Files
awesome-awesomeness/terminal/graphclassification
2024-04-19 23:37:46 +02:00

34 lines
5.3 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
 Awesome Graph Classification
!Awesome (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg) (https://github.com/sindresorhus/awesome)
!PRs Welcome (https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square) (http://makeapullrequest.com)
!License (https://img.shields.io/github/license/benedekrozemberczki/awesome-graph-embedding.svg?color=blue)
!repo size (https://img.shields.io/github/repo-size/benedekrozemberczki/awesome-graph-classification.svg) (https://github.com/benedekrozemberczki/awesome-graph-classification/archive/master.zip) !benedekrozemberczki 
(https://img.shields.io/twitter/follow/benrozemberczki?style=social&logo=twitter) (https://twitter.com/intent/follow?screen_name=benrozemberczki) 
A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers with reference implementations.
Relevant graph classification benchmark datasets are available here  (https://github.com/shiruipan/graph_datasets).
Similar collections about community detection (https://github.com/benedekrozemberczki/awesome-community-detection), classification/regression tree (https://github.com/benedekrozemberczki/awesome-decision-tree-papers), fraud detection 
(https://github.com/benedekrozemberczki/awesome-fraud-detection-papers), Monte Carlo tree search (https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers), and gradient boosting 
(https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers) papers with implementations.
 
――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――
Contents 
1. Matrix Factorization (https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/chapters/matrix_factorization.md) 
2. Spectral and Statistical Fingerprints (https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/chapters/fingerprints.md)
3. Deep Learning (https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/chapters/deep_learning.md) 
4. Graph Kernels (https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/chapters/kernels.md)
――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――
License
- CC0 Universal (https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/LICENSE)