Files
awesome-awesomeness/terminal/networkembedding
2025-07-18 23:13:11 +02:00

490 lines
49 KiB
Plaintext
Raw Permalink Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
 awesome-network-embedding
!Awesome (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg) (https://github.com/sindresorhus/awesome)
!PRs Welcome (https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square) (http://makeapullrequest.com)
!Gitter chat for developers at https://gitter.im/dmlc/xgboost (https://badges.gitter.im/Join%20Chat.svg) (https://gitter.im/awesome-network-embedding/Lobby)
Also called network representation learning, graph embedding, knowledge embedding, etc.
The task is to learn the representations of the vertices from a given network.
CALL FOR HELP: I'm planning to re-organize the papers with clear classification index in the near future. Please feel free to submit a commit if you find any interesting related work:)
 Paper References with the implementation(s)
- GraphGym
 - A platform for designing and evaluating Graph Neural Networks (GNN), NeurIPS 2020
 - Paper  (https://proceedings.neurips.cc/paper/2020/file/c5c3d4fe6b2cc463c7d7ecba17cc9de7-Paper.pdf)
 - Python  (https://github.com/snap-stanford/graphgym)
- FEATHER
 - Characteristic Functions on Graphs: Birds of a Feather, from Statistical Descriptors to Parametric Models, CIKM 2020
 - Paper  (https://arxiv.org/abs/2005.07959)
 - Python  (https://github.com/benedekrozemberczki/FEATHER)
 - Python KarateClub  (https://github.com/benedekrozemberczki/karateclub)
- HeGAN
 - Adversarial Learning on Heterogeneous Information Networks, KDD 2019
 - Paper  (https://fangyuan1st.github.io/paper/KDD19_HeGAN.pdf)
 - Python  (https://github.com/librahu/HeGAN)
- NetMF
 - Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and Node2Vec, WSDM 2018
 - Paper  (https://keg.cs.tsinghua.edu.cn/jietang/publications/WSDM18-Qiu-et-al-NetMF-network-embedding.pdf)
 - Python KarateClub  (https://github.com/benedekrozemberczki/karateclub)
- GL2Vec
 - GL2vec: Graph Embedding Enriched by Line Graphs with Edge Features, ICONIP 2019
 - Paper  (https://link.springer.com/chapter/10.1007/978-3-030-36718-3_1)
 - Python KarateClub  (https://github.com/benedekrozemberczki/karateclub)
- NNSED
 - A Non-negative Symmetric Encoder-Decoder Approach for Community Detection, CIKM 2017
 - Paper  (http://www.bigdatalab.ac.cn/~shenhuawei/publications/2017/cikm-sun.pdf)
 - Python KarateClub  (https://github.com/benedekrozemberczki/karateclub) 
- SymmNMF
 - Symmetric Nonnegative Matrix Factorization for Graph Clustering, SDM 2012
 - Paper  (https://www.cc.gatech.edu/~hpark/papers/DaDingParkSDM12.pdf)
 - Python KarateClub  (https://github.com/benedekrozemberczki/karateclub)
- RECT
 - Network Embedding with Completely-Imbalanced Labels, TKDE 2020
 - Paper  (https://zhengwang100.github.io/pdf/TKDE20_wzheng.pdf)
 - Python  (https://github.com/zhengwang100/RECT) 
- GEMSEC
 - GEMSEC: Graph Embedding with Self Clustering, ASONAM 2019
 - Paper  (https://arxiv.org/abs/1802.03997)
 - Python  (https://github.com/benedekrozemberczki/GEMSEC) 
- AmpliGraph
 - Library for learning knowledge graph embeddings with TensorFlow 
 - Project  (http://docs.ampligraph.org)
 - code  (https://github.com/Accenture/AmpliGraph)
- jodie
 - Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks, KDD'19
 - Project  (http://snap.stanford.edu/jodie/)
 - Code  (https://github.com/srijankr/jodie/)
- PyTorch-BigGraph
 - Pytorch-BigGraph - a distributed system for learning graph embeddings for large graphs, SysML'19
 - github  (https://github.com/facebookresearch/PyTorch-BigGraph)
- ATP
 - ATP: Directed Graph Embedding with Asymmetric Transitivity Preservation, AAAI'19
 - paper  (https://arxiv.org/abs/1811.00839)
 - code  (https://github.com/zhenv5/atp)
- MUSAE
 - Multi-scale Attributed Node Embedding, ArXiv 2019
 - paper  (https://arxiv.org/abs/1909.13021)
 - Python KarateClub  (https://github.com/benedekrozemberczki/karateclub)
 - Python  (https://github.com/benedekrozemberczki/MUSAE)
- SEAL-CI
 - Semi-Supervised Graph Classification: A Hierarchical Graph Perspective, WWW'19
 - paper  (https://arxiv.org/pdf/1904.05003.pdf)
 - Python PyTorch  (https://github.com/benedekrozemberczki/SEAL-CI)
- N-GCN and MixHop
 - A Higher-Order Graph Convolutional Layer, NIPS'18 (workshop)
 - paper  (http://sami.haija.org/papers/high-order-gc-layer.pdf)
 - Python PyTorch  (https://github.com/benedekrozemberczki/MixHop-and-N-GCN)
- CapsGNN
 - Capsule Graph Neural Network, ICLR'19
 - paper  (https://openreview.net/forum?id=Byl8BnRcYm)
 - Python PyTorch  (https://github.com/benedekrozemberczki/CapsGNN)
- Splitter
 - Splitter: Learning Node Representations that Capture Multiple Social Contexts, WWW'19
 - paper  (http://epasto.org/papers/www2019splitter.pdf)
 - Python PyTorch  (https://github.com/benedekrozemberczki/Splitter)
- REGAL
 - REGAL: Representation Learning-based Graph Alignment. International Conference on Information and Knowledge Management, CIKM'18
 - arxiv  (https://arxiv.org/pdf/1802.06257.pdf)
 - paper  (https://dl.acm.org/citation.cfm?id=3271788)
 - code  (https://github.com/GemsLab/REGAL)
- PyTorch Geometric
 - Fast Graph Representation Learning With PyTorch Geometric
 - paper  (https://arxiv.org/pdf/1903.02428.pdf)
 - Python PyTorch  (https://github.com/rusty1s/pytorch_geometric)
- TuckER
 - Tensor Factorization for Knowledge Graph Completion, Arxiv'19
 - paper  (https://arxiv.org/pdf/1901.09590.pdf)
 - Python PyTorch  (https://github.com/ibalazevic/TuckER)
- HypER
 - Hypernetwork Knowledge Graph Embeddings, Arxiv'18
 - paper  (https://arxiv.org/pdf/1808.07018.pdf)
 - Python PyTorch  (https://github.com/ibalazevic/HypER)
- GWNN
 - Graph Wavelet Neural Network, ICLR'19
 - paper  (https://openreview.net/forum?id=H1ewdiR5tQ)
 - Python PyTorch  (https://github.com/benedekrozemberczki/GraphWaveletNeuralNetwork)
 - Python TensorFlow  (https://github.com/Eilene/GWNN)
- APPNP
 - Combining Neural Networks with Personalized PageRank for Classification on Graphs, ICLR'19
 - paper  (https://arxiv.org/abs/1810.05997)
 - Python PyTorch  (https://github.com/benedekrozemberczki/APPNP)
 - Python TensorFlow  (https://github.com/klicperajo/ppnp)
- role2vec
 - Learning Role-based Graph Embeddings, IJCAI'18
 - paper  (https://arxiv.org/pdf/1802.02896.pdf)
 - Python KarateClub  (https://github.com/benedekrozemberczki/karateclub)
 - Python  (https://github.com/benedekrozemberczki/role2vec)
- AttentionWalk
 - Watch Your Step: Learning Node Embeddings via Graph Attention, NIPS'18
 - paper  (https://arxiv.org/pdf/1710.09599.pdf)
 - Python  (http://sami.haija.org/graph/context)
 - Python PyTorch  (https://github.com/benedekrozemberczki/AttentionWalk)
 - Python TensorFlow  (https://github.com/google-research/google-research/tree/master/graph_embedding/watch_your_step/)
- GAT
 - Graph Attention Networks, ICLR'18
 - paper  (https://arxiv.org/pdf/1710.10903.pdf)
 - Python PyTorch  (https://github.com/Diego999/pyGAT)
 - Python TensorFlow  (https://github.com/PetarV-/GAT)
- SINE
 - SINE: Scalable Incomplete Network Embedding, ICDM'18
 - paper  (https://github.com/benedekrozemberczki/SINE/blob/master/paper.pdf)
 - Python KarateClub  (https://github.com/benedekrozemberczki/karateclub)
 - Python PyTorch  (https://github.com/benedekrozemberczki/SINE/)
 - C++  (https://github.com/daokunzhang/SINE)
- SGCN
 - Signed Graph Convolutional Network, ICDM'18
 - paper  (https://github.com/benedekrozemberczki/SGCN/blob/master/sgcn.pdf)
 - Python  (https://github.com/benedekrozemberczki/SGCN)
- TENE
 - Enhanced Network Embedding with Text Information, ICPR'18
 - paper  (https://github.com/benedekrozemberczki/TENE/blob/master/tene_paper.pdf)
 - Python KarateClub  (https://github.com/benedekrozemberczki/karateclub)
 - Python  (https://github.com/benedekrozemberczki/TENE) 
- DANMF
 - Deep Autoencoder-like Nonnegative Matrix Factorization for Community Detection, CIKM'18
 - paper  (https://smartyfh.com/Documents/18DANMF.pdf)
 - Python KarateClub  (https://github.com/benedekrozemberczki/karateclub)
 - Python  (https://github.com/benedekrozemberczki/DANMF)
 - Matlab  (https://github.com/smartyfh/DANMF) 
- BANE
 - Binarized Attributed Network Embedding, ICDM'18
 - paper  (https://www.researchgate.net/publication/328688614_Binarized_Attributed_Network_Embedding)
 - Python KarateClub  (https://github.com/benedekrozemberczki/karateclub)
 - Python  (https://github.com/benedekrozemberczki/BANE)
 - Matlab  (https://github.com/ICDM2018-BANE/BANE)
- GCN Insights
 - Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning, AAAI'18
 - Project  (https://liqimai.github.io/blog/AAAI-18/)
 - code  (https://github.com/liqimai/gcn/tree/AAAI-18/)
- PCTADW
 - Learning Embeddings of Directed Networks with Text-Associated Nodes---with Applications in Software Package Dependency Networks
 - paper  (https://arxiv.org/pdf/1809.02270.pdf)
 - Python  (https://github.com/shudan/PCTADW)
 - dataset  (https://doi.org/10.5281/zenodo.1410669)
- LGCN
 - Large-Scale Learnable Graph Convolutional Networks, KDD'18
 - paper  (http://www.kdd.org/kdd2018/accepted-papers/view/large-scale-learnable-graph-convolutional-networks)
 - Python  (https://github.com/HongyangGao/LGCN)
- AspEm
 - AspEm: Embedding Learning by Aspects in Heterogeneous Information Networks
 - paper  (http://yushi2.web.engr.illinois.edu/sdm18.pdf)
 - Python  (https://github.com/ysyushi/aspem)
- Walklets
 - Don't Walk, Skip! Online Learning of Multi-scale Network Embeddings
 - paper  (https://arxiv.org/pdf/1605.02115.pdf)
 - Python Karateclub  (https://github.com/benedekrozemberczki/karateclub) 
 - Python  (https://github.com/benedekrozemberczki/walklets) 
- gat2vec
 - gat2vec: Representation learning for attributed graphs
 - paper  (https://doi.org/10.1007/s00607-018-0622-9)
 - Python  (https://github.com/snash4/GAT2VEC)
- FSCNMF
 - FSCNMF: Fusing Structure and Content via Non-negative Matrix Factorization for Embedding Information Networks
 - paper  (https://arxiv.org/abs/1804.05313)
 - Python Karateclub  (https://github.com/benedekrozemberczki/karateclub)
 - Python  (https://github.com/sambaranban/FSCNMF) 
 - Python  (https://github.com/benedekrozemberczki/FSCNMF)
- SIDE
 - SIDE: Representation Learning in Signed Directed Networks
 - paper  (https://datalab.snu.ac.kr/side/resources/side.pdf)
 - Python  (https://datalab.snu.ac.kr/side/resources/side.zip)
 - Site  (https://datalab.snu.ac.kr/side/)
- AWE
 - Anonymous Walk Embeddings, ICML'18
 - paper  (https://www.researchgate.net/publication/325114285_Anonymous_Walk_Embeddings)
 - Python  (https://github.com/nd7141/Anonymous-Walk-Embeddings)
- BiNE
 - BiNE: Bipartite Network Embedding, SIGIR'18
 - paper  (http://staff.ustc.edu.cn/~hexn/papers/sigir18-bipartiteNE.pdf)
 - Python  (https://github.com/clhchtcjj/BiNE)
- HOPE
 - Asymmetric Transitivity Preserving Graph Embedding
 - KDD 2016  (http://www.kdd.org/kdd2016/papers/files/rfp0184-ouA.pdf)
 - Python  (https://github.com/AnryYang/HOPE)
 - Python KarateClub  (https://github.com/benedekrozemberczki/karateclub) 
- VERSE
 - VERSE, Versatile Graph Embeddings from Similarity Measures
 - Arxiv  (https://arxiv.org/abs/1803.04742) WWW 2018  
 - Python  (https://github.com/xgfs/verse) 
- AGNN
 - Attention-based Graph Neural Network for semi-supervised learning
 - ICLR 2018 OpenReview (rejected)  (https://openreview.net/forum?id=rJg4YGWRb)
 - Python  (https://github.com/dawnranger/pytorch-AGNN)
- SEANO
 - Semi-supervised Embedding in Attributed Networks with Outliers
 - Paper  (https://arxiv.org/pdf/1703.08100.pdf) (SDM 2018)
 - Python  (http://jiongqianliang.com/SEANO/) 
- Hyperbolics
 - Representation Tradeoffs for Hyperbolic Embeddings 
 - Arxiv  (https://arxiv.org/abs/1804.03329)
 - Python  (https://github.com/HazyResearch/hyperbolics) 
- DGCNN
 - An End-to-End Deep Learning Architecture for Graph Classification 
 - AAAI 2018  (http://www.cse.wustl.edu/~muhan/papers/AAAI_2018_DGCNN.pdf)
 - Lua  (https://github.com/muhanzhang/DGCNN) Python  (https://github.com/muhanzhang/pytorch_DGCNN) 
- structure2vec
 - Discriminative Embeddings of Latent Variable Models for Structured Data 
 - Arxiv  (https://arxiv.org/abs/1603.05629)
 - Python  (https://github.com/Hanjun-Dai/pytorch_structure2vec) 
- Decagon
 - Decagon, Graph Neural Network for Multirelational Link Prediction 
 - Arxiv  (https://arxiv.org/abs/1802.00543) SNAP  (http://snap.stanford.edu/decagon/) ISMB 2018  
 - Python  (https://github.com/marinkaz/decagon) 
- DHNE
 - Structural Deep Embedding for Hyper-Networks
 - AAAI 2018  (http://nrl.thumedialab.com/Structural-Deep-Embedding-for-Hyper-Networks)Arxiv  (https://arxiv.org/abs/1711.10146)
 - Python  (https://github.com/tadpole/DHNE) 
- Ohmnet
 - Feature Learning in Multi-Layer Networks 
 - Arxiv  (https://arxiv.org/abs/1707.04638) SNAP  (http://snap.stanford.edu/ohmnet/) 
 - Python  (https://github.com/marinkaz/ohmnet) 
- SDNE
 - Structural Deep Network Embedding 
 - KDD 2016  (http://www.kdd.org/kdd2016/papers/files/rfp0191-wangAemb.pdf)
 - Python  (https://github.com/xiaohan2012/sdne-keras) 
- STWalk
 - STWalk: Learning Trajectory Representations in Temporal Graphs 
 - Arxiv  (https://arxiv.org/abs/1711.04150)
 - Python  (https://github.com/supriya-pandhre/STWalk)
- LoNGAE
 - Learning to Make Predictions on Graphs with Autoencoders 
 - Arxiv  (https://arxiv.org/abs/1802.08352)
 - Python  (https://github.com/vuptran/graph-representation-learning) 
- RSDNE
 - RSDNE: Exploring Relaxed Similarity and Dissimilarity from Completely-imbalanced Labels for Network Embedding. (https://zhengwang100.github.io/AAAI18_RSDNE.pdf), AAAI 2018
 - Matlab  (https://github.com/zhengwang100/RSDNE) 
- FastGCN
 - FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling 
 - Arxiv  (https://arxiv.org/abs/1801.10247), ICLR 2018 OpenReview  (https://openreview.net/forum?id=rytstxWAW)
 - Python  (https://github.com/matenure/FastGCN)
- diff2vec
 - Fast Sequence Based Embedding with Diffusion Graphs (http://homepages.inf.ed.ac.uk/s1668259/papers/sequence.pdf), CompleNet 2018
 - Python KarateClub  (https://github.com/benedekrozemberczki/karateclub)
 - Python  (https://github.com/benedekrozemberczki/diff2vec) 
- Poincare
 - Poincaré Embeddings for Learning Hierarchical Representations (https://papers.nips.cc/paper/7213-poincare-embeddings-for-learning-hierarchical-representations), NIPS 2017
 - PyTorch  (https://github.com/facebookresearch/poincare-embeddings) Python  (https://radimrehurek.com/gensim/models/poincare.html) C++  (https://github.com/TatsuyaShirakawa/poincare-embedding)
- PEUNE
 - PRUNE: Preserving Proximity and Global Ranking for Network Embedding (https://papers.nips.cc/paper/7110-prune-preserving-proximity-and-global-ranking-for-network-embedding), NIPS 2017
 - code  (https://github.com/ntumslab/PRUNE)
- ASNE
 - Attributed Social Network Embedding, TKDE'18
 - arxiv  (https://arxiv.org/abs/1706.01860)
 - Python  (https://github.com/lizi-git/ASNE)
 - Fast Python  (https://github.com/benedekrozemberczki/ASNE)
- GraphWave
 - Spectral Graph Wavelets for Structural Role Similarity in Networks (http://snap.stanford.edu/graphwave/), 
 - arxiv  (https://arxiv.org/abs/1710.10321), ICLR 2018 OpenReview  (https://openreview.net/forum?id=rytstxWAW)
 - Python  (https://github.com/snap-stanford/graphwave) faster version  (https://github.com/benedekrozemberczki/GraphWaveMachine)
- StarSpace
 - StarSpace: Embed All The Things! (https://arxiv.org/pdf/1709.03856), arxiv'17
 - code  (https://github.com/facebookresearch/Starspace)
- proNet-core
 - Vertex-Context Sampling for Weighted Network Embedding, arxiv'17
 - arxiv  (https://arxiv.org/abs/1711.00227) code  (https://github.com/cnclabs/proNet-core)
- struc2vec
 - struc2vec: Learning Node Representations from Structural Identity (https://dl.acm.org/citation.cfm?id=3098061), KDD'17
 - Python  (https://github.com/leoribeiro/struc2vec)
- ComE
 - Learning Community Embedding with Community Detection and Node Embedding on Graphs, CIKM'17
 - Python  (https://github.com/andompesta/ComE)
- BoostedNE
 - Multi-Level Network Embedding with Boosted Low-Rank Matrix Approximation (https://arxiv.org/abs/1808.08627), '18
 - Python KarateClub  (https://github.com/benedekrozemberczki/karateclub)
 - Python  (https://github.com/benedekrozemberczki/BoostedFactorization)
- M-NMF
 - Community Preserving Network Embedding, AAAI'17
 - Python TensorFlow  (https://github.com/benedekrozemberczki/M-NMF)
 - Python KarateClub  (https://github.com/benedekrozemberczki/karateclub)
- GraphSAGE
 - Inductive Representation Learning on Large Graphs, NIPS'17
 - arxiv  (https://arxiv.org/abs/1706.02216) TF  (https://github.com/williamleif/GraphSAGE) PyTorch  (https://github.com/williamleif/graphsage-simple/) 
- ICE
 - ICE: Item Concept Embedding via Textual Information (http://dl.acm.org/citation.cfm?id=3080807), SIGIR'17
 - demo  (https://cnclabs.github.io/ICE/) code  (https://github.com/cnclabs/ICE)
- GuidedHeteEmbedding
 - Task-guided and path-augmented heterogeneous network embedding for author identification, WSDM'17
 - paper  (https://arxiv.org/pdf/1612.02814.pdf) code  (https://github.com/chentingpc/GuidedHeteEmbedding)
- metapath2vec
 - metapath2vec: Scalable Representation Learning for Heterogeneous Networks, KDD'17
 - paper  (https://www3.nd.edu/~dial/publications/dong2017metapath2vec.pdf) project website  (https://ericdongyx.github.io/metapath2vec/m2v.html)
- GCN
 - Semi-Supervised Classification with Graph Convolutional Networks, ICLR'17
 - arxiv  (https://arxiv.org/abs/1609.02907) Python Tensorflow  (https://github.com/tkipf/gcn)
- GAE
 - Variational Graph Auto-Encoders, arxiv
 - arxiv  (https://arxiv.org/abs/1611.07308) Python Tensorflow  (https://github.com/tkipf/gae)
- CANE
 - CANE: Context-Aware Network Embedding for Relation Modeling, ACL'17
 - paper  (http://www.thunlp.org/~tcc/publications/acl2017_cane.pdf) Python  (https://github.com/thunlp/cane)
- TransNet
 - TransNet: Translation-Based Network Representation Learning for Social Relation Extraction, IJCAI'17
 - Python Tensorflow  (https://github.com/thunlp/TransNet)
- cnn_graph
 - Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, NIPS'16
 - Python  (https://github.com/mdeff/cnn_graph)
- ConvE
 - Convolutional 2D Knowledge Graph Embeddings (https://arxiv.org/pdf/1707.01476v2.pdf), arxiv
 - source  (https://github.com/TimDettmers/ConvE)
- node2vec
 - node2vec: Scalable Feature Learning for Networks (http://dl.acm.org/citation.cfm?id=2939672.2939754), KDD'16
 - arxiv  (https://arxiv.org/abs/1607.00653) Python  (https://github.com/aditya-grover/node2vec) Python-2  (https://github.com/apple2373/node2vec) Python-3  (https://github.com/eliorc/node2vec) C++  (https://github.com/xgfs/node2vec-c) 
- DNGR
 - Deep Neural Networks for Learning Graph Representations (http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12423), AAAI'16
 - Matlab  (https://github.com/ShelsonCao/DNGR) Python Keras  (https://github.com/MdAsifKhan/DNGR-Keras)
- HolE
 - Holographic Embeddings of Knowledge Graphs (http://dl.acm.org/citation.cfm?id=3016172), AAAI'16
 - Python-sklearn  (https://github.com/mnick/holographic-embeddings) Python-sklearn2  (https://github.com/mnick/scikit-kge)
- ComplEx
 - Complex Embeddings for Simple Link Prediction (http://dl.acm.org/citation.cfm?id=3045609), ICML'16
 - arxiv  (https://arxiv.org/abs/1606.06357) Python  (https://github.com/ttrouill/complex)
- MMDW
 - Max-Margin DeepWalk: Discriminative Learning of Network Representation, IJCAI'16
 - paper  (http://nlp.csai.tsinghua.edu.cn/~lzy/publications/ijcai2016_mmdw.pdf) Java  (https://github.com/thunlp/MMDW)
- planetoid
 - Revisiting Semi-supervised Learning with Graph Embeddings, ICML'16
 - arxiv  (https://arxiv.org/abs/1603.08861) Python  (https://github.com/kimiyoung/planetoid)
- graph2vec
 - graph2vec: Learning Distributed Representations of Graphs, KDD'17 MLGWorkshop
 - arxiv  (https://arxiv.org/abs/1707.05005)
 - Python gensim  (https://github.com/benedekrozemberczki/graph2vec) Python KarateClub  (https://github.com/benedekrozemberczki/karateclub)
- PowerWalk
 - PowerWalk: Scalable Personalized PageRank via Random Walks with Vertex-Centric Decomposition (http://dl.acm.org/citation.cfm?id=2983713), CIKM'16
 - code  (https://github.com/lqhl/PowerWalk)
- LINE
 - LINE: Large-scale information network embedding (http://dl.acm.org/citation.cfm?id=2741093), WWW'15
 - arxiv  (https://arxiv.org/abs/1503.03578) C++  (https://github.com/tangjianpku/LINE) Python TF  (https://github.com/snowkylin/line) Python Theano/Keras  (https://github.com/VahidooX/LINE)
- PTE
 - PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks (http://dl.acm.org/citation.cfm?id=2783307), KDD'15
 - C++  (https://github.com/mnqu/PTE)
- GraRep
 - Grarep: Learning graph representations with global structural information (http://dl.acm.org/citation.cfm?id=2806512), CIKM'15
 - Matlab  (https://github.com/ShelsonCao/GraRep)
 - Julia  (https://github.com/xgfs/GraRep.jl)
 - Python  (https://github.com/benedekrozemberczki/GraRep)
 - Python KarateClub  (https://github.com/benedekrozemberczki/karateclub)
- KB2E
 - Learning Entity and Relation Embeddings for Knowledge Graph Completion (http://dl.acm.org/citation.cfm?id=2886624), AAAI'15
 - paper  (http://nlp.csai.tsinghua.edu.cn/~lzy/publications/aaai2015_transr.pdf) C++  (https://github.com/thunlp/KB2E) faster version  (https://github.com/thunlp/Fast-TransX)
- TADW
 - Network Representation Learning with Rich Text Information (http://dl.acm.org/citation.cfm?id=2832542), IJCAI'15
 - paper  (https://www.ijcai.org/Proceedings/15/Papers/299.pdf) Matlab  (https://github.com/thunlp/tadw) Python  (https://github.com/benedekrozemberczki/TADW)
- DeepWalk
 - DeepWalk: Online Learning of Social Representations (http://dl.acm.org/citation.cfm?id=2623732), KDD'14
 - arxiv  (https://arxiv.org/abs/1403.6652) Python  (https://github.com/phanein/deepwalk) C++  (https://github.com/xgfs/deepwalk-c)
- GEM
 - Graph Embedding Techniques, Applications, and Performance: A Survey
 - arxiv  (https://arxiv.org/abs/1705.02801) Python  (https://github.com/palash1992/GEM)
- DNE-SBP
 - Deep Network Embedding for Graph Representation Learning in Signed Networks
 - paper  (https://ieeexplore.ieee.org/document/8486671) Code  (https://github.com/shenxiaocam/Deep-network-embedding-for-graph-representation-learning-in-signed-networks)
 Paper References
A Comprehensive Survey on Graph Neural Networks (https://arxiv.org/abs/1901.00596), arxiv'19
Hierarchical Graph Representation Learning with Differentiable Pooling (https://arxiv.org/pdf/1806.08804.pdf), NIPS'18
SEMAC, Link Prediction via Subgraph Embedding-Based Convex Matrix Completion (https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16442), AAAI 2018, Slides (https://www.slideshare.net/gdm3003/semac-graph-node-embeddings-for-link-prediction)
MILE, MILE: A Multi-Level Framework for Scalable Graph Embedding (https://arxiv.org/pdf/1802.09612.pdf), arxiv'18
MetaGraph2Vec, MetaGraph2Vec: Complex Semantic Path Augmented Heterogeneous Network Embedding (https://arxiv.org/abs/1803.02533)
PinSAGE, Graph Convolutional Neural Networks for Web-Scale Recommender Systems (https://arxiv.org/abs/1806.01973)
Curriculum Learning for Heterogeneous Star Network Embedding via Deep Reinforcement Learning (https://dl.acm.org/citation.cfm?id=3159711), WSDM '18
Adversarial Network Embedding (https://arxiv.org/abs/1711.07838), arxiv
Role2Vec, Learning Role-based Graph Embeddings (https://arxiv.org/abs/1802.02896)
edge2vec, Feature Propagation on Graph: A New Perspective to Graph Representation
Learning (https://arxiv.org/abs/1804.06111)
MINES, Multi-Dimensional Network Embedding with Hierarchical Structure (http://cse.msu.edu/~mayao4/downloads/Multidimensional_Network_Embedding_with_Hierarchical_Structure.pdf)
Walk-Steered Convolution for Graph Classification (https://arxiv.org/abs/1804.05837)
Deep Feature Learning for Graphs (https://arxiv.org/abs/1704.08829), arxiv'17
Fast Linear Model for Knowledge Graph Embeddings (https://arxiv.org/abs/1710.10881), arxiv'17
Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec (https://arxiv.org/abs/1710.02971), arxiv'17
A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications (https://arxiv.org/abs/1709.07604), arxiv'17
Representation Learning on Graphs: Methods and Applications (https://arxiv.org/pdf/1709.05584.pdf), IEEE DEB'17
CONE, CONE: Community Oriented Network Embedding (https://arxiv.org/abs/1709.01554), arxiv'17
LANE, 
Label Informed Attributed Network Embedding (http://dl.acm.org/citation.cfm?id=3018667), WSDM'17
Graph2Gauss,
Deep Gaussian Embedding of Attributed Graphs: Unsupervised Inductive Learning via Ranking (https://arxiv.org/abs/1707.03815), arxiv
Bonus Animation  (https://twitter.com/abojchevski/status/885502050133585925)
Scalable Graph Embedding for Asymmetric Proximity (https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14696), AAAI'17
Query-based Music Recommendations via Preference Embedding (http://dl.acm.org/citation.cfm?id=2959169), RecSys'16
Tri-party deep network representation (http://dl.acm.org/citation.cfm?id=3060886), IJCAI'16
Heterogeneous Network Embedding via Deep Architectures (http://dl.acm.org/citation.cfm?id=2783296), KDD'15
Neural Word Embedding As Implicit Matrix Factorization (http://dl.acm.org/citation.cfm?id=2969070), NIPS'14
Distributed large-scale natural graph factorization (http://dl.acm.org/citation.cfm?id=2488393), WWW'13
From Node Embedding To Community Embedding (https://arxiv.org/abs/1610.09950), arxiv
Walklets: Multiscale Graph Embeddings for Interpretable Network Classification (https://arxiv.org/abs/1605.02115), arxiv
Comprehend DeepWalk as Matrix Factorization (https://arxiv.org/abs/1501.00358), arxiv
 Conference & Workshop
Graph Neural Networks for Natural Language Processing (https://github.com/svjan5/GNNs-for-NLP), EMNLP'19
SMORe : Modularize Graph Embedding for Recommendation (https://github.com/cnclabs/smore), RecSys'19
13th International Workshop on Mining and Learning with Graphs (http://www.mlgworkshop.org/2017/), MLG'17
WWW-18 Tutorial Representation Learning on Networks (http://snap.stanford.edu/proj/embeddings-www/), WWW'18
 Related List
awesome-graph-classification (https://github.com/benedekrozemberczki/awesome-graph-classification)
awesome-community-detection (https://github.com/benedekrozemberczki/awesome-community-detection)
awesome-embedding-models (https://github.com/Hironsan/awesome-embedding-models)
Must-read papers on network representation learning (NRL) / network embedding (NE) (https://github.com/thunlp/NRLPapers)
Must-read papers on knowledge representation learning (KRL) / knowledge embedding (KE) (https://github.com/thunlp/KRLPapers)
Network Embedding Resources (https://github.com/nate-russell/Network-Embedding-Resources)
awesome-embedding-models (https://github.com/Hironsan/awesome-embedding-models)
2vec-type embedding models (https://github.com/MaxwellRebo/awesome-2vec)
Must-read papers on GNN (https://github.com/thunlp/GNNPapers)
LiteratureDL4Graph (https://github.com/DeepGraphLearning/LiteratureDL4Graph)
awesome-graph-classification (https://github.com/benedekrozemberczki/awesome-graph-classification)
 Related Project
Stanford Network Analysis Project website (http://snap.stanford.edu/)
StellarGraph Machine Learning Library website (https://www.stellargraph.io) GitHub (https://github.com/stellargraph/stellargraph)
networkembedding Github: https://github.com/chihming/awesome-network-embedding