eff3099671ad63c6f3f094f7f-Abstract.html">When
to Trust Your Model: Model-Based Policy Optimization</a> -
<strong><em>NeurIPS19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=4248859125840907707&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://bair.berkeley.edu/blog/2019/12/12/mbpo/">Post</a>].</p></li>
<li><p><a href="http://proceedings.mlr.press/v139/lee21g.html">SUNRISE:
A Simple Unified Framework for Ensemble Learning in Deep Reinforcement
Learning</a> - <strong><em>ICML21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=8840831494454574191&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://github.com/pokaxpoka/sunrise">Code</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2202.13252">The Quest for a Common
Model of the Intelligent Decision Maker</a> -
<strong><em>Multi-disciplinary Conference on Reinforcement Learning and
Decision Making22</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=7652784232757502910&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Richard Suttons perspective on the future directions of
reinforcement learning research.</p></li>
<li><p><a
href="https://dl.acm.org/doi/abs/10.5555/3491440.3492111">Automatic
curriculum learning for deep RL: a short survey</a> -
<strong><em>IJCAI20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=10660055557098312214&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://proceedings.mlr.press/v139/romac21a.html">TeachMyAgent: a
Benchmark for Automatic Curriculum Learning in Deep RL</a> -
<strong><em>ICML21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=11016662361926634008&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://github.com/flowersteam/TeachMyAgent">Project</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="inverse-reinforcement-learning">Inverse Reinforcement
Learning</h4>
<ul>
<li><p><a
href="https://dl.acm.org/doi/pdf/10.1145/1015330.1015430">Apprenticeship
Learning via Inverse Reinforcement Learning</a> -
<strong><em>ICML04</em></strong>, 2004. [<a
href="https://scholar.google.com/scholar?cluster=10260011060619377707&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Pieter Abbeel and Andrew Ngs original paper on inverse
reinforcement learning (IRL).</p></li>
<li><p><a
href="https://www.ijcai.org/Proceedings/07/Papers/416.pdf">Bayesian
Inverse Reinforcement Learning</a> - <strong><em>IJCAI07</em></strong>,
2007. [<a
href="https://scholar.google.com/scholar?cluster=4154724070362583557&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A Bayesian account on classic inverse reinforcement
learning.</p></li>
<li><p><a href="https://arxiv.org/abs/1902.07742">From Language to
Goals: Inverse Reinforcement Learning for Vision-Based Instruction
Following</a> - <strong><em>ICLR19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=9128320307925997063&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/1904.06317.pdf">Few-shot Bayesian
imitation learning with logical program policies.</a> -
<strong><em>AAAI20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=5103854692762145813&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="http://export.arxiv.org/pdf/2011.09854">Generalized
Inverse Planning: Learning Lifted non-Markovian Utility for
Generalizable Task Representation</a> - 2020. [<a
href="https://scholar.google.com/scholar?cluster=18369106870663956780&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://proceedings.mlr.press/v139/malik21a.html">Inverse
Constrained Reinforcement Learning</a> -
<strong><em>ICML21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0%2C5&amp;q=Inverse+Constrained+Reinforcement+Learning+S+Malik&amp;btnG=">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="system-1-system-2">System 1 &amp; System 2</h3>
<h4 id="dual-coding-theory">Dual-Coding Theory</h4>
<ul>
<li><p><a href="https://zh.pb1lib.org/book/1004349/825277">Mental
Representations: A Dual Coding Approach</a> - <strong><em>Oxford
University Press</em></strong>, 1990. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0,5&amp;q=mental+representations:+a+dual+coding+approach">All
Versions</a>]. The original book on dual coding theory, in the
neuroscience account of mental representation.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S1364661321001765">Dual
coding of knowledge in the human brain</a> - <strong><em>Trends in
Cognitive Sciences</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=11751507203561842501&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Yanchao Bis review on neuroscience experiments on dual
coding theory.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0896627320302798">Two
Forms of Knowledge Representations in the Human Brain</a> -
<strong><em>Neuron</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=16941965185680116049">All
Versions</a>]. Illustrating language-derived and sensory-derived
knowledge.</p></li>
<li><p><a
href="http://bilab.bnu.edu.cn/paper/2018/Wang_2018_Cerebral_Cortex.pdf">Organizational
Principles of Abstract Words in the Human Brain</a> -
<strong><em>Cerebral Cortex</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=15272192531353715481">All
Versions</a>].</p></li>
<li><p><a
href="http://bilab.bnu.edu.cn/paper/2022/Fu_2022_CC.pdf">Different
computational relations in language are captured by distinct brain
systems</a> - <strong><em>Cerebral Cortex</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=720215181903530260&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://europepmc.org/article/med/28190038">The
Deese-Roediger-McDermott (DRM) task: A simple cognitive paradigm to
investigate false memories in the laboratory</a> - <strong><em>Journal
of Visualized Experiments</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=10880194606861797581&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://mri-q.com/uploads/3/4/5/7/34572113/gallant_piis0896627312009348.pdf">A
continuous semantic space describes the representation of thousands of
object and action categories across the human brain</a> -
<strong><em>Neuron</em></strong>, 2012. [<a
href="https://scholar.google.com/scholar?cluster=10348115268396987731&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.nature.com/articles/s41562-021-01259-6">Rational
arbitration between statistics and rules in human sequence
processing</a> - <strong><em>Nature Human Behavior</em></strong>, 2022.
[<a
href="https://scholar.google.com/scholar?cluster=9856085207409198966&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="neural-symbolic-ai">Neural-Symbolic AI</h4>
<ul>
<li><p><a
href="https://link.springer.com/chapter/10.1007/978-3-642-59789-3_58">Regression
Analysis for Interval-Valued Data</a> - <strong><em>Data Analysis,
Classification, and Related Methods</em></strong>, 2000. [<a
href="https://scholar.google.com/scholar?cluster=9407097855380377791&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on symbolic regression.</p></li>
<li><p><a
href="https://link.springer.com/chapter/10.1007/978-3-7908-1709-6_20">Symbolic
data analysis: what is it?</a> - <strong><em>Proceedings in
Computational Statistics</em></strong>, 2006. [<a
href="https://scholar.google.com/scholar?cluster=3730437602749399283&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/1805.10872">DeepProbLog: Neural
Probabilistic Logic Programming</a> -
<strong><em>NeurIPS18</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=6079567413300944995&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on neuro-symbolic probabilistic
programming.</p></li>
<li><p><a
href="https://www.jair.org/index.php/jair/article/view/11172">Learning
Explanatory Rules from Noisy Data</a> - <strong><em>Journal of
Artificial Intelligence Research</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=2553893814364678772&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper for differential Inductive Logic
Programming.</p></li>
<li><p><a
href="https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/aaai17lasin.pdf">Combining
Logical Abduction and Statistical Induction: Discovering Written
Primitives with Human Knowledge</a> - <strong><em>AAAI17</em></strong>,
2017. [<a
href="https://scholar.google.com/scholar?cluster=14477085725208589393&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/1904.10729.pdf">Neural Logic
Reinforcement Learning</a> - <strong><em>ICML19</em></strong>, 2019.
[<a
href="https://scholar.google.com/scholar?cluster=18074632043038701502&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://papers.NeurIPS.cc/paper/8548-bridging-machine-learning-and-logical-reasoning-by-abductive-learning">Bridging
Machine Learning and Logical Reasoning by Abductive Learning.</a> -
<strong><em>NeurIPS19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=1518342375288126288&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://daiwz.net/org/slides/ABL-meetup.html#/slide-title">Slides</a>].
[<a href="https://github.com/AbductiveLearning/ABL-HED">Code</a>]. The
original paper on Abductive Learning, a derivative-free approach for
neuro-symbolic learning.</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007/s11432-018-9801-4">Abductive
learning: towards bridging machine learning and logical reasoning</a> -
<strong><em>Science China Information Sciences</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=8541635351775190855&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2010.03514.pdf">Abductive
Knowledge Induction From Raw Data</a> -
<strong><em>IJCAI21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=7027142960863064076&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2021/hash/df7e148cabfd9b608090fa5ee3348bfe-Abstract.html">Fast
Abductive Learning by Similarity-based Consistency Optimization</a> -
<strong><em>NeurIPS21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=8539963460239876225&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. An approach for accelerating the convergence of Abductive
Learning.</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2019/file/c20a7ce2a627ba838cfbff082db35197-Paper.pdf">Learning
by Abstraction: The Neural State Machine</a> -
<strong><em>NeurIPS19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=7361406080192630148&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0004370220301855">Making
sense of sensory input</a> - <strong><em>Artificial
Intelligence</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=11875529139573472578&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2103.14230v1.pdf">Abstract
Spatial-Temporal Reasoning via Probabilistic Abduction and Execution</a>
- <strong><em>CVPR21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=4172146500538799638&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://openreview.net/pdf?id=SJlh8CEYDB">Learn to
explain efficiently via neural logic inductive learning</a> -
<strong><em>ICLR20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=4550874980727321525&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://github.com/gblackout/NLIL">Project</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2006.06649">Closed Loop
Neural-Symbolic Learning via Integrating Neural Perception, Grammar
Parsing, and Symbolic Reasoning</a> - <strong><em>ICML20</em></strong>,
2020. [<a
href="https://scholar.google.com/scholar?cluster=9257372000778020812&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2003.08978">Generating new
concepts with hybrid neuro-symbolic models.</a> -
<strong><em>CogSci20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=1912020791698331044">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2006.14448">Learning Task-General
Representations with Generative Neuro-Symbolic Modeling</a> -
<strong><em>ICLR21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=1335404082385789329">All
Versions</a>].</p></li>
<li><p><a
href="http://clgiles.ist.psu.edu/IST597/materials/slides/papers-memory/2016-graves.pdf">Hybrid
computing using a neural network with dynamic external memory</a> -
<strong><em>Nature</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=8100274942961380405&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://advances.sciencemag.org/content/6/16/eaay2631/tab-pdf">AI
Feynman: A physics-inspired method for symbolic regression</a> -
<strong><em>Science Advances</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=3655502646441210453&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A general approach for neuro-symbolic formula
synthesis.</p></li>
<li><p><a
href="http://papers.NeurIPS.cc/paper/8546-classification-by-components-probabilistic-modeling-of-reasoning-over-a-set-of-components.pdf">Classification-by-Components:
Probabilistic Modeling of Reasoning over a Set of Components</a> -
<strong><em>NeurIPS19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=12691103404451941071&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2006.11524.pdf">Neuro-Symbolic
Visual Reasoning: Disentangling “Visual” from “Reasoning”</a> -
<strong><em>ICML20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=13160160974887139307&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2020/file/0d82627e10660af39ea7eb69c3568955-Paper.pdf">Understanding
Deep Architectures with Reasoning Layer</a> -
<strong><em>NeurIPS20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=937882599430270789&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/1905.10307.pdf">An Explicitly
Relational Neural Network Architecture</a> -
<strong><em>ICML20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=37732747764322837&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2103.01937.pdf">Neural Production
Systems</a> - <strong><em>ICML21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=15299280949648915581&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Yoshua Bengios perspective on slot attention model as a
general production system.</p></li>
<li><p><a href="https://arxiv.org/pdf/2008.06662.pdf">Compositional
Generalization via Neural-Symbolic Stack Machines</a> -
<strong><em>NeurIPS20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=15612498612943317331&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://openreview.net/pdf?id=H1eSS3CcKX">Stochastic
Optimization of Sorting Networks via Continuous Relaxations</a> -
<strong><em>ICLR19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=10619362619006891050&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://openreview.net/pdf?id=BkxUvnEYDH">Program Guided
Agent</a> - <strong><em>ICLR20</em></strong>, 2020. [<a
href="https://openreview.net/forum?id=BkxUvnEYDH">All
Versions</a>].</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2020/hash/7a685d9edd95508471a9d3d6fcace432-Abstract.html">Learning
Compositional Rules via Neural Program Synthesis</a> -
<strong><em>NeurIPS20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=3160670555314650508&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2006.11287">Discovering Symbolic
Models from Deep Learning with Inductive Biases</a> -
<strong><em>NeurIPS20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=9452091824686227240&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/1904.11694.pdf">Neural Logic
Machines</a> - <strong><em>ICLR19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=4525183211642569463&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/1904.12584.pdf">The Neuro-Symbolic
Concept Learner: Interpreting Scenes, Words, and Sentences From Natural
Supervision</a> - <strong><em>ICLR19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=8837128214653317831&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://papers.NeurIPS.cc/paper/2019/file/98d8a23fd60826a2a474c5b4f5811707-Paper.pdf">Visual
Concept-Metaconcept Learning</a> - <strong><em>NeurIPS19</em></strong>,
2019. [<a
href="https://scholar.google.com/scholar?cluster=1888051343232298875&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2103.16564">Grounding Physical
Concepts of Objects and Events Through Dynamic Visual Reasoning</a> -
<strong><em>ICLR21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=16735976343684307244&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://jiajunwu.com/papers/toqnet_ijcai.pdf">Temporal
and Object Quantification Networks</a> -
<strong><em>IJCAI21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=17251222943638414124&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2009.01719.pdf">Grounded Language
Learning Fast and Slow</a> - <strong><em>ICLR21</em></strong>, 2021.
[<a
href="https://scholar.google.com/scholar?cluster=17735027444431750346&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://github.com/deepmind/dm_fast_mapping?s=05">Project</a>].</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007/s10994-022-06142-7">Detect,
Understand, Act: A Neuro-symbolic Hierarchical Reinforcement Learning
Framework</a> - <strong><em>Machine Learning</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=10321228117236432485&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A neuro-symbolic framework that integrates meta-policy
learning in inductive logic programming.</p></li>
<li><p><a
href="https://openaccess.thecvf.com/content/CVPR2023/html/Gupta_Visual_Programming_Compositional_Visual_Reasoning_Without_Training_CVPR_2023_paper.html">Visual
Programming: Compositional Visual Reasoning Without Training</a> -
<strong><em>CVPR23</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=16156060658942400125&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. VISPROG, a neuro-symbolic approach to solving complex and
compositional visual tasks given natural language instructions, using
the in-context learning ability of large language models to generate
python-like modular programs, which are then executed to get both the
solution and a comprehensive and interpretable rationale.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="explainability">Explainability</h3>
<h4 id="trustworthy-ai">Trustworthy AI</h4>
<ul>
<li><p><a
href="https://www.pnas.org/doi/full/10.1073/pnas.2111547119">Bayesian
modeling of humanAI complementarity</a> - <strong><em>Proceedings of
the National Academy of Sciences</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=15735143859968841009&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A Bayesian framework for combining the predictions and
different types of confidence scores from humans and machines.</p></li>
<li><p><a
href="https://yzhu.io/publication/openbottle2019scirob/paper.pdf">A tale
of two explanations: Enhancing human trust by explaining robot
behavior</a> - <strong><em>Science Robotics</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=3985046411399524590">All
Versions</a>]. The original paper on human believable robot, a result of
the DAPAR-XAI.</p></li>
<li><p><a href="https://arxiv.org/pdf/1909.06907.pdf">X-ToM: Explaining
with Theory-of-Mind for Gaining Justified Human Trust</a> - 2019. [<a
href="https://scholar.google.com/scholar?cluster=7751326666821697923&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Introducing the idea of AI estimating human users
knowledge in to explainable AI.</p></li>
<li><p><a
href="https://ojs.aaai.org/index.php/AAAI/article/view/5643">CoCoX:
Generating Conceptual and Counterfactual Explanations via
Fault-Lines</a> - <strong><em>AAAI20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=17443137068166403183&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S2589004221015510">CX-ToM:
Counterfactual explanations with theory-of-mind for enhancing human
trust in image recognition models</a> -
<strong><em>iScience</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=17526041764295337444">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="strong-machine-learning">Strong Machine Learning</h4>
<ul>
<li><p><a
href="https://link.springer.com/article/10.1007/s10994-018-5707-3">Ultra-Strong
Machine Learning: comprehensibility of programs learned with ILP</a> -
<strong><em>Machine Learning</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=17551060457946144913&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Stephen Muggletons account of ultra-strong machine
learning, which not only learns human understandable knowledge, but also
improves human performance on the corresponding tasks.</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007%2Fs10994-020-05941-0">Beneficial
and harmful explanatory machine learning</a> - <strong><em>Machine
Learning</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=16983722694047294963&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://www.ijcai.org/Proceedings/2017/497">Deep Forest:
Towards An Alternative to Deep Neural Networks</a> -
<strong><em>IJCAI17</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=7391596872731517007&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://github.com/LAMDA-NJU/Deep-Forest">Project</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2004.00221">NBDT: Neural-Backed
Decision Trees</a> - <strong><em>NeurIPS20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=1902399007162005819&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://github.com/alvinwan/neural-backed-decision-trees">Code</a>].
Expliciting the decision process of a decision tree through neural
networks.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="explainable-deep-learning">Explainable Deep Learning</h4>
<ul>
<li><p><a
href="https://github.com/jacobgil/pytorch-grad-cam">pytorch-grad-cam</a>
- 2021. Class Activation Map methods implemented in Pytorch, with many
elegant features.</p></li>
<li><p><a href="https://ieeexplore.ieee.org/document/8099837">Network
dissection: Quantifying interpretability of deep visual
representations</a> - <strong><em>CVPR17</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=18069685615852396783&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a href="http://netdissect.csail.mit.edu/">Project</a>].
[<a href="http://places2.csail.mit.edu/index.html">Dataset:
Places365</a>]. The original paper on visualizing the class activation
maps to explain convolutional neural networks.</p></li>
<li><p><a
href="https://www.pnas.org/content/pnas/early/2020/08/31/1907375117.full.pdf">Understanding
the role of Individual Units in a Deep Neural Network</a> -
<strong><em>Proceedings of the National Academy of
Sciences</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=11996680970579301810&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. David Baus review on network dissection for
discriminative and generative models.</p></li>
<li><p><a href="https://distill.pub/2020/circuits/zoom-in/">Zoom In: An
Introduction to Circuits</a> - <strong><em>Distill</em></strong>, 2020.
[<a
href="https://scholar.google.com/scholar?cluster=9053581372570691569&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A perspective on treating neural networks as
circuits.</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2020/hash/c74956ffb38ba48ed6ce977af6727275-Abstract.html">Compositional
Explanations of Neurons</a> - <strong><em>NeurIPS20</em></strong>,
2020. [<a
href="https://scholar.google.com/scholar?cluster=15725346730266402738&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://github.com/jayelm/compexp">Project</a>]. A
concept-composition version of network dissection.</p></li>
<li><p><a
href="http://papers.NeurIPS.cc/paper/9095-this-looks-like-that-deep-learning-for-interpretable-image-recognition.pdf">This
Looks Like That: Deep Learning for Interpretable Image Recognition</a> -
<strong><em>NeurIPS19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=9461838581952136719&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.pnas.org/content/pnas/116/16/7723.full.pdf">Unsupervised
learning by competing hidden units</a> - <strong><em>Proceedings of the
National Academy of Sciences</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=1228003598355915526&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2006.09994.pdf">Noise or Signal:
The Role of Backgrounds in Image Classification</a> -
<strong><em>ICLR21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=14729938011425134088&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://github.com/MadryLab/backgrounds_challenge">Code &amp;
Data</a>]. [<a
href="https://gradientscience.org/background/">Project</a>]. A
perspective on image background provides strong clue for foreground
classification.</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2018/hash/5fc34ed307aac159a30d81181c99847e-Abstract.html">Towards
Understanding Learning Representations: To What Extent Do Different
Neural Networks Learn the Same Representation</a> -
<strong><em>NeurIPS18</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=401428033641216502&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Maching the learned pattern of neurons in different
neural networks.</p></li>
<li><p><a
href="https://kriegeskortelab.zuckermaninstitute.columbia.edu/sites/default/files/content/MehrerKietzmann_2020_NatureComms.pdf">Individual
differences among deep neural network models</a> - <strong><em>Nature
Communications</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=8259893575188417318&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="embodied-intelligence">Embodied Intelligence</h3>
<ul>
<li><p><a
href="https://plato.stanford.edu/entries/embodied-cognition/">Embodied
Cognition</a> - <strong><em>Plato Stanford</em></strong>. A
computational philosophy account on Embodied Cognition, which emphasizes
the significance of an agents physical body in cognitive
abilities.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/content-externalism/">Externalism
About the Mind</a> - <strong><em>Plato Stanford</em></strong>. A
computational philosophy account on mind externalism, a long-term debate
about the boundary of embodied intelligence.</p></li>
<li><p><a
href="https://www.researchgate.net/profile/David-Woods-19/publication/242545872_Cognitive_Engineering_Human_Problem_Solving_with_Tools/links/542becf70cf29bbc126ac097/Cognitive-Engineering-Human-Problem-Solving-with-Tools.pdf">Cognitive
engineering: Human problem solving with tools</a> - <strong><em>Human
Factors</em></strong>, 1988. [<a
href="https://scholar.google.com/scholar?cluster=14194840995416222723&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original idea of investigating huamn tool use in
problem solving.</p></li>
<li><p><a href="https://psycnet.apa.org/record/1993-97340-000">Tools,
language and cognition in human evolution</a> - <strong><em>Cambridge
University Press</em></strong>, 1993. [<a
href="https://scholar.google.com/scholar?cluster=6046350461147957220&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A classic perspective correlating human tool use with the
evolution of civilization.</p></li>
<li><p><a
href="https://icds.uoregon.edu/wp-content/uploads/2014/06/Clark-and-Chalmers-The-Extended-Mind.pdf">The
Extended Mind</a> - <strong><em>Analysis</em></strong>, 1998. [<a
href="https://scholar.google.com/scholar?cluster=9546561188261943866&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on the debate of mind
externalism.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S1364661303003231">The
neural bases of complex tool use in humans</a> - <strong><em>Trends in
Cognitive Sciences</em></strong>, 2004. [<a
href="https://scholar.google.com/scholar?cluster=3612212926196611828&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A neuroscience account of human tool use.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0960982207017708">Spontaneous
Metatool Use by New Caledonian Crows</a> - <strong><em>Current
Biology</em></strong>, 2007. [<a
href="https://scholar.google.com/scholar?cluster=9263531730425342443&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A piece of evidence that intelligent animals can take
advantage of matatools to make tools for problem solving.</p></li>
<li><p><a
href="https://journals.sagepub.com/doi/abs/10.1177/0956797610371962">Rapid
Assimilation of External Objects Into the Body Schema</a> -
<strong><em>Psychological Science</em></strong>, 2010. [<a
href="https://scholar.google.com/scholar?cluster=854636910326733489&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.eva.mpg.de/documents/Cambridge/Tennie_Cultural_BehBrainSci_2012_1566208.pdf">The
cognitive bases of human tool use</a> - <strong><em>Behavioral and Brain
Sciences</em></strong>, 2012. [<a
href="https://scholar.google.com/scholar?cluster=4648150119820414671&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00214/full">The
embodied mind extended: using words as social tools</a> -
<strong><em>Frontiers in Psychology</em></strong>, 2013. [<a
href="https://scholar.google.com/scholar?cluster=14719988081062606352&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://royalsocietypublishing.org/doi/10.1098/rstb.2012.0408">Tool
use as adaptation</a> - <strong><em>Philosophical Transactions of the
Royal Society B: Biological Sciences</em></strong>, 2013. [<a
href="https://scholar.google.com/scholar?cluster=8060841461200774807&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0028393214000232">Intensive
tool-practice and skillfulness facilitate the extension of body
representations in humans</a> -
<strong><em>Neuropsychologia</em></strong>, 2014. [<a
href="https://scholar.google.com/scholar?cluster=10578024091098127929&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://psycnet.apa.org/doiLanding?doi=10.1037%2Frev0000027">Tool
use and affordance: Manipulation-based versus reasoning-based
approaches</a> - <strong><em>Psychological Review</em></strong>, 2016.
[<a
href="https://scholar.google.com/scholar?cluster=3284942486402374505&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A classic review on human tool use and
affordance.</p></li>
<li><p><a href="https://escholarship.org/uc/item/5gf0m7x3">Meta-strategy
learning in physical problem-solving: the effect of embodied
experience</a> - <strong><em>CogSci21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=9713842177532954702">All
Versions</a>].</p></li>
<li><p><a
href="https://yzhu.io/publication/tool2015cvpr/paper.pdf">Understanding
Tools: Task-Oriented Object Modeling, Learning and Recognition</a> -
<strong><em>CVPR15</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=4609926671953500969&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://yzhu.io/publication/tool2015cvpr/">Project</a>]. The
original paper introducing affordance and physically-grounded tool use
into computer vision.</p></li>
<li><p><a
href="https://robotics.sciencemag.org/content/6/54/eabd7935.abstract">Robotic
hand augmentation drives changes in neural body representation</a> -
<strong><em>Science Robotics</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=1622125726197763917&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.jneurosci.org/content/jneuro/41/13/2980.full.pdf">Expert
Tool Users Show Increased Differentiation between Visual Representations
of Hands and Tools</a> - <strong><em>Journal of
Neuroscience</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=13454164767827515188&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2106.05654.pdf">Visual scoping
operations for physical assembly</a> -
<strong><em>CogSci21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=7238090583833839&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.cc.gatech.edu/ai/robot-lab/online-publications/StoytchevICRA2005.pdf">Behavior-grounded
representation of tool affordances</a> -
<strong><em>ICRA05</em></strong>, 2005. [<a
href="https://scholar.google.com/scholar?cluster=6115815663915603675&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/chapter/10.1007/978-3-642-38812-5_1">A
Relational Approach to Tool-Use Learning in Robots</a> -
<strong><em>ILP12</em></strong>, 2012. [<a
href="https://scholar.google.com/scholar?cluster=18374178227592386332&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007/s10514-017-9637-x">Relational
affordances for multiple-object manipulation</a> -
<strong><em>Autonomous Robots</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=6357646940615855682&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://m.roboticsproceedings.org/rss15/p01.pdf">Improvisation
through Physical Understanding: Using Novel Objects as Tools with Visual
Foresight</a> - <strong><em>RSS19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=4316276917607326251&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.biorxiv.org/content/10.1101/2021.07.08.451333v1">Meta-strategy
learning in physical problem-solving: the effect of embodied
experience</a> - 2021. [<a
href="https://scholar.google.com/scholar?cluster=9713842177532954702&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2002.06289">3D dynamic scene
graphs: Actionable spatial perception with places, objects, and
humans</a> - <strong><em>RSS20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=4428742298455436054&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A system for modeling 3D dynamic scene graphs on multiple
levels (metric-semantic mesh, objects and agents, places and structures,
rooms, and buildings).</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="evolutionary-intelligence">Evolutionary Intelligence</h3>
<ul>
<li><p><a
href="http://websites.umich.edu/~zhanglab/clubPaper/06_08_2012.pdf">Evolutionary
trade-offs, Pareto optimality, and the geometry of phenotype space</a> -
<strong><em>Science</em></strong>, 2012. [<a
href="https://scholar.google.com/scholar?cluster=16162252507845975080&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A classic paper correlating biological trade-offs with
the evolution of pareto optimality.</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007/BF01442131">Pareto
optimality in multiobjective problems</a> - <strong><em>Applied
Mathematics and Optimization</em></strong>, 1977. [<a
href="https://scholar.google.com/scholar?cluster=11305142600366783354&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on the pareto optimality in
multiobjective problems.</p></li>
<li><p><a href="http://www.soft-computing.de/SMC0805.pdf">Pareto-Based
Multiobjective Machine Learning: An Overview and Case Studies</a> -
<strong><em>IEEE Transactions on Systems, Man, and
Cybernetics</em></strong>, 2008. [<a
href="https://scholar.google.com/scholar?cluster=11308312498510305429&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A comprehensive review on the application of pareto
optimality to multiobjective machine learning.</p></li>
<li><p><a
href="https://www.nature.com/articles/s41586-019-1153-z">Phylogenetic
evidence for Sino-Tibetan origin in northern China in the Late
Neolithic</a> - <strong><em>Nature</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=13913123623752818925&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A Bayesian phylogenetic analysis on two competing
hypotheses of the origin of the Sino-Tibetan language family suggests
that the initial expansion of Sino-Tibetan languages occurred
approximately 4,0006,000 years before present (BP; taken as AD 1950) in
the Yellow River basin of northern China, and that this expansion is
associated with the development of the Yangshao and/or Majiayao
Neolithic cultures.</p></li>
<li><p><a
href="https://www.nature.com/articles/s41586-021-04108-8">Triangulation
supports agricultural spread of the Transeurasian languages</a> -
<strong><em>Nature</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=1183005894965630508&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://www.nature.com/articles/d41586-021-03037-w">Nature
News</a>]. A triangulation of linguistic, archaeological and genetic
data suggests that the Transeurasian language family originated in a
population of grain farmers in China around 9,000 years ago, and that
agriculture underpinned its spread.</p></li>
<li><p><a
href="https://www.science.org/doi/abs/10.1126/science.ade7981">From
language development to language evolution: A unified view of human
lexical creativity</a> - <strong><em>Science</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=15871163761816546924&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://brochhagen.github.io/content/ms/accepted-lexical-creativity.pdf">Preprint</a>].
This work supports a unified foundation for human lexical creativity
underlying both the fleeting products of individual ontogeny and the
evolutionary products of phylogeny across languages.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="methodologies-for-experiments">Methodologies for
Experiments</h3>
<h4 id="quantitative-analysis">Quantitative Analysis</h4>
<ul>
<li><p><a
href="http://www.jakebowers.org/ITVExperiments/angristimbensrubin96.pdf">Identification
of Causal Effects Using Instrumental Variables</a> - <strong><em>Journal
of the American Statistical Association</em></strong>, 1996. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=17166265099721941605">All
Versions</a>]. The original paper on Instrumental Variables for natural
sociology studies.</p></li>
<li><p><a
href="https://www.annualreviews.org/doi/abs/10.1146/annurev-psych-122414-033702">Experiments
with More Than One Random Factor: Designs, Analytic Models, and
Statistical Power</a> - <strong><em>Annual Review of
Psychology</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=6652444619934494760&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A comprehensive review of the quantitative analysis
techniques for behavioral studies.</p></li>
<li><p><a
href="https://mpra.ub.uni-muenchen.de/4823/1/MPRA_paper_4823.pdf">With
or Without U? The Appropriate Test for a U-Shaped Relationship</a> -
<strong><em>Oxford Bulletin of Economics and Statistics</em></strong>,
2010. [<a
href="https://scholar.google.com/scholar?cluster=1574723532506536904&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original method for testing U-shape relation from the
data, which is distinctive from the quadratic regression test.</p></li>
<li><p><a
href="https://journals.sagepub.com/doi/pdf/10.1177/2515245918805755">Two
lines: A valid alternative to the invalid testing of U-shaped
relationships with quadratic regressions</a> - <strong><em>Advances in
Methods and Practices in Psychological Science</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=12010185803500406162&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. An alternative method to test the statistical
significance of U-shaped relationships.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="scaling-up-behavioral-studies">Scaling Up Behavioral
Studies</h4>
<ul>
<li><p><a href="https://osf.io/wksv8">Scaling up experimental social,
behavioral, and economic science</a> - <strong><em>Open Science
Foundation Preprints</em></strong>. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0%2C5&amp;q=Scaling+up+experimental+social%2C+behavioral%2C+and+economic+science&amp;btnG=">All
Versions</a>]. A white paper on scaling up social, behavioral, and
econimic experiments.</p></li>
<li><p><a
href="https://scholar.harvard.edu/files/henrich/files/henrich_heine_norenzayan_2010-2.pdf">The
weirdest people in the world?</a> - <strong><em>Brain and Behavioral
Sciences</em></strong>, 2010. [<a
href="https://scholar.google.com/scholar?cluster=3129419557801277936&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on rethinking and tackling the sample
bias in behaivoral studies, where most subjects are drawn from Western,
Educated, Industrialized, Rich, and Democratic (WEIRD)
societies.</p></li>
<li><p><a
href="https://www.pnas.org/doi/10.1073/pnas.1915841117">Scaling up
psychology via Scientific Regret Minimization</a> -
<strong><em>Proceedings of the National Academy of
Sciences</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=8011895688226766944&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The statistical and ecological basis for scaling up
behavioral studies.</p></li>
<li><p><a
href="https://cpb-us-w2.wpmucdn.com/web.sas.upenn.edu/dist/a/511/files/2021/06/Bhatia-He-Science.pdf">Machine-generated
theories of human decision-making</a> -
<strong><em>Science</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=7065547001880027350&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://cocosci.princeton.edu/jpeterson/papers/peterson2021-science.pdf">Using
large-scale experiments and machine learning to discover theories of
human decision-making</a> - <strong><em>Science</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=7456250222852859810&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A piece of evidence for the merits brought by large-scale
behavioral studies in social science.</p></li>
<li><p><a
href="http://jakehofman.com/pdfs/integrating-prediction-and-explanation.pdf">Integrating
explanation and prediction in computational social science</a> -
<strong><em>Nature</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=288245575125750925&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://cocosci.princeton.edu/josh/papers/griffiths-largeimagedatabases-topics2016.pdf">Exploring
human cognition using large image databases</a> - <strong><em>Topics in
Cognitive Sciences</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=3629906005701226294&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://web.archive.org/web/20170809024454id_/http://www.kevinjing.com/visual_search_at_pinterest.pdf">Visual
Search at Pinterest</a> - <strong><em>KDD15</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=2051024301293529405&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Large scale user study in the development of the
recommendations system by Pinterest.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="decision-making">Decision Making</h4>
<ul>
<li><a
href="https://link.springer.com/article/10.3758/s13428-022-01789-5">A
computational process-tracing method for measuring peoples planning
strategies and how they change over time</a> - <strong><em>Behavior
Research Methods</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=10405935000926098041">All
Versions</a>]. Model-based strategy identification.</li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="question-answering">Question Answering</h4>
<ul>
<li><p><a
href="https://cogsci.mindmodeling.org/2016/papers/0122/paper0122.pdf">Searching
large hypothesis spaces by asking questions</a> -
<strong><em>CogSci16</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=3398849603439166012&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A behavioral study for the 20 questions game.</p></li>
<li><p><a
href="https://gureckislab.org/papers/RotheLakeGureckis-2016cogsci.pdf">Asking
and evaluating natural language questions</a> -
<strong><em>CogSci16</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=34641833161282231&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A behavioral study for the battleship game.</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007/s42113-018-0005-5">Do
People Ask Good Questions?</a> - <strong><em>Computational Brain &amp;
Behavior</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=14595996621617337270&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://nyuccl.org/papers/Rothe-Lake-Gureckis-2019-Cogsci.pdf">Asking
goal-oriented questions and learning from answers</a> -
<strong><em>CogSci19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=14185546187726917682&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="human-machine-comparison">Human-Machine Comparison</h4>
<ul>
<li><p><a
href="https://psycnet.apa.org/record/1973-00249-001">Elimination by
aspects: A theory of choice</a> - <strong><em>Psychological
Review</em></strong>, 1972. [<a
href="https://scholar.google.com/scholar?cluster=1633792484482810297&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Herbert Simons early experiments on computer aided
behavioral studies.</p></li>
<li><p><a
href="https://stacks.stanford.edu/file/druid:qv796fc9687/qv796fc9687.pdf">Problem
Solving and Rule Induction: A Unified View</a> - <strong><em>Knowledge
and cognition</em></strong>, 1974. [<a
href="https://scholar.google.com/scholar?cluster=12943734683291006234&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.pnas.org/content/112/37/11708.short">Evidence
integration in model-based tree search</a> - <strong><em>Proceedings of
the National Academy of Sciences</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=11085043350027609187&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/content/pdf/10.1007/s42113-019-00053-y.pdf">People
Infer Recursive Visual Concepts from Just a Few Examples</a> -
<strong><em>Computational Brain &amp; Behavior</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=3871396883970734141&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://escholarship.org/content/qt3xf2n3vc/qt3xf2n3vc.pdf">One-shot
learning of generative speech concepts</a> -
<strong><em>CogSci14</em></strong>, 2014. [<a
href="https://scholar.google.com/scholar?cluster=15482292457660075957&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/1901.04587">Human few-shot
learning of compositional instructions</a> -
<strong><em>CogSci19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=12841163907815018136&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2103.05823.pdf">Fast and flexible:
Human program induction in abstract reasoning tasks</a> -
<strong><em>CogSci21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=5294483826040237516&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://proceedings.mlr.press/v80/dubey18a.html">Investigating
Human Priors for Playing Video Games</a> -
<strong><em>ICML18</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=2202192690517876762&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S2352154619300622">Tasks
for aligning human and machine planning</a> - <strong><em>Current
Opinion in Behavioral Sciences</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=8308872468787875598&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://perception.jhu.edu/files/PDFs/19_Adversarial_Deciphering/ZhouFirestone-AdversarialDeciphering.pdf">Humans
can decipher adversarial images</a> - <strong><em>Nature
Communications</em></strong>. 2019. [<a
href="https://scholar.google.com/scholar?cluster=4423950118844131054&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.nature.com/articles/s41593-022-01026-4.pdf">Shared
computational principles for language processing in humans and deep
language models</a> - <strong><em>Nature Neuroscience</em></strong>,
2022. [<a
href="https://scholar.google.com/scholar?cluster=16078004657063602593&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="association-test">Association Test</h4>
<ul>
<li><p><a
href="https://en.wikipedia.org/wiki/Implicit-association_test">Implicit
Association Test</a> - <strong><em>Wikipedia</em></strong>. Wikipedia on
the Implicit Association Test, a controversial assessment intended to
detect subconscious associations between mental representations of
objects (concepts) in memory.</p></li>
<li><p><a
href="http://faculty.fortlewis.edu/burke_b/Senior/BLINK%20replication/IAT.pdf">Measuring
Individual Differences in Implicit Cognition: The Implicit Association
Test</a> - <strong><em>Journal of Personality and Social
Psychology</em></strong>, 1998. [<a
href="https://scholar.google.com/scholar?cluster=302378224541015580&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper introducing the Implicit Association
Test.</p></li>
<li><p><a
href="http://faculty.washington.edu/agg/pdf/Gwald_Nosek_ZEITSCHR_2001.OCR.pdf">Health
of the Implicit Association Test at age 3</a> - <strong><em>Zeitschrift
für Experimentelle Psychologie</em></strong>, 2001. [<a
href="https://scholar.google.com/scholar?cluster=10868478693422595588&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The 3rd year review for the IAT.</p></li>
<li><p><a
href="https://faculty.washington.edu/agg/pdf/Nosek%20&amp;%20al.IATatage7.2007.pdf">The
Implicit Association Test at Age 7: A Methodological and Conceptual
Review</a> - <strong><em>Social psychology and the unconscious: The
automaticity of higher mental processes (pp. 265292), Psychology
Press</em></strong>, 2007. [<a
href="https://scholar.google.com/scholar?cluster=16189750920013376566&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The 7th year review for the IAT.</p></li>
<li><p><a
href="http://faculty.washington.edu/agg/IATmaterials/PDFs/Hofmann%20&amp;%20al%20(PSPB,2005).pdf">A
Meta-Analysis on the Correlation Between the Implicit Association Test
and Explicit Self-Report Measures</a> - <strong><em>Personality and
Social Psychology Bulletin</em></strong>, 2005. [<a
href="https://scholar.google.com/scholar?cluster=4888328728717829047&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="virtual-reality">Virtual Reality</h4>
<ul>
<li><p><a href="https://www.nature.com/articles/nn948">Virtual reality
in behavioral neuroscience and beyond</a> - <strong><em>Nature
Neuroscience</em></strong>, 2002. [<a
href="https://scholar.google.com/scholar?cluster=12168354203281280346&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A classic review on the early applications of Virtual
Reality to behavioral studies.</p></li>
<li><p><a
href="https://stanfordvr.com/mm/2009/fox-jmp-vr-survival.pdf">Virtual
reality: A survival guide for the social scientist</a> -
<strong><em>Journal of Media Psychology</em></strong>, 2009. [<a
href="https://scholar.google.com/scholar?cluster=17318470193315023264&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://psycnet.apa.org/record/2022-60836-006">The
psychology of virtual reality</a> - <strong><em>The psychology of
technology: Social science research in the age of Big Data
(pp. 155193), American Psychological Association</em></strong>, 2022.
[<a
href="https://scholar.google.com/scholar?cluster=11535480055596209683&amp;hl=en&amp;as_sdt=0,5&amp;as_ylo=2021">All
Versions</a>]. Jeremy Bailensons review on the applications of Virtual
Reality to behavioral studies.</p></li>
<li><p><a
href="https://stanfordvr.com/mm/2015/cummings-mp-how-immersive.pdf">How
Immersive Is Enough? A Meta-Analysis of the Effect of Immersive
Technology on User Presence</a> - <strong><em>Media
Psychology</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=9218122072360464558&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A meta-analysis on the extent to which technologies need
to be immersive in order to generate a sense of presence.</p></li>
<li><p><a href="https://ieeexplore.ieee.org/document/10108427">Towards
an Understanding of Distributed Asymmetric Collaborative Visualization
on Problem-solving</a> - <strong><em>VR23</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=11228377215337222005&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="meta-level-considerations">Meta-Level Considerations</h3>
<h4 id="meta-learning">Meta Learning</h4>
<ul>
<li><p><a href="https://arxiv.org/pdf/2201.03916.pdf">Automated
Reinforcement Learning (AutoRL): A Survey and Open Problems</a> - 2022.
[<a
href="https://scholar.google.com/scholar?cluster=9025378857688824887&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A comprehensive review on AutoRL.</p></li>
<li><p><a
href="https://proceedings.mlr.press/v70/finn17a/finn17a.pdf">Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks</a> -
<strong><em>ICML17</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=17278604844873996878">All
Versions</a>]. [<a
href="https://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/">Post</a>].
Chelsea Finns original paper on Model-Agnostic Meta-Learning
(MAML).</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2018/hash/e1021d43911ca2c1845910d84f40aeae-Abstract.html">Bayesian
Model-Agnostic Meta-Learning</a> - <strong><em>NeurIPS18</em></strong>,
2018. [<a
href="https://scholar.google.com/scholar?cluster=7370333111335795917&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A Bayesian account on MAML.</p></li>
<li><p><a
href="https://openreview.net/forum?id=SJeD3CEFPH">Meta-Q-Learning</a> -
<strong><em>ICLR20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=2865388954464396222&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The milestone paper on context Meta-RL.</p></li>
<li><p><a
href="http://proceedings.mlr.press/v97/rakelly19a.html">Efficient
Off-Policy Meta-Reinforcement Learning via Probabilistic Context
Variables</a> - <strong><em>ICML19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=15379570585451726919&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://openreview.net/forum?id=TQt98Ya7UMP">Balancing
Constraints and Rewards with Meta-Gradient D4PG</a> -
<strong><em>ICLR21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=2805226315118298313&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://openreview.net/forum?id=Bk8BvDqex">Metacontrol
for Adaptive Imagination-Based Optimization</a> -
<strong><em>ICLR17</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=16728474512617398730&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2021/hash/1e4d36177d71bbb3558e43af9577d70e-Abstract.html">On
Effective Scheduling of Model-based Reinforcement Learning</a> -
<strong><em>NeurIPS21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=11128521607771619105&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="marrs-levels-of-analysis">Marrs Levels of Analysis</h4>
<ul>
<li><p><a href="https://usa1lib.org/book/1223444/8e5ca8">Vision: A
Computational Investigation into the Human Representation and Processing
of Visual Information</a> - <strong><em>MIT Press</em></strong>, 1982.
[<a
href="https://scholar.google.com/scholar?cluster=14386368570811483142&amp;hl=en&amp;as_sdt=0,44">All
Versions</a>]. David Marrs original book on the levels of
analysis.</p></li>
<li><p><a
href="https://dspace.mit.edu/bitstream/handle/1721.1/5782/AIM-357.pdf?sequence=2">From
understanding computation to understanding neural circuitry</a> -
<strong><em>Neuroscience Research Program Bulletin</em></strong>, 1979.
[<a
href="https://scholar.google.com/scholar?start=0&amp;hl=en&amp;as_sdt=0,5&amp;cluster=11150567121969913334">All
Versions</a>].</p></li>
<li><p><a
href="https://cocosci.princeton.edu/tom/papers/LabPublications/BridgingLevelsAnalysis.pdf">Bridging
Levels of Analysis for Probabilistic Models of Cognition</a> -
<strong><em>Current Directions in Psychological Science</em></strong>,
2012. [<a
href="https://scholar.google.com/scholar?cluster=5063382112136991296&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A Marrs paradigm account on probabilistic
models.</p></li>
<li><p><a
href="https://people.csail.mit.edu/pkrafft/papers/krafft-griffiths-levels-css.pdf">Levels
of Analysis in Computational Social Science</a> -
<strong><em>CogSci18</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=10178929388985626844&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A Marrs paradigm account on computational social
science.</p></li>
<li><p><a href="https://baicsworkshop.github.io/pdf/BAICS_6.pdf">Levels
of Analysis for Machine Learning</a> - <strong><em>ICLR20 Bridging AI
and Cognitive Science Workshop</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=13819038971626384115&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A Marrs paradigm account on machine learning.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="gestalt">Gestalt</h4>
<ul>
<li><p><a href="https://psycnet.apa.org/record/2007-10344-001">Gestalt
theory</a> - <strong><em>A source book of Gestalt
psychology</em></strong>, 1938. [<a
href="https://scholar.google.com/scholar?cluster=18133275659218646817&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original book on Gestalt psychology.</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007/BF00422382">Gestalt
Psychology</a> - <strong><em>Psychologische Forschung</em></strong>,
1967. [<a
href="https://scholar.google.com/scholar?cluster=16023098380090751616&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Wolfgang Köhlers review on Gestalt psychology.</p></li>
<li><p><a
href="https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9450.1984.tb01001.x">Restructuring
revisited I. Summary and critique of the Gestalt theory of problem
solving</a> - <strong><em>Scandinavian Journal of
Psychology</em></strong>, 1984. [<a
href="https://scholar.google.com/scholar?cluster=1540079499182933565&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9450.1984.tb01005.x">Restructuring
revisited II. An information processing theory of restructuring and
insight</a> - <strong><em>Scandinavian Journal of
Psychology</em></strong>, 1984. [<a
href="https://scholar.google.com/scholar?cluster=1821980539002417470&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://psycnet.apa.org/record/1993-36184-001">Thoughts
beyond words: When language overshadows insight</a> -
<strong><em>Journal of Experimental Psychology</em></strong>, 1993. [<a
href="https://scholar.google.com/scholar?cluster=13773440938721955384&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://hk1lib.org/book/1244721/20ddc5">Deep Learning:
How the Mind Overrides Experience</a> - <strong><em>Cambridge University
Press</em></strong>, 2011. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=231021877034210140">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="the-aha-moment">The Aha! Moment</h4>
<ul>
<li><p><a href="https://en.wikipedia.org/wiki/Eureka_effect">Eureka
Effect</a> - <strong><em>Wikipedia</em></strong>. Wikipedia on Eureka
effect (a.k.a. Aha! moment, insight, and epiphany), the common human
experience of suddenly understanding a previously incomprehensible
problem or concept.</p></li>
<li><p><a href="https://en.wikipedia.org/wiki/Insight">Insight</a> -
<strong><em>Wikipedia</em></strong>. Wikipedia on insight.</p></li>
<li><p><a
href="https://en.wikipedia.org/wiki/Epiphany_(feeling)">Epiphany</a> -
<strong><em>Wikipedia</em></strong>. Wikipedia on epiphany, the
“feeling” when the Aha! moment comes.</p></li>
<li><p><a href="https://escholarship.org/uc/item/54x8v354">A
computational model of scientific insight</a> - <strong><em>The nature
of creativity: Contemporary psychological perspectives</em></strong>,
1988. [<a
href="https://scholar.google.com/scholar?cluster=13633357571064621019&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A computational account on insights for scientific
discovery.</p></li>
<li><p><a
href="https://www.researchgate.net/profile/Thomas-Ormerod/publication/8909475_What_Makes_an_Insight_Problem_The_Roles_of_Heuristics_Goal_Conception_and_Solution_Recoding_in_Knowledge-Lean_Problems/links/00b7d5159f3c057eb5000000/What-Makes-an-Insight-Problem-The-Roles-of-Heuristics-Goal-Conception-and-Solution-Recoding-in-Knowledge-Lean-Problems.pdf">What
Makes an Insight Problem? The Roles of Heuristics, Goal Conception, and
Solution Recoding in Knowledge-Lean Problems</a> - <strong><em>Journal
of Experimental Psychology</em></strong>, 2004. [<a
href="https://scholar.google.com/scholar?cluster=17529631069707671285&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://psycnet.apa.org/record/2003-10949-002">APA</a>].</p></li>
<li><p><a
href="https://www.hf.uni-koeln.de/data/fgpsych/File/Haider/Knoblich_etal_1999.pdf">Constraint
relaxation and chunk decomposition in insight problem solving</a> -
<strong><em>Journal of Experimental Psychology</em></strong>, 1999. [<a
href="https://scholar.google.com/scholar?cluster=8057214169831054227&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://psycnet.apa.org/record/1999-01477-011">APA</a>].</p></li>
<li><p><a
href="https://citeseerx.ist.psu.edu/document?repid=rep1&amp;type=pdf&amp;doi=818fec7c896ea3716eeb637da095293e9e6d1806">Dynamics
and constraints in insight problem solving</a> - <strong><em>Journal of
Experimental Psychology</em></strong>, 2002. [<a
href="https://scholar.google.com/scholar?cluster=12067671710370549516&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://psycnet.apa.org/record/2002-01361-014">APA</a>].</p></li>
<li><p><a
href="https://bpb-us-e1.wpmucdn.com/sites.northwestern.edu/dist/a/699/files/2015/11/Salvi_etal_Insight-is-right_TR2016-2n3ns9l.pdf">Insight
solutions are correct more often than analytic solutions</a> -
<strong><em>Thinking &amp; Reasoning</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=883561570778414219&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1094&amp;context=jps">Human
Performance on Insight Problem Solving: A Review</a> - <strong><em>The
Journal of Problem Solving</em></strong>, 2011. [<a
href="https://scholar.google.com/scholar?cluster=15913242870565808883&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.frontiersin.org/articles/10.3389/fpsyg.2016.01424/full">Insight
Is Not in the Problem: Investigating Insight in Problem Solving across
Task Types</a> - <strong><em>Frontiers in Psychology</em></strong>,
2016. [<a
href="https://scholar.google.com/scholar?cluster=4564128114316001308&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.researchgate.net/profile/Trina-Kershaw/publication/8909474_Multiple_Causes_of_Difficulty_in_Insight_The_Case_of_the_Nine-Dot_Problem/links/55dca27e08aeb38e8a8d23b6/Multiple-Causes-of-Difficulty-in-Insight-The-Case-of-the-Nine-Dot-Problem.pdf">Multiple
Causes of Difficulty in Insight: The Case of the Nine-Dot Problem</a> -
<strong><em>Journal of Experimental Psychology</em></strong>, 2004. [<a
href="https://scholar.google.com/scholar?cluster=15600199808825346018&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://psycnet.apa.org/record/2003-10949-001">APA</a>].</p></li>
<li><p><a
href="https://www.researchgate.net/profile/Gary-Jones-14/publication/23152585_Investigating_the_Effect_of_Mental_Set_on_Insight_Problem_Solving/links/0fcfd50abb767b1102000000/Investigating-the-Effect-of-Mental-Set-on-Insight-Problem-Solving.pdf">Investigating
the effect of Mental Set on Insight Problem Solving</a> -
<strong><em>Experimental Psychology</em></strong>, 2008. [<a
href="https://scholar.google.com/scholar?cluster=11054712671934144981&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="rationality">Rationality</h4>
<ul>
<li><p><a
href="https://plato.stanford.edu/entries/bounded-rationality/">Bounded
Rationality</a> - <strong><em>Plato Stanford</em></strong>. A
computational philosophy account on Bounded Rationality, an elementary
hypothesis of human intelligence in psychology and ecology.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/rationality-instrumental/">Instrumental
Rationality</a> - <strong><em>Plato Stanford</em></strong>. A
computational philosophy account on Instrumental Rationality, a dabate
on whether an agents decision is made intentionally or out of rational
coherence.</p></li>
<li><p><a
href="http://act-r.psy.cmu.edu/wordpress/wp-content/uploads/2012/12/89AdaptiveNature.pdf">The
Adaptive Nature of Human Categorization Behavior</a> -
<strong><em>Psychological Review</em></strong>, 1991. [<a
href="https://scholar.google.com/scholar?cluster=7349048316173616836&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper that relates cognitive resource
limitation with Bayesian rational analysis, in the case of
categorization behavior.</p></li>
<li><p><a
href="https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(03)00028-7?large_figure=true&amp;mobileUi=0">Task
switching</a> - <strong><em>Trends in Cognitive Sciences</em></strong>,
2003. [<a
href="https://scholar.google.com/scholar?cluster=676255515965300942&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="http://psychfiles.net/experimental/Monsell_2003.pdf">Preprint</a>].
The original paper on ``switch cost, where subjects responses are
substantially slower and, usually, more error-prone immediately after a
task switch.</p></li>
<li><p><a
href="https://onlinelibrary.wiley.com/doi/full/10.1111/tops.12086">Computational
Rationality: Linking Mechanism and Behavior Through Bounded Utility
Maximization</a> - <strong><em>Topics in Cognitive
Science</em></strong>, 2014. [<a
href="https://scholar.google.com/scholar?cluster=15813211310327194798&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Introducing the computational rationality framework for
including information-processing bounds in rational analyses, which
emphasizes the incorporation of computational mechanism into the
definition of rational action.</p></li>
<li><p><a
href="https://gershmanlab.com/pubs/GershmanHorvitzTenenbaum15.pdf">Computational
rationality: A converging paradigm for intelligence in brains, minds,
and machines</a> - <strong><em>Science</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=7744057022238735461&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A comprehensive review on the rationality of Bayesian
computational models.</p></li>
<li><p><a
href="https://cocosci.princeton.edu/papers/lieder_resource.pdf">Resource-rational
analysis: Understanding human cognition as the optimal use of limited
computational resources</a> - <strong><em>Behavioral and Brain
Sciences</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=1642626865293965288&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A resource-rational account on interpreting human
intelligence.</p></li>
<li><p><a
href="https://onlinelibrary.wiley.com/doi/full/10.1111/tops.12142">Rational
Use of Cognitive Resources: Levels of Analysis Between the Computational
and the Algorithmic</a> - <strong><em>Topics in Cognitive
Science</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=16305499937147933368&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. An earlier version of the paper above.</p></li>
<li><p><a
href="https://cocosci.princeton.edu/papers/griffiths_understanding.pdf">Understanding
Human Intelligence through Human Limitations</a> - <strong><em>Trends in
Cognitive Sciences</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=6469796133334580403">All
Versions</a>]. Tom Griffithss review on understanding the uniqueness of
human intelligence through three aspects of human limitations.</p></li>
<li><p><a
href="https://eccl.mit.edu/s/Pelz_Foundations-of-intuitive-power-analyses-in-children-and-adults.pdf">Foundations
of intuitive power analyses in children and adults</a> -
<strong><em>Nature Human Behavior</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=4370839893505978405&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Evidences support that people have some of the
foundations for intuitive power analyses, which help people use
intuitive statistical reasoning and metacognitive strategies to estimate
how much information they might need to solve different discrimination
problems.</p></li>
<li><p><a
href="https://cocosci.princeton.edu/papers/ho2022cognitive.pdf">Cognitive
Science as a Source of Forward and Inverse Models of Human Decisions for
Robotics and Control</a> - <strong><em>Annual Review of Control,
Robotics, and Autonomous Systems</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;cluster=14055765901243029337">All
Versions</a>]. The review focuses on how cognitive science can provide
forward models of human decision-making and inverse models of how humans
think about others decision-making. The authors highlight relevant
recent developments, including approaches that synthesize black box and
theory-driven modeling, accounts that recast heuristics and biases as
forms of bounded optimality, and models that characterize human theory
of mind and communication in decision-theoretic terms.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="cognitive-architecture">Cognitive Architecture</h4>
<ul>
<li><p><a
href="https://plato.stanford.edu/entries/epistemology/">Epistemology</a>
- <strong><em>Plato Stanford</em></strong>.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S1364661321001285">The
secret life of predictive brains: whats spontaneous activity for?</a> -
<strong><em>Trends in Cognitive Sciences</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=719229834892860829&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A neuroscience account on brain as a generative
model.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/abs/pii/0004370287900506">SOAR:
An architecture for general intelligence</a> - <strong><em>Artificial
Intelligence</em></strong>, 1987. [<a
href="https://scholar.google.com/scholar?cluster=10873259207109132615&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://act-r.psy.cmu.edu/wordpress/wp-content/uploads/2013/09/Anderson91.pdf">Is
human cognition adaptive?</a> - <strong><em>Behavioral and Brain
Sciences</em></strong>, 1991. [<a
href="https://scholar.google.com/scholar?cluster=3639936076538071052&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper introducing the adaptation perspective
of human intelligence, the theoretical basis of the ACT cognitive
architecture.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0004370205001530">Metacognition
in computation: A selected research review</a> - <strong><em>Artificial
Intelligence</em></strong>, 2005. [<a
href="https://scholar.google.com/scholar?cluster=4240334051245008914&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0010027718301604">Basic
functional trade-offs in cognition: An integrative framework</a> -
<strong><em>Cognition</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=11475742130443069967&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://doi.org/10.1126/SCIENCE.AAN8871">What is
consciousness, and could machines have it?</a> -
<strong><em>Science</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=6932714857132107942&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A perspective on the two levels of consciousness in
machine intelligence.</p></li>
<li><p><a
href="https://www.worldscientific.com/doi/abs/10.1142/S2705078521500028">A
Theoretical Computer Science Perspective on Consciousness</a> -
<strong><em>Journal of Artificial Intelligence and
Consciousness</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=16430561748075101972&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="science-logology">Science Logology</h3>
<h4 id="philosophy-of-science">Philosophy of Science</h4>
<ul>
<li><p><a
href="https://www-inst.eecs.berkeley.edu/~cs298-7/fa20/readings/kuhn.pdf">The
structure of scientific revolutions</a> - <strong><em>University of
Chicago Press: Chicago</em></strong>, 1970. [<a
href="https://scholar.google.com/scholar?cluster=8909475038284903063&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Thomas Kuhns original book on the emergence and the
shift of scientific paradigms.</p></li>
<li><p><a href="https://jamacoartney.net/Abend%20(2008).pdf">The Meaning
of “Theory”</a> - <strong><em>Sociological Theory</em></strong>, 2008.
[<a
href="https://scholar.google.com/scholar?cluster=4876642889050563131&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A philosophical account on the definition of “theory” in
social science (also can be generalized to natural science).</p></li>
<li><p><a
href="https://journals.sagepub.com/doi/pdf/10.4256/mio.2013.015">The
blind men and the elephant: A metaphor to illuminate the role of
researchers and reviewers in social science</a> -
<strong><em>Methodological Innovations Online</em></strong>, 2013. [<a
href="https://scholar.google.com/scholar?cluster=1654629562068006152&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://dl.acm.org/doi/abs/10.1145/3576896">A
Computational Inflection for Scientific Discovery</a> -
<strong><em>Communications of the ACM</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=1756108647531090189&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="science-of-science">Science of Science</h4>
<ul>
<li><p><a
href="https://en.wikipedia.org/wiki/Metascience">Metascience</a> -
<strong><em>Wikipedia</em></strong>.</p></li>
<li><p><a
href="http://ctbergstrom.com/publications/pdfs/2018Science.pdf">Science
of Science</a> - <strong><em>Science</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=6471468823556848055&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A comprehensive large-scale review on the science of
science.</p></li>
<li><p><a
href="https://www.pnas.org/doi/abs/10.1073/pnas.0307752101">Finding
Scientific Topics</a> - <strong><em>Proceedings of the National Academy
of Sciences</em></strong>, 2004. [<a
href="https://scholar.google.com/scholar?cluster=17382767110929995134&amp;hl=zh-CN&amp;as_sdt=0,5">All
Versions</a>]. Thomas L. Griffithss analysis of scientific topics using
Bayesian model.</p></li>
<li><p><a
href="https://www.pnas.org/doi/10.1073/pnas.1618569114">Meta-assessment
of Bias in Science</a> - <strong><em>Proceedings of the National Academy
of Sciences</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=14575889060982308028&amp;hl=zh-CN&amp;as_sdt=0,5">All
Verisions</a>]. An analysis of bias patterns and risk factors in
science.</p></li>
<li><p><a href="https://www.pnas.org/doi/10.1073/pnas.2021636118">Slowed
Canonical Progress in Large Fields of Science</a> -
<strong><em>Proceedings of the National Academy of
Sciences</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=7541922918797308487&amp;hl=zh-CN&amp;as_sdt=0,5">All
Verisions</a>]. An analysis of why too many papers published each year
in a field can lead to stagnation rather than advance.</p></li>
<li><p><a href="https://dl.acm.org/doi/10.1145/2858036.2858283">HCI
Research as Problem-Solving</a> - <strong><em>ACM
SIGCHI16</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=3206201064123443333&amp;as_sdt=0,5">All
Versions</a>]. This essay contributes a meta-scientific account of
human-computer interaction (HCI) research as problem-solving. We build
on the philosophy of Larry Laudan, who develops problem and solution as
the foundational concepts of science. We argue that most HCI research is
about three main types of problem: empirical, conceptual, and
constructive.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="literature-mining">Literature Mining</h4>
<ul>
<li><p><a href="https://galactica.org/static/paper.pdf">Galactica: A
Large Language Model for Science</a> - <strong><em>Meta
AI</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=15782429788006956926&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A large language model trained on large-scale scientific
corpus.</p></li>
<li><p><a href="https://arxiv.org/abs/2205.03512">CORWA: A
Citation-Oriented Related Work Annotation Dataset</a> -
<strong><em>NAACL22</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=14605899782190710454&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://aclanthology.org/2021.acl-demo.14/">ESRA:
Explainable Scientific Research Assistant</a> - <strong><em>ACL21 Demo
Track</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=4387915912582172679&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A tool for constructing and visualizing the knowledge
graph of a query keyword in literature retrieving.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="literature-visualization">Literature Visualization</h4>
<ul>
<li><p><a
href="https://matthewberger.github.io/papers/cite2vec.pdf">cite2vec:
Citation-Driven Document Exploration via Word Embeddings</a> -
<strong><em>IEEE Transactions on Visualization and Computer
Graphics</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=6949650208780085923&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://cic.tju.edu.cn/faculty/zhangjiawan/Jiawan_Zhang_files/paper/zeyuli2020.pdf">Galex:
Exploring the evolution and intersection of disciplines</a> -
<strong><em>IEEE Transactions on Visualization and Computer
Graphics</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=13313104491218225635&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="scientific-writing">Scientific Writing</h4>
<ul>
<li><p><a
href="http://library.lol/main/8036CBB1CCC448CA7E036774D810EBC0">The uses
of argument</a> - <strong><em>Cambridge University Press</em></strong>,
1958. [<a
href="https://scholar.google.com/scholar?cluster=12052408655432810103&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Stephen Toulmins introduction to the Toulmin argument
pattern, which is generally consist of a claim, a justification, and a
rebuttal.</p></li>
<li><p><a href="https://www.jstor.org/stable/355200">A tagmemic approach
to paragraph analysis</a> - <strong><em>College Composition and
Communication</em></strong>, 1965. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0%2C5&amp;q=A+Tagmemic+Approach+to+Paragraph+Analysis+AL+Becker&amp;btnG=">All
Versions</a>]. The original paper on analyzing the structure of
expository paragraphs, with the two patterns—the
Topic-Restriction-Illustration pattern and the Problem-Solution
pattern.</p></li>
<li><p><a
href="https://journals.sagepub.com/doi/abs/10.1177/0741088398015002004">The
uses and complexity of argument structures in expert and student
persuasive writing</a> - <strong><em>Written
Communication</em></strong>, 1998. [<a
href="https://scholar.google.com/scholar?cluster=3218190258774062869&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A behaviorial study revealing the argument structures
exploited by people in argumentative writing.</p></li>
<li><p><a
href="https://pure.mpg.de/rest/items/item_3020351/component/file_3045811/content">Towards
an argument interchange format</a> - <strong><em>The Knowledge
Engineering Review</em></strong>, 2006. [<a
href="https://scholar.google.com/scholar?cluster=11123720528835823517&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper introducing the Argument Interchange
Format (AIF) framework for argumentation analysis.</p></li>
<li><p><a
href="https://www.aaai.org/ocs/index.php/WS/AAAIW11/paper/viewFile/3940/4244">Speech
Acts of Argumentation: Inference Anchors and Peripheral Cues in
Dialogue</a> - <strong><em>AAAI12</em></strong>, 2012. [<a
href="https://scholar.google.com/scholar?cluster=9761955212933152906&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper introducing the Information Anchoring
Theory (IAT) as an alternate for AIF.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="science-education">Science Education</h4>
<ul>
<li><p><a
href="https://www.harvardlds.org/wp-content/uploads/2018/05/Carey-Cognitive-science-and-science-education.-American-Psychologist.pdf">Cognitive
Science and Science Education</a> - <strong><em>American
Psychologist</em></strong>, 1986. [<a
href="https://scholar.google.com/scholar?cluster=6627805813997387166&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Susan Careys review on cognitive-science-based
methodologies for science education research.</p></li>
<li><p><a href="https://aclanthology.org/2023.acl-demo.2/">PersLEARN:
Research Training through the Lens of Perspective Cultivation</a> -
<strong><em>ACL23</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=6242389165210232890&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Research on facilitating the cultivation of scientific
perspectives, starting from a basic seed idea and progressing to a
well-articulated framework, for scientific research training in higher
education.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="democratization-of-science">Democratization of Science</h4>
<ul>
<li><p><a
href="https://www.nature.com/articles/s41586-023-06221-2">Scientific
discovery in the age of artificial intelligence</a> -
<strong><em>Nature</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=11962817646389491592&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A review article that examines breakthroughs over the
past decade that include self-supervised learning, which allows models
to be trained on vast amounts of unlabelled data, and geometric deep
learning, which leverages knowledge about the structure of scientific
data to enhance model accuracy and efficiency.</p></li>
<li><p><a
href="https://www.nature.com/articles/s41586-023-05773-7">Humanmachine
collaboration for improving semiconductor process development</a> -
<strong><em>Nature</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=10295771969614897767&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://www.nature.com/articles/d41586-023-01353-x">Nature
News</a>].</p></li>
<li><p><a href="https://www.nature.com/articles/s41586-023-06555-x">A
foundation model for generalizable disease detection from retinal
images</a> - <strong><em>Nature</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=3139988207343394501&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.nature.com/articles/s41586-023-06185-3">Accurate
medium-range global weather forecasting with 3D neural networks</a> -
<strong><em>Nature</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=7198604620204619820&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.science.org/doi/10.1126/science.adi2336">Learning
skillful medium-range global weather forecasting</a> -
<strong><em>Science</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=269756601245477923&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.nature.com/articles/s41586-023-06184-4">Skilful
nowcasting of extreme precipitation with NowcastNet</a> -
<strong><em>Nature</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=17837864391812838009&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2311.00176">ChipNeMo:
Domain-Adapted LLMs for Chip Design</a> - 2023. [<a
href="https://scholar.google.com/scholar?cluster=5962372610489019326&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.nature.com/articles/s41467-021-22048-9">Single-atom
alloy catalysts designed by first-principles calculations and artificial
intelligence</a> - <strong><em>Nature Communications</em></strong>,
2021. [<a
href="https://scholar.google.com/scholar?cluster=6593978922251447907&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.pnas.org/doi/abs/10.1073/pnas.2016239118">Biological
structure and function emerge from scaling unsupervised learning to 250
million protein sequences</a> - <strong><em>Proceedings of the National
Academy of Sciences</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=15181490380139888639&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007/s00449-016-1659-9">Comparability
of automated human induced pluripotent stem cell culture: a pilot
study</a> - <strong><em>Bioprocess and Biosystems
Engineering</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=14666375402220991095&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://openreview.net/forum?id=wdGIL6lx3l">ChemCrow:
Augmenting large-language models with chemistry tools</a> -
<strong><em>NeurIPS AI for Science Workshop</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=8711939262720486725&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://arxiv.org/abs/2304.05376">Preprint</a>].</p></li>
<li><p><a
href="https://www.science.org/doi/full/10.1126/science.1250475">Reproducibility</a>
- <strong><em>Science</em></strong>, 2014. [<a
href="https://scholar.google.com/scholar?cluster=676974831306442279&amp;hl=en&amp;as_sdt=0,10">All
Versions</a>].</p></li>
<li><p><a href="https://www.nature.com/articles/s41562-016-0021">A
manifesto for reproducible science</a> - <strong><em>Nature Human
Behavior</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=9515807942859203900&amp;hl=en&amp;as_sdt=0,10">All
Versions</a>].</p></li>
<li><p><a href="https://www.nature.com/articles/533452a">1,500
scientists lift the lid on reproducibility</a> -
<strong><em>Nature</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=11479406257389837824&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204808/">How to Make
More Published Research True</a> - <strong><em>PLoS
Medicine</em></strong>, 2014. [<a
href="https://scholar.google.com/scholar?cluster=10945341175996677908">All
Versions</a>].</p></li>
<li><p><a href="https://www.nature.com/articles/d42473-019-00004-y">Six
factors affecting reproducibility in life science research and how to
handle them</a> - <strong><em>Nature
Advertisement</em></strong>.</p></li>
<li><p><a href="https://www.nature.com/articles/d41586-021-02428-3">Five
keys to writing a reproducible lab protocol</a> -
<strong><em>Nature</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=13259206850261301938">All
Versions</a>]. This interviewing paper introduces five ways to increase
the reproducibility of experimental protocols: (i) documenting protocols
as the experiment goes; (ii) providing video illustrations in addition
to written protocols; (iii) using electronic lab notebooks (ELNs) for
managing experimental resources digitally; (iv) depositing and
documenting reagents with understanding the rationale behind every step;
and (v) exploiting online platforms to share tips, extensions, methods,
and data among researchers.</p></li>
<li><p><a
href="https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2003779">The
Experimental Design Assistant</a> - <strong><em>PLoS
Biology</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=12481490526120919925">All
Versions</a>]. [<a
href="https://www.nature.com/articles/nmeth.4462">Nature Methods
Correspondence</a>]. [<a href="https://eda.nc3rs.org.uk/">EDA
Website</a>]. The EDA is a web-based tool that guides the in vivo
researcher through the experimental design and analysis process,
providing automated feedback on the proposed design and generating a
graphical summary that aids communication with colleagues, funders,
regulatory authorities, and the wider scientific community.</p></li>
<li><p><a
href="https://ieeexplore.ieee.org/abstract/document/10059206">Optimizing
Spaced Repetition Schedule by Capturing the Dynamics of Memory</a> -
<strong><em>IEEE Transactions on Knowledge and Data
Engineering</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=949715967083833369&amp;hl=en&amp;as_sdt=0,10">All
Versions</a>].</p></li>
<li><p><a
href="https://aclanthology.org/2020.findings-emnlp.261/">LEGAL-BERT: The
Muppets straight out of Law School</a> -
<strong><em>EMNLP20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=11254432523766039890&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Generating answers to legal questions, analyze contracts,
and summarizing legal documents, making legal knowledge more accessible
to non-experts.</p></li>
<li><p><a
href="https://academic.oup.com/bioinformatics/article/36/4/1234/5566506">BioBERT:
a pre-trained biomedical language representation model for biomedical
text mining</a> - <strong><em>Bioinformatics</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=2783127196632783403&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Answering medical questions, identifying relevant
clinical trials, and diagnosing diseases based on symptoms, making
medical information more accessible to the general public.</p></li>
<li><p><a
href="https://dl.acm.org/doi/abs/10.5555/3491440.3492062">Finbert: A
pre-trained financial language representation model for financial text
mining</a> - <strong><em>IJCAI20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=17844713837232165872&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Predicting stock market trends, analyzing financial
documents, and generating summaries of economic news articles, helping
to disseminate financial knowledge.</p></li>
<li><p><a href="https://aclanthology.org/D19-1371/">SciBERT: A
Pretrained Language Model for Scientific Text</a> -
<strong><em>EMNLP19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=7377999893003631695&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Searching and synthesizing scientific literature, aiding
researchers in hypothesis generation, and assisting with experimental
design, making scientific knowledge more accessible.</p></li>
<li><p><a
href="https://aclanthology.org/2020.findings-emnlp.139/">CodeBERT: A
Pre-Trained Model for Programming and Natural Languages</a> -
<strong><em>EMNLP20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=9055786889913621082&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Completing code, generating programming documentation,
and providing technical support, making programming knowledge more
accessible to non-experts.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="laboratory-automation">Laboratory Automation</h4>
<ul>
<li><p><a
href="https://www.science.org/doi/full/10.1126/science.aat0650">Reconfigurable
system for automated optimization of diverse chemical reactions</a> -
<strong><em>Science</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=3076614068291119943">All
Versions</a>]. [<a
href="https://www.science.org/doi/pdf/10.1126/science.aat0650">Preprint</a>].
This paper describes a plug-and-play, continuous-flow chemical synthesis
system that mitigates this challenge with an integrated combination of
hardware, software, and analytics. The system software controls the
user-selected reagents and unit operations (reactors and separators),
processes reaction analytics (high-performance liquid chromatography,
mass spectrometry, vibrational spectroscopy), and conducts automated
optimizations.</p></li>
<li><p><a
href="https://www.science.org/doi/full/10.1126/science.aav2211">Organic
synthesis in a modular robotic system driven by a chemical programming
language</a> - <strong><em>Science</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=13920677955690815682&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://www.chem.gla.ac.uk/cronin/images/pubs/387-Steiner-ScienceJan19.full.pdf">Preprint</a>].
[<a
href="https://www.science.org/doi/10.1126/science.aav8816">Perspective:
Democratizing synthesis by automation</a>]. This paper develops an
autonomous compiler and robotic laboratory platform to synthesize
organic compounds on the basis of standardized methods descriptions. The
platform comprises conventional equipment such as round-bottom flasks,
separatory funnels, and a rotary evaporator to maximize its
compatibility with extant literature. The authors showcase the system
with short syntheses of three common pharmaceuticals that proceeded
comparably to manual synthesis.</p></li>
<li><p><a
href="https://www.science.org/doi/full/10.1126/science.abc2986">A
universal system for digitization and automatic execution of the
chemical synthesis literature</a> - <strong><em>Science</em></strong>,
2020. [<a
href="https://scholar.google.com/scholar?cluster=13909991218383718512&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://www.chem.gla.ac.uk/cronin/images/pubs/Mehr-ScienceOct2020.pdf">Preprint</a>].
[<a href="https://croningroup.gitlab.io/chemputer/xdl/index.html">XDL
Documentation</a>]. [<a href="https://zenodo.org/records/3955107">XDL
Schema Database</a>]. This paper reports a software platform that uses
natural language processing to translate the organic chemistry
literature directly into editable code, which in turn can be compiled to
drive automated synthesis of the compound in the laboratory.</p></li>
<li><p><a
href="https://www.science.org/doi/full/10.1126/science.abo0058">Digitization
and validation of a chemical synthesis literature database in the
ChemPU</a> - <strong><em>Science</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=17368503277308594977">All
Versions</a>]. [<a
href="https://www.researchgate.net/profile/Aamir-Khan/publication/361857872_Digitization_and_validation_of_a_chemical_synthesis_literature_database_in_the_ChemPU/links/62cd356d00d0b451104cbfe9/Digitization-and-validation-of-a-chemical-synthesis-literature-database-in-the-ChemPU.pdf">Preprint</a>].
This paper presents an automatically executable chemical reaction
database of 100 molecules representative of the range of reactions found
in contemporary organic synthesis. The chemical reaction codes or χDLs
for the reactions have been stored in a database for version control,
validation, collaboration, and data mining. Of these syntheses, more
than 50 entries from the database have been downloaded and robotically
run in seven modular chemputers with yields and purities comparable to
those achieved by an expert chemist.</p></li>
<li><p><a
href="https://pubs.acs.org/doi/full/10.1021/jacsau.1c00303">Chemputation
and the Standardization of Chemical Informatics</a> -
<strong><em>Journal of the American Chemical Society (Au)</em></strong>,
2021. [<a
href="https://scholar.google.com/scholar?cluster=3884902150148113559">All
Versions</a>]. This paper describes a standard hardware (the chemical
processing programming architecture — the ChemPU) to encompass all
chemical synthesis, an approach which unifies all chemistry automation
strategies, from solid-phase peptide synthesis, to HTE flow chemistry
platforms, while at the same time establishing a publication standard so
that researchers can exchange chemical code (χDL) to ensure
reproducibility and interoperability.</p></li>
<li><p><a
href="https://www.nature.com/articles/s41557-020-00596-9">Convergence of
multiple synthetic paradigms in a universally programmable chemical
synthesis machine</a> - <strong><em>Nature Chemistry</em></strong>,
2020. [<a
href="https://scholar.google.com/scholar?cluster=18024303106901939347">All
Versions</a>]. [<a
href="https://eprints.gla.ac.uk/231947/">Preprint</a>]. This paper shows
how the Chemputer synthesis robot can be programmed to perform many
different reactions, including solid-phase peptide synthesis, iterative
cross-coupling and accessing reactive, unstable diazirines in a single,
unified system with high yields and purity.</p></li>
<li><p><a href="https://www.nature.com/articles/s41557-022-01016-w">An
autonomous portable platform for universal chemical synthesis</a> -
<strong><em>Nature Chemistry</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=4484997534431409967">All
Versions</a>]. [<a
href="https://eprints.gla.ac.uk/275574/">Preprint</a>]. This paper
presents a portable suitcase-sized chemical synthesis platform
containing all the modules required for synthesis and purification. The
system uses a chemical programming language coupled to a digital reactor
generator to produce reactors and executable protocols based on
text-based literature syntheses. Simultaneously, the platform generates
a reaction pressure fingerprint, used to monitor processes within the
reactors and remotely perform a protocol quality control.</p></li>
<li><p><a href="https://www.nature.com/articles/s41467-024-45444-3">An
integrated self-optimizing programmable chemical synthesis and reaction
engine</a> - <strong><em>Nature Communications</em></strong>, 2024. [<a
href="https://scholar.google.com/scholar?cluster=9157508627971047184">All
Versions</a>]. This paper presents a dynamically programmable system
capable of making, optimizing, and discovering new molecules which
utilizes seven sensors that continuously monitor the reaction. By
developing a dynamic programming language, the work demonstrates the
10-fold scale-up of a highly exothermic oxidation reaction, end point
detection, as well as detecting critical hardware failures.</p></li>
<li><p><a href="https://www.nature.com/articles/s41586-020-2442-2">A
mobile robotic chemist</a> - <strong><em>Nature</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=13216902493789027324&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://strathprints.strath.ac.uk/74759/1/Burger_etal_Nature_2020_A_mobile_robotic.pdf">Preprint</a>].
This work uses a mobile robot to search for improved photocatalysts for
hydrogen production from water. The robot operated autonomously over
eight days, performing 688 experiments within a ten-variable
experimental space, driven by a batched Bayesian search algorithm. This
autonomous search identified photocatalyst mixtures that were six times
more active than the initial formulations, selecting beneficial
components and deselecting negative ones.</p></li>
<li><p><a href="https://www.nature.com/articles/s41586-023-06734-w">An
autonomous laboratory for the accelerated synthesis of novel
materials</a> - <strong><em>Nature</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=17944003281308189532">All
Versions</a>]. This paper introduces the A-Lab, an autonomous laboratory
for the solid-state synthesis of inorganic powders. This platform uses
computations, historical data from the literature, machine learning (ML)
and active learning to plan and interpret the outcomes of experiments
performed using robotics. Over 17days of continuous operation, the
A-Lab realized 41 novel compounds from a set of 58 targets including a
variety of oxides and phosphates that were identified using large-scale
ab initio phase-stability data from the Materials Project and Google
DeepMind.</p></li>
<li><p><a
href="https://www.nature.com/articles/s41586-023-06792-0">Autonomous
chemical research with large language models</a> -
<strong><em>Nature</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=8097577445064259203&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. An artificial intelligence system driven by GPT-4 that
autonomously designs, plans and performs complex experiments by
incorporating large language models empowered by tools such as internet
and documentation search, code execution and experimental
automation.</p></li>
<li><p><a href="https://www.nature.com/articles/542125a">The Internet of
Things comes to the lab</a> - <strong><em>Nature</em></strong>, 2017.
[<a
href="https://scholar.google.com/scholar?cluster=7747117198956166976&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The emergence of connected instruments and equipment
promises to untether researchers from the laboratory — letting them
fine-tune experiments and analyse data remotely.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S2590238522006385">What
is a minimal working example for a self-driving laboratory?</a> -
<strong><em>Matter</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=1612804023616680548">All
Versions</a>]. This paper proposes SDL-Demo: a low-cost “Hello, World!”
for self-driving laboratories that combines “Hello, World!” tasks from
electronics, physics-based simulations, and optimization. SDL-Demo is
modular and extensible, making it an ideal candidate for low-cost
teaching and prototyping of self-driving laboratory concepts.</p></li>
<li><p><a href="https://elifesciences.org/articles/77007">Robotic search
for optimal cell culture in regenerative medicine</a> -
<strong><em>eLife</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=1330075145723138159&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://elifesciences.org/articles/80609">Cell Culture:
Implementing robotics and artificial intelligence</a> -
<strong><em>eLife</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=10725537391648003592&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="theory-of-mind">Theory of Mind</h3>
<ul>
<li><a href="https://en.wikipedia.org/wiki/Theory_of_mind">Theory of
Mind</a> - <strong><em>Wikipedia</em></strong>. Wikipedia on Theory of
Mind (ToM), a cognitive capability that estimating others goal, belief,
and desire.</li>
</ul>
<!--* [Cognitive Science](https://plato.stanford.edu/entries/cognitive-science/) - ***Plato Stanford***.
* [Intentionality](https://plato.stanford.edu/entries/intentionality/) - ***Plato Stanford***.
* [The Mind/Brain Identity Theory](https://plato.stanford.edu/entries/mind-identity/) - ***Plato Stanford***.
* [Mental Representation](https://plato.stanford.edu/entries/mental-representation/) - ***Plato Stanford***.
* [Mental Imagery](https://plato.stanford.edu/entries/mental-imagery/) - ***Plato Stanford***.
* [Temporal Consciousness](https://plato.stanford.edu/entries/consciousness-temporal/) - ***Plato Stanford***.
* [The Experience and Perception of Time](https://plato.stanford.edu/entries/time-experience/) - ***Plato Stanford***.
* [Practical Reason](https://plato.stanford.edu/entries/practical-reason/) - ***Plato Stanford***.
* [Memory](https://plato.stanford.edu/entries/memory/) - ***Plato Stanford***.-->
<!-- * [The Computational Theory of Mind](https://plato.stanford.edu/entries/computational-mind/) - ***Plato Stanford***. A computational philosophy account on ToM. -->
<ul>
<li><p><a
href="http://sll.stanford.edu/docs/2016_JaraEttinger_Gweon_Schulz_Tenenbaum_TiCS.pdf">The
naïve utility calculus: Computational principles underlying commonsense
psychology</a> - <strong><em>Trends in Cognitive Sciences</em></strong>,
2016. [<a
href="https://scholar.google.com/scholar?cluster=6894095575934067763&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A perspective on understanding social interactions
through the naïve utility calculus framework.</p></li>
<li><p><a
href="https://saxelab.mit.edu/sites/default/files/publications/HoSaxeCushman2022.pdf">Planning
with theory of mind</a> - <strong><em>Trends in Cognitive
Sciences</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=8461125353366208047&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A perspective on understanding Theory of Mind through
planning that consists of abstract structured causal representations and
supports efficient search and selection from innumerable possible
actions.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0010027709001607">Action
Understanding as Inverse Planning</a> -
<strong><em>Cognition</em></strong>, 2009. [<a
href="https://scholar.google.com/scholar?cluster=11478704181983566675&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://ars.els-cdn.com/content/image/1-s2.0-S0010027709001607-mmc1.pdf">Appendix</a>].
The original paper on Inverse Planning, a computational implementation
of ToM.</p></li>
<li><p><a
href="http://web.mit.edu/9.s915/www/classes/theoryOfMind.pdf">Bayesian
Theory of Mind: Modeling Joint Belief-Desire Attribution</a> -
<strong><em>CogSci11</em></strong>, 2011. [<a
href="https://scholar.google.com/scholar?cluster=7454981153033683025&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://dspace.mit.edu/handle/1721.1/73768">Bayesian
Theory of Mind : modeling human reasoning about beliefs, desires, goals,
and social relations</a> - <strong><em>Ph.D. Dissertation
MIT</em></strong>, 2012. [<a
href="https://scholar.google.com/scholar?cluster=16053170661075048224&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Chris Bakers Ph.D. dissertation, a comprehensive review
on Bayesian modeling of Theory of Mind.</p></li>
<li><p><a href="https://psyarxiv.com/f692k/">The Signature of All
Things: Children Infer Knowledge States from Static Images</a> -
<strong><em>CogSci20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=12380982112592086477&amp;hl=en&amp;as_sdt=0,5&amp;as_ylo=2017">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S1364661316301565?via%3Dihub">Bayesian
Brains without Probabilities</a> - <strong><em>Trends in Cognitive
Sciences</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=13076510377612067772&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A perspective on human probabilistic modeling without
explicit probabilistic computation.</p></li>
<li><p><a
href="https://www.nature.com/articles/s41562-017-0064">Rational
quantitative attribution of beliefs, desires and percepts in human
mentalizing</a> - <strong><em>Nature Human Behavior</em></strong>, 2017.
[<a
href="https://scholar.google.com/scholar?cluster=9377509910551057835&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.mindcoolness.com/blog/bayesian-brain-predictive-processing/">The
Bayesian Brain: An Introduction to Predictive Processing</a> -
2018.</p></li>
<li><p><a
href="http://proceedings.mlr.press/v80/rabinowitz18a/rabinowitz18a.pdf">Machine
theory of mind</a> - <strong><em>ICML18</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=6267278380616425333&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S2352154618302055?via%3Dihub">Theory
of mind as inverse reinforcement learning</a> - <strong><em>Current
Opinion in Behavioral Sciences</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=14959443239271810913&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://onlinelibrary.wiley.com/doi/full/10.1111/tops.12371">Computational
Models of Emotion Inference in Theory of Mind: A Review and Roadmap</a>
- <strong><em>Topics in Cognitive Science</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=15919410726494658168&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0010028520300633">The
Naïve Utility Calculus as a unified, quantitative framework for action
understanding</a> - <strong><em>Cognitive Psychology</em></strong>,
2021. [<a
href="https://scholar.google.com/scholar?cluster=10366690800692546587&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="http://www.github.com/julianje/bishop">Project</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2102.12321.pdf">AGENT: A Benchmark
for Core Psychological Reasoning</a> -
<strong><em>ICML21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=9729067071974484204&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A benchmark for AI that modeling the core knowledge of
ToM.</p></li>
<li><p><a
href="https://www.annualreviews.org/doi/pdf/10.1146/annurev-psych-081420-110718">Experimental
Games and Social Decision Making</a> - <strong><em>Annual Review of
Psychology</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=4713510112126264116&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A comprehensive review on social ToM experiment
pafadigms.</p></li>
<li><p><a
href="https://www.aaai.org/ojs/index.php/AAAI/article/view/4574">Theory
of Minds: Understanding Behavior in Groups through Inverse Planning</a>
- <strong><em>AAAI19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=6755247312077985817&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Inverse Planning in multi-agent setting.</p></li>
<li><p><a
href="https://psycnet.apa.org/fulltext/2019-58384-001.pdf?auth_token=0859666184839448b848053cd7bdceb2bdf2745a">Leveraging
Facial Expressions and Contextual Information to Investigate Opaque
Representations of Emotion</a> - <strong><em>Emotion</em></strong>,
2019. [<a
href="https://scholar.google.com/scholar?cluster=9634378462684744548&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://linkinghub.elsevier.com/retrieve/pii/S0010027712002235">Waiting
and weighting: Information sampling is a balance between efficiency and
error-reduction</a> - <strong><em>Cognition</em></strong>, 2013. [<a
href="https://scholar.google.com/scholar?cluster=12787722822882067638&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0896627313005503?via%3Dihub">Natural
scene statistics account for the representation of scene categories in
human visual cortex</a> - <strong><em>Neuron</em></strong>, 2013. [<a
href="https://scholar.google.com/scholar?cluster=14030885492052338412&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.nature.com/articles/s41598-018-23618-6">Using human
brain activity to guide machine learning</a> - <strong><em>Scientific
Report</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=12987955253653036948&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://psycnet.apa.org/record/2019-27729-001">Unit of
visual working memory: A Boolean map provides a better account than an
object does</a> - <strong><em>Journal of Experimental
Psychology</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=14909735035752892020&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://www.pnas.org/content/117/42/26158.short">The
logic of universalization guides moral judgment</a> -
<strong><em>Proceedings of the National Academy of
Sciences</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=13482051983012049752&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2104.02841">Learning Triadic
Belief Dynamics in Nonverbal Communication from Videos</a> -
<strong><em>CVPR21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=15365483338824697316&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Theory of Mind in the perception level, introduced as a
computer vision task.</p></li>
<li><p><a
href="https://dspace.mit.edu/bitstream/handle/1721.1/112291/ivc_full_preprint.pdf?sequence=1&amp;isAllowed=y">Ten-month-old
infants infer the value of goals from the costs of actions</a> -
<strong><em>Science</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=11862940312128630925&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A piece of evidence for childrens capability on
ToM.</p></li>
<li><p><a href="https://www.pnas.org/content/116/36/17747">Origins of
the concepts cause, cost, and goal in prereaching infants</a> -
<strong><em>Proceedings of the National Academy of
Sciences</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=15973074852436355789&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://static1.squarespace.com/static/595a9f155016e1f7ead6edf1/t/61eeb3e7bbc41a23cd288f8a/1643033708945/Gandhi_etal_2021.pdf">Baby
Intuitions Benchmark (BIB): Discerning the goals, preferences, and
actions of others</a> - <strong><em>NeurIPS21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=16514364601966350574">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2011.05558.pdf">Intentonomy: a
Dataset and Study towards Human Intent Understanding</a> -
<strong><em>CVPR21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=5268870345003195142&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A large-scale database on human intentionally-posted
images on social media.</p></li>
<li><p><a
href="https://www.tshu.io/HeiderSimmel/CogSci20/Flatland_CogSci20.pdf">Adventures
in Flatland: Perceiving Social Interactions Under Physical Dynamics</a>
- <strong><em>CogSci20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=1928005249823745390&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://ojs.aaai.org/index.php/AAAI/article/view/16167">PHASE:
PHysically-grounded Abstract Social Events for Machine Social
Perception</a> - <strong><em>AAAI21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=15536873427310696150&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a href="https://tshu.io/PHASE/">Project</a>].</p></li>
<li><p><a
href="https://openreview.net/forum?id=w_7JMpGZRh0">Watch-And-Help: A
Challenge for Social Perception and Human-AI Collaboration</a> -
<strong><em>ICLR21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=16340001407726295133">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="analogy">Analogy</h3>
<ul>
<li><p><a
href="https://plato.stanford.edu/entries/metaphor/">Metaphor</a> -
<strong><em>Plato Stanford</em></strong>. A computational philosophy
account on Metaphor, a poetically or rhetorically ambitious use of
words, a figurative as opposed to literal use.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/reasoning-analogy/">Analogy and
Analogical Reasoning</a> - <strong><em>Plato Stanford</em></strong>. A
computational philosophy account on Analogy, a comparison between two
objects, or systems of objects, that highlights respects in which they
are thought to be similar.</p></li>
<li><p><a href="https://1lib.net/book/1165963/e9aa3d">A Cognitive Theory
of Metaphor</a> - <strong><em>MIT Press</em></strong>, 1985. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0%2C5&amp;q=a+cognitive+theory+of+metaphor&amp;btnG=">All
Versions</a>]. A cognitive account on Metaphor.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/abs/pii/0004370289900775">The
structure-mapping engine: Algorithm and examples</a> -
<strong><em>Artificial Intelligence</em></strong>, 1989. [<a
href="https://scholar.google.com/scholar?cluster=16104901325436513899&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A computational implementation of analogy.</p></li>
<li><p><a
href="https://cogsci.ucsd.edu/~coulson/203/gentner-markman-97.pdf">Structure
mapping in analogy and similarity</a> - <strong><em>American
Psychologist</em></strong>, 1997. [<a
href="https://scholar.google.com/scholar?cluster=3497411606978611830&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A perspective unifying analogy and similarity
judgement.</p></li>
<li><p><a href="https://psycnet.apa.org/record/2022-26663-001">A theory
of relation learning and cross-domain generalization</a> -
<strong><em>Psychological Review</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=8559821723107269122&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A comprehensive review on the perspective of treating
analogy as cross-domain generalization.</p></li>
<li><p><a
href="https://www.pnas.org/content/pnas/116/10/4176.full.pdf">Emergence
of analogy from relation learning</a> - <strong><em>Proceedings of the
National Academy of Sciences</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=4877125748339538047&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Analogy feature in language models.</p></li>
<li><p><a
href="https://proceedings.mlr.press/v97/allen19a.html">Analogies
Explained: Towards Understanding Word Embeddings</a> -
<strong><em>ICML19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=15445529659618849253&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Explaining the analogy capability in word
embeddings.</p></li>
<li><p><a href="https://aclanthology.org/P17-1007/">Skip-Gram Zipf +
Uniform = Vector Additivity</a> - <strong><em>ACL17</em></strong>,
2017. [<a
href="https://scholar.google.com/scholar?cluster=11732363456979525246&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.iiia.csic.es/~enric/papers/generalize_and_blend.pdf">Generalize
and Blend: Concept Blending Based on Generalization, Analogy, and
Amalgams</a> - <strong><em>ICCC15</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=11073359237116879862&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://proceedings.mlr.press/v28/juhwang13.pdf">Analogy-preserving
Semantic Embedding for Visual Object Categorization</a> -
<strong><em>ICML13</em></strong>, 2013. [<a
href="https://scholar.google.com/scholar?cluster=9332855910734484101&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The first application of analogy to machine
learning.</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2015/file/45f31d16b1058d586fc3be7207b58053-Paper.pdf">VISALOGY:
Answering Visual Analogy Questions</a> -
<strong><em>NeurIPS15</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=7665427758655324654&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://ieeexplore.ieee.org/document/9010418">Detecting
Unseen Visual Relations Using Analogies</a> -
<strong><em>CVPR19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=16686853801653819556&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0004370218301863">Analogy
between concepts</a> - <strong><em>Artificial
Intelligence</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=1397905953174123757&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A mathematical account on analogy.</p></li>
<li><p><a href="https://arxiv.org/abs/1902.00120">Learning to Make
Analogies by Contrasting Abstract Relational Structure</a> -
<strong><em>ICLR19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=15521573039503233138&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://aclanthology.org/2020.figlang-1.pdf#page=140">Sky + Fire =
Sunset. Exploring Parallels between Visually Grounded Metaphors and
Image Classifiers</a> - <strong><em>ACL20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=5747285277687442001&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2006.04156.pdf">Analogy as
Nonparametric Bayesian Inference over Relational Systems</a> -
<strong><em>CogSci20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=1798148167130120057&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.cs.jhu.edu/~alanlab/Pubs21/ichien2021visual.pdf">Visual
Analogy: Deep Learning Versus Compositional Models</a> -
<strong><em>CogSci21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=1187822306970312749&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A human-deep-learning comparison on similarity
judgement.</p></li>
<li><p><a
href="https://escholarship.org/content/qt3j2576vv/qt3j2576vv.pdf">Preschoolers
and adults make inferences from novel metaphors</a> -
<strong><em>CogSci22</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=16038983545360341739&amp;hl=en&amp;as_sdt=0,44">All
Versions</a>]. A piece of evidence that understanding metaphors is
capable for different cognitive development phases.</p></li>
<li><p><a
href="https://pcl.sitehost.iu.edu/rgoldsto/pdfs/simdiff.pdf">Similarity
involving attributes and relations: Judgments of similarity and
difference are not inverses</a> - <strong><em>Psychological
Science</em></strong>, 1990. [<a
href="https://scholar.google.com/scholar?cluster=13205938250772079784&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="causality">Causality</h3>
<ul>
<li><p><a href="https://en.wikipedia.org/wiki/Causality">Causality</a> -
<strong><em>Wikipedia</em></strong>. Wikipedia on causality, which is
influence by which one event, process, state, or object (a cause)
contributes to the production of another event, process, state, or
object (an effect) where the cause is partly responsible for the effect,
and the effect is partly dependent on the cause.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/causal-models/">Causal
Models</a> - <strong><em>Plato Stanford</em></strong>. A computational
philosophy account on Causal models, which are mathematical models
representing causal relationships within an individual system or
population.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/content-causal/">Causal
Theories of Mental Content</a> - <strong><em>Plato
Stanford</em></strong>. A computational philosophy account on causal
theories of mental content, which attempts to explain how thoughts can
be about things.</p></li>
<li><p><a
href="http://www.jakebowers.org/ITVExperiments/angristimbensrubin96.pdf">Identification
of Causal Effects Using Instrumental Variables</a> - <strong><em>Journal
of the American Statistical Association</em></strong>, 1996. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=17166265099721941605">All
Versions</a>].</p></li>
<li><p><a
href="https://www.psych.uni-goettingen.de/de/cognition/publikationen-dateien-waldmann/1992_predictive_vs_diagnostic.pdf">Predictive
and Diagnostic Learning Within Causal Models: Asymmetries in Cue
Competition</a> - <strong><em>Journal of Experimental
Psychology</em></strong>, 1992. [<a
href="https://scholar.google.com/scholar?cluster=9614241045842043939&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Experimental evidences for distincting causality and
association.</p></li>
<li><p><a
href="https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780195376746.001.0001/oxfordhb-9780195376746-e-46">Causal
Reasoning</a> - <strong><em>The Oxford Handbook of Cognitive
Psychology</em></strong>, 2013. [<a
href="https://scholar.google.com/scholar?cluster=11361740093816709089&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://ftp.cs.ucla.edu/pub/stat_ser/R265.pdf">Reasoning
with cause and effect</a> - 1998. Judea Pearls tutorials on causal
reasoning with operations on Bayesian networks.</p></li>
<li><p><a href="https://dl.acm.org/doi/pdf/10.1145/3241036">The Seven
Tools of Causal Inference, with Reflections on Machine Learning</a> -
<strong><em>Communications of the ACM</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=13296019510897277617&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Judea Pearls review on causal inference in probabilistic
graph models.</p></li>
<li><p><a
href="https://cardiacmr.hms.harvard.edu/files/cardiacmr/files/toward_causal_representation_learning.pdf">Toward
Causal Representation Learning</a> - <strong><em>Proceedings of the
IEEE</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=15629454810797806102&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Yoshua Bengios review on the perspective of treating
causal inference as a representation learning problem.</p></li>
<li><p><a
href="https://cocosci.princeton.edu/tom/papers/tbci.pdf">Theory-Based
Causal Induction</a> - <strong><em>Psychological Review</em></strong>,
2009. [<a
href="https://scholar.google.com/scholar?cluster=13980129728092173387&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Thomas Griffiths review on causal Bayesian theory
induction.</p></li>
<li><p><a
href="https://ojs.aaai.org//index.php/AAAI/article/view/5483">Theory-Based
Causal Transfer: Integrating Instance-Level Induction and Abstract-Level
Structure Learning</a> - <strong><em>AAAI20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=9411622427165139667&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A computatinoal account on causal transfer.</p></li>
<li><p><a
href="https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog2703_6">Inferring
causal networks from observations and interventions</a> -
<strong><em>Cognitive Science</em></strong>, 2010. [<a
href="https://scholar.google.com/scholar?cluster=12050301037347772984&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a href="http://proceedings.mlr.press/v139/tavares21a.html">A
Language for Counterfactual Generative Models</a> -
<strong><em>ICML21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=11606362305211066214&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://cogsci.mindmodeling.org/2015/papers/0418/paper0418.pdf">Constraints
on Hypothesis Selection in Causal Learning</a> -
<strong><em>CogSci15</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=2005&amp;sciodt=0%2C5&amp;cites=16920774374067505248&amp;scipsc=&amp;q=Constraints+on+hypothesis+selection+in+causal+learning&amp;btnG=">All
Versions</a>].</p></li>
<li><p><a
href="http://cocolab.stanford.edu/papers/GerstenbergEtAl17_PsychScience.pdf">Eye-tracking
causality</a> - <strong><em>Psychological Science</em></strong>, 2017.
[<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=17518200401109470519">All
Versions</a>].</p></li>
<li><p><a
href="https://scholar.google.com/citations?view_op=view_citation&amp;hl=en&amp;user=d0TfP8EAAAAJ&amp;sortby=pubdate&amp;citation_for_view=d0TfP8EAAAAJ:S16KYo8Pm5AC">What
happened? Reconstructing the past through vision and sound</a> - 2021.
[<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=12975579257004398798">All
Versions</a>].</p></li>
<li><p><a href="https://psyarxiv.com/x57hf/">How do people generalize
causal relations over objects? A non-parametric Bayesian account</a> -
2021. [<a
href="https://scholar.google.com/scholar?cluster=9078127785707706032&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.psych.uni-goettingen.de/de/cognition/publikationen-dateien-waldmann/2006_science.pdf">Causal
Reasoning in Rats</a> - <strong><em>Science</em></strong>, 2006. [<a
href="https://scholar.google.com/scholar?cluster=17987039255457850949&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A piece of evidence for the capability of causal
reasoning in intelligent animals.</p></li>
<li><p><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.183.4674&amp;rep=rep1&amp;type=pdf">Do
New Caledonian crows solve physical problems through causal
reasoning?</a> - <strong><em>Proceedings of the Royal Society B:
Biological Sciences</em></strong>, 2009. [<a
href="https://scholar.google.com/scholar?cluster=18374985546068164189&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A piece of evidence for the capability of causal
reasoning in intelligent animals.</p></li>
<li><p><a href="http://fitelson.org/woodward/leslie.pdf">Do
six-month-old infants perceive causality?</a> -
<strong><em>Cognition</em></strong>, 1987. [<a
href="https://scholar.google.com/scholar?cluster=14270905342434182186&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="commonsense">Commonsense</h3>
<h4 id="intuitive-physics">Intuitive Physics</h4>
<ul>
<li><p><a
href="https://github.com/lishiqianhugh/Intuitive_Physics_Reading_List">Intuitive
Physics Reading List</a> - <strong><em>GitHub</em></strong>. A reading
list on intuitive physics, maintained actively by Shiqian Li.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S1364661317301262">Intuitive
Physics: Current Research and Controversies</a> - <strong><em>Trends in
Cognitive Sciences</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?start=0&amp;hl=en&amp;as_sdt=0,5&amp;cluster=12085981794958916203">All
Versions</a>]. Hongjing Lus review on intuitive physics.</p></li>
<li><p><a
href="https://www.pnas.org/content/pnas/110/45/18327.full.pdf">Simulation
as an engine of physical scene understanding</a> -
<strong><em>Proceedings of the National Academy of
Sciences</em></strong>, 2013. [<a
href="https://scholar.google.com/scholar?cluster=5892822406285231676&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://www.pnas.org/content/pnas/suppl/2013/10/18/1306572110.DCSupplemental/pnas.201306572SI.pdf?targetid=nameddest%3DSTXT">Appendix</a>].
The first attempt to computationally simulate intuitive
physics.</p></li>
<li><p><a
href="https://www.pnas.org/doi/pdf/10.1073/pnas.1610344113">Functional
neuroanatomy of intuitive physical inference</a> -
<strong><em>Proceedings of the National Academy of
Sciences</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=1792195093536891402&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A piece of evidence for the functional part of intuitive
physics in human brain.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S1364661317301134">Mind
Games: Game Engines as an Architecture for Intuitive Physics</a> -
<strong><em>Trends in Cognitive Sciences</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=14527964477161848029&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. Tomer Ullmans review on simulation-based intuitive
physics.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/abs/pii/S0010028517301822">Learning
physical parameters from dynamic scenes</a> - <strong><em>Cognitive
Psychology</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=5103729321433959736&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0010028521000190">Limits
on Simulation Approaches in Intuitive Physics</a> -
<strong><em>Cognitive Psychology</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=6329029167380621767">All
Versions</a>]. Ernest Daviss perspective against intuitive physics,
that physcial reasoning is logical reasoning instead of
intuition.</p></li>
<li><p><a href="https://psyarxiv.com/y4a8x/download?format=pdf">Partial
Mental Simulation Explains Fallacies in Physical Reasoning</a> -
<strong><em>Cognitive Neuropsychology</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=15541954459060383152&amp;hl=en&amp;as_sdt=2005">All
Versions</a>].</p></li>
<li><p><a
href="https://www.nature.com/articles/s41562-022-01394-8">Intuitive
physics learning in a deep-learning model inspired by developmental
psychology</a> - <strong><em>Nature Human Behavior</em></strong>, 2022.
[<a
href="https://scholar.google.com/scholar?cluster=13803979681049451699&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A machine-learning dataset designed to evaluate
conceptual understanding of intuitive physics, adopting the
violation-of-expectation (VoE) paradigm from developmental psychology; a
deep-learning system that learns intuitive physics directly from visual
data, inspired by studies of visual cognition in children.</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2019/hash/4191ef5f6c1576762869ac49281130c9-Abstract.html">PHYRE:
A New Benchmark for Physical Reasoning</a> -
<strong><em>NeurIPS19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=9555658528231205655&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A benchmark for AI physical reasoning.</p></li>
<li><p><a
href="https://www.nature.com/articles/s42256-022-00583-4">Phy-Q as a
measure for physical reasoning intelligence</a> - <strong><em>Nature
Machine Intelligence</em></strong>, 2023. [<a
href="https://www.nature.com/articles/s42256-019-0072-x">NMI
Challenge</a>]. An interactive benchmark for AI physical
reasoning.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="ai-commonsense-reasoning">AI Commonsense Reasoning</h4>
<ul>
<li><p><a
href="https://www.sciencedirect.com/book/9781483207704/representations-of-commonsense-knowledge">Representations
of Commonsense Knowledge</a> - <strong><em>Morgan
Kaufmann</em></strong>, 1990. [<a
href="https://scholar.google.com/scholar?cluster=8861902735724600978&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A classic book on commonsense knowledge.</p></li>
<li><p><a
href="https://link.springer.com/chapter/10.1007%2F3-540-53487-3_59">Towards
a theory of commonsense visual reasoning</a> -
<strong><em>FSTTCS</em></strong>, 1990. [<a
href="https://scholar.google.com/scholar?cluster=13178231862265713961&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on visual commonsense.</p></li>
<li><p><a
href="http://cs.wellesley.edu/~cs125/reading/commonsenseAI.pdf">Commonsense
reasoning and commonsense knowledge in artificial intelligence</a> -
<strong><em>Communications of the ACM</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=13786590180441485203&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Gary Marcuss review on commonsense knowledge in
AI.</p></li>
<li><p><a
href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&amp;arnumber=8953217">From
Recognition to Cognition: Visual Commonsense Reasoning</a> -
<strong><em>CVPR19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=15467433880059136365&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="http://visualcommonsense.com/">Project</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/1911.11641.pdf">PIQA: Reasoning
about Physical Commonsense in Natural Language</a> -
<strong><em>AAAI20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=10110424163152713144&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&amp;arnumber=9156347">Visual
Commonsense R-CNN</a> - <strong><em>CVPR20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=6886229776034162585&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://openreview.net/pdf?id=Byg1v1HKDB">Abductive
Commonsense Reasoning</a> - <strong><em>ICLR20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=16544200144479839958&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Abductive commonsense reasoning on large language
models.</p></li>
<li><p><a
href="https://link.springer.com/chapter/10.1007%2F978-3-030-58558-7_30">VisualCOMET:
Reasoning About the Dynamic Context of a Still Image</a> -
<strong><em>ECCV20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=7681600847940772451&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2202.04800">The Abduction of
Sherlock Holmes: A Dataset for Visual Abductive Reasoning</a> - 2022.
[<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=18355807581692234364">All
Versions</a>].</p></li>
<li><p><a
href="https://aclanthology.org/2020.emnlp-main.703.pdf">Experience
Grounds Language</a> - <strong><em>EMNLP20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=3734668471751920487&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A perspective on the furture of computational linguistics
research—commonsense-driven and embodied language.</p></li>
<li><p><a href="https://aclanthology.org/2021.emnlp-main.162/">Broaden
the Vision: Geo-Diverse Visual Commonsense Reasoning</a> -
<strong><em>EMNLP21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=12305856131717604775&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://www.charleskemp.com/papers/hanrpk_humanlikepropertyinductionisachallengeforlargelanguagemodels.pdf">Human-like
property induction is a challenge for large language models</a> -
<strong><em>CogSci22</em></strong>, 2022.</p></li>
<li><p><a href="https://arxiv.org/abs/2305.17390">SwiftSage: A
Generative Agent with Fast and Slow Thinking for Complex Interactive
Tasks</a> - <strong><em>NeurIPS23</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=3844178012869500706&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://swiftsage.github.io/">Project</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h4 id="commonsense-knowledgebase">Commonsense Knowledgebase</h4>
<ul>
<li><p><a href="https://www.wikihow.com/Main-Page">wikiHow</a> -
<strong><em>wikiHow.com</em></strong>. wikiHow is on website hosting
step-by-step “How-to” procedural instructions across various domains and
topics.</p></li>
<li><p><a href="https://theworldavatar.io/">The World Avatar</a> -
<strong><em>The World Avatar™</em></strong>. A large-scale dynamic
knowledge graph connecting concepts with relations to digitalize
molecules, buildings, cities, and countries.</p></li>
<li><p><a
href="https://faculty.cc.gatech.edu/~isbell/classes/reading/papers/lenat95cyc.pdf">CYC:
A Large-Scale Investment in Knowledge Infrastructure</a> -
<strong><em>Communications of the ACM</em></strong>, 1995. [<a
href="https://scholar.google.com/scholar?cluster=6505009388871605141&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The first attempt to build large-scale commonse
knoweldgebase from human knowledge.</p></li>
<li><p><a href="https://arxiv.org/pdf/1612.03975.pdf">ConceptNet 5.5: An
Open Multilingual Graph of General Knowledge</a> -
<strong><em>AAAI17</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=7089916805257737701&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Latest version of ConceptNet.</p></li>
<li><p><a
href="https://www.aaai.org/Library/Symposia/Spring/2002/ss02-09-011.php">The
Public Acquisition of Commonsense Knowledge</a> -
<strong><em>Proceedings of AAAI Spring Symposium on Acquiring (and
Using) Linguistic (and World) Knowledge for Information
Access</em></strong>, 2002. [<a
href="https://scholar.google.com/scholar?cluster=12533779219524472080&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The first attempt for acquring commonsense knowlege from
humans activities on the internet.</p></li>
<li><p><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.472.914&amp;rep=rep1&amp;type=pdf">Open
Mind Common Sense: Knowledge Acquisition from the General Public</a> -
<strong><em>OTM Confederated International Conferences02</em></strong>,
2002. [<a
href="https://scholar.google.com/scholar?cluster=11431785236825227404&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]..</p></li>
<li><p><a
href="http://www.aladdin.cs.cmu.edu/papers/pdfs/y2006/verbosity.pdf">Verbosity:
A Game for Collecting Common-Sense Facts</a> -
<strong><em>CHI06</em></strong>, 2006. [<a
href="https://scholar.google.com/scholar?cluster=7793704394155465847&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://dl.acm.org/doi/fullHtml/10.1145/1378704.1378719">Designing
games with a purpose</a> - <strong><em>Communications of the
ACM</em></strong>, 2008. [<a
href="https://scholar.google.com/scholar?cluster=18332117920150730595&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://people.mpi-inf.mpg.de/~ntandon/papers/aaai-2014-tandon.pdf">Acquiring
Comparative Commonsense Knowledge from the Web</a> -
<strong><em>AAAI14</em></strong>, 2014. [<a
href="https://scholar.google.com/scholar?cluster=16641273554706459553&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://ieeexplore.ieee.org/abstract/document/9904017">Visual
Concept Programming: A Visual Analytics Approach to Injecting Human
Intelligence at Scale</a> - <strong><em>IEEE Transactions on
Visualization and Computer Graphics</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=10724509334112758172&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. This paper presents Visual Concept Programming, a
first-of-its-kind visual analytics approach of using visual concepts to
program image data at scale while requiring a few human
efforts.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="inductive-logic-program-synthesis">Inductive Logic &amp; Program
Synthesis</h3>
<ul>
<li><p><a
href="https://plato.stanford.edu/entries/logic-inductive/">Inductive
Logic</a> - <strong><em>Plato Stanford</em></strong>. A computational
philosophy account on Inductive Logic, which is a logic of evidential
support.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/modeltheory-fo/">First-order
Model Theory</a> - <strong><em>Plato Stanford</em></strong>. A
computational philosophy account on First-order Model Theory, which is a
branch of mathematics that deals with the relationships between
descriptions in first-order languages and the structures that satisfy
these descriptions.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/logic-paraconsistent/">Paraconsistent
Logic</a> - <strong><em>Plato Stanford</em></strong>. A computational
philosophy account on Paraconsistent Logic, where any logic is
paraconsistent as long as it is not explosive.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/logical-consequence/">Logical
Consequence</a> - <strong><em>Plato Stanford</em></strong>. A
computational philosophy account on Logical Consequence, which is about
the relation between premises and conclusions in valid
arguments.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/logical-pluralism/">Logic
Pluralism</a> - <strong><em>Plato Stanford</em></strong>. A
computational philosophy account on Logic Pluralism, which is the view
that there is more than one correct logic.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/logic-firstorder-emergence/">The
Emergence of First-Order Logic</a> - <strong><em>Plato
Stanford</em></strong>. A computational philosophy account on the
emergence of first-order logic, mainly about first-order logic is
natural retrospect.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/logic-higher-order/">Second-order
and Higher-order Logic</a> - <strong><em>Plato
Stanford</em></strong>.</p></li>
<li><p><a
href="https://www.microsoft.com/en-us/research/wp-content/uploads/2017/10/program_synthesis_now.pdf">Program
Synthesis</a> - <strong><em>Foundations and Trends in Programming
Languages</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=5442933587668978421&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Sumit Gulwanis comprehensive review on program
synthesis.</p></li>
<li><p><a
href="https://www.ijcai.org/Proceedings/83-1/Papers/109.pdf">The
Discovery of the Equator or Concept Driven Learning</a> -
<strong><em>IJCAI83</em></strong>, 1983. [<a
href="https://scholar.google.com/scholar?cluster=15712225225140903169&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on second-order metarules.</p></li>
<li><p><a
href="https://link.springer.com/chapter/10.1007%2F3-540-44797-0_10">Towards
combining inductive logic programming with Bayesian networks</a> -
<strong><em>ILP01</em></strong>, 2001. [<a
href="https://scholar.google.com/scholar?cluster=2904180673047700407&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://www.doc.ic.ac.uk/~shm/Papers/metagol_gram.pdf">Meta-interpretive
learning: application to grammatical inference</a> - <strong><em>Machine
Learning</em></strong>, 2014. [<a
href="https://scholar.google.com/scholar?cluster=17075313112718885592&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Stephen Muggletons original paper on Meta-Interpretive
Learning (MIL).</p></li>
<li><p><a
href="http://andrewcropper.com/pubs/ijcai15-metagolo.pdf">Learning
Efficient Logical Robot Strategies Involving Composable Objects</a> -
<strong><em>IJCAI15</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?cluster=5109851972354087162&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://andrewcropper.com/pubs/ijcai16-metafunc.pdf">Learning
Higher-Order Logic Programs through Abstraction and Invention</a> -
<strong><em>IJCAI16</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=10945054943203858325&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/chapter/10.1007%2F978-3-319-99960-9_3">How
Much Can Experimental Cost Be Reduced in Active Learning of Agent
Strategies?</a> - <strong><em>ILP18</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=8152380236842970357&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007/s10994-018-5710-8">Meta-Interpretive
Learning from noisy images</a> - <strong><em>Machine
Learning</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=5719375383968868329&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://andrewcropper.com/pubs/mlj18-metaopt.pdf">Learning
efficient logic programs</a> - <strong><em>Machine
Learning</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=17955696870252443734&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="http://andrewcropper.com/pubs/mlj19-metaho.pdf">Learning
higher-order logic programs</a> - <strong><em>Machine
Learning</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=6723896359456002413&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="http://andrewcropper.com/pubs/mlj19-reduce.pdf">Logical
reduction of metarules</a> - <strong><em>Machine Learning</em></strong>,
2019. [<a
href="https://scholar.google.com/scholar?cluster=4577603126537024540&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://andrewcropper.com/pubs/ijcai19-playgol.pdf">Playgol:
Learning Programs Through Play</a> - <strong><em>IJCAI19</em></strong>,
2019. [<a
href="https://scholar.google.com/scholar?cluster=556522464212000763&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/article/10.1007%2Fs00354-019-00054-2">Machine
Discovery of Comprehensible Strategies for Simple Games Using
Meta-interpretive Learning</a> - <strong><em>New Generation
Computing</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=11019349634035542991&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://andrewcropper.com/pubs/aaai20-forgetgol.pdf">Forgetting to
Learn Logic Programs</a> - <strong><em>AAAI20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=13676986733133377042&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://www.ijcai.org/proceedings/2020/673">Turning 30:
New Ideas in Inductive Logic Programming</a> -
<strong><em>IJCAI20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=17980870844719684257&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2008.07912">Inductive logic
programming at 30: a new introduction</a> - <strong><em>Journal of
Artificial Intelligence Research</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=317114056670544302&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A 30-year comprehensive review on Inductive Logic
Programming.</p></li>
<li><p><a href="https://arxiv.org/pdf/2005.02259.pdf">Learning programs
by learning from failures</a> - <strong><em>Machine
Learning</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=6797200487935462023&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://www.ijcai.org/proceedings/2020/320">Complete
Bottom-Up Predicate Invention in Meta-Interpretive Learning</a> -
<strong><em>IJCAI20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=6085183078630665234&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2106.07464.pdf">Meta-Interpretive
Learning as Metarule Specialisation</a> - <strong><em>Machine
Learning</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=14684315775211086859&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0004370204000591">Qualitative
choice logic</a> - <strong><em>Artificial Intelligence</em></strong>,
2004. [<a
href="https://scholar.google.com/scholar?cluster=1586187056162326386&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.ijcai.org/Proceedings/16/Papers/278.pdf">Derivative-free
optimization of high-dimensional non-convex functions by sequential
random embeddings</a> - <strong><em>IJCAI16</em></strong>, 2016. [<a
href="https://scholar.google.com/scholar?cluster=15955040483290586781&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/S0024610704006106">Finitely
Generated Groups and First-Order Logic</a> - <strong><em>Journal of The
London Mathematical Society-second Series</em></strong>, 2005. [<a
href="https://scholar.google.com/scholar?cluster=3457158221419711506&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2006.08381">DreamCoder: Growing
generalizable, interpretable knowledge with wake-sleep Bayesian program
learning</a> - 2020. [<a
href="https://scholar.google.com/scholar?cluster=3288385399148303844&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A incremental learning version of Bayesian program
learning.</p></li>
<li><p><a
href="https://vigilworkshop.github.io/static/papers-2021/25.pdf">Leveraging
Language for Abstraction and Program Search</a> -
<strong><em>ICML20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0%2C5&amp;q=Leveraging+Language+for+Abstraction+and+Program+Search&amp;btnG=">All
Versions</a>].</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2021/hash/f7e2b2b75b04175610e5a00c1e221ebb-Abstract.html">Program
Synthesis Guided Reinforcement Learning</a> -
<strong><em>NeurIPS21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=17353674428642875269&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://cogtoolslab.github.io/pdf/wang_cogsci_2021a.pdf">Learning
Part-Based Abstractions for Visual Object Concepts</a> -
<strong><em>CogSci21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?lookup=0&amp;q=Learning+Part-Based+Abstractions+for+Visual+Object+Concepts&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2108.07732">Program Synthesis with
Large Language Models</a> - 2021. [<a
href="https://scholar.google.com/scholar?cluster=15213050540818392833&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://dl.acm.org/doi/abs/10.1145/3571249">Combining
Functional and Automata Synthesis to Discover Causal Reactive
Programs</a> - <strong><em>POPL23</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=10470162446663474225&amp;as_sdt=0,5">All
Versions</a>]. A new algorithm that synthesizes functional reactive
programs from observation data, which iterates between a functional
synthesis step, which attempts to generate a transition function over
observed states, and an automata synthesis step, which adds any
additional latent state necessary to fully account for the
observations.</p></li>
<li><p><a
href="http://cap.csail.mit.edu/sites/default/files/research-pdfs/Synthesizing%20theories%20of%20human%20language%20with%20Bayesian%20program%20induction.pdf">Synthesizing
theories of human language with Bayesian program induction</a> -
<strong><em>Nature Communications</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?cluster=8603772394100237159&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2306.12672">From Word Models to
World Models: Translating from Natural Language to the Probabilistic
Language of Thought</a> - 2023. [<a
href="https://scholar.google.com/scholar?cluster=13778788929096574993&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Rational meaning construction, a computational framework
for language-informed thinking that combines neural language models with
probabilistic models for rational inference. Linguistic meaning is
framed as a context-sensitive mapping from natural language into a
probabilistic language of thought (PLoT)a general-purpose symbolic
substrate for generative world modeling.</p></li>
<li><p><a href="https://proceedings.mlr.press/v139/hong21a.html">Latent
Programmer: Discrete Latent Codes for Program Synthesis</a> -
<strong><em>ICML21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=9789877360194738968&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Paper introducing the Latent Programmer, a program
synthesis method that first predicts a discrete latent code from
input/output examples, and then generates the program in the target
language.</p></li>
<li><p><a href="https://proceedings.mlr.press/v202/gao23f">PAL:
Program-aided Language Models</a> - <strong><em>ICML23</em></strong>,
2023. [<a
href="https://scholar.google.com/scholar?cluster=14898051625978777315&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Paper presenting an approach that uses the LLM to read
natural language problems and generate programs as the intermediate
reasoning steps, but offloads the solution step to a runtime such as a
Python interpreter. With PAL, decomposing the natural language problem
into runnable steps remains the only learning task for the LLM, while
solving is delegated to the interpreter.</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper_files/paper/2023/hash/cd40d0d65bfebb894ccc9ea822b47fa8-Abstract-Conference.html">Grammar
Prompting for Domain-Specific Language Generation with Large Language
Models</a> - <strong><em>NeurIPS23</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=11694070042468483715&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Grammar prompting, a simple approach to enable LLMs to
use external knowledge and domain-specific constraints, expressed
through a grammar in BackusNaur Form (BNF), during in-context
learning.</p></li>
<li><p><a href="https://aclanthology.org/2023.acl-long.411/">Large
Language Models Meet NL2Code: A Survey</a> -
<strong><em>ACL23</em></strong>, 2023. [<a
href="https://scholar.google.com/scholar?cluster=11868015824802341463&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a href="https://nl2code.github.io/">NL2Code
Website</a>]. A paper presenting a comprehensive survey of 27 existing
large language models for NL2Code, and also review benchmarks and
metrics, suggesting that the key factors contributing to the success of
large language models for NL2Code are “Large Size, Premium Data, Expert
Tuning”.</p></li>
<li><p><a href="https://dl.acm.org/doi/abs/10.1145/3597503.3608128">A
Large-Scale Survey on the Usability of AI Programming Assistants:
Successes and Challenges</a> - <strong><em>ICSE24</em></strong>, 2024.
[<a
href="https://scholar.google.com/scholar?cluster=3696356619002071917&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A survey finding that developers are most motivated to
use AI programming assistants because they help developers reduce
key-strokes, finish programming tasks quickly, and recall syntax, but
resonate less with using them to help brainstorm potential
solutions.</p></li>
<li><p><a href="https://arxiv.org/abs/2308.10620">Large Language Models
for Software Engineering: A Systematic Literature Review</a> - 2023. [<a
href="https://scholar.google.com/scholar?cluster=10466731638053452642&amp;as_sdt=0,5">All
Versions</a>]. A systematic literature review on LLM4SE, with a
particular focus on understanding how LLMs can be exploited to optimize
processes and outcomes.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="knowledge-representation">Knowledge Representation</h3>
<ul>
<li><p><a href="https://1lib.net/book/511192/9eab86">Handbook of
Knowledge Representation</a> - <strong><em>Elsevier</em></strong>, 2008.
[<a
href="https://scholar.google.com/scholar?cluster=14732064619564679879&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A pragmatical handbook for all kinds of knowledge
representation modes.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/logic-ontology/">Logic and
Ontology</a> - <strong><em>Plato Stanford</em></strong>. A computational
philosophy account on logic and ontology, mainly about the intersections
of logic and ontology in many significant philosophy problems.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/language-thought/">The Language
of Thought Hypothesis</a> - <strong><em>Plato Stanford</em></strong>. A
computational philosophy account on the laugnage of though hypothesis,
which proposes that thinking occurs in a mental language.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/knowledge-analysis/">The
Analysis of Knowledge</a> - <strong><em>Plato
Stanford</em></strong>.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/scientific-representation/">Scientific
Representation</a> - <strong><em>Plato Stanford</em></strong>. A
computational philosophy account on scientific representation, focusing
on how scientific models represent their target systems.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/self-knowledge/">Self-Knowledge</a>
- <strong><em>Plato Stanford</em></strong>. A computational philosophy
account on self-knowledge, which standardly refers to knowledge of ones
own mental states—that is, of what one is feeling or thinking, or what
one believes or desires.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/common-knowledge/">Common
Knowledge</a> - <strong><em>Plato Stanford</em></strong>.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/sense-data/">Sense-Data</a> -
<strong><em>Plato Stanford</em></strong>.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/supervenience/">Supervenience</a>
- <strong><em>Plato Stanford</em></strong>. A computational philosophy
account on supervenience, where a set of properties A supervenes upon
another set B just in case no two things can differ with respect to
A-properties without also differing with respect to their
B-properties.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/logic-dialogical/">Dialogical
Logic</a> - <strong><em>Plato Stanford</em></strong>. A computational
philosophy account on dialogical logic, which is a dialogue-based
approach to logic and argumentation rooted in a research tradition that
goes back to dialectics in Greek Antiquity, when problems were
approached through dialogues in which opposing parties discussed a
thesis through questions and answers.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/logic-temporal/">Temporal
Logic</a> - <strong><em>Plato Stanford</em></strong>.</p></li>
<li><p><a
href="https://en.wikipedia.org/wiki/Situation_calculus">Situation
Calculus</a> - <strong><em>Wikipedia</em></strong>. Wikipedia on
Situation Calculus, which is a logic formalism designed for representing
and reasoning about dynamical domains.</p></li>
<li><p><a href="https://plato.stanford.edu/entries/logic-modal/">Modal
Logic</a> - <strong><em>Plato Stanford</em></strong>. A computational
philosophy account on Modal Logic, which is the study of the deductive
behavior of the expressions it is necessary that and it is possible
that.</p></li>
<li><p><a
href="https://plato.stanford.edu/entries/logic-epistemic/">Epistemic
Logic</a> - <strong><em>Plato Stanford</em></strong>. A computational
philosophy account on Epistemic Logic, which is a subfield of
epistemology concerned with logical approaches to knowledge, belief and
related notions.</p></li>
<li><p><a
href="https://en.wikipedia.org/wiki/Epistemic_modal_logic">Epistemic
Modal Logic</a> - <strong><em>Wikipedia</em></strong>.</p></li>
<li><p><a
href="https://perception.jhu.edu/files/PDFs/21_Relations/HafriFirestone_2021_SeeingRelations_TiCS.pdf">The
Perception of Relations</a> - <strong><em>Trends in Cognitive
Sciences</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=12190078466818849725&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. Chaz Firestones review on the perception of relation, in
constrast to the conventional reasoning view.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/abs/pii/0004370284900390">Commonsense
reasoning about causality: Deriving behavior from structure</a> -
<strong><em>Artificial Intelligence</em></strong>, 1984. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=14940738362673077704">All
Versions</a>].</p></li>
<li><p><a
href="https://www.cs.utexas.edu/ftp/qsim/papers/Kuipers-aij-86.pdf">Qualitative
Simulation</a> - <strong><em>Artificial Intelligence</em></strong>,
1986. [<a
href="https://scholar.google.com/scholar?cluster=4945009733425184345&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Benjamin Kuipers original paper on qualitative
reasoning.</p></li>
<li><p><a
href="https://www.cs.utexas.edu/users/qr/QR-book.html">Qualitative
Reasoning: Modeling and Simulation with Incomplete Knowledge</a> -
<strong><em>MIT Press</em></strong>, 1994. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=6634684154722677465">All
Versions</a>]. Benjamin Kuipers comprehensive book on qualitative
reasoning.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0004370297000507">Qualitative
and quantitative simulation: bridging the gap</a> -
<strong><em>Artificial Intelligence</em></strong>, 1997. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=9033452473914228535">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/article/10.1023/B:SYNT.0000024912.56773.5e">Logics
for Epistemic Programs</a> - <strong><em>Synthese</em></strong>, 2004.
[<a
href="https://scholar.google.com/scholar?cluster=11403619699670839488&amp;hl=en&amp;as_sdt=0,5&amp;as_vis=1">All
Versions</a>].</p></li>
<li><p><a href="https://tomgruber.org/writing/ontolingua-kaj-1993.pdf">A
Translation Approach to Portable Ontology Specifications</a> -
<strong><em>Knowledge Acquisition</em></strong>, 1993. [<a
href="https://scholar.google.com/scholar?cluster=14668658395073605123&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://people.sabanciuniv.edu/~esraerdem/teaching/krr06/asp.pdf">Answer
Set Programming</a> - <strong><em>ICLPNR99</em></strong>, 1999. [<a
href="https://scholar.google.com/scholar?cluster=15267370435063454675&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on Answer Set Programming
(ASP).</p></li>
<li><p><a
href="https://link.springer.com/chapter/10.1007%2F978-3-642-60085-2_16">Action
Languages, Answer Sets, and Planning</a> - <strong><em>The Logic
Programming Paradigms</em></strong>, 1999. [<a
href="https://scholar.google.com/scholar?cluster=2045126541850245645&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://www.cs.ox.ac.uk/activities/ieg/e-library/sources/harnad90_sgproblem.pdf">The
Symbolic Grounding Problem</a> - <strong><em>Physica D: Nonlinear
Phenomena</em></strong>, 1990. [<a
href="https://scholar.google.com/scholar?cluster=6279614024681929496&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-7687.2007.00585.x?__cf_chl_captcha_tk__=pmd_Q6xVT1AstoEUxA7xS3_10HyDVsk8W_DzWgOPho_Njnw-1635210931-0-gqNtZGzNA1CjcnBszQvl">Learning
overhypotheses with hierarchical Bayesian models</a> -
<strong><em>Developmental Science</em></strong>, 2007. [<a
href="https://scholar.google.com/scholar?cluster=18041836774924845900&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://escholarship.org/content/qt19v2r2ws/qt19v2r2ws.pdf">Learning
Causal Schemata</a> - <strong><em>CogSci07</em></strong>, 2007, [<a
href="https://scholar.google.com/scholar?cluster=5008191267417189643&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://www.pnas.org/content/105/31/10687">The discovery
of structural form</a> - <strong><em>Proceedings of the National Academy
of Sciences</em></strong>, 2008. [<a
href="https://scholar.google.com/scholar?cluster=10433149156915110486&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Chales Kemps review on theory induction.</p></li>
<li><p><a
href="https://onlinelibrary.wiley.com/doi/full/10.1080/03640210701802071">A
Rational Analysis of Rule-Based Concept Learning</a> -
<strong><em>Cognitive Science</em></strong>, 2008. [<a
href="https://scholar.google.com/scholar?cluster=7765061503727822620&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://escholarship.org/content/qt50r1c7qh/qt50r1c7qh.pdf">Modeling
semantic cognition as logical dimensionality reduction</a> -
<strong><em>CogSci08</em></strong>, 2008. [<a
href="https://scholar.google.com/scholar?cluster=17061801746839695691&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="http://www.charleskemp.com/papers/KempGT08.pdf">Theory
Acquisition and the Language of Thought</a> -
<strong><em>CogSci08</em></strong>, 2008. [<a
href="https://scholar.google.com/scholar?cluster=1839916602381147749&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://web.mit.edu/tomeru/www/papers/tlss2010.pdf">Theory
Acquisition as Stochastic Search</a> -
<strong><em>CogSci10</em></strong>, 2010. [<a
href="https://scholar.google.com/scholar?cluster=16324634056226561429&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="http://www.charleskemp.com/papers/kemptng09.pdf">A
probabilistic model of theory formation</a> -
<strong><em>Cognition</em></strong>, 2010. [<a
href="https://scholar.google.com/scholar?cluster=7705799129887482041&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://core.ac.uk/display/78064072">Bootstrapping in a
language of thought: A formal model of numerical concept learning</a> -
<strong><em>Cognition</em></strong>, 2012. [<a
href="https://scholar.google.com/scholar?cluster=13046606910781656302&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://cbmm-dev.mit.edu/sites/default/files/publications/CBMM-Memo-010.pdf">Concepts
in a Probabilistic Language of Thought</a> - <strong><em>Center for
Brains, Minds, and Machines MEMO No.010</em></strong>, 2014. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=14593712389828476130">All
Versions</a>].</p></li>
<li><p><a
href="http://www.charleskemp.com/papers/kemp_exploringtheconceptualuniverse.pdf">Exploring
the Conceptual Universe</a> - <strong><em>Psychological
Review</em></strong>, 2012. [<a
href="https://scholar.google.com/scholar?cluster=17824067813343816306&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://www.charleskemp.com/papers/kempj_ataxonomyofinductiveproblems.pdf">A
taxonomy of inductive problems</a> - <strong><em>Psychonomic Bulletin
&amp; Review</em></strong>, 2014. [<a
href="https://scholar.google.com/scholar?cluster=2571009743105592927&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://colala.berkeley.edu/papers/piantadosi2016logical.pdf">The
Logical Primitives of Thought: Empirical Foundations for Compositional
Cognitive Models</a> - <strong><em>Psychological Review</em></strong>,
2016. [<a
href="https://scholar.google.com/scholar?cluster=5316027496661813145&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://onlinelibrary.wiley.com/doi/full/10.1111/cogs.12580">The
Emergence of Organizing Structure in Conceptual Representation</a> -
<strong><em>Cognitive Science</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=4986316323923233074&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://cogtoolslab.github.io/pdf/wang_cogsci_2021b.pdf">Theory
Acquisition as Constraint-Based Program Synthesis</a> -
<strong><em>CogSci21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=525148607069840280&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://escholarship.org/uc/item/9j00x928">Connecting
perceptual and procedural abstractions in physical construction</a> -
<strong><em>CogSci21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0%2C5&amp;q=Connecting+perceptual+and+procedural+abstractions+in+physical+construction&amp;btnG=">All
Versions</a>].</p></li>
<li><p><a
href="https://www.biorxiv.org/content/10.1101/2021.03.19.385641v1.full.pdf">Invariant
representation of physical stability in the human brain</a> - 2021. [<a
href="https://scholar.google.com/scholar?cluster=17431019238600295521&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.146.4086&amp;rep=rep1&amp;type=pdf">Introduction
to The Fluent Calculus</a> - <strong><em>Linkoeping University
Electronic Press</em></strong>, 1998. [<a
href="https://scholar.google.com/scholar?cluster=12069059079023496731&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0004370299000338">From
situation calculus to fluent calculus: State update axioms as a solution
to the inferential frame problem</a> - <strong><em>Artificial
Intelligence</em></strong>, 1999. [<a
href="https://scholar.google.com/scholar?cluster=10854895617698839149&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://www.stat.ucla.edu/~sczhu/papers/Conf_2013/Learning_AoG_NeurIPS_2013.pdf">Unsupervised
Structure Learning of Stochastic And-Or Grammars</a> -
<strong><em>NeurIPS13</em></strong>, 2013. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=4354984630817844670">All
Versions</a>].</p></li>
<li><p><a href="https://psyarxiv.com/ysndt">Algorithms of Adaptation in
Inductive Inference</a> - <strong><em>Cognitive
Psychology</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=16222039361294164246&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/0010027795006743">A
representational analysis of numeration systems</a> -
<strong><em>Cognition</em></strong>, 1995. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=8852566070856662412">All
Versions</a>].</p></li>
<li><p><a
href="https://openaccess.thecvf.com/content/CVPR2022/html/Papadopoulos_Learning_Program_Representations_for_Food_Images_and_Cooking_Recipes_CVPR_2022_paper.html">Learning
Program Representations for Food Images and Cooking Recipes</a> -
<strong><em>CVPR22</em></strong>, 2022. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=7690010749576063125">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2205.07455">Reasoning about
Procedures with Natural Language Processing: A Tutorial</a> - 2023. [<a
href="https://scholar.google.com/scholar?cluster=11364086808527515615&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="cognitive-development">Cognitive Development</h3>
<ul>
<li><p><a href="https://arxiv.org/abs/1810.07528">Machine Common Sense
Concept Paper</a> - <strong><em>DARPA</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=1603121108181262769&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. DARPAs perspective on integrating core knowledge from
development psychology into machine intelligence systems.</p></li>
<li><p><a
href="https://en.wikipedia.org/wiki/Cognitive_development">Cognitive
Development</a> - <strong><em>Wikipedia</em></strong>.</p></li>
<li><p><a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0%2C5&amp;q=Cognitive+Development%3A+an+information+processing+approach&amp;btnG=">Cognitive
development: An information processing approach</a> -
<strong><em>B.Blackwell</em></strong>, 1991. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0%2C5&amp;q=Cognitive+development%3A+An+information+processing+approach&amp;btnG=">All
Versions</a>].</p></li>
<li><p><a
href="https://psycnet.apa.org/record/2012-12791-001">Reconstructing
constructivism: Causal models, Bayesian learning mechanisms, and the
theory theory</a> - <strong><em>Psychological Bulletin</em></strong>,
2012. [<a
href="https://scholar.google.com/scholar?cluster=11218217347365817167&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Alison Gopniks review on the constructivism idea of
developmental research.</p></li>
<li><p><a
href="https://doi.apa.org/doiLanding?doi=10.1037/rev0000153">Towards a
rational constructivist theory of cognitive development</a> -
<strong><em>Psychological Review</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=3294824172745724080&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Fei Xus review extending Gopniks view of
constructivism, with the rationality as constraint.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S1364661312001301">The
origins of inquiry: inductive inference and exploration in early
childhood</a> - <strong><em>Trends in Cognitive Sciences</em></strong>,
2012. [<a
href="https://scholar.google.com/scholar?cluster=5189329081728071335&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Laura Schulzs review on childrens exploratory
play.</p></li>
<li><p><a
href="https://www.annualreviews.org/doi/abs/10.1146/annurev-devpsych-070120-014806">Play,
Curiosity, and Cognition</a> - <strong><em>Annual Review of
Developmental Psychology</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=10278208468154249192&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>]. Laura Schulzs review on childrens exploratory play,
which proposes a new perspective on exploratory play to explain the
emergence of irrational behaviors in play.</p></li>
<li><p><a href="https://psycnet.apa.org/record/1981-32566-001">From
exploration to play: A cross-sectional study of infant free play
behavior</a> - <strong><em>Developmental Psychology</em></strong>, 1981.
[<a
href="https://scholar.google.com/scholar?cluster=15547331535034599545&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://srcd.onlinelibrary.wiley.com/doi/abs/10.1111/1467-8624.00224">Detecting
Blickets: How Young Children Use Information about Novel Causal Powers
in Categorization and Induction</a> - <strong><em>Children
Development</em></strong>, 2003. [<a
href="https://scholar.google.com/scholar?cluster=9049737233568227380&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://eccl.scripts.mit.edu/papers/bonawitzandschulzseriousfun.pdf">Serious
fun: Preschoolers engage in more exploratory play when evidence is
confounded</a> - <strong><em>Developmental Psychology</em></strong>,
2007. [<a
href="https://scholar.google.com/scholar?cluster=3033619407322882147&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://stahla.pages.tcnj.edu/files/2015/08/Stahl_Feigenson_Science_2015.pdf">Observing
the unexpected enhances infants learning and exploration</a> -
<strong><em>Science</em></strong>, 2015. [<a
href="https://scholar.google.com/scholar?start=10&amp;hl=en&amp;as_sdt=0,5&amp;cluster=9247917261616759689">All
Versions</a>].</p></li>
<li><p><a href="https://psycnet.apa.org/record/2008-12114-008">Word,
thought, and deed: the role of object categories in childrens inductive
inferences and exploratory play</a> - <strong><em>Developmental
Psychology</em></strong>, 2009. [<a
href="https://scholar.google.com/scholar?cluster=13947689064550390312&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0010027711000916">Where
science starts: Spontaneous experiments in preschoolers exploratory
play</a> - <strong><em>Cognition</em></strong>, 2011. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=16321989770180281706">All
Versions</a>].</p></li>
<li><p><a
href="http://alisongopnik.com/Papers_Alison/Scientific%20Thinking%20in%20young%20Children.pdf">Scientific
thinking in young children: Theoretical advances, empirical research,
and policy implications</a> - <strong><em>Science</em></strong>, 2012.
[<a
href="https://scholar.google.com/scholar?cluster=9103846738385460508&amp;hl=en&amp;as_sdt=2005">All
Versions</a>].</p></li>
<li><p><a
href="http://eccl.scripts.mit.edu/papers/Finding%20New%20Facts_%20Thinking%20New%20Thoughts.pdf">Finding
New Facts; Thinking New Thoughts</a> - <strong><em>Advances in Child
Development and Behavior</em></strong>, 2012. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0%2C5&amp;q=Finding+new+facts%3B+thinking+new+thoughts&amp;btnG=">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0885201412000445">Theory
learning as stochastic search in the language of thought</a> -
<strong><em>Cognitive Development</em></strong>, 2012. [<a
href="https://scholar.google.com/scholar?cluster=8036476579458645432&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.science.org/doi/abs/10.1126/science.aan2317">Infants
make more attempts to achieve a goal when they see adults persist</a> -
<strong><em>Science</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=2617011825272996810&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://cognitivesciencesociety.org/cogsci20/papers/0716/0716.pdf">Knowing
when to quit: Children consider access to solutions when deciding
whether to persist</a> - <strong><em>CogSci20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=15997297570269958414&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://psyarxiv.com/aq3rp/">Bayesian Models of
Conceptual Development: Learning as Building Models of the World</a> -
<strong><em>Annual Review of Developmental Psychology</em></strong>,
2020. [<a
href="https://scholar.google.com/scholar?cluster=646614032563248495&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://onlinelibrary.wiley.com/doi/full/10.1111/cogs.12765">Sticking
to the Evidence? A Behavioral and Computational Case Study of
Micro-Theory Change in the Domain of Magnetism</a> -
<strong><em>Cognitive Science</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=4409900195679222965&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://junyichu.mit.edu/sites/default/files/documents/2018-05-14%20CogSci%20Final.pdf">Cognitive
pragmatism: Children flexibly choose between facts and conjectures</a> -
<strong><em>CogSci18</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=6978944437676543728&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://psyarxiv.com/9yra2/">Exploratory play, rational
action, and efficient search</a> - <strong><em>CogSci20</em></strong>,
2020. [<a
href="https://scholar.google.com/scholar?cluster=17529638197045429028&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://srcd.onlinelibrary.wiley.com/doi/full/10.1111/cdev.13647?saml_referrer">Children
selectively endorse speculative conjectures</a> - <strong><em>Child
Development</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=5672344544260882286&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://psycnet.apa.org/buy/2017-12497-003">Learning
higher-order generalizations through free play: Evidence from 2- and
3-year-old children</a> - <strong><em>Developmental
Psychology</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=4386474921214936914&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/abs/pii/S1364661320301741">The
Child as Hacker</a> - <strong><em>Trends in Cognitive
Sciences</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=13128656954836679743&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5&amp;as_ylo=2017">All
Versions</a>].</p></li>
<li><p><a
href="https://royalsocietypublishing.org/doi/10.1098/rstb.2019.0502">Childhood
as a solution to exploreexploit tensions</a> -
<strong><em>Philosophical Transactions of the Royal Society B:
Biological Sciences</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=11960188575664977017&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.nature.com/articles/s41467-021-23431-2">Childrens
exploratory play tracks the discriminability of hypotheses</a> -
<strong><em>Nature Communications</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=12389351553206792907&amp;hl=en&amp;as_sdt=0,5&amp;as_ylo=2020">All
Versions</a>].</p></li>
<li><p><a
href="https://srcd.onlinelibrary.wiley.com/doi/full/10.1111/j.1467-8624.2010.01499.x?saml_referrer">A
Developmental Perspective on Executive Function</a> - <strong><em>Child
Development</em></strong>, 2010. [<a
href="https://scholar.google.com/scholar?cluster=11347590808138984649&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://journals.sagepub.com/doi/pdf/10.1177/1745691620904771">Rethinking
Executive Function and Its Development</a> - <strong><em>Psychological
Science</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=16570230278367237499&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.harvardlds.org/wp-content/uploads/2017/01/Perception-of-partly-occluded-objects-in-infancy-1.pdf">Perception
of partly occluded objects in infancy</a> - <strong><em>Cognitive
Psychology</em></strong>, 1983. [<a
href="https://scholar.google.com/scholar?cluster=4182861116190610992&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/article/10.3758/s13428-012-0210-4">Age-of-acquisition
ratings for 30,000 English words</a> - <strong><em>Behavior Research
Methods</em></strong>, 2012. [<a
href="https://scholar.google.com/scholar?cluster=6752414178722956940&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a href="http://crr.ugent.be/archives/806">Project</a>].
A database for age-of-acquisition ratings for over 30k English
words.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="learning-in-the-open-world">Learning in the Open World</h3>
<ul>
<li><p><a
href="https://www.sciencedirect.com/science/article/abs/pii/S002224961730010X">Online
learning of symbolic concepts</a> - <strong><em>Journal of Mathematical
Psychology</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?start=20&amp;hl=en&amp;as_sdt=2005&amp;sciodt=0,5&amp;cites=8036476579458645432&amp;scipsc=">All
Versions</a>].</p></li>
<li><p><a
href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&amp;arnumber=8413121">Zero-Shot
Learning—A Comprehensive Evaluation of the Good, the Bad and the
Ugly</a> - <strong><em>IEEE Transactions on Pattern Analysis and Machine
Intelligence</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=11909080239486864961&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A comprehensive review on zero-shot learning.</p></li>
<li><p><a
href="https://www.4paradigm.com/upload/file/20210427/20210427225045_12063.pdf">Generalizing
from a few examples: A survey on few-shot learning</a> - <strong><em>ACM
Computing Survey</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=7932202448069313464&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://ieeexplore.ieee.org/document/7298799">Towards
Open World Recognition</a> - <strong><em>CVPR15</em></strong>, 2015.
[<a
href="https://scholar.google.com/scholar?cluster=856704237994181529&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The first paper introducing the problem of open-world
recognition.</p></li>
<li><p><a
href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&amp;arnumber=7780542">Towards
Open Set Deep Networks</a> - <strong><em>CVPR16</em></strong>, 2016.
[<a
href="https://scholar.google.com/scholar?cluster=3571743951915089896&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2007.02519.pdf">In the Wild: From
ML Models to Pragmatic ML Systems</a> -
<strong><em>ICLR20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=15243890330014986346&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. A comprehensive review on incremental machine
learning.</p></li>
<li><p><a href="https://arxiv.org/pdf/2002.04108.pdf">Adversarial
Filters of Dataset Biases</a> - <strong><em>ICML20</em></strong>, 2020.
[<a
href="https://scholar.google.com/scholar?cluster=11617966867048191189&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2009.01797.pdf">A Wholistic View
of Continual Learning with Deep Neural Networks: Forgotten Lessons and
the Bridge to Active and Open World Learning</a> - 2020. [<a
href="https://scholar.google.com/scholar?cluster=2640432662088551010&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2011.12216.pdf">Energy-Based
Models for Continual Learning</a> -
<strong><em>NeurIPS20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=7094884707139778576&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://energy-based-model.github.io/Energy-Based-Models-for-Continual-Learning/">Project</a>].</p></li>
<li><p><a
href="https://openaccess.thecvf.com/content_CVPR_2019/papers/Zhou_Learning_to_Learn_Image_Classifiers_With_Visual_Analogy_CVPR_2019_paper.pdf">Learning
to Learn Image Classifiers with Visual Analogy</a> -
<strong><em>CVPR18</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=6285495755337309034&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/1804.04340v2.pdf">Zero-Shot Object
Detection</a> - <strong><em>ECCV18</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=2027060030559987993&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2103.02603v1.pdf">Towards Open
World Object Detection</a> - <strong><em>CVPR21</em></strong>, 2021.
[<a
href="https://scholar.google.com/scholar?cluster=9715328489246217151&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. [<a
href="https://github.com/JosephKJ/OWOD">Project</a>].</p></li>
<li><p><a
href="https://dl.acm.org/doi/pdf/10.1145/3123266.3123323">Learning to
Recognise Unseen Classes by A Few Similes</a> -
<strong><em>MM17</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?q=related:FZZr2BK0U6YJ:scholar.google.com/&amp;scioq=Learning+to+Recognise+Unseen+Classes+by+A+Few+Similes&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://proceedings.kr.org/2020/87/kr2020-0087-chen-et-al.pdf">Ontology-guided
Semantic Composition for Zero-Shot Learning</a> -
<strong><em>KR20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=1825132732653262003&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/pdf/2102.07339.pdf">OntoZSL:
Ontology-enhanced Zero-shot Learning</a> -
<strong><em>WWW21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=1042573079110416209&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2103.00070">Knowledge-aware
Zero-Shot Learning: Survey and Perspective</a> -
<strong><em>IJCAI21</em></strong> 2021. [<a
href="https://scholar.google.com/scholar?cluster=2596179801089642923&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://ieeexplore.ieee.org/document/8099612">From Red
Wine to Red Tomato: Composition with Context</a> -
<strong><em>CVPR17</em></strong>, 2017. [<a
href="https://scholar.google.com/scholar?cluster=6959320578989247472&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://link.springer.com/chapter/10.1007%2F978-3-030-01246-5_11">Attributes
as Operators: Factorizing Unseen Attribute-Object Compositions</a> -
<strong><em>ECCV18</em></strong>, 2018. [<a
href="https://scholar.google.com/scholar?cluster=11627198158637727139&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://ieeexplore.ieee.org/document/9010671">Learning
Compositional Representations for Few-Shot Recognition</a> -
<strong><em>CVPR19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=7363445845219257348&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://ieeexplore.ieee.org/document/9156505">Symmetry
and Group in Attribute-Object Compositions</a> -
<strong><em>CVPR20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=16870815556752021056&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2020/file/1010cedf85f6a7e24b087e63235dc12e-Paper.pdf">A
causal view of compositional zero-shot recognition</a> -
<strong><em>NeurIPS20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=2543173389101020482&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://dl.acm.org/doi/10.1145/3394171.3413849">Compositional
Few-Shot Recognition with Primitive Discovery and Enhancing</a> -
<strong><em>MM20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=15817839338790433509&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://ieeexplore.ieee.org/document/9156655">Learning
Unseen Concepts via Hierarchical Decomposition and Composition</a> -
<strong><em>CVPR20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=14161656227038242300&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="learning-with-cognitive-plausibility">Learning with Cognitive
Plausibility</h3>
<ul>
<li><p><a
href="https://en.wikipedia.org/wiki/Accuracy_and_precision">Accuracy and
Precision</a> - <strong><em>Wikipedia</em></strong>. Wikipedia on the
distinctions and the trade-off between accuracy and precision.</p></li>
<li><p><a
href="https://www.annualreviews.org/doi/abs/10.1146/annurev.ps.40.020189.003131">Cognitive
Science: Definition, Status, and Questions</a> - <strong><em>Annual
Review of Psychology</em></strong>, 1989. [<a
href="https://scholar.google.com/scholar?cluster=8549671583307260475&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="http://people.csail.mit.edu/torralba/courses/6.870/papers/Biederman_RBC_1987.pdf">Recognition-by-Components:
A Theory of Human Image Understanding</a> - <strong><em>Psychological
Review</em></strong>, 1987. [<a
href="https://scholar.google.com/scholar?cluster=16522931798979362446&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on the recognition-by-components
theory.</p></li>
<li><p><a
href="https://www.nature.com/articles/s41586-019-1138-y">Machine
Behaviour</a> - <strong><em>Nature</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=7881171273277686092&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://yzhu.io/publication/dark2020engineering/paper.pdf">Dark,
Beyond Deep: A Paradigm Shift to Cognitive AI with Humanlike Common
Sense</a> - <strong><em>Engineering</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=12292747257300299161&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Yixin Zhu and Song-Chun Zhus review on visual
commonsense.</p></li>
<li><p><a
href="https://cims.nyu.edu/~brenden/papers/OrhanEtAl2020NeurIPS.pdf">Self-supervised
Learning Through the eyes of a Child</a> -
<strong><em>NeurIPS20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=5608715260418451299&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. Concept learning through near-natural co-occurrence
frequency estimation.</p></li>
<li><p><a href="https://arxiv.org/abs/1910.01442">CLEVRER: CoLlision
Events for Video REpresentation and Reasoning</a> -
<strong><em>ICLR20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=4352064462350202338&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2020/hash/bf15e9bbff22c7719020f9df4badc20a-Abstract.html">BONGARD-LOGO:
A New Benchmark for Human-Level Concept Learning and Reasoning</a> -
<strong><em>NeurIPS20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=9164011458889391917&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://dl.acm.org/doi/10.1145/1143844.1143874">The
relationship between Precision-Recall and ROC curves</a> -
<strong><em>ICML06</em></strong>, 2006. [<a
href="https://scholar.google.com/scholar?cluster=10708180947310062390&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="http://export.arxiv.org/pdf/2009.08092">Distributional
Generalization: A New Kind of Generalization</a> - 2020. [<a
href="https://scholar.google.com/scholar?cluster=6190621467796247477&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/abs/pii/0010027793900584">Learning
and development in networks: The importance of starting small.</a> -
<strong><em>Cognition</em></strong>, 1993. [<a
href="https://scholar.google.com/scholar?cluster=5133345254007462915&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on the idea of curriculum
learning.</p></li>
<li><p><a
href="https://www.sciencedirect.com/science/article/pii/S0010027799000311">Language
acquisition in the absence of explicit negative evidence: how important
is starting small?</a> - <strong><em>Cognition</em></strong>, 1999. [<a
href="https://scholar.google.com/scholar?cluster=11813578367725362166&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://dl.acm.org/doi/pdf/10.1145/1553374.1553380">Curriculum
Learning</a> - <strong><em>ICML09</em></strong>, 2009. [<a
href="https://scholar.google.com/scholar?cluster=8740915934335425405&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper applying the idea of curriculum
learning to machine learning.</p></li>
<li><p><a href="https://ieeexplore.ieee.org/document/6126279">Parsing
video events with goal inference and intent prediction</a> -
<strong><em>ICCV11</em></strong>, 2011. [<a
href="https://scholar.google.com/scholar?cluster=5979196784405021658&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://ieeexplore.ieee.org/document/6751387">Inferring
“Dark Matter” and “Dark Energy” from Videos</a> -
<strong><em>ICCV13</em></strong>, 2013. [<a
href="https://scholar.google.com/scholar?cluster=3467068307444498624&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>]. The original paper on latent state discovery from
videos.</p></li>
<li><p><a
href="https://openaccess.thecvf.com/content_CVPR_2019/papers/Shi_Explainable_and_Explicit_Visual_Reasoning_Over_Scene_Graphs_CVPR_2019_paper.pdf">Explainable
and Explicit Visual Reasoning over Scene Graphs</a> -
<strong><em>CVPR19</em></strong>, 2019. [<a
href="https://scholar.google.com/scholar?cluster=8517395712319798436&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2021/hash/4c26774d852f62440fc746ea4cdd57f6-Abstract.html">Attention
over Learned Object Embeddings Enables Complex Visual Reasoning</a> -
<strong><em>NeurIPS21</em></strong>, 2021. [<a
href="https://scholar.google.com/scholar?cluster=127829313460149801&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://papers.NeurIPS.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf">Distributed
Representations of Words and Phrases and their Compositionality</a> -
<strong><em>NeurIPS13</em></strong>, 2013. [<a
href="https://scholar.google.com/scholar?cluster=2410615501856807729&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&amp;arnumber=9197172">Motion
Reasoning for Goal-Based Imitation Learning</a> -
<strong><em>ICRA20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=7519230802512388210&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://openaccess.thecvf.com/content_CVPR_2020/papers/Ji_Action_Genome_Actions_As_Compositions_of_Spatio-Temporal_Scene_Graphs_CVPR_2020_paper.pdf">Action
Genome: Actions as Compositions of Spatio-temporal Scene Graphs</a> -
<strong><em>CVPR20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=388714326304810525&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://proceedings.neurips.cc/paper/2020/file/64dcf3c521a00dbb4d2a10a27a95a9d8-Paper.pdf">Refactoring
Policy for Compositional Generalizability using Self-Supervised Object
Proposals</a> - <strong><em>NeurIPS20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=2255457416066730255&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://openaccess.thecvf.com/content_CVPR_2020/papers/Materzynska_Something-Else_Compositional_Action_Recognition_With_Spatial-Temporal_Interaction_Networks_CVPR_2020_paper.pdf">Something-Else:
Compositional Action Recognition with Spatial-Temporal Interaction
Networks</a> - <strong><em>CVPR20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=17469863154797360929&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://openaccess.thecvf.com/content_CVPR_2020/papers/Zhang_Putting_Visual_Object_Recognition_in_Context_CVPR_2020_paper.pdf">Putting
visual object recognition in context</a> -
<strong><em>CVPR20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=6207193649298787857&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2106.13884">Multimodal Few-Shot
Learning with Frozen Language Models</a> - 2021. [<a
href="https://scholar.google.com/scholar?cluster=16154696122208258147&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&amp;arnumber=5206772">Describing
Objects by their Attributes</a> - <strong><em>CVPR09</em></strong>,
2009. [<a
href="https://scholar.google.com/scholar?cluster=6853730684095116174&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://arxiv.org/abs/2108.07783">Panoramic Learning
with A Standardized Machine Learning Formalism</a> - 2021. [<a
href="https://scholar.google.com/scholar?cluster=14222434793711614257&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://psycnet.apa.org/record/1996-10319-001">Graininess of
judgment under uncertainty: An accuracy-informativeness trade-off</a> -
<strong><em>Journal of Experimental Psychology</em></strong>, 1995. [<a
href="https://scholar.google.com/scholar?cluster=15366302654259490472&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://openreview.net/forum?id=GFsU8a0sGB">Federated
Learning via Posterior Averaging: A New Perspective and Practical
Algorithms</a> - <strong><em>ICLR20</em></strong>, 2020. [<a
href="https://scholar.google.com/scholar?cluster=2486025806014234529&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://www.biorxiv.org/content/10.1101/2022.01.29.478330v2.abstract">Interplay
between rule learning and rule switching in a perceptual categorization
task</a> - 2022. [<a
href="https://scholar.google.com/scholar?cluster=7461559646167397406&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<!--
### Tasks & Environments
#### Dataset Aggregation
* [A Dataset and Architecture for Visual Reasoning with a Working Memory](https://link.springer.com/chapter/10.1007%2F978-3-030-01249-6_44) - ***ECCV'18***, 2018. [[Project](https://github.com/google/cog)].
* [PHYRE: A New Benchmark for Physical Reasoning](https://research.fb.com/wp-content/uploads/2019/08/PHYRE-A-New-Benchmark-for-Physical-Reasoning-v4.pdf) - ***NeurIPS'19***, 2019.
* [CATER: A diagnostic dataset for Compositional Actions & TEmporal Reasoning](https://openreview.net/forum?id=HJgzt2VKPB) - ***ICLR'20***, 2020. [[Project](https://rohitgirdhar.github.io/CATER/)].
* [CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and Transfer Learning](https://arxiv.org/abs/2010.04296), 2020.
#### Embodied AI Environment
* [ThreeDWorld](http://www.threedworld.org/) - ***MIT-IBM***. [[Paper](https://arxiv.org/abs/2007.04954)].
* [Rearrangement: A Challenge for Embodied AI](https://arxiv.org/pdf/2011.01975.pdf), 2020.
* [iGibson](http://svl.stanford.edu/igibson/) - ***Stanford***. [[Paper](https://ieeexplore.ieee.org/document/8954627)].
* [AI2-THOR](https://ai2thor.allenai.org/ithor) - ***Allen Institute***. [[Paper](https://arxiv.org/abs/1712.05474)].
* [Robo-THOR](https://ai2thor.allenai.org/robothor) - ***Allen Institute***. [[Paper](https://arxiv.org/abs/2004.06799)].
* [Manipula-THOR](https://ai2thor.allenai.org/manipulathor) - ***Allen Institute***. [[Paper](https://arxiv.org/abs/2104.11213)].
* [RLBench](https://sites.google.com/view/rlbench) - ***Imperial College***. [[Paper](https://ieeexplore.ieee.org/document/9001253)].
#### First-Person Vision
* [First-Person Vision](https://ieeexplore.ieee.org/document/6232429) - ***Proceedings of the IEEE***, 2012.
* [The Evolution of First Person Vision Methods: A Survey](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7055926) - ***Trans. CSVT***, 2015.
* [Understanding the Nature of First-Person Videos: Characterization and Classification using Low-Level Features](http://vijaychan.github.io/Publications/2014%20CVPR%20Workshop%20-%20Understanding%20the%20Nature%20of%20First-Person%20Videos.pdf) - ***CVPR'14***, 2014.
* [Pooled Motion Features for First-Person Videos](https://openaccess.thecvf.com/content_cvpr_2015/papers/Ryoo_Pooled_Motion_Features_2015_CVPR_paper.pdf) - ***CVPR'15***, 2015.
* [Actor and Observer: Joint Modeling of First and Third-Person Videos](https://openaccess.thecvf.com/content_cvpr_2018/papers/Sigurdsson_Actor_and_Observer_CVPR_2018_paper.pdf) - ***CVPR'18***, 2018.
* [Forecasting Human-Object Interaction: Joint Prediction of Motor Attention and Actions in First Person Video](https://link.springer.com/chapter/10.1007/978-3-030-58452-8_41) - ***ECCV'20***, 2020.
* [Rolling-Unrolling LSTMs for Action Anticipation from First-Person Video](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9088213) - ***Trans. PAMI***, 2020.
* [View-Action Representation Learning for Active First-Person Vision](https://ieeexplore.ieee.org/document/9064828) - ***Trans. CSVT***, 2021.
* [Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot Simulator](https://ieeexplore.ieee.org/abstract/document/1389727) - ***IROS'04***, 2004. [[Project](http://gazebosim.org/)].
* [ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning](https://arxiv.org/pdf/1605.02097v2.pdf) - ***CIG'16***, 2016. [[Project](http://vizdoom.cs.put.edu.pl/)].
* [Is First Person Vision Challenging for Object Tracking? The TREK-100 Benchmark Dataset](https://arxiv.org/abs/2011.12263), 2020.
* **Visual Experience Database** [[Project](http://visualexperiencedatabase.org/research.html)]. [[Publications](http://visualexperiencedatabase.org/publications.html)].
#### Abstract Reasoning Challenge
* [On the Measure of Intelligence](https://arxiv.org/pdf/1911.01547.pdf) - ***Google Research***, 2019.
* [Abstract Reasoning Challenge](https://www.kaggle.com/c/abstraction-and-reasoning-challenge/)
#### AI Birds Challenge
* [AI-Birds](https://aibirds.org) - ***IJCAI***.
* [Hi-Phy: A Benchmark for Hierarchical Physical Reasoning](https://openreview.net/forum?id=AcL1ORzw0Nf), 2021.
#### Minecraft
* [Mining Learning and Crafting Scientific Experiments: A Literature Review on the Use of Minecraft in Education and Research](https://eric.ed.gov/?id=EJ1097278) - ***Journal on Eduction Technology & Society***, 2016.
##### Malmo Platform for Minecraft AI
* [The Malmo Platform for Artificial Intelligence Experimentation](https://www.microsoft.com/en-us/research/publication/malmo-platform-artificial-intelligence-experimentation/) ***IJCAI'16***, 2016.
* [[Malmo](https://github.com/Microsoft/malmo#getting-started)].
* [[Malmo-env](https://github.com/Microsoft/malmo/tree/master/MalmoEnv)].
* [[Malmo-Tutorials](https://microsoft.github.io/malmo/0.17.0/Python_Examples/Tutorial.pdf)].
* [[MineRL](https://minerl.io/)].
* [[MarLo Challenge 2018](https://github.com/crowdAI/marLo)].
##### **Artificial Intelligence**
* [Multi-task curriculum learning in a complex, visual, hard-exploration domain: Minecraft](https://arxiv.org/abs/2106.14876), 2021.
* [Learning to execute instructions in a Minecraft dialogue](https://www.aclweb.org/anthology/2020.acl-main.232/) - ***ACL'20***, 2020.
* [Collaborative Dialogue in Minecraft](https://www.aclweb.org/anthology/P19-1537.pdf) - ***ACL'19***, 2019.
* [Learning Skill Hierarchies from Predicate Descriptions and Self-Supervision](http://web.mit.edu/tslvr/www/papers/genplan20_camera_ready.pdf) - ***AAAI GenPlan Workshop***, 2020.
* [AMRL: Aggregated Memory for Reinforcement Learning](https://openreview.net/pdf?id=Bkl7bREtDr) - ***ICLR'20***, 2020.
* [MineRL: A Large-Scale Dataset of Minecraft Demonstrations](https://www.ijcai.org/Proceedings/2019/0339.pdf) ***IJCAI'19***, 2019. [[2020 Competition](https://arxiv.org/abs/2106.03748)].
* [Design Mining for Minecraft Architecture](http://www.cs.cornell.edu/~eland/papers/aiide2018.pdf) - ***AAAI'18***, 2018.
* [Adaptive Agents in Minecraft: A Hybrid Paradigm for Combining Domain Knowledge with Reinforcement Learning](https://link.springer.com/chapter/10.1007%2F978-3-319-71679-4_6) - ***AAMAS'17***, 2017.
* [Asynchronous Data Aggregation for Training End to End Visual Control Networks](https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/fp185-monfort-1.pdf) - ***AAMAS'17***, 2017.
* [A Deep Hierarchical Approach to Lifelong Learning in Minecraft](https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14630/13950) - ***AAAI'17***, 2017.
* [Modular Multitask Reinforcement Learning with Policy Sketches](http://proceedings.mlr.press/v70/andreas17a.html) - ***ICML'17***, 2017.
* [Control of memory, active perception, and action in minecraft](http://proceedings.mlr.press/v48/oh16.pdf) - ***ICML'16***, 2016.
* [Learning Behavior from Demonstration in Minecraft via Symbolic Similarity Measures](fdg2015.org/papers/fdg2015_paper_11.pdf) - ***FDG'15***, 2015.
##### **Cognitive Science**
* [How Players Speak to an Intelligent GameCharacter Using Natural Language Messages](http://todigra.org/index.php/todigra/article/view/88/139) - ***DiGRA***, 2018.
* [Minecraft as a Generative Platform for Analyzing and Practicing Spatial Reasoning](https://link.springer.com/chapter/10.1007%2F978-3-030-57983-8_22) - ***Spatial Cognition'20***, 2020.
* [Generative Design in Minecraft: Chronicle Challenge](http://computationalcreativity.net/iccc2019/papers/iccc19-lbp-7.pdf) - ***ICCC'20***, 2020.
* [Minecraft as a Platform for Project-Based Learning in AI](https://aaai.org/ojs/index.php/AAAI/article/view/7070) - ***AAAI'20***, 2020.
* [MC-Saar-Instruct: a Platform for Minecraft Instruction Giving Agents](https://www.aclweb.org/anthology/2020.sigdial-1.7.pdf) - ***SIGDial'20***, 2020.
*[Back to Top](#c)-->
<h2 id="institute-researcher">Institute &amp; Researcher</h2>
<h3 id="mit">MIT</h3>
<ul>
<li><p><a href="https://cbmm.mit.edu/">Center for Brains, Minds and
Machines (CBMM)</a> - <strong><em>MIT</em></strong>.</p></li>
<li><p><a href="https://cocosci.mit.edu/josh">Josh Tenenbaum</a> -
<strong><em>Department of Brain and Cognitive Sciences, CSAIL,
MIT</em></strong>, <a href="https://cocosci.mit.edu/">Computational
Cognitive Science Group (CoCoSci Group)</a> -
<strong><em>MIT</em></strong>.</p></li>
<li><p><a href="https://saxelab.mit.edu/people/rebecca-saxe">Rebecca
Saxe</a> - <strong><em>Department of Brain and Cognitive Sciences,
MIT</em></strong>, <a href="https://saxelab.mit.edu/">Social Cognitive
Neuroscience Laboratory (SaxeLab)</a> -
<strong><em>MIT</em></strong>.</p></li>
<li><p><a href="https://cbmm.mit.edu/about/people/schulz">Laura
Schulz</a> - <strong><em>Department of Brain and Cognitive Sciences,
MIT</em></strong>, <a href="https://eccl.mit.edu/">Early Childhood
Cognition Lab</a> - <strong><em>MIT</em></strong>.</p></li>
<li><p><a href="https://people.csail.mit.edu/lpk/">Leslie Kaelbling</a>
- <strong><em>Department of Electrical Engineering and Computer Science,
CSAIL, MIT</em></strong>, <a href="https://lis.csail.mit.edu/">The
Learning &amp; Intelligent Systems Group</a> -
<strong><em>MIT</em></strong>.</p></li>
<li><p><a href="https://people.csail.mit.edu/asolar/">Armando
Solar-Lezama</a> - <strong><em>Department of Electrical Engineering and
Computer Science, CSAIL, MIT</em></strong>, <a
href="http://groups.csail.mit.edu/cap/">Computer-Aided Programming
Group</a> - <strong><em>MIT</em></strong>.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="stanford">Stanford</h3>
<ul>
<li><p><a href="https://profiles.stanford.edu/fei-fei-li">Li Fei-Fei</a>
- <strong><em>Computer Science Department, Human-Centered AI Institute,
Stanford</em></strong>, <a href="https://svl.stanford.edu/">Stanford
Vision and Learning Lab</a> -
<strong><em>Stanford</em></strong>.</p></li>
<li><p><a href="https://cocolab.stanford.edu/ndg.html">Noah Goodman</a>
- <strong><em>Department of Psychology, Computer Science Department,
Stanford</em></strong>, <a
href="https://cocolab.stanford.edu/">Computation &amp; Cognition Lab
(CoCoLab)</a> - <strong><em>Stanford</em></strong>.</p></li>
<li><p><a href="https://web.stanford.edu/~mcfrank/">Michael Frank</a> -
<strong><em>Department of Psychology, Stanford</em></strong>, <a
href="http://langcog.stanford.edu/">The Stanford Language and Cognition
Lab</a> - <strong><em>Stanford</em></strong>.</p></li>
<li><p><a
href="https://cicl.stanford.edu/member/tobias_gerstenberg/">Tobias
Gerstenberg</a> - <strong><em>Department of Psychology,
Stanford</em></strong>, <a href="https://cicl.stanford.edu/">Causality
in Cognition Lab (CICL)</a> -
<strong><em>Stanford</em></strong>.</p></li>
<li><p><a href="http://ai.stanford.edu/~cbfinn/">Chelsea Finn</a> -
<strong><em>Computer Science Department, Stanford</em></strong>, <a
href="https://irislab.stanford.edu/">Intelligence through Robotic
Interaction at Scale (IRIS Group)</a> -
<strong><em>Stanford</em></strong>.</p></li>
<li><p><a href="https://comm.stanford.edu/faculty-bailenson/">Jeremy
Bailenson</a> - <strong><em>Department of Communication,
Stanford</em></strong>, <a href="https://stanfordvr.com/">Virtual Human
Interaction Lab (VHIL)</a> -
<strong><em>Stanford</em></strong>.</p></li>
<li><p><a href="https://jiajunwu.com/">Jiajun Wu</a> -
<strong><em>Computer Science Department,
Stanford</em></strong>.</p></li>
<li><p><a href="https://profiles.stanford.edu/judith-fan">Judith Fan</a>
- <strong><em>Department of Psychology, Stanford</em></strong>, <a
href="https://cogtoolslab.github.io/">Cognitive Tools Lab</a> -
<strong><em>Stanford</em></strong>.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="princeton">Princeton</h3>
<ul>
<li><p><a href="https://psych.princeton.edu/person/tania-lombrozo">Tania
Lombrozo</a> - <strong><em>Department of Psychology,
Princeton</em></strong>, <a
href="https://cognition.princeton.edu/">Concepts &amp; Cognition Lab</a>
- <strong><em>Princeton</em></strong>.</p></li>
<li><p><a href="https://cocosci.princeton.edu/tom/index.php">Thomas
Griffiths</a> - <strong><em>Department of Psychology, Department of
Computer Science, Princeton</em></strong>, <a
href="https://cocosci.princeton.edu/index.php">Computational Cognitive
Science Lab</a> - <strong><em>Princeton</em></strong>.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="harvard">Harvard</h3>
<ul>
<li><p><a
href="https://psychology.fas.harvard.edu/people/elizabeth-s-spelke">Elizabeth
Spelke</a> - <strong><em>Department of Psychology,
Harvard</em></strong>, <a href="https://www.harvardlds.org/">Harvard
Laboratory for Developmental Studies</a> -
<strong><em>Harvard</em></strong>.</p></li>
<li><p><a href="https://www.tomerullman.org/">Tomer Ullman</a> -
<strong><em>Department of Psychology, Harvard</em></strong>, <a
href="https://cocodev.fas.harvard.edu/">Computation, Cognition, and
Development Lab (CoCoDev)</a> -
<strong><em>Harvard</em></strong>.</p></li>
<li><p><a
href="https://psychology.fas.harvard.edu/people/samuel-j-gershman">Samuel
Gershman</a> - <strong><em>Department of Psychology,
Harvard</em></strong>, <a href="https://gershmanlab.com/">Computational
Cognitive Neuroscience Lab (CCN Lab)</a> -
<strong><em>Harvard</em></strong>.</p></li>
<li><p><a
href="https://psychology.fas.harvard.edu/people/fiery-cushman">Fiery
Cushman</a> - <strong><em>Department of Psychology,
Harvard</em></strong>, <a
href="https://cushmanlab.fas.harvard.edu/">Moral Psychology Research
Lab</a> - <strong><em>Harvard</em></strong>.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="ucla">UCLA</h3>
<ul>
<li><p><a href="http://vcla.stat.ucla.edu/">Center for Vision,
Cognition, Learning and Autonomy (VCLA)</a> - <strong><em>Department of
Statistics, UCLA</em></strong>.</p></li>
<li><p><a href="http://www.stat.ucla.edu/~ywu/">Ying Nian Wu</a> -
<strong><em>Department of Statistics, UCLA</em></strong>.</p></li>
<li><p><a href="http://www.stat.ucla.edu/~taogao/Taogao.html">Tao
Gao</a> - <strong><em>Department of Statistics, Department of
Psychology, UCLA</em></strong>, <a
href="http://www.stat.ucla.edu/~taogao/index.html">Visual Intelligence
Lab</a> - <strong><em>UCLA</em></strong>.</p></li>
<li><p><a
href="https://www.psych.ucla.edu/faculty/page/hongjing">Hongjing Lu</a>
- <strong><em>Department of Psychology, Department of Statistics,
UCLA</em></strong>, <a href="http://cvl.psych.ucla.edu/">Computational
Vision and Learning Lab (CVL)</a> -
<strong><em>UCLA</em></strong>.</p></li>
<li><p><a href="http://web.cs.ucla.edu/~guyvdb/">Guy Van den Broeck</a>
- <strong><em>Department of Computer Science, UCLA</em></strong>, <a
href="http://starai.cs.ucla.edu/#">StarAI Lab</a> -
<strong><em>UCLA</em></strong>.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="uc-berkeley">UC Berkeley</h3>
<ul>
<li><p><a href="https://people.eecs.berkeley.edu/~anca/index.html">Anca
Dragan</a> - <strong><em>Department of Electrical Engineering and
Computer Science, UC Berkeley</em></strong>, <a
href="http://interact.berkeley.edu/">Interactive Autonomy and
Collaborative Technologies Laboratory (InterACT)</a> - <strong><em>UC
Berkeley</em></strong>.</p></li>
<li><p><a href="https://psychology.berkeley.edu/people/fei-xu">Fei
Xu</a> - <strong><em>Department of Psychology, UC
Berkeley</em></strong>, <a
href="https://babylab5.wixsite.com/bell">Berkeley Early Learning Lab (Xu
Lab)</a> - <strong><em>UC Berkeley</em></strong>.</p></li>
<li><p><a href="http://alisongopnik.com/">Alison Gopnik</a> -
<strong><em>Department of Psychology, UC Berkeley</em></strong>, <a
href="http://www.gopniklab.berkeley.edu/">Cognitive Development &amp;
Learning Lab (Gopnik Lab)</a> - <strong><em>UC
Berkeley</em></strong>.</p></li>
<li><p><a href="http://colala.berkeley.edu/people/piantadosi/">Steve
Piantadosi</a> - <strong><em>Department of Psychology, UC
Berkeley</em></strong>, <a href="http://colala.berkeley.edu/">The
computation and language lab (colala)</a> - <strong><em>UC
Berkeley</em></strong>.</p></li>
<li><p><a href="http://www.celestekidd.com/">Celeste Kidd</a> -
<strong><em>Department of Psychology, UC Berkeley</em></strong>, <a
href="https://www.kiddlab.com/">Kidd Lab</a> - <strong><em>UC
Berkeley</em></strong>.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="bnu">BNU</h3>
<ul>
<li><a
href="https://brain.bnu.edu.cn/English/Faculty/CurrentFaculty/Bzz/a552402e529a4f27b979378abd42c10e.htm">Yanchao
Bi</a> - <strong><em>IDG/McGovern Institute for Brain Research and the
State Key Laboratory of Cognitive Neuroscience and Learning, Beijing
Normal University (BNU)</em></strong>, <a
href="http://bilab.bnu.edu.cn/">Yanchao Bis Concept Lab (Bi Lab)</a> -
<strong><em>BNU</em></strong>.</li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="pku">PKU</h3>
<ul>
<li><p><a href="https://zhusongchun.net/">Song-Chun Zhu</a> -
<strong><em>School of AI and Institute for AI, Peking University
(PKU)</em></strong>.</p></li>
<li><p><a href="https://yzhu.io/">Yixin Zhu</a> - <strong><em>School of
AI and Institute for AI, Peking University (PKU)</em></strong>, <a
href="https://pku.ai/">Cognitive Reasoning Lab (CoRe Lab)</a> -
<strong><em>PKU</em></strong>.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="ucsd">UCSD</h3>
<ul>
<li><p><a href="https://pages.ucsd.edu/~ztu/">Zhuowen Tu</a> -
<strong><em>Department of Computer Science, UCSD</em></strong>, <a
href="https://pages.ucsd.edu/~ztu/Group.htm">Machine Learning,
Perception, and Cognition Lab (mlPC)</a> -
<strong><em>UCSD</em></strong>.</p></li>
<li><p><a
href="https://psychology.ucsd.edu/people/profiles/evul.html">Ed Vul</a>
- <strong><em>Department of Psychology, UCSD</em></strong>, <a
href="http://www.evullab.org/index.html">Computational Cognition Lab</a>
- <strong><em>UCSD</em></strong>.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="nyu">NYU</h3>
<ul>
<li><p><a href="https://cs.nyu.edu/~davise/">Ernest Davis</a> -
<strong><em>Department of Computer Science, Courant Institute of
Mathematical Sciences, NYU</em></strong>.</p></li>
<li><p><a href="http://garymarcus.com/index.html">Gary Marcus</a> -
<strong><em>Department of Psychology, NYU</em></strong>.</p></li>
<li><p><a href="https://cims.nyu.edu/~brenden/">Brenden Lake</a> -
<strong><em>Department of Psychology, NYU</em></strong>, <a
href="https://lake-lab.github.io/">Human &amp; Machine Learning Lab
(Lake Lab)</a> - <strong><em>NYU</em></strong>.</p></li>
<li><p><a href="https://as.nyu.edu/faculty/todd-gureckis.html">Todd
Gureckis</a> - <strong><em>Department of Psychology, NYU</em></strong>,
<a href="http://gureckislab.org/">Computation &amp; Cognition Lab</a> -
<strong><em>NYU</em></strong>.</p></li>
<li><p><a href="http://www.cns.nyu.edu/malab/people.html">Wei Ji Ma</a>
- <strong><em>Department of Psychology, Center for Neural Science,
NYU</em></strong>, <a href="http://www.cns.nyu.edu/malab/">Wei Ji Ma
Lab</a> - <strong><em>NYU</em></strong>.</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="jhu">JHU</h3>
<ul>
<li><a href="https://perception.jhu.edu/chaz/">Chaz Firestone</a> -
<strong><em>Department of Psychological and Brain Sciences, Johns
Hopkins University (JHU)</em></strong>, <a
href="https://perception.jhu.edu/">Hopkins Perception &amp; Mind Lab</a>
- <strong><em>JHU</em></strong>.</li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="sit">SIT</h3>
<ul>
<li><a href="https://markkho.github.io/">Mark Ho</a> -
<strong><em>Department of Computer Science, Stevens Institute of
Technology (SIT)</em></strong>, <a
href="https://codec-lab.github.io/">Computation and Decision-Making
Lab</a> - <strong><em>SIT</em></strong>.</li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h2 id="people-book">People &amp; Book</h2>
<h3 id="ulf-grenander">Ulf Grenander</h3>
<p>Applied mathematician, the founder of General Pattern Theory.</p>
<ul>
<li><p><a
href="https://www.dam.brown.edu/ptg/REPORTS/calculustext.PDF">A Calculus
of Ideas: A Mathematical Study of Thinking</a> - <strong><em>World
Scientific Publishing Company</em></strong>, 2012. [<a
href="https://scholar.google.com/scholar?cluster=12182416000849265255&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://global.oup.com/academic/product/general-pattern-theory-9780198536710?cc=lt&amp;lang=de#">General
Pattern Theory: A Mathematical Study of Regular Structures</a> -
<strong><em>Oxford University Press</em></strong>, 1993. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0%2C5&amp;q=General+Pattern+Theory&amp;btnG=">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="david-marr">David Marr</h3>
<p>Computational Cognitive Neuroscientist, the establisher of the Levels
of Analysis.</p>
<ul>
<li><a href="https://usa1lib.org/book/1223444/8e5ca8">Vision: A
Computational Investigation into the Human Representation and Processing
of Visual Information</a> - <strong><em>MIT Press</em></strong>, 1982.
[<a
href="https://scholar.google.com/scholar?cluster=14386368570811483142&amp;hl=en&amp;as_sdt=0,44">All
Versions</a>].</li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="michael-tomasello">Michael Tomasello</h3>
<p>Cognitive scientist, set up the foundations of studying human
communications.</p>
<ul>
<li><p><a href="https://1lib.net/book/541274/39859f">Origins of human
communication</a> - <strong><em>MIT Press</em></strong>, 2010. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=2553369883266458474">All
Versions</a>].</p></li>
<li><p><a
href="https://hk1lib.org/book/541275/1452f8?id=541275&amp;secret=1452f8">The
cultural origins of human cognition</a> - <strong><em>Havard University
Press</em></strong>, 2000. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=5000469061641945144">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="judea-pearl">Judea Pearl</h3>
<p>Applied mathematician, proposed causal intervention on siamese
bayesian networks.</p>
<ul>
<li><p><a href="http://bayes.cs.ucla.edu/WHY/">The Book of Why: The New
Science of Cause and Effect</a> - <strong><em>Basic Books</em></strong>,
2018. [<a
href="https://scholar.google.com/scholar?cluster=2505901292485349932&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a
href="https://hk1lib.org/book/2780725/2ec8f1?id=2780725&amp;secret=2ec8f1">Causality:
Models, Reasoning and Inference</a> - <strong><em>Cambridge University
Press</em></strong>, 2009. [<a
href="https://scholar.google.com/scholar?cluster=10996260119229499611&amp;hl=en&amp;as_sdt=0,5&amp;as_vis=1">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="susan-carey">Susan Carey</h3>
<p>Developmental psychologist, proposed <em>object</em> as a core
knowledge of human intelligence.</p>
<ul>
<li><p><a
href="https://hk1lib.org/book/844457/42178f?id=844457&amp;secret=42178f">The
Origin of Concepts</a> - <strong><em>Oxford University
Press</em></strong>, 2009. [<a
href="https://scholar.google.com/scholar?cluster=11493102398422813821&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://hk1lib.org/book/3659332/11fa44">Conceptual
Change in Childhood</a> - <strong><em>MIT Press</em></strong>, 1985. [<a
href="https://scholar.google.com/scholar?hl=en&amp;as_sdt=0%2C5&amp;q=conceptual+change+in+childhood+susan+carey&amp;btnG=">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="daniel-kahneman">Daniel Kahneman</h3>
<p>Computational cognitive scientist and Economist, set up the
foundations for Decision Theory.</p>
<ul>
<li><a
href="https://hk1lib.org/book/2181569/f5e85a?id=2181569&amp;secret=f5e85a">Thinking,
fast and slow</a> - <strong><em>Farrar Straus Giroux</em></strong>,
2011. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=3255681708785115121">All
Versions</a>].</li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="karl-popper">Karl Popper</h3>
<p>Scientific philosophor, the founder of scientific verification
theories.</p>
<ul>
<li><p><a href="https://hk1lib.org/book/511214/299596">The logic of
scientific discovery</a> - <strong><em>Routledge</em></strong>, 2005.
[<a
href="https://scholar.google.com/scholar?cluster=5836864564733788424&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
<li><p><a href="https://hk1lib.org/book/2773070/c48f60">All Life is
Problem Solving</a> - <strong><em>Routledge</em></strong>, 2001. [<a
href="https://scholar.google.com/scholar?cluster=9799073870888093350&amp;hl=en&amp;as_sdt=0,5">All
Versions</a>].</p></li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h3 id="john-hopcroft">John Hopcroft</h3>
<p>Applied Mathematician, theoretical computer scientist.</p>
<ul>
<li><a
href="http://www.cs.cornell.edu/jeh/book%20no%20so;utions%20March%202019.pdf">Foundations
of Data Science</a> - <strong><em>Cambridge University
Press</em></strong>. [<a
href="https://scholar.google.com/scholar?oi=bibs&amp;hl=en&amp;cluster=1802704438630899850">All
Versions</a>].</li>
</ul>
<p>*<a href="#c">Back to Top</a></p>
<h2 id="about">About</h2>
<p>The initiator of this repo has been struggling to taxonomize related
topics, since there are so many perspectives to follow, such as
task-oriented, technique-oriented, and metaphysics-oriented. Finally he
decided to focus on the perspective of <strong><em>The Sciences of
Intelligence</em></strong>—each topic describes a phenomenon of
intelligence, or an intelligent behavior—they show the objectives of
reverse-engineering human intelligence for computational methods. These
topics are never restricted to specific technical methods or tasks, but
are trying to organize the nature of intelligence—from both <em>the
software perspective</em> and <em>the hardware perspective</em>.</p>
<p>Obviously, this reading list is far from covering the every aspect of
AGI and CoCoSci. Since the list is a by-product of the literature
reviews when the initiator is working on Abduction and Bayesian
modeling, other topics are also collected with biases, more or less.
Abduction may be the way humans explain the world with the known, and
discover the unknown, requiring much more investigations into its
computational basis, cognitive underpinnings, and applications to AI.
Please feel free to reach out!</p>
<p>*<a href="#c">Back to Top</a></p>