195 lines
32 KiB
Plaintext
195 lines
32 KiB
Plaintext
|
||
|
||
|
||
|
||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome XAI [0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mAwesome[0m[38;5;14m[1m[4m (https://awesome.re/badge.svg)[0m[38;2;255;187;0m[1m[4m (https://awesome.re)[0m
|
||
|
||
|
||
[38;5;12mA curated list of XAI and Interpretable ML papers, methods, critiques, and[39m
|
||
[38;5;12mresources.[39m
|
||
|
||
|
||
|
||
|
||
|
||
[38;5;12mExplainable AI (XAI) is a branch of machine learning research which seeks to[39m
|
||
[38;5;12mmake various machine learning techniques more understandable.[39m
|
||
|
||
|
||
|
||
|
||
|
||
[38;2;255;187;0m[4mContents[0m
|
||
[38;5;12m- [39m[38;5;14m[1mPapers[0m[38;5;12m (#papers)[39m
|
||
[48;5;235m[38;5;249m- **Landmarks** (#landmarks)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **Surveys** (#surveys)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **Evaluations** (#evaluations)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **XAI Methods** (#xai-methods)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **Interpretable Models** (#interpretable-models)[49m[39m
|
||
[48;5;235m[38;5;249m- **Critiques** (#critiques)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRepositories[0m[38;5;12m (#repositories)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mVideos[0m[38;5;12m (#videos)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mFollow[0m[38;5;12m (#follow)[39m
|
||
|
||
|
||
|
||
[38;2;255;187;0m[4mPapers[0m
|
||
|
||
[38;2;255;187;0m[4mLandmarks[0m
|
||
|
||
[38;5;12mThese are some of our favorite papers. They are helpful to understand the field[39m
|
||
[38;5;12mand critical aspects of it. We believe this papers are worth reading in their[39m
|
||
[38;5;12mentirety.[39m
|
||
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mExplanation[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mArtificial[0m[38;5;14m[1m [0m[38;5;14m[1mIntelligence:[0m[38;5;14m[1m [0m[38;5;14m[1mInsights[0m[38;5;14m[1m [0m[38;5;14m[1mfrom[0m[38;5;14m[1m [0m[38;5;14m[1mthe[0m[38;5;14m[1m [0m[38;5;14m[1mSocial[0m[38;5;14m[1m [0m[38;5;14m[1mSciences[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/abs/1706.07269)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mpaper[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12mintroduction[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12msocial[39m[38;5;12m [39m[38;5;12mscience[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12mexplanations.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mauthor[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12m4[39m[38;5;12m [39m[38;5;12mmajor[39m[38;5;12m [39m[38;5;12mfindings:[39m[38;5;12m [39m[38;5;12m(1)[39m[38;5;12m [39m
|
||
[38;5;12mexplanations[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mconstrastive,[39m[38;5;12m [39m[38;5;12m(2)[39m[38;5;12m [39m[38;5;12mexplanations[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mselected,[39m[38;5;12m [39m[38;5;12m(3)[39m[38;5;12m [39m[38;5;12mprobabilities[39m[38;5;12m [39m[38;5;12mprobably[39m[38;5;12m [39m[38;5;12mdon't[39m[38;5;12m [39m[38;5;12mmatter,[39m[38;5;12m [39m[38;5;12m(4)[39m[38;5;12m [39m[38;5;12mexplanations[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12msocial.[39m[38;5;12m [39m[38;5;12mThese[39m[38;5;12m [39m[38;5;12mfit[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mgeneral[39m[38;5;12m [39m[38;5;12mtheme[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mexplanations[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12m-contextual-.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mSanity[0m[38;5;14m[1m [0m[38;5;14m[1mChecks[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mSaliency[0m[38;5;14m[1m [0m[38;5;14m[1mMaps[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/abs/1810.03292)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAn[39m[38;5;12m [39m[38;5;12mimportant[39m[38;5;12m [39m[38;5;12mread[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12manyone[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12msaliency[39m[38;5;12m [39m[38;5;12mmaps.[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mpaper[39m[38;5;12m [39m[38;5;12mproposes[39m[38;5;12m [39m[38;5;12mtwo[39m[38;5;12m [39m[38;5;12mexperiments[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mdetermine[39m[38;5;12m [39m[38;5;12mwhether[39m[38;5;12m [39m[38;5;12msaliency[39m[38;5;12m [39m[38;5;12mmaps[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12museful:[39m[38;5;12m [39m[38;5;12m(1)[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mparameter[39m[38;5;12m [39m[38;5;12mrandomization[39m[38;5;12m [39m[38;5;12mtest[39m[38;5;12m [39m
|
||
[38;5;12mcompares[39m[38;5;12m [39m[38;5;12mmaps[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mtrained[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12muntrained[39m[38;5;12m [39m[38;5;12mmodels,[39m[38;5;12m [39m[38;5;12m(2)[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mrandomization[39m[38;5;12m [39m[38;5;12mtest[39m[38;5;12m [39m[38;5;12mcompares[39m[38;5;12m [39m[38;5;12mmaps[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mtrained[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12moriginal[39m[38;5;12m [39m[38;5;12mdataset[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mtrained[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12msame[39m[38;5;12m [39m[38;5;12mdataset[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mrandomized[39m[38;5;12m [39m[38;5;12mlabels.[39m[38;5;12m [39m[38;5;12mThey[39m[38;5;12m [39m[38;5;12mfind[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12m"some[39m[38;5;12m [39m[38;5;12mwidely[39m[38;5;12m [39m[38;5;12mdeployed[39m[38;5;12m [39m[38;5;12msaliency[39m[38;5;12m [39m
|
||
[38;5;12mmethods[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mindependent[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mboth[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mwas[39m[38;5;12m [39m[38;5;12mtrained[39m[38;5;12m [39m[38;5;12mon,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mparameters".[39m
|
||
|
||
[38;2;255;187;0m[4mSurveys[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mExplainable Deep Learning: A Field Guide for the Uninitiated[0m[38;5;12m (https://arxiv.org/abs/2004.14545) - An in-depth description of XAI focused on technqiues for deep learning.[39m
|
||
|
||
[38;2;255;187;0m[4mEvaluations[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mQuantifying Explainability of Saliency Methods in Deep Neural Networks[0m[38;5;12m (https://arxiv.org/abs/2009.02899) - An analysis of how different heatmap-based saliency methods perform based on experimentation with a generated dataset.[39m
|
||
|
||
[38;2;255;187;0m[4mXAI Methods[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAda-SISE[0m[38;5;12m (https://arxiv.org/abs/2102.07799) - Adaptive semantice inpute sampling for explanation.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mALE[0m[38;5;12m (https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12377) - Accumulated local effects plot.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mALIME[0m[38;5;12m (https://link.springer.com/chapter/10.1007/978-3-030-33607-3_49) - Autoencoder Based Approach for Local Interpretability.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAnchors[0m[38;5;12m (https://ojs.aaai.org/index.php/AAAI/article/view/11491) - High-Precision Model-Agnostic Explanations.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAuditing[0m[38;5;12m (https://link.springer.com/article/10.1007/s10115-017-1116-3) - Auditing black-box models.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBayLIME[0m[38;5;12m (https://arxiv.org/abs/2012.03058) - Bayesian local interpretable model-agnostic explanations.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBreak Down[0m[38;5;12m (http://ema.drwhy.ai/breakDown.html#BDMethod) - Break down plots for additive attributions.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCAM[0m[38;5;12m (https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhou_Learning_Deep_Features_CVPR_2016_paper.pdf) - Class activation mapping.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCDT[0m[38;5;12m (https://ieeexplore.ieee.org/abstract/document/4167900) - Confident interpretation of Bayesian decision tree ensembles.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCICE[0m[38;5;12m (https://christophm.github.io/interpretable-ml-book/ice.html) - Centered ICE plot.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCMM[0m[38;5;12m (https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.2710&rep=rep1&type=pdf) - Combined multiple models metalearner.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mConj Rules[0m[38;5;12m (https://www.sciencedirect.com/science/article/pii/B9781558603356500131) - Using sampling and queries to extract rules from trained neural networks.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCP[0m[38;5;12m (https://ieeexplore.ieee.org/abstract/document/6597214) - Contribution propogation.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDecText[0m[38;5;12m (https://dl.acm.org/doi/abs/10.1145/775047.775113) - Extracting decision trees from trained neural networks.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDeepLIFT[0m[38;5;12m (https://ieeexplore-ieee-org.ezproxy.libraries.wright.edu/abstract/document/9352498) - Deep label-specific feature learning for image annotation.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDTD[0m[38;5;12m (https://www.sciencedirect.com/science/article/pii/S0031320316303582) - Deep Taylor decomposition.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mExplainD[0m[38;5;12m (https://www.aaai.org/Papers/IAAI/2006/IAAI06-018.pdf) - Explanations of evidence in additive classifiers.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mFIRM[0m[38;5;12m (https://link.springer.com/chapter/10.1007/978-3-642-04174-7_45) - Feature importance ranking measure.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mFong, et. al.[0m[38;5;12m (https://openaccess.thecvf.com/content_iccv_2017/html/Fong_Interpretable_Explanations_of_ICCV_2017_paper.html) - Meaninful perturbations model.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mG-REX[0m[38;5;12m (https://www.academia.edu/download/51462700/s0362-546x_2896_2900267-220170122-9600-1njrpyx.pdf) - Rule extraction using genetic algorithms.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGibbons, et. al.[0m[38;5;12m (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977175/) - Explain random forest using decision tree.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGoldenEye[0m[38;5;12m (https://link-springer-com.ezproxy.libraries.wright.edu/article/10.1007/s10618-014-0368-8) - Exploring classifiers by randomization.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGPD[0m[38;5;12m (https://arxiv.org/abs/0912.1128) - Gaussian process decisions.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGPDT[0m[38;5;12m (https://ieeexplore.ieee.org/abstract/document/4938655) - Genetic program to evolve decision trees.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGradCAM[0m[38;5;12m (https://openaccess.thecvf.com/content_iccv_2017/html/Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.html) - Gradient-weighted Class Activation Mapping.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGradCAM++[0m[38;5;12m (https://ieeexplore.ieee.org/abstract/document/8354201/) - Generalized gradient-based visual explanations.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHara, et. al.[0m[38;5;12m (https://arxiv.org/abs/1606.05390) - Making tree ensembles interpretable.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mICE[0m[38;5;12m (https://www.tandfonline.com/doi/abs/10.1080/10618600.2014.907095) - Individual conditional expectation plots.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mIG[0m[38;5;12m (http://proceedings.mlr.press/v70/sundararajan17a/sundararajan17a.pdf) - Integrated gradients.[39m
|
||
[38;5;12m- [39m[38;5;14m[1minTrees[0m[38;5;12m (https://link.springer.com/article/10.1007/s41060-018-0144-8) - Interpreting tree ensembles with inTrees.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mIOFP[0m[38;5;12m (https://arxiv.org/abs/1611.04967) - Iterative orthoganol feature projection.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mIP[0m[38;5;12m (https://arxiv.org/abs/1703.00810) - Information plane visualization.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mKL-LIME[0m[38;5;12m (https://arxiv.org/abs/1810.02678) - Kullback-Leibler Projections based LIME.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mKrishnan, et. al.[0m[38;5;12m (https://www.sciencedirect.com/science/article/abs/pii/S0031320398001812) - Extracting decision trees from trained neural networks.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLei, et. al.[0m[38;5;12m (https://arxiv.org/abs/1606.04155) - Rationalizing neural predictions with generator and encoder.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLIME[0m[38;5;12m (https://dl.acm.org/doi/abs/10.1145/2939672.2939778) - Local Interpretable Model-Agnostic Explanations.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLOCO[0m[38;5;12m (https://amstat.tandfonline.com/doi/abs/10.1080/01621459.2017.1307116#.YEkdZ7CSmUk) - Leave-one covariate out.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLORE[0m[38;5;12m (https://arxiv.org/abs/1805.10820) - Local rule-based explanations.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLou, et. al.[0m[38;5;12m (https://dl.acm.org/doi/abs/10.1145/2487575.2487579) - Accurate intelligibile models with pairwise interactions.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLRP[0m[38;5;12m (https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130140) - Layer-wise relevance propogation.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMCR[0m[38;5;12m (https://www.jmlr.org/papers/volume20/18-760/18-760.pdf) - Model class reliance.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMES[0m[38;5;12m (https://ieeexplore.ieee.org/abstract/document/7738872) - Model explanation system.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMFI[0m[38;5;12m (https://arxiv.org/abs/1611.07567) - Feature importance measure for non-linear algorithms.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNID[0m[38;5;12m (https://www.sciencedirect.com/science/article/abs/pii/S0304380002000649) - Neural interpretation diagram.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOptiLIME[0m[38;5;12m (https://arxiv.org/abs/2006.05714) - Optimized LIME.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPALM[0m[38;5;12m (https://dl.acm.org/doi/abs/10.1145/3077257.3077271) - Partition aware local model.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPDA[0m[38;5;12m (https://arxiv.org/abs/1702.04595) - Prediction Difference Analysis: Visualize deep neural network decisions.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPDP[0m[38;5;12m (https://projecteuclid.org/download/pdf_1/euclid.aos/1013203451) - Partial dependence plots.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPOIMs[0m[38;5;12m (https://academic.oup.com/bioinformatics/article/24/13/i6/233341) - Positional oligomer importance matrices for understanding SVM signal detectors.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mProfWeight[0m[38;5;12m (https://arxiv.org/abs/1807.07506) - Transfer information from deep network to simpler model.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mProspector[0m[38;5;12m (https://dl.acm.org/doi/abs/10.1145/2858036.2858529) - Interactive partial dependence diagnostics.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mQII[0m[38;5;12m (https://ieeexplore.ieee.org/abstract/document/7546525) - Quantitative input influence.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mREFNE[0m[38;5;12m (https://content.iospress.com/articles/ai-communications/aic272) - Extracting symbolic rules from trained neural network ensembles.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRETAIN[0m[38;5;12m (https://arxiv.org/abs/1608.05745) - Reverse time attention model.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRISE[0m[38;5;12m (https://arxiv.org/abs/1806.07421) - Randomized input sampling for explanation.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRxREN[0m[38;5;12m (https://link.springer.com/article/10.1007%2Fs11063-011-9207-8) - Reverse engineering neural networks for rule extraction.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSHAP[0m[38;5;12m (https://arxiv.org/abs/1705.07874) - A unified approach to interpretting model predictions.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSIDU[0m[38;5;12m (https://arxiv.org/abs/2101.10710) - Similarity, difference, and uniqueness input perturbation.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSimonynan, et. al[0m[38;5;12m (https://arxiv.org/abs/1312.6034) - Visualizing CNN classes.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSingh, et. al[0m[38;5;12m (https://arxiv.org/abs/1611.07579) - Programs as black-box explanations.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSTA[0m[38;5;12m (https://arxiv.org/abs/1610.09036) - Interpreting models via Single Tree Approximation.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mStrumbelj, et. al.[0m[38;5;12m (https://www.jmlr.org/papers/volume11/strumbelj10a/strumbelj10a.pdf) - Explanation of individual classifications using game theory.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSVM+P[0m[38;5;12m (https://www.academia.edu/download/2471122/3uecwtv9xcwxg6r.pdf) - Rule extraction from support vector machines.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTCAV[0m[38;5;12m (https://openreview.net/forum?id=S1viikbCW) - Testing with concept activation vectors.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTolomei, et. al.[0m[38;5;12m (https://dl.acm.org/doi/abs/10.1145/3097983.3098039) - Interpretable predictions of tree-ensembles via actionable feature tweaking.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTree Metrics[0m[38;5;12m (https://www.researchgate.net/profile/Edward-George-2/publication/2610587_Making_Sense_of_a_Forest_of_Trees/links/55b1085d08aec0e5f430eb40/Making-Sense-of-a-Forest-of-Trees.pdf) - Making sense of a forest of trees.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTreeSHAP[0m[38;5;12m (https://arxiv.org/abs/1706.06060) - Consistent feature attribute for tree ensembles.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTreeView[0m[38;5;12m (https://arxiv.org/abs/1611.07429) - Feature-space partitioning.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTREPAN[0m[38;5;12m (http://www.inf.ufrgs.br/~engel/data/media/file/cmp121/TREPAN_craven.nips96.pdf) - Extracting tree-structured representations of trained networks.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTSP[0m[38;5;12m (https://dl.acm.org/doi/abs/10.1145/3412815.3416893) - Tree space prototypes.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mVBP[0m[38;5;12m (http://www.columbia.edu/~aec2163/NonFlash/Papers/VisualBackProp.pdf) - Visual back-propagation.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mVEC[0m[38;5;12m (https://ieeexplore.ieee.org/abstract/document/5949423) - Variable effect characteristic curve.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mVIN[0m[38;5;12m (https://dl.acm.org/doi/abs/10.1145/1014052.1014122) - Variable interaction network.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mX-TREPAN[0m[38;5;12m (https://arxiv.org/abs/1508.07551) - Adapted etraction of comprehensible decision tree in ANNs.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mXu, et. al.[0m[38;5;12m (http://proceedings.mlr.press/v37/xuc15) - Show, attend, tell attention model.[39m
|
||
|
||
[38;2;255;187;0m[4mInterpretable Models[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mDecision List[0m[38;5;12m (https://christophm.github.io/interpretable-ml-book/rules.html) - Like a decision tree with no branches.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDecision Trees[0m[38;5;12m (https://en.wikipedia.org/wiki/Decision_tree) - The tree provides an interpretation.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mExplainable Boosting Machine[0m[38;5;12m (https://www.youtube.com/watch?v=MREiHgHgl0k) - Method that predicts based on learned vector graphs of features.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mk-Nearest Neighbors[0m[38;5;12m (https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm) - The prototypical clustering method.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLinear Regression[0m[38;5;12m (https://en.wikipedia.org/wiki/Linear_regression) - Easily plottable and understandable regression.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLogistic Regression[0m[38;5;12m (https://en.wikipedia.org/wiki/Logistic_regression) - Easily plottable and understandable classification.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNaive Bayes[0m[38;5;12m (https://en.wikipedia.org/wiki/Naive_Bayes_classifier) - Good classification, poor estimation using conditional probabilities.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRuleFit[0m[38;5;12m (https://christophm.github.io/interpretable-ml-book/rulefit.html) - Sparse linear model as decision rules including feature interactions.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mCritiques[0m
|
||
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mAttention[0m[38;5;14m[1m [0m[38;5;14m[1mis[0m[38;5;14m[1m [0m[38;5;14m[1mnot[0m[38;5;14m[1m [0m[38;5;14m[1mExplanation[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/abs/1902.10186)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAuthors[39m[38;5;12m [39m[38;5;12mperform[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mseries[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mNLP[39m[38;5;12m [39m[38;5;12mexperiments[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12margue[39m[38;5;12m [39m[38;5;12mattention[39m[38;5;12m [39m[38;5;12mdoes[39m[38;5;12m [39m[38;5;12mnot[39m[38;5;12m [39m[38;5;12mprovide[39m[38;5;12m [39m[38;5;12mmeaningful[39m[38;5;12m [39m[38;5;12mexplanations.[39m[38;5;12m [39m[38;5;12mThey[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mdemosntrate[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mdifferent[39m[38;5;12m [39m[38;5;12mattentions[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mgenerate[39m[38;5;12m [39m[38;5;12msimilar[39m[38;5;12m [39m
|
||
[38;5;12mmodel[39m[38;5;12m [39m[38;5;12moutputs.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mAttention[0m[38;5;14m[1m [0m[38;5;14m[1mis[0m[38;5;14m[1m [0m[38;5;14m[1mnot[0m[38;5;14m[1m [0m[38;5;14m[1m--not--[0m[38;5;14m[1m [0m[38;5;14m[1mExplanation[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/abs/1908.04626)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mrebutal[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mabove[39m[38;5;12m [39m[38;5;12mpaper.[39m[38;5;12m [39m[38;5;12mAuthors[39m[38;5;12m [39m[38;5;12margue[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mmultiple[39m[38;5;12m [39m[38;5;12mexplanations[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mvalid[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mattention[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mproduce[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3ma[0m[38;5;12m [39m[38;5;12mvalid[39m[38;5;12m [39m[38;5;12mexplanation,[39m[38;5;12m [39m[38;5;12mif[39m[38;5;12m [39m[38;5;12mnot[39m[38;5;12m [39m[38;5;12m-the-[39m[38;5;12m [39m
|
||
[38;5;12mvalid[39m[38;5;12m [39m[38;5;12mexplanation.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDo Not Trust Additive Explanations[0m[38;5;12m (https://arxiv.org/abs/1903.11420) - Authors argue that addditive explanations (e.g. LIME, SHAP, Break Down) fail to take feature ineractions into account and are thus unreliable.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mPlease[0m[38;5;14m[1m [0m[38;5;14m[1mStop[0m[38;5;14m[1m [0m[38;5;14m[1mPermuting[0m[38;5;14m[1m [0m[38;5;14m[1mFeatures[0m[38;5;14m[1m [0m[38;5;14m[1mAn[0m[38;5;14m[1m [0m[38;5;14m[1mExplanation[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mAlternatives[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/abs/1905.03151)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAuthors[39m[38;5;12m [39m[38;5;12mdemonstrate[39m[38;5;12m [39m[38;5;12mwhy[39m[38;5;12m [39m[38;5;12mpermuting[39m[38;5;12m [39m[38;5;12mfeatures[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mmisleading,[39m[38;5;12m [39m[38;5;12mespecially[39m[38;5;12m [39m[38;5;12mwhere[39m[38;5;12m [39m[38;5;12mthere[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mstrong[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12mdependence.[39m[38;5;12m [39m[38;5;12mThey[39m[38;5;12m [39m[38;5;12moffer[39m[38;5;12m [39m[38;5;12mseveral[39m[38;5;12m [39m[38;5;12mpreviously[39m[38;5;12m [39m
|
||
[38;5;12mdescribed[39m[38;5;12m [39m[38;5;12malternatives.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mStop[0m[38;5;14m[1m [0m[38;5;14m[1mExplaining[0m[38;5;14m[1m [0m[38;5;14m[1mBlack[0m[38;5;14m[1m [0m[38;5;14m[1mBox[0m[38;5;14m[1m [0m[38;5;14m[1mMachine[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mModels[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mHigh[0m[38;5;14m[1m [0m[38;5;14m[1mStates[0m[38;5;14m[1m [0m[38;5;14m[1mDecisions[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mUse[0m[38;5;14m[1m [0m[38;5;14m[1mInterpretable[0m[38;5;14m[1m [0m[38;5;14m[1mModels[0m[38;5;14m[1m [0m[38;5;14m[1mInstead[0m[38;5;12m [39m[38;5;12m(https://www.nature.com/articles/s42256-019-0048-x?fbclid=IwAR3156gP-ntoAyw2sHTXo0Z8H9p-2wBKe5jqitsMCdft7xA0P766QvSthFs)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAuthors[39m[38;5;12m [39m
|
||
[38;5;12mpresent[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mnumber[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12missues[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mexplainable[39m[38;5;12m [39m[38;5;12mML[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mchallenges[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12minterpretable[39m[38;5;12m [39m[38;5;12mML:[39m[38;5;12m [39m[38;5;12m(1)[39m[38;5;12m [39m[38;5;12mconstructing[39m[38;5;12m [39m[38;5;12moptimal[39m[38;5;12m [39m[38;5;12mlogical[39m[38;5;12m [39m[38;5;12mmodels,[39m[38;5;12m [39m[38;5;12m(2)[39m[38;5;12m [39m[38;5;12mconstructing[39m[38;5;12m [39m[38;5;12moptimal[39m[38;5;12m [39m[38;5;12msparse[39m[38;5;12m [39m[38;5;12mscoring[39m[38;5;12m [39m[38;5;12msystems,[39m[38;5;12m [39m[38;5;12m(3)[39m[38;5;12m [39m[38;5;12mdefining[39m[38;5;12m [39m[38;5;12minterpretability[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcreating[39m[38;5;12m [39m[38;5;12mmethods[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mspecific[39m[38;5;12m [39m[38;5;12mmethods.[39m[38;5;12m [39m
|
||
[38;5;12mThey[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12moffer[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12margument[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mwhy[39m[38;5;12m [39m[38;5;12minterpretable[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mmight[39m[38;5;12m [39m[38;5;12mexist[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mdifferent[39m[38;5;12m [39m[38;5;12mdomains.[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mThe[0m[38;5;14m[1m [0m[38;5;14m[1m(Un)reliability[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mSaliency[0m[38;5;14m[1m [0m[38;5;14m[1mMethods[0m[38;5;12m [39m[38;5;12m(https://link.springer.com/chapter/10.1007/978-3-030-28954-6_14)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAuthors[39m[38;5;12m [39m[38;5;12mdemonstrate[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12msaliency[39m[38;5;12m [39m[38;5;12mmethods[39m[38;5;12m [39m[38;5;12mvary[39m[38;5;12m [39m[38;5;12mattribution[39m[38;5;12m [39m[38;5;12mwhen[39m[38;5;12m [39m[38;5;12madding[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mconstant[39m[38;5;12m [39m[38;5;12mshift[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12minput[39m[38;5;12m [39m[38;5;12mdata.[39m[38;5;12m [39m[38;5;12mThey[39m[38;5;12m [39m[38;5;12margue[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mmethods[39m[38;5;12m [39m[38;5;12mshould[39m[38;5;12m [39m
|
||
[38;5;12mfulfill[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3minput[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3minvariance[0m[38;5;12m,[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msaliency[39m[38;5;12m [39m[38;5;12mmethod[39m[38;5;12m [39m[38;5;12mmirror[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12msensistivity[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mrespect[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mtransformations[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12minput.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mRepositories[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mEthicalML/xai[0m[38;5;12m (https://github.com/EthicalML/xai) - A toolkit for XAI which is focused exclusively on tabular data. It implements a variety of data and model evaluation techniques.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMAIF/shapash[0m[38;5;12m (https://github.com/MAIF/shapash) - SHAP and LIME-based front-end explainer.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPAIR-code/what-if-tool[0m[38;5;12m (https://github.com/PAIR-code/what-if-tool) - A tool for Tensorboard or Notebooks which allows investigating model performance and fairness.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mslundberg/shap[0m[38;5;12m (https://github.com/slundberg/shap) - A Python module for using Shapley Additive Explanations.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mVideos[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mDebate: Interpretability is necessary for ML[0m[38;5;12m (https://www.youtube.com/watch?v=93Xv8vJ2acI) - A debate on whether interpretability is necessary for ML with Rich Caruana and Patrice Simard for and Kilian Weinberger and Yann LeCun against.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mFollow[0m
|
||
|
||
[38;5;12mTheir views aren't necessarily our views. :wink:[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mThe Institute for Ethical AI & Machine Learning[0m[38;5;12m (https://ethical.institute/index.html) - A UK-based research center that performs research into ethical AI/ML, which frequently involves XAI.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTim Miller[0m[38;5;12m (https://twitter.com/tmiller_unimelb) - One of the preeminent researchers in XAI.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRich Caruana[0m[38;5;12m (https://www.microsoft.com/en-us/research/people/rcaruana/) - The man behind Explainable Boosting Machines.[39m
|
||
|
||
[38;5;12mWho else should we be following!?[39m
|
||
|
||
[38;2;255;187;0m[4mContributing[0m
|
||
|
||
[38;5;14m[1mContributions of any kind welcome, just follow the guidelines[0m[38;5;12m (contributing.md)![39m
|
||
|
||
[38;2;255;187;0m[4mContributors[0m
|
||
[38;5;14m[1mThanks goes to these contributors[0m[38;5;12m (https://github.com/altamiracorp/awesome-xai/graphs/contributors)![39m
|
||
|
||
[38;5;12mxai Github: https://github.com/altamiracorp/awesome-xai[39m
|