452 lines
95 KiB
Plaintext
452 lines
95 KiB
Plaintext
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome Recurrent Neural Networks[0m
|
||
|
||
[38;5;12mA curated list of resources dedicated to recurrent neural networks (closely related to [39m[48;2;30;30;40m[38;5;13m[3mdeep learning[0m[38;5;12m).[39m
|
||
|
||
[38;5;12mMaintainers - [39m[38;5;14m[1mMyungsub Choi[0m[38;5;12m (https://github.com/myungsub), [39m[38;5;14m[1mTaeksoo Kim[0m[38;5;12m (https://github.com/jazzsaxmafia), [39m[38;5;14m[1mJiwon Kim[0m[38;5;12m (https://github.com/kjw0612)[39m
|
||
|
||
[38;5;12mWe have pages for other topics: [39m[38;5;14m[1mawesome-deep-vision[0m[38;5;12m (https://github.com/kjw0612/awesome-deep-vision), [39m[38;5;14m[1mawesome-random-forest[0m[38;5;12m (https://github.com/kjw0612/awesome-random-forest)[39m
|
||
|
||
[38;2;255;187;0m[4mContributing[0m
|
||
[38;5;12mPlease feel free to [39m[38;5;14m[1mpull requests[0m[38;5;12m (https://github.com/kjw0612/awesome-rnn/pulls), email Myungsub Choi (cms6539@gmail.com) or join our chats to add links.[39m
|
||
|
||
[38;5;12mThe project is not actively maintained.[39m
|
||
|
||
[38;5;14m[1m![0m[38;5;12mJoin the chat at https://gitter.im/kjw0612/awesome-rnn[39m[38;5;14m[1m (https://badges.gitter.im/Join%20Chat.svg)[0m[38;5;12m (https://gitter.im/kjw0612/awesome-rnn?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)[39m
|
||
|
||
[38;2;255;187;0m[4mSharing[0m
|
||
[38;5;12m+ [39m[38;5;14m[1mShare on Twitter[0m[38;5;12m (http://twitter.com/home?status=http://jiwonkim.org/awesome-rnn%0AResources%20for%20Recurrent%20Neural%20Networks)[39m
|
||
[38;5;12m+ [39m[38;5;14m[1mShare on Facebook[0m[38;5;12m (http://www.facebook.com/sharer/sharer.php?u=https://jiwonkim.org/awesome-rnn)[39m
|
||
[38;5;12m+ [39m[38;5;14m[1mShare on Google Plus[0m[38;5;12m (http://plus.google.com/share?url=https://jiwonkim.org/awesome-rnn)[39m
|
||
[38;5;12m+ [39m[38;5;14m[1mShare on LinkedIn[0m[38;5;12m (http://www.linkedin.com/shareArticle?mini=true&url=https://jiwonkim.org/awesome-rnn&title=Awesome%20Recurrent%20Neural&Networks&summary=&source=)[39m
|
||
|
||
[38;2;255;187;0m[4mTable of Contents[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mCodes[0m[38;5;12m (#codes)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTheory[0m[38;5;12m (#theory)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mLectures[0m[38;5;12m (#lectures)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mBooks / Thesis[0m[38;5;12m (#books--thesis)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mArchitecture Variants[0m[38;5;12m (#architecture-variants)[39m
|
||
[48;5;235m[38;5;249m- **Structure** (#structure)[49m[39m
|
||
[48;5;235m[38;5;249m- **Memory** (#memory)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mSurveys[0m[38;5;12m (#surveys)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mApplications[0m[38;5;12m (#applications)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mNatural Language Processing[0m[38;5;12m (#natural-language-processing)[39m
|
||
[48;5;235m[38;5;249m- **Language Modeling** (#language-modeling)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **Speech Recognition** (#speech-recognition)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **Machine Translation** (#machine-translation)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **Conversation Modeling** (#conversation-modeling)[49m[39m
|
||
[48;5;235m[38;5;249m- **Question Answering** (#question-answering)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mComputer Vision[0m[38;5;12m (#computer-vision)[39m
|
||
[48;5;235m[38;5;249m- **Object Recognition** (#object-recognition)[49m[39m
|
||
[48;5;235m[38;5;249m- **Image Generation** (#image-generation)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **Video Analysis** (#video-analysis)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mMultimodal (CV+NLP)[0m[38;5;12m (#multimodal-cv--nlp)[39m
|
||
[48;5;235m[38;5;249m- **Image Captioning** (#image-captioning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **Video Captioning** (#video-captioning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **Visual Question Answering** (#visual-question-answering)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mTuring Machines[0m[38;5;12m (#turing-machines)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mRobotics[0m[38;5;12m (#robotics)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mOther[0m[38;5;12m (#other)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDatasets[0m[38;5;12m (#datasets)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBlogs[0m[38;5;12m (#blogs)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mOnline Demos[0m[38;5;12m (#online-demos)[39m
|
||
|
||
[38;2;255;187;0m[4mCodes[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorflow[0m[38;5;12m (https://www.tensorflow.org/) - Python, C++[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGet started[0m[38;5;12m (https://www.tensorflow.org/versions/master/get_started/index.html), [39m[38;5;14m[1mTutorials[0m[38;5;12m (https://www.tensorflow.org/versions/master/tutorials/index.html)[39m
|
||
[48;5;235m[38;5;249m* **Recurrent Neural Network Tutorial** (https://www.tensorflow.org/versions/master/tutorials/recurrent/index.html)[49m[39m
|
||
[48;5;235m[38;5;249m* **Sequence-to-Sequence Model Tutorial** (https://www.tensorflow.org/versions/master/tutorials/seq2seq/index.html)[49m[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTutorials[0m[38;5;12m (https://github.com/nlintz/TensorFlow-Tutorials) by nlintz[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNotebook examples[0m[38;5;12m (https://github.com/aymericdamien/TensorFlow-Examples) by aymericdamien[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mScikit Flow (skflow)[0m[38;5;12m (https://github.com/tensorflow/skflow) - Simplified Scikit-learn like Interface for TensorFlow[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKeras[0m[38;5;12m (http://keras.io/) : (Tensorflow / Theano)-based modular deep learning library similar to Torch[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mchar-rnn-tensorflow[0m[38;5;12m (https://github.com/sherjilozair/char-rnn-tensorflow) by sherjilozair: char-rnn in tensorflow[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTheano[0m[38;5;12m (http://deeplearning.net/software/theano/) - Python[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSimple IPython [39m[38;5;14m[1mtutorial on Theano[0m[38;5;12m (http://nbviewer.jupyter.org/github/craffel/theano-tutorial/blob/master/Theano%20Tutorial.ipynb)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeep Learning Tutorials[0m[38;5;12m (http://www.deeplearning.net/tutorial/)[39m
|
||
[48;5;235m[38;5;249m* **RNN for semantic parsing of speech** (http://www.deeplearning.net/tutorial/rnnslu.html#rnnslu)[49m[39m
|
||
[48;5;235m[38;5;249m* **LSTM network for sentiment analysis** (http://www.deeplearning.net/tutorial/lstm.html#lstm)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPylearn2[0m[38;5;12m (http://deeplearning.net/software/pylearn2/) : Library that wraps a lot of models and training algorithms in deep learning[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBlocks[0m[38;5;12m (https://github.com/mila-udem/blocks) : modular framework that enables building neural network models[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKeras[0m[38;5;12m (http://keras.io/) : (Tensorflow / Theano)-based modular deep learning library similar to Torch[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLasagne[0m[38;5;12m (https://github.com/Lasagne/Lasagne) : Lightweight library to build and train neural networks in Theano[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtheano-rnn[0m[38;5;12m (https://github.com/gwtaylor/theano-rnn) by Graham Taylor[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPassage[0m[38;5;12m (https://github.com/IndicoDataSolutions/Passage) : Library for text analysis with RNNs[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTheano-Lights[0m[38;5;12m (https://github.com/Ivaylo-Popov/Theano-Lights) : Contains many generative models[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCaffe[0m[38;5;12m (https://github.com/BVLC/caffe) - C++ with MATLAB/Python wrappers[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLRCN[0m[38;5;12m (http://jeffdonahue.com/lrcn/) by Jeff Donahue[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTorch[0m[38;5;12m (http://torch.ch/) - Lua[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtorchnet[0m[38;5;12m (https://github.com/torchnet/torchnet) : modular framework that enables building neural network models[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mchar-rnn[0m[38;5;12m (https://github.com/karpathy/char-rnn) by Andrej Karpathy : multi-layer RNN/LSTM/GRU for training/sampling from character-level language models[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtorch-rnn[0m[38;5;12m (https://github.com/jcjohnson/torch-rnn) by Justin Johnson : reusable RNN/LSTM modules for torch7 - much faster and memory efficient reimplementation of char-rnn[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mneuraltalk2[0m[38;5;12m (https://github.com/karpathy/neuraltalk2) by Andrej Karpathy : Recurrent Neural Network captions image, much faster and better version of the original [39m[38;5;14m[1mneuraltalk[0m[38;5;12m (https://github.com/karpathy/neuraltalk)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLSTM[0m[38;5;12m (https://github.com/wojzaremba/lstm) by Wojciech Zaremba : Long Short Term Memory Units to train a language model on word level Penn Tree Bank dataset[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOxford[0m[38;5;12m (https://github.com/oxford-cs-ml-2015) by Nando de Freitas : Oxford Computer Science - Machine Learning 2015 Practicals[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrnn[0m[38;5;12m (https://github.com/Element-Research/rnn) by Nicholas Leonard : general library for implementing RNN, LSTM, BRNN and BLSTM (highly unit tested).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyTorch[0m[38;5;12m (http://pytorch.org/) - Python[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mWord-level RNN example[0m[38;5;12m (https://github.com/pytorch/examples/tree/master/word_language_model) : demonstrates PyTorch's built in RNN modules for language modeling[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPractical PyTorch tutorials[0m[38;5;12m (https://github.com/spro/practical-pytorch) by Sean Robertson : focuses on using RNNs for Natural Language Processing[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeep Learning For NLP In PyTorch[0m[38;5;12m (https://github.com/rguthrie3/DeepLearningForNLPInPytorch) by Robert Guthrie : written for a Natural Language Processing class at Georgia Tech[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDL4J[0m[38;5;12m (http://deeplearning4j.org/) by [39m[38;5;14m[1mSkymind[0m[38;5;12m (http://www.skymind.io/) : Deep Learning library for Java, Scala & Clojure on Hadoop, Spark & GPUs[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDocumentation[0m[38;5;12m [39m[38;5;12m(http://deeplearning4j.org/)[39m[38;5;12m [39m[38;5;12m(Also[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;14m[1mChinese[0m[38;5;12m [39m[38;5;12m(http://deeplearning4j.org/zh-index.html),[39m[38;5;12m [39m[38;5;14m[1mJapanese[0m[38;5;12m [39m[38;5;12m(http://deeplearning4j.org/ja-index.html),[39m[38;5;12m [39m[38;5;14m[1mKorean[0m[38;5;12m [39m[38;5;12m(http://deeplearning4j.org/kr-index.html))[39m[38;5;12m [39m[38;5;12m:[39m[38;5;12m [39m[38;5;14m[1mRNN[0m[38;5;12m [39m
|
||
[38;5;12m(http://deeplearning4j.org/usingrnns.html),[39m[38;5;12m [39m[38;5;14m[1mLSTM[0m[38;5;12m [39m[38;5;12m(http://deeplearning4j.org/lstm.html)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrnn examples[0m[38;5;12m (https://github.com/deeplearning4j/dl4j-examples/tree/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/recurrent)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mEtc.[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeon[0m[38;5;12m (http://neon.nervanasys.com/docs/latest/index.html): new deep learning library in Python, with support for RNN/LSTM, and a fast image captioning model[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBrainstorm[0m[38;5;12m (https://github.com/IDSIA/brainstorm): deep learning library in Python, developed by IDSIA, thereby including various recurrent structures[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mChainer[0m[38;5;12m (http://chainer.org/) : new, flexible deep learning library in Python[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCGT[0m[38;5;12m (http://joschu.github.io/)(Computational Graph Toolkit) : replicates Theano's API, but with very short compilation time and multithreading[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRNNLIB[0m[38;5;12m (https://sourceforge.net/p/rnnl/wiki/Home/) by Alex Graves : C++ based LSTM library[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRNNLM[0m[38;5;12m (http://rnnlm.org/) by Tomas Mikolov : C++ based simple code[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mfaster-RNNLM[0m[38;5;12m (https://github.com/yandex/faster-rnnlm) of Yandex : C++ based rnnlm implementation aimed to handle huge datasets[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mneuraltalk[0m[38;5;12m (https://github.com/karpathy/neuraltalk) by Andrej Karpathy : numpy-based RNN/LSTM implementation[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgist[0m[38;5;12m (https://gist.github.com/karpathy/587454dc0146a6ae21fc) by Andrej Karpathy : raw numpy code that implements an efficient batched LSTM[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRecurrentjs[0m[38;5;12m (https://github.com/karpathy/recurrentjs) by Andrej Karpathy : a beta javascript library for RNN[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDARQN[0m[38;5;12m (https://github.com/5vision/DARQN) by 5vision : Deep Attention Recurrent Q-Network[39m
|
||
|
||
[38;2;255;187;0m[4mTheory[0m
|
||
[38;2;255;187;0m[4mLectures[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mStanford NLP ([39m[38;5;14m[1mCS224d[0m[38;5;12m (http://cs224d.stanford.edu/index.html)) by Richard Socher[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLecture Note 3[0m[38;5;12m (http://cs224d.stanford.edu/lecture_notes/LectureNotes3.pdf) : neural network basics[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLecture Note 4[0m[38;5;12m (http://cs224d.stanford.edu/lecture_notes/LectureNotes4.pdf) : RNN language models, bi-directional RNN, GRU, LSTM[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mStanford vision ([39m[38;5;14m[1mCS231n[0m[38;5;12m (http://cs231n.github.io/)) by Andrej Karpathy[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAbout NN basic, and CNN[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mOxford [39m[38;5;14m[1mMachine Learning[0m[38;5;12m (https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/) by Nando de Freitas[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLecture 12[0m[38;5;12m (https://www.youtube.com/watch?v=56TYLaQN4N8) : Recurrent neural networks and LSTMs[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLecture 13[0m[38;5;12m (https://www.youtube.com/watch?v=-yX1SYeDHbg) : (guest lecture) Alex Graves on Hallucination with RNNs[39m
|
||
|
||
[38;2;255;187;0m[4mBooks / Thesis[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAlex Graves (2008)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSupervised Sequence Labelling with Recurrent Neural Networks[0m[38;5;12m (http://www.cs.toronto.edu/~graves/preprint.pdf)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTomas Mikolov (2012)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStatistical Language Models based on Neural Networks[0m[38;5;12m (http://www.fit.vutbr.cz/~imikolov/rnnlm/thesis.pdf)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mIlya Sutskever (2013)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTraining Recurrent Neural Networks[0m[38;5;12m (http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mRichard Socher (2014)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRecursive Deep Learning for Natural Language Processing and Computer Vision[0m[38;5;12m (http://nlp.stanford.edu/~socherr/thesis.pdf)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mIan Goodfellow, Yoshua Bengio, and Aaron Courville (2016)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mThe Deep Learning Book chapter 10[0m[38;5;12m (http://www.deeplearningbook.org/contents/rnn.html)[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mArchitecture Variants[0m
|
||
|
||
[38;2;255;187;0m[4mStructure[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mBi-directional RNN [39m[38;5;12mPaper[39m[38;5;14m[1m (http://www.di.ufpe.br/~fnj/RNA/bibliografia/BRNN.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMike Schuster and Kuldip K. Paliwal, [39m[48;2;30;30;40m[38;5;13m[3mBidirectional Recurrent Neural Networks[0m[38;5;12m, Trans. on Signal Processing 1997[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMulti-dimensional RNN [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/0705.2011.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAlex Graves, Santiago Fernandez, and Jurgen Schmidhuber, [39m[48;2;30;30;40m[38;5;13m[3mMulti-Dimensional Recurrent Neural Networks[0m[38;5;12m, ICANN 2007[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mGFRNN [39m[38;5;12mPaper-arXiv[39m[38;5;14m[1m (http://arxiv.org/pdf/1502.02367)[0m[38;5;12m [39m[38;5;12mPaper-ICML[39m[38;5;14m[1m (http://jmlr.org/proceedings/papers/v37/chung15.pdf)[0m[38;5;12m [39m[38;5;12mSupplementary[39m[38;5;14m[1m (http://jmlr.org/proceedings/papers/v37/chung15-supp.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJunyoung Chung, Caglar Gulcehre, Kyunghyun Cho, Yoshua Bengio, [39m[48;2;30;30;40m[38;5;13m[3mGated Feedback Recurrent Neural Networks[0m[38;5;12m, arXiv:1502.02367 / ICML 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTree-Structured RNNs[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKai Sheng Tai, Richard Socher, and Christopher D. Manning, [39m[48;2;30;30;40m[38;5;13m[3mImproved Semantic Representations From Tree-Structured Long Short-Term Memory Networks[0m[38;5;12m, arXiv:1503.00075 / ACL 2015 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1503.00075)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSamuel R. Bowman, Christopher D. Manning, and Christopher Potts, [39m[48;2;30;30;40m[38;5;13m[3mTree-structured composition in neural networks without tree-structured architectures[0m[38;5;12m, arXiv:1506.04834 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.04834)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mGrid LSTM [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1507.01526)[0m[38;5;12m [39m[38;5;12mCode[39m[38;5;14m[1m (https://github.com/coreylynch/grid-lstm)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mNal Kalchbrenner, Ivo Danihelka, and Alex Graves, [39m[48;2;30;30;40m[38;5;13m[3mGrid Long Short-Term Memory[0m[38;5;12m, arXiv:1507.01526[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSegmental RNN [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.06018v2.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mLingpeng Kong, Chris Dyer, Noah Smith, "Segmental Recurrent Neural Networks", ICLR 2016.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSeq2seq for Sets [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.06391v4.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mOriol Vinyals, Samy Bengio, Manjunath Kudlur, "Order Matters: Sequence to sequence for sets", ICLR 2016.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHierarchical Recurrent Neural Networks [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/abs/1609.01704)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJunyoung Chung, Sungjin Ahn, Yoshua Bengio, "Hierarchical Multiscale Recurrent Neural Networks", arXiv:1609.01704[39m
|
||
|
||
[38;2;255;187;0m[4mMemory[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mLSTM [39m[38;5;12mPaper[39m[38;5;14m[1m (http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSepp Hochreiter and Jurgen Schmidhuber, [39m[48;2;30;30;40m[38;5;13m[3mLong Short-Term Memory[0m[38;5;12m, Neural Computation 1997[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mGRU (Gated Recurrent Unit) [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1406.1078.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKyunghyun[39m[38;5;12m [39m[38;5;12mCho,[39m[38;5;12m [39m[38;5;12mBart[39m[38;5;12m [39m[38;5;12mvan[39m[38;5;12m [39m[38;5;12mBerrienboer,[39m[38;5;12m [39m[38;5;12mCaglar[39m[38;5;12m [39m[38;5;12mGulcehre,[39m[38;5;12m [39m[38;5;12mDzmitry[39m[38;5;12m [39m[38;5;12mBahdanau,[39m[38;5;12m [39m[38;5;12mFethi[39m[38;5;12m [39m[38;5;12mBougares,[39m[38;5;12m [39m[38;5;12mHolger[39m[38;5;12m [39m[38;5;12mSchwenk,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mYoshua[39m[38;5;12m [39m[38;5;12mBengio,[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mLearning[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mPhrase[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mRepresentations[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3musing[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mRNN[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mEncoder-Decoder[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mfor[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mStatistical[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mMachine[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mTranslation[0m[38;5;12m,[39m[38;5;12m [39m[38;5;12marXiv:1406.1078[39m[38;5;12m [39m[38;5;12m/[39m[38;5;12m [39m[38;5;12mEMNLP[39m[38;5;12m [39m
|
||
[38;5;12m2014[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mNTM [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1410.5401)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mA.Graves, G. Wayne, and I. Danihelka., [39m[48;2;30;30;40m[38;5;13m[3mNeural Turing Machines,[0m[38;5;12m arXiv preprint arXiv:1410.5401[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mNeural GPU [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.08228.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mŁukasz Kaiser, Ilya Sutskever, arXiv:1511.08228 / ICML 2016 (under review)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMemory Network [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1410.3916)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJason Weston, Sumit Chopra, Antoine Bordes, [39m[48;2;30;30;40m[38;5;13m[3mMemory Networks,[0m[38;5;12m arXiv:1410.3916[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mPointer Network [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.03134)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mOriol Vinyals, Meire Fortunato, and Navdeep Jaitly, [39m[48;2;30;30;40m[38;5;13m[3mPointer Networks[0m[38;5;12m, arXiv:1506.03134 / NIPS 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mDeep Attention Recurrent Q-Network [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/abs/1512.01693)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mIvan Sorokin, Alexey Seleznev, Mikhail Pavlov, Aleksandr Fedorov, Anastasiia Ignateva, [39m[48;2;30;30;40m[38;5;13m[3mDeep Attention Recurrent Q-Network[0m[38;5;12m , arXiv:1512.01693[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mDynamic Memory Networks [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/abs/1506.07285)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAnkit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani, Victor Zhong, Romain Paulus, Richard Socher, "Ask Me Anything: Dynamic Memory Networks for Natural Language Processing", arXiv:1506.07285[39m
|
||
|
||
[38;2;255;187;0m[4mSurveys[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mYann LeCun, Yoshua Bengio, and Geoffrey Hinton, [39m[38;5;14m[1mDeep Learning[0m[38;5;12m (http://www.nature.com/nature/journal/v521/n7553/pdf/nature14539.pdf), Nature 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKlaus Greff, Rupesh Kumar Srivastava, Jan Koutnik, Bas R. Steunebrink, Jurgen Schmidhuber, [39m[38;5;14m[1mLSTM: A Search Space Odyssey[0m[38;5;12m (http://arxiv.org/pdf/1503.04069), arXiv:1503.04069[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mZachary C. Lipton, [39m[38;5;14m[1mA Critical Review of Recurrent Neural Networks for Sequence Learning[0m[38;5;12m (http://arxiv.org/pdf/1506.00019), arXiv:1506.00019[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAndrej Karpathy, Justin Johnson, Li Fei-Fei, [39m[38;5;14m[1mVisualizing and Understanding Recurrent Networks[0m[38;5;12m (http://arxiv.org/pdf/1506.02078), arXiv:1506.02078[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mRafal Jozefowicz, Wojciech Zaremba, Ilya Sutskever, [39m[38;5;14m[1mAn Empirical Exploration of Recurrent Network Architectures[0m[38;5;12m (http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf), ICML, 2015.[39m
|
||
|
||
[38;2;255;187;0m[4mApplications[0m
|
||
|
||
[38;2;255;187;0m[4mNatural Language Processing[0m
|
||
|
||
[38;2;255;187;0m[4mLanguage Modeling[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTomas[39m[38;5;12m [39m[38;5;12mMikolov,[39m[38;5;12m [39m[38;5;12mMartin[39m[38;5;12m [39m[38;5;12mKarafiat,[39m[38;5;12m [39m[38;5;12mLukas[39m[38;5;12m [39m[38;5;12mBurget,[39m[38;5;12m [39m[38;5;12mJan[39m[38;5;12m [39m[38;5;12m"Honza"[39m[38;5;12m [39m[38;5;12mCernocky,[39m[38;5;12m [39m[38;5;12mSanjeev[39m[38;5;12m [39m[38;5;12mKhudanpur,[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mRecurrent[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mNeural[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mNetwork[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mbased[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mLanguage[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mModel[0m[38;5;12m,[39m[38;5;12m [39m[38;5;12mInterspeech[39m[38;5;12m [39m[38;5;12m2010[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m
|
||
[38;5;14m[1m(http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTomas[39m[38;5;12m [39m[38;5;12mMikolov,[39m[38;5;12m [39m[38;5;12mStefan[39m[38;5;12m [39m[38;5;12mKombrink,[39m[38;5;12m [39m[38;5;12mLukas[39m[38;5;12m [39m[38;5;12mBurget,[39m[38;5;12m [39m[38;5;12mJan[39m[38;5;12m [39m[38;5;12m"Honza"[39m[38;5;12m [39m[38;5;12mCernocky,[39m[38;5;12m [39m[38;5;12mSanjeev[39m[38;5;12m [39m[38;5;12mKhudanpur,[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mExtensions[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mof[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mRecurrent[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mNeural[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mNetwork[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mLanguage[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mModel[0m[38;5;12m,[39m[38;5;12m [39m[38;5;12mICASSP[39m[38;5;12m [39m[38;5;12m2011[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m
|
||
[38;5;14m[1m(http://www.fit.vutbr.cz/research/groups/speech/publi/2011/mikolov_icassp2011_5528.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mStefan[39m[38;5;12m [39m[38;5;12mKombrink,[39m[38;5;12m [39m[38;5;12mTomas[39m[38;5;12m [39m[38;5;12mMikolov,[39m[38;5;12m [39m[38;5;12mMartin[39m[38;5;12m [39m[38;5;12mKarafiat,[39m[38;5;12m [39m[38;5;12mLukas[39m[38;5;12m [39m[38;5;12mBurget,[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mRecurrent[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mNeural[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mNetwork[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mbased[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mLanguage[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mModeling[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3min[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mMeeting[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mRecognition[0m[38;5;12m,[39m[38;5;12m [39m[38;5;12mInterspeech[39m[38;5;12m [39m[38;5;12m2011[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m
|
||
[38;5;14m[1m(http://www.fit.vutbr.cz/~imikolov/rnnlm/ApplicationOfRNNinMeetingRecognition_IS2011.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJiwei Li, Minh-Thang Luong, and Dan Jurafsky, [39m[48;2;30;30;40m[38;5;13m[3mA Hierarchical Neural Autoencoder for Paragraphs and Documents[0m[38;5;12m, ACL 2015 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.01057)[0m[38;5;12m , [39m[38;5;12mCode[39m[38;5;14m[1m (https://github.com/jiweil/Hierarchical-Neural-Autoencoder)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mRyan Kiros, Yukun Zhu, Ruslan Salakhutdinov, and Richard S. Zemel, [39m[48;2;30;30;40m[38;5;13m[3mSkip-Thought Vectors[0m[38;5;12m, arXiv:1506.06726 / NIPS 2015 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.06726.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mYoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush, [39m[48;2;30;30;40m[38;5;13m[3mCharacter-Aware Neural Language Models[0m[38;5;12m, arXiv:1508.06615 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1508.06615)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mXingxing Zhang, Liang Lu, and Mirella Lapata, [39m[48;2;30;30;40m[38;5;13m[3mTree Recurrent Neural Networks with Application to Language Modeling[0m[38;5;12m, arXiv:1511.00060 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.00060.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFelix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston, [39m[48;2;30;30;40m[38;5;13m[3mThe Goldilocks Principle: Reading children's books with explicit memory representations[0m[38;5;12m, arXiv:1511.0230 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.02301.pdf)[0m[38;5;12m [39m
|
||
|
||
|
||
[38;2;255;187;0m[4mSpeech Recognition[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mGeoffrey[39m[38;5;12m [39m[38;5;12mHinton,[39m[38;5;12m [39m[38;5;12mLi[39m[38;5;12m [39m[38;5;12mDeng,[39m[38;5;12m [39m[38;5;12mDong[39m[38;5;12m [39m[38;5;12mYu,[39m[38;5;12m [39m[38;5;12mGeorge[39m[38;5;12m [39m[38;5;12mE.[39m[38;5;12m [39m[38;5;12mDahl,[39m[38;5;12m [39m[38;5;12mAbdel-rahman[39m[38;5;12m [39m[38;5;12mMohamed,[39m[38;5;12m [39m[38;5;12mNavdeep[39m[38;5;12m [39m[38;5;12mJaitly,[39m[38;5;12m [39m[38;5;12mAndrew[39m[38;5;12m [39m[38;5;12mSenior,[39m[38;5;12m [39m[38;5;12mVincent[39m[38;5;12m [39m[38;5;12mVanhoucke,[39m[38;5;12m [39m[38;5;12mPatrick[39m[38;5;12m [39m[38;5;12mNguyen,[39m[38;5;12m [39m[38;5;12mTara[39m[38;5;12m [39m[38;5;12mN.[39m[38;5;12m [39m[38;5;12mSainath,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mBrian[39m[38;5;12m [39m[38;5;12mKingsbury,[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mDeep[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mNeural[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mNetworks[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mfor[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mAcoustic[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mModeling[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3min[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mSpeech[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mRecognition[0m[38;5;12m,[39m[38;5;12m [39m
|
||
[38;5;12mIEEE[39m[38;5;12m [39m[38;5;12mSignam[39m[38;5;12m [39m[38;5;12mProcessing[39m[38;5;12m [39m[38;5;12mMagazine[39m[38;5;12m [39m[38;5;12m2012[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;14m[1m(http://cs224d.stanford.edu/papers/maas_paper.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAlex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton, [39m[48;2;30;30;40m[38;5;13m[3mSpeech Recognition with Deep Recurrent Neural Networks[0m[38;5;12m, arXiv:1303.5778 / ICASSP 2013 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://www.cs.toronto.edu/~fritz/absps/RNN13.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio, [39m[48;2;30;30;40m[38;5;13m[3mAttention-Based Models for Speech Recognition[0m[38;5;12m, arXiv:1506.07503 / NIPS 2015 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.07503)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHaşim Sak, Andrew Senior, Kanishka Rao, and Françoise Beaufays. [39m[48;2;30;30;40m[38;5;13m[3mFast and Accurate Recurrent Neural Network Acoustic Models for Speech Recognition[0m[38;5;12m, arXiv:1507.06947 2015 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1507.06947v1.pdf)[0m[38;5;12m .[39m
|
||
|
||
[38;2;255;187;0m[4mMachine Translation[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mOxford [39m[38;5;12mPaper[39m[38;5;14m[1m (http://www.nal.ai/papers/kalchbrennerblunsom_emnlp13)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mNal Kalchbrenner and Phil Blunsom, [39m[48;2;30;30;40m[38;5;13m[3mRecurrent Continuous Translation Models[0m[38;5;12m, EMNLP 2013[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. Montreal[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKyunghyun[39m[38;5;12m [39m[38;5;12mCho,[39m[38;5;12m [39m[38;5;12mBart[39m[38;5;12m [39m[38;5;12mvan[39m[38;5;12m [39m[38;5;12mBerrienboer,[39m[38;5;12m [39m[38;5;12mCaglar[39m[38;5;12m [39m[38;5;12mGulcehre,[39m[38;5;12m [39m[38;5;12mDzmitry[39m[38;5;12m [39m[38;5;12mBahdanau,[39m[38;5;12m [39m[38;5;12mFethi[39m[38;5;12m [39m[38;5;12mBougares,[39m[38;5;12m [39m[38;5;12mHolger[39m[38;5;12m [39m[38;5;12mSchwenk,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mYoshua[39m[38;5;12m [39m[38;5;12mBengio,[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mLearning[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mPhrase[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mRepresentations[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3musing[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mRNN[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mEncoder-Decoder[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mfor[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mStatistical[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mMachine[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mTranslation[0m[38;5;12m,[39m[38;5;12m [39m[38;5;12marXiv:1406.1078[39m[38;5;12m [39m[38;5;12m/[39m[38;5;12m [39m[38;5;12mEMNLP[39m[38;5;12m [39m
|
||
[38;5;12m2014[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;14m[1m(http://arxiv.org/pdf/1406.1078)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio, [39m[48;2;30;30;40m[38;5;13m[3mOn the Properties of Neural Machine Translation: Encoder-Decoder Approaches[0m[38;5;12m, SSST-8 2014 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://www.aclweb.org/anthology/W14-4012)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJean Pouget-Abadie, Dzmitry Bahdanau, Bart van Merrienboer, Kyunghyun Cho, and Yoshua Bengio, [39m[48;2;30;30;40m[38;5;13m[3mOvercoming the Curse of Sentence Length for Neural Machine Translation using Automatic Segmentation[0m[38;5;12m, SSST-8 2014[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mDzmitry Bahdanau, KyungHyun Cho, and Yoshua Bengio, [39m[48;2;30;30;40m[38;5;13m[3mNeural Machine Translation by Jointly Learning to Align and Translate[0m[38;5;12m, arXiv:1409.0473 / ICLR 2015 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1409.0473)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSebastian Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio, [39m[48;2;30;30;40m[38;5;13m[3mOn using very large target vocabulary for neural machine translation[0m[38;5;12m, arXiv:1412.2007 / ACL 2015 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1412.2007.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. Montreal + Middle East Tech. Univ. + Univ. Maine [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1503.03535.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mCaglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares, Holger Schwenk, and Yoshua Bengio, [39m[48;2;30;30;40m[38;5;13m[3mOn Using Monolingual Corpora in Neural Machine Translation[0m[38;5;12m, arXiv:1503.03535[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mGoogle [39m[38;5;12mPaper[39m[38;5;14m[1m (http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mIlya Sutskever, Oriol Vinyals, and Quoc V. Le, [39m[48;2;30;30;40m[38;5;13m[3mSequence to Sequence Learning with Neural Networks[0m[38;5;12m, arXiv:1409.3215 / NIPS 2014[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mGoogle + NYU [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1410.8206)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMinh-Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol Vinyals, and Wojciech Zaremba, [39m[48;2;30;30;40m[38;5;13m[3mAddressing the Rare Word Problem in Neural Machine Transltaion[0m[38;5;12m, arXiv:1410.8206 / ACL 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mICT + Huawei [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.06442.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFandong Meng, Zhengdong Lu, Zhaopeng Tu, Hang Li, and Qun Liu, [39m[48;2;30;30;40m[38;5;13m[3mA Deep Memory-based Architecture for Sequence-to-Sequence Learning[0m[38;5;12m, arXiv:1506.06442[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mStanford [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1508.04025.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMinh-Thang Luong, Hieu Pham, and Christopher D. Manning, [39m[48;2;30;30;40m[38;5;13m[3mEffective Approaches to Attention-based Neural Machine Translation[0m[38;5;12m, arXiv:1508.04025[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMiddle East Tech. Univ. + NYU + Univ. Montreal [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1601.01073.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mOrhan Firat, Kyunghyun Cho, and Yoshua Bengio, [39m[48;2;30;30;40m[38;5;13m[3mMulti-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism[0m[38;5;12m, arXiv:1601.01073[39m
|
||
|
||
[38;2;255;187;0m[4mConversation Modeling[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mLifeng Shang, Zhengdong Lu, and Hang Li, [39m[48;2;30;30;40m[38;5;13m[3mNeural Responding Machine for Short-Text Conversation[0m[38;5;12m, arXiv:1503.02364 / ACL 2015 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1503.02364)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mOriol Vinyals and Quoc V. Le, [39m[48;2;30;30;40m[38;5;13m[3mA Neural Conversational Model[0m[38;5;12m, arXiv:1506.05869 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.05869)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mRyan Lowe, Nissan Pow, Iulian V. Serban, and Joelle Pineau, [39m[48;2;30;30;40m[38;5;13m[3mThe Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems[0m[38;5;12m, arXiv:1506.08909 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.08909)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJesse[39m[38;5;12m [39m[38;5;12mDodge,[39m[38;5;12m [39m[38;5;12mAndreea[39m[38;5;12m [39m[38;5;12mGane,[39m[38;5;12m [39m[38;5;12mXiang[39m[38;5;12m [39m[38;5;12mZhang,[39m[38;5;12m [39m[38;5;12mAntoine[39m[38;5;12m [39m[38;5;12mBordes,[39m[38;5;12m [39m[38;5;12mSumit[39m[38;5;12m [39m[38;5;12mChopra,[39m[38;5;12m [39m[38;5;12mAlexander[39m[38;5;12m [39m[38;5;12mMiller,[39m[38;5;12m [39m[38;5;12mArthur[39m[38;5;12m [39m[38;5;12mSzlam,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mJason[39m[38;5;12m [39m[38;5;12mWeston,[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mEvaluating[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mPrerequisite[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mQualities[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mfor[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mLearning[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mEnd-to-End[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mDialog[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mSystems[0m[38;5;12m,[39m[38;5;12m [39m[38;5;12marXiv:1511.06931[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m
|
||
[38;5;14m[1m(http://arxiv.org/pdf/1511.06931)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJason Weston, [39m[48;2;30;30;40m[38;5;13m[3mDialog-based Language Learning[0m[38;5;12m, arXiv:1604.06045, [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1604.06045)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAntoine Bordes and Jason Weston, [39m[48;2;30;30;40m[38;5;13m[3mLearning End-to-End Goal-Oriented Dialog[0m[38;5;12m, arXiv:1605.07683 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1605.07683)[0m[38;5;12m [39m
|
||
|
||
[38;2;255;187;0m[4mQuestion Answering[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFAIR[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJason[39m[38;5;12m [39m[38;5;12mWeston,[39m[38;5;12m [39m[38;5;12mAntoine[39m[38;5;12m [39m[38;5;12mBordes,[39m[38;5;12m [39m[38;5;12mSumit[39m[38;5;12m [39m[38;5;12mChopra,[39m[38;5;12m [39m[38;5;12mTomas[39m[38;5;12m [39m[38;5;12mMikolov,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mAlexander[39m[38;5;12m [39m[38;5;12mM.[39m[38;5;12m [39m[38;5;12mRush,[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mTowards[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mAI-Complete[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mQuestion[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mAnswering:[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mA[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mSet[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mof[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mPrerequisite[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mToy[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mTasks[0m[38;5;12m,[39m[38;5;12m [39m[38;5;12marXiv:1502.05698[39m[38;5;12m [39m[38;5;12mWeb[39m[38;5;14m[1m [0m[38;5;14m[1m(https://research.facebook.com/researchers/1543934539189348)[0m[38;5;12m [39m
|
||
[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;14m[1m(http://arxiv.org/pdf/1502.05698.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAntoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston, [39m[48;2;30;30;40m[38;5;13m[3mSimple Question answering with Memory Networks[0m[38;5;12m, arXiv:1506.02075 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/abs/1506.02075)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFelix Hill, Antoine Bordes, Sumit Chopra, Jason Weston, "The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations", ICLR 2016 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/abs/1511.02301)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mDeepMind + Oxford [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.03340.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKarl M. Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom, [39m[48;2;30;30;40m[38;5;13m[3mTeaching Machines to Read and Comprehend[0m[38;5;12m, arXiv:1506.03340 / NIPS 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMetaMind [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.07285.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAnkit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury, Robert English, Brian Pierce, Peter Ondruska, Mohit Iyyer, Ishaan Gulrajani, and Richard Socher, [39m[48;2;30;30;40m[38;5;13m[3mAsk Me Anything: Dynamic Memory Networks for Natural Language Processing[0m[38;5;12m, arXiv:1506.07285[39m
|
||
|
||
[38;2;255;187;0m[4mComputer Vision[0m
|
||
|
||
[38;2;255;187;0m[4mObject Recognition[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mPedro Pinheiro and Ronan Collobert, [39m[48;2;30;30;40m[38;5;13m[3mRecurrent Convolutional Neural Networks for Scene Labeling[0m[38;5;12m, ICML 2014 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://jmlr.org/proceedings/papers/v32/pinheiro14.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMing Liang and Xiaolin Hu, [39m[48;2;30;30;40m[38;5;13m[3mRecurrent Convolutional Neural Network for Object Recognition[0m[38;5;12m, CVPR 2015 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Liang_Recurrent_Convolutional_Neural_2015_CVPR_paper.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mWonmin[39m[38;5;12m [39m[38;5;12mByeon,[39m[38;5;12m [39m[38;5;12mThomas[39m[38;5;12m [39m[38;5;12mBreuel,[39m[38;5;12m [39m[38;5;12mFederico[39m[38;5;12m [39m[38;5;12mRaue1,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mMarcus[39m[38;5;12m [39m[38;5;12mLiwicki1,[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mScene[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mLabeling[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mwith[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mLSTM[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mRecurrent[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mNeural[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mNetworks[0m[38;5;12m,[39m[38;5;12m [39m[38;5;12mCVPR[39m[38;5;12m [39m[38;5;12m2015[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m
|
||
[38;5;14m[1m(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Byeon_Scene_Labeling_With_2015_CVPR_paper.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMircea Serban Pavel, Hannes Schulz, and Sven Behnke, [39m[48;2;30;30;40m[38;5;13m[3mRecurrent Convolutional Neural Networks for Object-Class Segmentation of RGB-D Video[0m[38;5;12m, IJCNN 2015 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://www.ais.uni-bonn.de/papers/IJCNN_2015_Pavel.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mShuai[39m[38;5;12m [39m[38;5;12mZheng,[39m[38;5;12m [39m[38;5;12mSadeep[39m[38;5;12m [39m[38;5;12mJayasumana,[39m[38;5;12m [39m[38;5;12mBernardino[39m[38;5;12m [39m[38;5;12mRomera-Paredes,[39m[38;5;12m [39m[38;5;12mVibhav[39m[38;5;12m [39m[38;5;12mVineet,[39m[38;5;12m [39m[38;5;12mZhizhong[39m[38;5;12m [39m[38;5;12mSu,[39m[38;5;12m [39m[38;5;12mDalong[39m[38;5;12m [39m[38;5;12mDu,[39m[38;5;12m [39m[38;5;12mChang[39m[38;5;12m [39m[38;5;12mHuang,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mPhilip[39m[38;5;12m [39m[38;5;12mH.[39m[38;5;12m [39m[38;5;12mS.[39m[38;5;12m [39m[38;5;12mTorr,[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mConditional[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mRandom[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mFields[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mas[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mRecurrent[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mNeural[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mNetworks[0m[38;5;12m,[39m[38;5;12m [39m[38;5;12marXiv:1502.03240[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m
|
||
[38;5;14m[1m(http://arxiv.org/pdf/1502.03240)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mXiaodan Liang, Xiaohui Shen, Donglai Xiang, Jiashi Feng, Liang Lin, and Shuicheng Yan, [39m[48;2;30;30;40m[38;5;13m[3mSemantic Object Parsing with Local-Global Long Short-Term Memory[0m[38;5;12m, arXiv:1511.04510 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.04510.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSean Bell, C. Lawrence Zitnick, Kavita Bala, and Ross Girshick, [39m[48;2;30;30;40m[38;5;13m[3mInside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks[0m[38;5;12m, arXiv:1512.04143 / ICCV 2015 workshop [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1512.04143)[0m[38;5;12m [39m
|
||
|
||
[38;2;255;187;0m[4mVisual Tracking[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mQuan Gan, Qipeng Guo, Zheng Zhang, and Kyunghyun Cho, [39m[48;2;30;30;40m[38;5;13m[3mFirst Step toward Model-Free, Anonymous Object Tracking with Recurrent Neural Networks[0m[38;5;12m, arXiv:1511.06425 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.06425)[0m[38;5;12m [39m
|
||
|
||
|
||
[38;2;255;187;0m[4mImage Generation[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKarol Gregor, Ivo Danihelka, Alex Graves, Danilo J. Rezende, and Daan Wierstra, [39m[48;2;30;30;40m[38;5;13m[3mDRAW: A Recurrent Neural Network for Image Generation,[0m[38;5;12m ICML 2015 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1502.04623)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAngeliki Lazaridou, Dat T. Nguyen, R. Bernardi, and M. Baroni, [39m[48;2;30;30;40m[38;5;13m[3mUnveiling the Dreams of Word Embeddings: Towards Language-Driven Image Generation,[0m[38;5;12m arXiv:1506.03500 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.03500)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mLucas Theis and Matthias Bethge, [39m[48;2;30;30;40m[38;5;13m[3mGenerative Image Modeling Using Spatial LSTMs,[0m[38;5;12m arXiv:1506.03478 / NIPS 2015 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.03478)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu, [39m[48;2;30;30;40m[38;5;13m[3mPixel Recurrent Neural Networks,[0m[38;5;12m arXiv:1601.06759 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/abs/1601.06759)[0m[38;5;12m [39m
|
||
|
||
[38;2;255;187;0m[4mVideo Analysis[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. Toronto [39m[38;5;12mpaper[39m[38;5;14m[1m (http://arxiv.org/abs/1502.04681)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mNitish Srivastava, Elman Mansimov, Ruslan Salakhutdinov, [39m[48;2;30;30;40m[38;5;13m[3mUnsupervised Learning of Video Representations using LSTMs[0m[38;5;12m, arXiv:1502.04681 / ICML 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. Cambridge [39m[38;5;12mpaper[39m[38;5;14m[1m (http://arxiv.org/abs/1511.06309)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mViorica Patraucean, Ankur Handa, Roberto Cipolla, [39m[48;2;30;30;40m[38;5;13m[3mSpatio-temporal video autoencoder with differentiable memory[0m[38;5;12m, arXiv:1511.06309[39m
|
||
|
||
|
||
|
||
[38;2;255;187;0m[4mMultimodal (CV + NLP)[0m
|
||
|
||
[38;2;255;187;0m[4mImage Captioning[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUCLA + Baidu [39m[38;5;12mWeb[39m[38;5;14m[1m (http://www.stat.ucla.edu/~junhua.mao/m-RNN.html)[0m[38;5;12m [39m[38;5;12mPaper-arXiv1[39m[38;5;14m[1m (http://arxiv.org/pdf/1410.1090)[0m[38;5;12m , [39m[38;5;12mPaper-arXiv2[39m[38;5;14m[1m (http://arxiv.org/pdf/1412.6632)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJunhua Mao, Wei Xu, Yi Yang, Jiang Wang, and Alan L. Yuille, [39m[48;2;30;30;40m[38;5;13m[3mExplain Images with Multimodal Recurrent Neural Networks[0m[38;5;12m, arXiv:1410.1090[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJunhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan L. Yuille, [39m[48;2;30;30;40m[38;5;13m[3mDeep Captioning with Multimodal Recurrent Neural Networks (m-RNN)[0m[38;5;12m, arXiv:1412.6632 / ICLR 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. Toronto [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1411.2539)[0m[38;5;12m [39m[38;5;12mWeb demo[39m[38;5;14m[1m (http://deeplearning.cs.toronto.edu/i2t)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mRyan Kiros, Ruslan Salakhutdinov, and Richard S. Zemel, [39m[48;2;30;30;40m[38;5;13m[3mUnifying Visual-Semantic Embeddings with Multimodal Neural Language Models[0m[38;5;12m, arXiv:1411.2539 / TACL 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mBerkeley [39m[38;5;12mWeb[39m[38;5;14m[1m (http://jeffdonahue.com/lrcn/)[0m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1411.4389)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell, [39m[48;2;30;30;40m[38;5;13m[3mLong-term Recurrent Convolutional Networks for Visual Recognition and Description[0m[38;5;12m, arXiv:1411.4389 / CVPR 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mGoogle [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1411.4555)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mOriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan, [39m[48;2;30;30;40m[38;5;13m[3mShow and Tell: A Neural Image Caption Generator[0m[38;5;12m, arXiv:1411.4555 / CVPR 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mStanford [39m[38;5;12mWeb[39m[38;5;14m[1m [0m[38;5;12m (http://cs.stanford.edu/people/karpathy/deepimagesent/) [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://cs.stanford.edu/people/karpathy/cvpr2015.pdf)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAndrej Karpathy and Li Fei-Fei, [39m[48;2;30;30;40m[38;5;13m[3mDeep Visual-Semantic Alignments for Generating Image Description[0m[38;5;12m, CVPR 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMicrosoft [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1411.4952)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHao[39m[38;5;12m [39m[38;5;12mFang,[39m[38;5;12m [39m[38;5;12mSaurabh[39m[38;5;12m [39m[38;5;12mGupta,[39m[38;5;12m [39m[38;5;12mForrest[39m[38;5;12m [39m[38;5;12mIandola,[39m[38;5;12m [39m[38;5;12mRupesh[39m[38;5;12m [39m[38;5;12mSrivastava,[39m[38;5;12m [39m[38;5;12mLi[39m[38;5;12m [39m[38;5;12mDeng,[39m[38;5;12m [39m[38;5;12mPiotr[39m[38;5;12m [39m[38;5;12mDollar,[39m[38;5;12m [39m[38;5;12mJianfeng[39m[38;5;12m [39m[38;5;12mGao,[39m[38;5;12m [39m[38;5;12mXiaodong[39m[38;5;12m [39m[38;5;12mHe,[39m[38;5;12m [39m[38;5;12mMargaret[39m[38;5;12m [39m[38;5;12mMitchell,[39m[38;5;12m [39m[38;5;12mJohn[39m[38;5;12m [39m[38;5;12mC.[39m[38;5;12m [39m[38;5;12mPlatt,[39m[38;5;12m [39m[38;5;12mLawrence[39m[38;5;12m [39m[38;5;12mZitnick,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mGeoffrey[39m[38;5;12m [39m[38;5;12mZweig,[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mFrom[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mCaptions[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mto[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mVisual[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mConcepts[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mand[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mBack[0m[38;5;12m,[39m[38;5;12m [39m[38;5;12marXiv:1411.4952[39m[38;5;12m [39m
|
||
[38;5;12m/[39m[38;5;12m [39m[38;5;12mCVPR[39m[38;5;12m [39m[38;5;12m2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mCMU + Microsoft [39m[38;5;12mPaper-arXiv[39m[38;5;14m[1m (http://arxiv.org/pdf/1411.5654)[0m[38;5;12m , [39m[38;5;12mPaper-CVPR[39m[38;5;14m[1m (http://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mXinlei Chen, and C. Lawrence Zitnick, [39m[48;2;30;30;40m[38;5;13m[3mLearning a Recurrent Visual Representation for Image Caption Generation[0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mXinlei Chen, and C. Lawrence Zitnick, [39m[48;2;30;30;40m[38;5;13m[3mMind’s Eye: A Recurrent Visual Representation for Image Caption Generation[0m[38;5;12m, CVPR 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. Montreal + Univ. Toronto [39m[38;5;12mWeb[39m[38;5;14m[1m (http://kelvinxu.github.io/projects/capgen.html)[0m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m (http://www.cs.toronto.edu/~zemel/documents/captionAttn.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Bengio, [39m[48;2;30;30;40m[38;5;13m[3mShow, Attend, and Tell: Neural Image Caption Generation with Visual Attention[0m[38;5;12m, arXiv:1502.03044 / ICML 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mIdiap + EPFL + Facebook [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1502.03671)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mRemi Lebret, Pedro O. Pinheiro, and Ronan Collobert, [39m[48;2;30;30;40m[38;5;13m[3mPhrase-based Image Captioning[0m[38;5;12m, arXiv:1502.03671 / ICML 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUCLA + Baidu [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1504.06692)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJunhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan L. Yuille, [39m[48;2;30;30;40m[38;5;13m[3mLearning like a Child: Fast Novel Visual Concept Learning from Sentence Descriptions of Images[0m[38;5;12m, arXiv:1504.06692[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMS + Berkeley[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJacob Devlin, Saurabh Gupta, Ross Girshick, Margaret Mitchell, and C. Lawrence Zitnick, [39m[48;2;30;30;40m[38;5;13m[3mExploring Nearest Neighbor Approaches for Image Captioning[0m[38;5;12m, arXiv:1505.04467 (Note: technically not RNN) [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1505.04467.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJacob Devlin, Hao Cheng, Hao Fang, Saurabh Gupta, Li Deng, Xiaodong He, Geoffrey Zweig, and Margaret Mitchell, [39m[48;2;30;30;40m[38;5;13m[3mLanguage Models for Image Captioning: The Quirks and What Works[0m[38;5;12m, arXiv:1505.01809 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1505.01809.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAdelaide [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.01144.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mQi Wu, Chunhua Shen, Anton van den Hengel, Lingqiao Liu, and Anthony Dick, [39m[48;2;30;30;40m[38;5;13m[3mImage Captioning with an Intermediate Attributes Layer[0m[38;5;12m, arXiv:1506.01144[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTilburg [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.03694.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mGrzegorz Chrupala, Akos Kadar, and Afra Alishahi, [39m[48;2;30;30;40m[38;5;13m[3mLearning language through pictures[0m[38;5;12m, arXiv:1506.03694[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. Montreal [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1507.01053.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKyunghyun Cho, Aaron Courville, and Yoshua Bengio, [39m[48;2;30;30;40m[38;5;13m[3mDescribing Multimedia Content using Attention-based Encoder-Decoder Networks[0m[38;5;12m, arXiv:1507.01053[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mCornell [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1508.02091.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJack Hessel, Nicolas Savva, and Michael J. Wilber, [39m[48;2;30;30;40m[38;5;13m[3mImage Representations and New Domains in Neural Image Captioning[0m[38;5;12m, arXiv:1508.02091[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mVideo Captioning[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mBerkeley [39m[38;5;12mWeb[39m[38;5;14m[1m (http://jeffdonahue.com/lrcn/)[0m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1411.4389)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell, [39m[48;2;30;30;40m[38;5;13m[3mLong-term Recurrent Convolutional Networks for Visual Recognition and Description[0m[38;5;12m, arXiv:1411.4389 / CVPR 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUT Austin + UML + Berkeley [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1412.4729)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSubhashini Venugopalan, Huijuan Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, and Kate Saenko, [39m[48;2;30;30;40m[38;5;13m[3mTranslating Videos to Natural Language Using Deep Recurrent Neural Networks[0m[38;5;12m, arXiv:1412.4729[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMicrosoft [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1505.01861)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mYingwei Pan, Tao Mei, Ting Yao, Houqiang Li, and Yong Rui, [39m[48;2;30;30;40m[38;5;13m[3mJoint Modeling Embedding and Translation to Bridge Video and Language[0m[38;5;12m, arXiv:1505.01861[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUT Austin + Berkeley + UML [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1505.00487)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSubhashini Venugopalan, Marcus Rohrbach, Jeff Donahue, Raymond Mooney, Trevor Darrell, and Kate Saenko, [39m[48;2;30;30;40m[38;5;13m[3mSequence to Sequence--Video to Text[0m[38;5;12m, arXiv:1505.00487[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. Montreal + Univ. Sherbrooke [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1502.08029.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mLi Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Ballas, Christopher Pal, Hugo Larochelle, and Aaron Courville, [39m[48;2;30;30;40m[38;5;13m[3mDescribing Videos by Exploiting Temporal Structure[0m[38;5;12m, arXiv:1502.08029[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMPI + Berkeley [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.01698.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAnna Rohrbach, Marcus Rohrbach, and Bernt Schiele, [39m[48;2;30;30;40m[38;5;13m[3mThe Long-Short Story of Movie Description[0m[38;5;12m, arXiv:1506.01698[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. Toronto + MIT [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.06724.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mYukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler, [39m[48;2;30;30;40m[38;5;13m[3mAligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books[0m[38;5;12m, arXiv:1506.06724[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. Montreal [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1507.01053.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKyunghyun Cho, Aaron Courville, and Yoshua Bengio, [39m[48;2;30;30;40m[38;5;13m[3mDescribing Multimedia Content using Attention-based Encoder-Decoder Networks[0m[38;5;12m, arXiv:1507.01053[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mZhejiang Univ. + UTS [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/abs/1511.03476)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mPingbo Pan, Zhongwen Xu, Yi Yang, Fei Wu, Yueting Zhuang, [39m[48;2;30;30;40m[38;5;13m[3mHierarchical Recurrent Neural Encoder for Video Representation with Application to Captioning[0m[38;5;12m, arXiv:1511.03476[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. Montreal + NYU + IBM [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.04590.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mLi Yao, Nicolas Ballas, Kyunghyun Cho, John R. Smith, and Yoshua Bengio, [39m[48;2;30;30;40m[38;5;13m[3mEmpirical performance upper bounds for image and video captioning[0m[38;5;12m, arXiv:1511.04590[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mVisual Question Answering[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mVirginia Tech. + MSR [39m[38;5;12mWeb[39m[38;5;14m[1m (http://www.visualqa.org/)[0m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1505.00468)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mStanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, and Devi Parikh, [39m[48;2;30;30;40m[38;5;13m[3mVQA: Visual Question Answering[0m[38;5;12m, arXiv:1505.00468 / CVPR 2015 SUNw:Scene Understanding workshop[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMPI + Berkeley [39m[38;5;12mWeb[39m[38;5;14m[1m (https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/visual-turing-challenge/)[0m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1505.01121)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMateusz Malinowski, Marcus Rohrbach, and Mario Fritz, [39m[48;2;30;30;40m[38;5;13m[3mAsk Your Neurons: A Neural-based Approach to Answering Questions about Images[0m[38;5;12m, arXiv:1505.01121[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. Toronto [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1505.02074)[0m[38;5;12m [39m[38;5;12mDataset[39m[38;5;14m[1m (http://www.cs.toronto.edu/~mren/imageqa/data/cocoqa/)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMengye Ren, Ryan Kiros, and Richard Zemel, [39m[48;2;30;30;40m[38;5;13m[3mExploring Models and Data for Image Question Answering[0m[38;5;12m, arXiv:1505.02074 / ICML 2015 deep learning workshop[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mBaidu + UCLA [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1505.05612)[0m[38;5;12m [39m[38;5;12mDataset[39m[38;5;14m[1m ()[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHauyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang, Lei Wang, and Wei Xu, [39m[48;2;30;30;40m[38;5;13m[3mAre You Talking to a Machine? Dataset and Methods for Multilingual Image Question Answering[0m[38;5;12m, arXiv:1505.05612 / NIPS 2015[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSNU + NAVER [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/abs/1606.01455)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJin-Hwa Kim, Sang-Woo Lee, Dong-Hyun Kwak, Min-Oh Heo, Jeonghee Kim, Jung-Woo Ha, Byoung-Tak Zhang, [39m[48;2;30;30;40m[38;5;13m[3mMultimodal Residual Learning for Visual QA[0m[38;5;12m, arXiv:1606:01455[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUC Berkeley + Sony [39m[38;5;12mPaper[39m[38;5;14m[1m (https://arxiv.org/pdf/1606.01847)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAkira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and Marcus Rohrbach, [39m[48;2;30;30;40m[38;5;13m[3mMultimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding[0m[38;5;12m, arXiv:1606.01847[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mPostech [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1606.03647.pdf)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHyeonwoo Noh and Bohyung Han, [39m[48;2;30;30;40m[38;5;13m[3mTraining Recurrent Answering Units with Joint Loss Minimization for VQA[0m[38;5;12m, arXiv:1606.03647[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSNU + NAVER [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/abs/1610.04325)[0m[38;5;12m [39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJin-Hwa Kim, Kyoung Woon On, Jeonghee Kim, Jung-Woo Ha, Byoung-Tak Zhang, [39m[48;2;30;30;40m[38;5;13m[3mHadamard Product for Low-rank Bilinear Pooling[0m[38;5;12m, arXiv:1610.04325[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mVideo QA[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mCMU + UTS [39m[38;5;12mpaper[39m[38;5;14m[1m (http://arxiv.org/abs/1511.04670)[0m[38;5;12m [39m
|
||
[48;5;235m[38;5;249m* Linchao Zhu, Zhongwen Xu, Yi Yang, Alexander G. Hauptmann, Uncovering Temporal Context for Video Question and Answering, arXiv:1511.04670[49m[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKIT + MIT + Univ. Toronto [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/abs/1512.02902)[0m[38;5;12m [39m[38;5;12mDataset[39m[38;5;14m[1m (http://movieqa.cs.toronto.edu/home/)[0m[38;5;12m [39m
|
||
[48;5;235m[38;5;249m* Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen, Antonio Torralba, Raquel Urtasun, Sanja Fidler, MovieQA: Understanding Stories in Movies through Question-Answering, arXiv:1512.02902[49m[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mTuring Machines[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12m A.Graves, G. Wayne, and I. Danihelka., [39m[48;2;30;30;40m[38;5;13m[3mNeural Turing Machines,[0m[38;5;12m arXiv preprint arXiv:1410.5401 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1410.5401)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJason Weston, Sumit Chopra, Antoine Bordes, [39m[48;2;30;30;40m[38;5;13m[3mMemory Networks,[0m[38;5;12m arXiv:1410.3916 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1410.3916)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mArmand Joulin and Tomas Mikolov, [39m[48;2;30;30;40m[38;5;13m[3mInferring Algorithmic Patterns with Stack-Augmented Recurrent Nets[0m[38;5;12m, arXiv:1503.01007 / NIPS 2015 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1503.01007)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus, [39m[48;2;30;30;40m[38;5;13m[3mEnd-To-End Memory Networks[0m[38;5;12m, arXiv:1503.08895 / NIPS 2015 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1503.08895)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mWojciech Zaremba and Ilya Sutskever, [39m[48;2;30;30;40m[38;5;13m[3mReinforcement Learning Neural Turing Machines,[0m[38;5;12m arXiv:1505.00521 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1505.00521)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mBaolin Peng and Kaisheng Yao, [39m[48;2;30;30;40m[38;5;13m[3mRecurrent Neural Networks with External Memory for Language Understanding[0m[38;5;12m, arXiv:1506.00195 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.00195.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFandong Meng, Zhengdong Lu, Zhaopeng Tu, Hang Li, and Qun Liu, [39m[48;2;30;30;40m[38;5;13m[3mA Deep Memory-based Architecture for Sequence-to-Sequence Learning[0m[38;5;12m, arXiv:1506.06442 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.06442.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mArvind Neelakantan, Quoc V. Le, and Ilya Sutskever, [39m[48;2;30;30;40m[38;5;13m[3mNeural Programmer: Inducing Latent Programs with Gradient Descent[0m[38;5;12m, arXiv:1511.04834 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.04834.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mScott Reed and Nando de Freitas, [39m[48;2;30;30;40m[38;5;13m[3mNeural Programmer-Interpreters[0m[38;5;12m, arXiv:1511.06279 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.06279.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKarol Kurach, Marcin Andrychowicz, and Ilya Sutskever, [39m[48;2;30;30;40m[38;5;13m[3mNeural Random-Access Machines[0m[38;5;12m, arXiv:1511.06392 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.06392.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mŁukasz Kaiser and Ilya Sutskever, [39m[48;2;30;30;40m[38;5;13m[3mNeural GPUs Learn Algorithms[0m[38;5;12m, arXiv:1511.08228 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.08228.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mEthan Caballero, [39m[48;2;30;30;40m[38;5;13m[3mSkip-Thought Memory Networks[0m[38;5;12m, arXiv:1511.6420 [39m[38;5;12mPaper[39m[38;5;14m[1m (https://pdfs.semanticscholar.org/6b9f/0d695df0ce01d005eb5aa69386cb5fbac62a.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mWojciech Zaremba, Tomas Mikolov, Armand Joulin, and Rob Fergus, [39m[48;2;30;30;40m[38;5;13m[3mLearning Simple Algorithms from Examples[0m[38;5;12m, arXiv:1511.07275 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.07275.pdf)[0m[38;5;12m [39m
|
||
|
||
[38;2;255;187;0m[4mRobotics[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHongyuan Mei, Mohit Bansal, and Matthew R. Walter, [39m[48;2;30;30;40m[38;5;13m[3mListen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences[0m[38;5;12m, arXiv:1506.04089 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.04089.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMarvin Zhang, Sergey Levine, Zoe McCarthy, Chelsea Finn, and Pieter Abbeel, [39m[48;2;30;30;40m[38;5;13m[3mPolicy Learning with Continuous Memory States for Partially Observed Robotic Control,[0m[38;5;12m arXiv:1507.01273. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1507.01273)[39m
|
||
|
||
[38;2;255;187;0m[4mOther[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAlex Graves, [39m[48;2;30;30;40m[38;5;13m[3mGenerating Sequences With Recurrent Neural Networks,[0m[38;5;12m arXiv:1308.0850 [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/abs/1308.0850)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mVolodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu, [39m[48;2;30;30;40m[38;5;13m[3mRecurrent Models of Visual Attention[0m[38;5;12m, NIPS 2014 / arXiv:1406.6247 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1406.6247.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mWojciech Zaremba and Ilya Sutskever, [39m[48;2;30;30;40m[38;5;13m[3mLearning to Execute[0m[38;5;12m, arXiv:1410.4615 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1410.4615.pdf)[0m[38;5;12m [39m[38;5;12mCode[39m[38;5;14m[1m (https://github.com/wojciechz/learning_to_execute)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSamy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer, [39m[48;2;30;30;40m[38;5;13m[3mScheduled Sampling for Sequence Prediction with[0m
|
||
[38;5;12mRecurrent Neural Networks[39m[48;2;30;30;40m[38;5;13m[3m, arXiv:1506.03099 / NIPS 2015 [0m[48;2;30;30;40m[38;5;13m[3mPaper[0m[48;2;30;30;40m[38;5;14m[1m[3m (http://arxiv.org/pdf/1506.03099)[0m[48;2;30;30;40m[38;5;13m[3m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mBing Shuai, Zhen Zuo, Gang Wang, and Bing Wang, [39m[48;2;30;30;40m[38;5;13m[3mDAG-Recurrent Neural Networks For Scene Labeling[0m[38;5;12m, arXiv:1509.00552 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1509.00552)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSoren Kaae Sonderby, Casper Kaae Sonderby, Lars Maaloe, and Ole Winther, [39m[48;2;30;30;40m[38;5;13m[3mRecurrent Spatial Transformer Networks[0m[38;5;12m, arXiv:1509.05329 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1509.05329)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mCesar Laurent, Gabriel Pereyra, Philemon Brakel, Ying Zhang, and Yoshua Bengio, [39m[48;2;30;30;40m[38;5;13m[3mBatch Normalized Recurrent Neural Networks[0m[38;5;12m, arXiv:1510.01378 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1510.01378)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJiwon Kim, Jung Kwon Lee, Kyoung Mu Lee, [39m[48;2;30;30;40m[38;5;13m[3mDeeply-Recursive Convolutional Network for Image Super-Resolution[0m[38;5;12m, arXiv:1511.04491 [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/abs/1511.04491)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mQuan Gan, Qipeng Guo, Zheng Zhang, and Kyunghyun Cho, [39m[48;2;30;30;40m[38;5;13m[3mFirst Step toward Model-Free, Anonymous Object Tracking with Recurrent Neural Networks[0m[38;5;12m, arXiv:1511.06425 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.06425.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFrancesco Visin, Kyle Kastner, Aaron Courville, Yoshua Bengio, Matteo Matteucci, and Kyunghyun Cho, [39m[48;2;30;30;40m[38;5;13m[3mReSeg: A Recurrent Neural Network for Object Segmentation[0m[38;5;12m, arXiv:1511.07053 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.07053.pdf)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJuergen Schmidhuber, [39m[48;2;30;30;40m[38;5;13m[3mOn Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning Controllers and Recurrent Neural World Models[0m[38;5;12m, arXiv:1511.09249 [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1511.09249)[39m
|
||
|
||
[38;2;255;187;0m[4mDatasets[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSpeech Recognition[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpenSLR[0m[38;5;12m (http://www.openslr.org/resources.php) (Open Speech and Language Resources)[39m
|
||
[48;5;235m[38;5;249m* **LibriSpeech ASR corpus** (http://www.openslr.org/12/)[49m[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVoxForge[0m[38;5;12m (http://voxforge.org/home)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mImage Captioning[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFlickr 8k[0m[38;5;12m (http://nlp.cs.illinois.edu/HockenmaierGroup/Framing_Image_Description/KCCA.html)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFlickr 30k[0m[38;5;12m (http://shannon.cs.illinois.edu/DenotationGraph/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMicrosoft COCO[0m[38;5;12m (http://mscoco.org/home/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mQuestion Answering[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mThe bAbI Project[0m[38;5;12m (http://fb.ai/babi) - Dataset for text understanding and reasoning, by Facebook AI Research. Contains:[39m
|
||
[48;5;235m[38;5;249m* The (20) QA bAbI tasks - ****Paper** (http://arxiv.org/abs/1502.05698)** [49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m* The (6) dialog bAbI tasks - ****Paper** (http://arxiv.org/abs/1605.07683)** [49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m* The Children's Book Test - ****Paper** (http://arxiv.org/abs/1511.02301)** [49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m* The Movie Dialog dataset - ****Paper** (http://arxiv.org/abs/1511.06931)** [49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m* The MovieQA dataset - ****Data** (http://www.thespermwhale.com/jaseweston/babi/movie_dialog_dataset.tgz)** [49m[39m
|
||
[48;5;235m[38;5;249m* The Dialog-based Language Learning dataset - ****Paper** (http://arxiv.org/abs/1604.06045)** [49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m* The SimpleQuestions dataset - ****Paper** (http://arxiv.org/abs/1506.02075)** [49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSQuAD[0m[38;5;12m (https://stanford-qa.com/) - Stanford Question Answering Dataset : [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1606.05250)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mImage Question Answering[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDAQUAR[0m[38;5;12m [39m[38;5;12m(https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/visual-turing-challenge/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mbuilt[39m[38;5;12m [39m[38;5;12mupon[39m[38;5;12m [39m[38;5;14m[1mNYU[0m[38;5;14m[1m [0m[38;5;14m[1mDepth[0m[38;5;14m[1m [0m[38;5;14m[1mv2[0m[38;5;12m [39m[38;5;12m(http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html)[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mN.[39m[38;5;12m [39m[38;5;12mSilberman[39m
|
||
[38;5;12met[39m[38;5;12m [39m[38;5;12mal.[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVQA[0m[38;5;12m (http://www.visualqa.org/) - based on [39m[38;5;14m[1mMSCOCO[0m[38;5;12m (http://mscoco.org/) images[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mImage QA[0m[38;5;12m (http://www.cs.toronto.edu/~mren/imageqa/data/cocoqa/) - based on MSCOCO images[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMultilingual Image QA[0m[38;5;12m (http://idl.baidu.com/FM-IQA.html) - built from scratch by Baidu - in Chinese, with English translation[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAction Recognition[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTHUMOS[0m[38;5;12m (http://www.thumos.info/home.html) : Large-scale action recognition dataset[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMultiTHUMOS[0m[38;5;12m (http://ai.stanford.edu/~syyeung/resources/multithumos.zip) : Extension of THUMOS '14 action detection dataset with dense multilabele annotation[39m
|
||
|
||
[38;2;255;187;0m[4mBlogs[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mThe Unreasonable Effectiveness of RNNs[0m[38;5;12m (http://karpathy.github.io/2015/05/21/rnn-effectiveness/) by [39m[38;5;14m[1mAndrej Karpathy[0m[38;5;12m (http://cs.stanford.edu/people/karpathy/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mUnderstanding LSTM Networks[0m[38;5;12m (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) in [39m[38;5;14m[1mColah's blog[0m[38;5;12m (http://colah.github.io/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mWildML[0m[38;5;12m [39m[38;5;12m(http://www.wildml.com/)[39m[38;5;12m [39m[38;5;12mblog's[39m[38;5;12m [39m[38;5;12mRNN[39m[38;5;12m [39m[38;5;12mtutorial[39m[38;5;12m [39m[38;5;12mPart1[39m[38;5;14m[1m [0m[38;5;14m[1m(http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/)[0m[38;5;12m [39m[38;5;12m,[39m[38;5;12m [39m[38;5;12mPart2[39m[38;5;14m[1m [0m
|
||
[38;5;14m[1m(http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-language-model-rnn-with-python-numpy-and-theano/)[0m[38;5;12m [39m[38;5;12m,[39m[38;5;12m [39m[38;5;12mPart3[39m[38;5;14m[1m [0m
|
||
[38;5;14m[1m(http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/)[0m[38;5;12m [39m[38;5;12m,[39m[38;5;12m [39m[38;5;12mPart4[39m[38;5;14m[1m [0m
|
||
[38;5;14m[1m(http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRNNs in Tensorflow, a Practical Guide and Undocumented Features[0m[38;5;12m (http://www.wildml.com/2016/08/rnns-in-tensorflow-a-practical-guide-and-undocumented-features/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOptimizing RNN Performance[0m[38;5;12m (https://svail.github.io/) from Baidu's Silicon Valley AI Lab.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCharacter Level Language modelling using RNN[0m[38;5;12m (http://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139) by Yoav Goldberg[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mImplement an RNN in Python[0m[38;5;12m (http://peterroelants.github.io/posts/rnn_implementation_part01/).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLSTM Backpropogation[0m[38;5;12m (http://arunmallya.github.io/writeups/nn/lstm/index.html#/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIntroduction to Recurrent Networks in TensorFlow[0m[38;5;12m (https://danijar.com/introduction-to-recurrent-networks-in-tensorflow/) by Danijar Hafner[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVariable Sequence Lengths in TensorFlow[0m[38;5;12m (https://danijar.com/variable-sequence-lengths-in-tensorflow/) by Danijar Hafner[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mWritten Memories: Understanding, Deriving and Extending the LSTM[0m[38;5;12m (http://r2rt.com/written-memories-understanding-deriving-and-extending-the-lstm.html) by Silviu Pitis[39m
|
||
|
||
[38;2;255;187;0m[4mOnline Demos[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAlex graves, hand-writing generation [39m[38;5;12mlink[39m[38;5;14m[1m (http://www.cs.toronto.edu/~graves/handwriting.html)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mInk Poster: Handwritten post-it notes [39m[38;5;12mlink[39m[38;5;14m[1m (http://www.inkposter.com/?)[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mLSTMVis: Visual Analysis for Recurrent Neural Networks [39m[38;5;12mlink[39m[38;5;14m[1m (http://lstm.seas.harvard.edu/)[0m[38;5;12m [39m
|
||
|
||
[38;5;12mrnn Github: https://github.com/kjw0612/awesome-rnn[39m
|