161 lines
20 KiB
Plaintext
161 lines
20 KiB
Plaintext
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome[0m[38;2;255;187;0m[1m[4m [0m[38;2;255;187;0m[1m[4mSoftware[0m[38;2;255;187;0m[1m[4m [0m[38;2;255;187;0m[1m[4mEngineering[0m[38;2;255;187;0m[1m[4m [0m[38;2;255;187;0m[1m[4mfor[0m[38;2;255;187;0m[1m[4m [0m[38;2;255;187;0m[1m[4mMachine[0m[38;2;255;187;0m[1m[4m [0m[38;2;255;187;0m[1m[4mLearning[0m[38;2;255;187;0m[1m[4m [0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mAwesome[0m[38;5;14m[1m[4m [0m[38;5;14m[1m[4m(https://awesome.re/badge-flat2.svg)[0m[38;2;255;187;0m[1m[4m [0m[38;2;255;187;0m[1m[4m(https://awesome.re)[0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mPRs[0m[38;2;255;187;0m[1m[4m [0m[38;2;255;187;0m[1m[4mWelcome[0m[38;5;14m[1m[4m [0m[38;5;14m[1m[4m(https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)[0m[38;2;255;187;0m[1m[4m [0m
|
||
[38;5;12m [39m[38;2;255;187;0m[1m[4m(https://github.com/SE-ML/awesome-seml/blob/master/contributing.md)[0m
|
||
|
||
[38;5;12mSoftware[39m[38;5;12m [39m[38;5;12mEngineering[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mMachine[39m[38;5;12m [39m[38;5;12mLearning[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mtechniques[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mguidelines[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mbuilding[39m[38;5;12m [39m[38;5;12mML[39m[38;5;12m [39m[38;5;12mapplications[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mdo[39m[38;5;12m [39m[38;5;12mnot[39m[38;5;12m [39m[38;5;12mconcern[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mcore[39m[38;5;12m [39m[38;5;12mML[39m[38;5;12m [39m[38;5;12mproblem[39m[38;5;12m [39m[38;5;12m--[39m[38;5;12m [39m[38;5;12me.g.[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mdevelopment[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mnew[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12m--[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12mrather[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12msurrounding[39m[38;5;12m [39m[38;5;12mactivities[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mingestion,[39m[38;5;12m [39m
|
||
[38;5;12mcoding,[39m[38;5;12m [39m[38;5;12mtesting,[39m[38;5;12m [39m[38;5;12mversioning,[39m[38;5;12m [39m[38;5;12mdeployment,[39m[38;5;12m [39m[38;5;12mquality[39m[38;5;12m [39m[38;5;12mcontrol,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mteam[39m[38;5;12m [39m[38;5;12mcollaboration.[39m
|
||
[38;5;12mGood software engineering practices enhance development, deployment and maintenance of production level applications using machine learning components.[39m
|
||
|
||
[38;5;12m⭐ Must-read[39m
|
||
|
||
[38;5;12m🎓 Scientific publication[39m
|
||
|
||
|
||
|
||
[38;5;12mBased on this literature, we compiled a survey on the adoption of software engineering practices for applications with machine learning components.[39m
|
||
|
||
|
||
[38;5;12mFeel free to [39m[38;5;14m[1mtake and share the survey[0m[38;5;12m (https://se-ml.github.io/survey) and to [39m[38;5;14m[1mread more[0m[38;5;12m (https://se-ml.github.io/practices)![39m
|
||
|
||
|
||
|
||
[38;2;255;187;0m[4mContents[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBroad Overviews[0m[38;5;12m (#broad-overviews)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Management[0m[38;5;12m (#data-management)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mModel Training[0m[38;5;12m (#model-training)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDeployment and Operation[0m[38;5;12m (#deployment-and-operation)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSocial Aspects[0m[38;5;12m (#social-aspects)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGovernance[0m[38;5;12m (#governance)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTooling[0m[38;5;12m (#tooling)[39m
|
||
|
||
[38;2;255;187;0m[4mBroad Overviews[0m
|
||
|
||
[38;5;12mThese resources cover all aspects.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAI Engineering: 11 Foundational Practices[0m[38;5;12m (https://resources.sei.cmu.edu/asset_files/WhitePaper/2019_019_001_634648.pdf) ⭐[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBest Practices for Machine Learning Applications[0m[38;5;12m (https://pdfs.semanticscholar.org/2869/6212a4a204783e9dd3953f06e103c02c6972.pdf)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mEngineering Best Practices for Machine Learning[0m[38;5;12m (https://se-ml.github.io/practices/) ⭐[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHidden Technical Debt in Machine Learning Systems[0m[38;5;12m (https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf) 🎓⭐[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRules of Machine Learning: Best Practices for ML Engineering[0m[38;5;12m (https://developers.google.com/machine-learning/guides/rules-of-ml) ⭐[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSoftware Engineering for Machine Learning: A Case Study[0m[38;5;12m (https://www.microsoft.com/en-us/research/publication/software-engineering-for-machine-learning-a-case-study/) 🎓⭐[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mData Management[0m
|
||
|
||
[38;5;12mHow to manage the data sets you use in machine learning.[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mA Survey on Data Collection for Machine Learning A Big Data - AI Integration Perspective_2019[0m[38;5;12m (https://deepai.org/publication/a-survey-on-data-collection-for-machine-learning-a-big-data-ai-integration-perspective) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAutomating Large-Scale Data Quality Verification[0m[38;5;12m (http://www.vldb.org/pvldb/vol11/p1781-schelter.pdf) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData management challenges in production machine learning[0m[38;5;12m (https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46178.pdf)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Validation for Machine Learning[0m[38;5;12m (https://mlsys.org/Conferences/2019/doc/2019/167.pdf) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHow to organize data labelling for ML[0m[38;5;12m (https://www.altexsoft.com/blognp/datascience/how-to-organize-data-labeling-for-machine-learning-approaches-and-tools/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe curse of big data labeling and three ways to solve it[0m[38;5;12m (https://aws.amazon.com/blogs/apn/the-curse-of-big-data-labeling-and-three-ways-to-solve-it/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe Data Linter: Lightweight, Automated Sanity Checking for ML Data Sets[0m[38;5;12m (http://learningsys.org/nips17/assets/papers/paper_19.pdf) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe ultimate guide to data labeling for ML[0m[38;5;12m (https://www.cloudfactory.com/data-labeling-guide)[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mModel Training[0m
|
||
|
||
[38;5;12mHow to organize your model training experiments.[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1m10 Best Practices for Deep Learning[0m[38;5;12m (https://nanonets.com/blog/10-best-practices-deep-learning/#track-model-experiments)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mApples-to-apples in cross-validation studies: pitfalls in classifier performance measurement[0m[38;5;12m (https://dl.acm.org/doi/abs/10.1145/1882471.1882479) 🎓[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mFairness[0m[38;5;14m[1m [0m[38;5;14m[1mOn[0m[38;5;14m[1m [0m[38;5;14m[1mThe[0m[38;5;14m[1m [0m[38;5;14m[1mGround:[0m[38;5;14m[1m [0m[38;5;14m[1mApplying[0m[38;5;14m[1m [0m[38;5;14m[1mAlgorithmic[0m[38;5;14m[1m [0m[38;5;14m[1mFairnessApproaches[0m[38;5;14m[1m [0m[38;5;14m[1mTo[0m[38;5;14m[1m [0m[38;5;14m[1mProduction[0m[38;5;14m[1m [0m[38;5;14m[1mSystems[0m[38;5;12m [39m
|
||
[38;5;12m(https://scontent-amt2-1.xx.fbcdn.net/v/t39.8562-6/159714417_1180893265647073_4215201353052552221_n.pdf?_nc_cat=111&ccb=1-3&_nc_sid=ae5e01&_nc_ohc=6WFnNMmyp68AX95bRHk&_nc_ht=scontent-amt2-1.xx&oh=7a548f822e659b7bb2f58a511c30ee19&oe=606F33AD)🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHow do you manage your Machine Learning Experiments?[0m[38;5;12m (https://medium.com/@hadyelsahar/how-do-you-manage-your-machine-learning-experiments-ab87508348ac)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine Learning Testing: Survey, Landscapes and Horizons[0m[38;5;12m (https://arxiv.org/pdf/1906.10742.pdf) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNitpicking Machine Learning Technical Debt[0m[38;5;12m (https://matthewmcateer.me/blog/machine-learning-technical-debt/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOn Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach[0m[38;5;12m (https://link.springer.com/article/10.1023/A:1009752403260) 🎓⭐[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOn human intellect and machine failures: Troubleshooting integrative machine learning systems[0m[38;5;12m (https://arxiv.org/pdf/1611.08309.pdf) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPitfalls and Best Practices in Algorithm Configuration[0m[38;5;12m (https://www.jair.org/index.php/jair/article/download/11420/26488/) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPitfalls of supervised feature selection[0m[38;5;12m (https://academic.oup.com/bioinformatics/article/26/3/440/213774) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPreparing and Architecting for Machine Learning[0m[38;5;12m (https://www.gartner.com/en/documents/3889770/preparing-and-architecting-for-machine-learning-2018-upd)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPreliminary Systematic Literature Review of Machine Learning System Development Process[0m[38;5;12m (https://arxiv.org/abs/1910.05528) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSoftware development best practices in a deep learning environment[0m[38;5;12m (https://towardsdatascience.com/software-development-best-practices-in-a-deep-learning-environment-a1769e9859b1)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTesting and Debugging in Machine Learning[0m[38;5;12m (https://developers.google.com/machine-learning/testing-debugging)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mWhat Went Wrong and Why? Diagnosing Situated Interaction Failures in the Wild[0m[38;5;12m (https://www.microsoft.com/en-us/research/publication/what-went-wrong-and-why-diagnosing-situated-interaction-failures-in-the-wild/) 🎓[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mDeployment and Operation[0m
|
||
|
||
[38;5;12mHow to deploy and operate your models in a production environment.[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBest Practices in Machine Learning Infrastructure[0m[38;5;12m (https://algorithmia.com/blog/best-practices-in-machine-learning-infrastructure)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBuilding Continuous Integration Services for Machine Learning[0m[38;5;12m (http://pages.cs.wisc.edu/~wentaowu/papers/kdd20-ci-for-ml.pdf) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mContinuous Delivery for Machine Learning[0m[38;5;12m (https://martinfowler.com/articles/cd4ml.html) ⭐[39m
|
||
[38;5;12m- [39m[38;5;14m[1mContinuous Training for Production ML in the TensorFlow Extended (TFX) Platform[0m[38;5;12m (https://www.usenix.org/system/files/opml19papers-baylor.pdf) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mFairness Indicators: Scalable Infrastructure for Fair ML Systems[0m[38;5;12m (https://ai.googleblog.com/2019/12/fairness-indicators-scalable.html) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine Learning Logistics[0m[38;5;12m (https://mapr.com/ebook/machine-learning-logistics/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine learning: Moving from experiments to production[0m[38;5;12m (https://blog.codecentric.de/en/2019/03/machine-learning-experiments-production/)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mML Ops: Machine Learning as an engineered disciplined[0m[38;5;12m (https://towardsdatascience.com/ml-ops-machine-learning-as-an-engineering-discipline-b86ca4874a3f)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mModel Governance Reducing the Anarchy of Production[0m[38;5;12m (https://www.usenix.org/conference/atc18/presentation/sridhar) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mModelOps: Cloud-based lifecycle management for reliable and trusted AI[0m[38;5;12m (http://hummer.io/docs/2019-ic2e-modelops.pdf)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOperational Machine Learning[0m[38;5;12m (https://www.kdnuggets.com/2018/04/operational-machine-learning-successful-mlops.html)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mScaling Machine Learning as a Service[0m[38;5;12m (http://proceedings.mlr.press/v67/li17a/li17a.pdf)🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTFX: A tensorflow-based Production-Scale ML Platform[0m[38;5;12m (https://dl.acm.org/doi/pdf/10.1145/3097983.3098021?download=true) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe ML Test Score: A Rubric for ML Production Readiness and Technical Debt Reduction[0m[38;5;12m (https://research.google/pubs/pub46555/) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mUnderspecification Presents Challenges for Credibility in Modern Machine Learning[0m[38;5;12m (https://arxiv.org/abs/2011.03395) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mVersioning for end-to-end machine learning pipelines[0m[38;5;12m (https://doi.org/10.1145/3076246.3076248) 🎓[39m
|
||
|
||
|
||
|
||
[38;2;255;187;0m[4mSocial Aspects[0m
|
||
|
||
[38;5;12mHow to organize teams and projects to ensure effective collaboration and accountability.[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mData Scientists in Software Teams: State of the Art and Challenges[0m[38;5;12m (http://web.cs.ucla.edu/~miryung/Publications/tse2017-datascientists.pdf) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine Learning Interviews[0m[38;5;12m (https://github.com/chiphuyen/machine-learning-systems-design/blob/master/build/build1/consolidated.pdf)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mManaging Machine Learning Projects[0m[38;5;12m (https://d1.awsstatic.com/whitepapers/aws-managing-ml-projects.pdf)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPrincipled Machine Learning: Practices and Tools for Efficient Collaboration[0m[38;5;12m (https://dev.to/robogeek/principled-machine-learning-4eho)[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mGovernance[0m
|
||
[38;5;12m- [39m[38;5;14m[1mA Human-Centered Interpretability Framework Based on Weight of Evidence[0m[38;5;12m (https://arxiv.org/pdf/2104.13299.pdf) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAn Architectural Risk Analysis Of Machine Learning Systems[0m[38;5;12m (https://berryvilleiml.com/docs/ara.pdf) [39m
|
||
[38;5;12m- [39m[38;5;14m[1mBeyond Debiasing[0m[38;5;12m (https://complexdiscovery.com/wp-content/uploads/2021/09/EDRi-Beyond-Debiasing-Report.pdf)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mClosing the AI Accountability Gap: Defining an End-to-End Framework for Internal Algorithmic Auditing[0m[38;5;12m (https://dl.acm.org/doi/pdf/10.1145/3351095.3372873) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mInherent trade-offs in the fair determination of risk scores[0m[38;5;12m (https://arxiv.org/abs/1609.05807) 🎓[39m
|
||
[38;5;12m- [39m[38;5;14m[1mResponsible AI practices[0m[38;5;12m (https://ai.google/responsibilities/responsible-ai-practices/) ⭐[39m
|
||
[38;5;12m- [39m[38;5;14m[1mToward Trustworthy AI Development: Mechanisms for Supporting Verifiable Claims[0m[38;5;12m (https://arxiv.org/abs/2004.07213)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mUnderstanding Software-2.0[0m[38;5;12m (https://dl.acm.org/doi/abs/10.1145/3453478) 🎓[39m
|
||
|
||
[38;2;255;187;0m[4mTooling[0m
|
||
|
||
[38;5;12mTooling can make your life easier.[39m
|
||
|
||
[38;5;12mWe only share open source tools, or commercial platforms that offer substantial free packages for research.[39m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAim[0m[38;5;12m (https://aimstack.io) - Aim is an open source experiment tracking tool.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAirflow[0m[38;5;12m (https://airflow.apache.org/) - Programmatically author, schedule and monitor workflows.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAlibi Detect[0m[38;5;12m (https://github.com/SeldonIO/alibi-detect) - Python library focused on outlier, adversarial and drift detection.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mArchai[0m[38;5;12m (https://github.com/microsoft/archai) - Neural architecture search.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mData Version Control (DVC)[0m[38;5;12m (https://dvc.org/) - DVC is a data and ML experiments management tool.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mFacets Overview / Facets Dive[0m[38;5;12m (https://pair-code.github.io/facets/) - Robust visualizations to aid in understanding machine learning datasets.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mFairLearn[0m[38;5;12m (https://fairlearn.github.io/) - A toolkit to assess and improve the fairness of machine learning models.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGit Large File System (LFS)[0m[38;5;12m (https://git-lfs.github.com/) - Replaces large files such as datasets with text pointers inside Git.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGreat Expectations[0m[38;5;12m (https://github.com/great-expectations/great_expectations) - Data validation and testing with integration in pipelines.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHParams[0m[38;5;12m (https://github.com/PetrochukM/HParams) - A thoughtful approach to configuration management for machine learning projects.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mKubeflow[0m[38;5;12m (https://www.kubeflow.org/) - A platform for data scientists who want to build and experiment with ML pipelines.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLabel Studio[0m[38;5;12m (https://github.com/heartexlabs/label-studio) - A multi-type data labeling and annotation tool with standardized output format.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLiFT[0m[38;5;12m (https://github.com/linkedin/LiFT) - Linkedin fairness toolkit.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMLFlow[0m[38;5;12m (https://mlflow.org/) - Manage the ML lifecycle, including experimentation, deployment, and a central model registry.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mModel Card Toolkit[0m[38;5;12m (https://github.com/tensorflow/model-card-toolkit) - Streamlines and automates the generation of model cards; for model documentation.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNeptune.ai[0m[38;5;12m (https://neptune.ai/) - Experiment tracking tool bringing organization and collaboration to data science projects.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mNeuraxle[0m[38;5;12m (https://github.com/Neuraxio/Neuraxle) - Sklearn-like framework for hyperparameter tuning and AutoML in deep learning projects.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOpenML[0m[38;5;12m (https://www.openml.org) - An inclusive movement to build an open, organized, online ecosystem for machine learning.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPyTorch Lightning[0m[38;5;12m (https://github.com/PyTorchLightning/pytorch-lightning) - The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mREVISE: REvealing VIsual biaSEs[0m[38;5;12m (https://github.com/princetonvisualai/revise-tool) - Automatically detect bias in visual data sets.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mRobustness Metrics[0m[38;5;12m (https://github.com/google-research/robustness_metrics) - Lightweight modules to evaluate the robustness of classification models.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSeldon Core[0m[38;5;12m (https://github.com/SeldonIO/seldon-core) - An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models on Kubernetes.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSpark Machine Learning[0m[38;5;12m (https://spark.apache.org/mllib/) - Spark’s ML library consisting of common learning algorithms and utilities.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTensorBoard[0m[38;5;12m (https://www.tensorflow.org/tensorboard/) - TensorFlow's Visualization Toolkit.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTensorflow Extended (TFX)[0m[38;5;12m (https://www.tensorflow.org/tfx/) - An end-to-end platform for deploying production ML pipelines.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTensorflow Data Validation (TFDV)[0m[38;5;12m (https://github.com/tensorflow/data-validation) - Library for exploring and validating machine learning data. Similar to Great Expectations, but for Tensorflow data.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mWeights & Biases[0m[38;5;12m (https://www.wandb.com/) - Experiment tracking, model optimization, and dataset versioning.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mContribute[0m
|
||
|
||
[38;5;12mContributions welcomed! Read the [39m[38;5;14m[1mcontribution guidelines[0m[38;5;12m (contributing.md) first[39m
|
||
|
||
[38;5;12mseml Github: https://github.com/SE-ML/awesome-seml[39m
|