2001 lines
430 KiB
Plaintext
2001 lines
430 KiB
Plaintext
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome[0m[38;2;255;187;0m[1m[4m [0m[38;2;255;187;0m[1m[4mMachine[0m[38;2;255;187;0m[1m[4m [0m[38;2;255;187;0m[1m[4mLearning[0m[38;2;255;187;0m[1m[4m [0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mAwesome[0m[38;5;14m[1m[4m [0m[38;5;14m[1m[4m(https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)[0m[38;2;255;187;0m[1m[4m [0m[38;2;255;187;0m[1m[4m(https://github.com/sindresorhus/awesome)[0m[38;2;255;187;0m[1m[4m [0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mTrack[0m[38;2;255;187;0m[1m[4m [0m[38;2;255;187;0m[1m[4mAwesome[0m[38;2;255;187;0m[1m[4m [0m[38;2;255;187;0m[1m[4mList[0m[38;5;14m[1m[4m [0m[38;5;14m[1m[4m(https://www.trackawesomelist.com/badge.svg)[0m[38;2;255;187;0m[1m[4m [0m
|
||
[38;5;12m [39m[38;2;255;187;0m[1m[4m(https://www.trackawesomelist.com/josephmisiti/awesome-machine-learning/)[0m
|
||
|
||
[38;5;12mA curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by [39m[48;5;235m[38;5;249mawesome-php[49m[39m[38;5;12m.[39m
|
||
|
||
[38;5;12m_If you want to contribute to this list (please do), send me a pull request or contact me [39m[38;5;14m[1m@josephmisiti[0m[38;5;12m (https://twitter.com/josephmisiti)._[39m
|
||
[38;5;12mAlso, a listed repository should be deprecated if:[39m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mRepository's owner explicitly says that "this library is not maintained".[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mNot committed for a long time (2~3 years).[39m
|
||
|
||
[38;5;12mFurther resources:[39m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFor a list of free machine learning books available for download, go [39m[38;5;14m[1mhere[0m[38;5;12m (https://github.com/josephmisiti/awesome-machine-learning/blob/master/books.md).[39m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFor a list of professional machine learning events, go [39m[38;5;14m[1mhere[0m[38;5;12m (https://github.com/josephmisiti/awesome-machine-learning/blob/master/events.md).[39m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFor a list of (mostly) free machine learning courses available online, go [39m[38;5;14m[1mhere[0m[38;5;12m (https://github.com/josephmisiti/awesome-machine-learning/blob/master/courses.md).[39m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFor a list of blogs and newsletters on data science and machine learning, go [39m[38;5;14m[1mhere[0m[38;5;12m (https://github.com/josephmisiti/awesome-machine-learning/blob/master/blogs.md).[39m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFor a list of free-to-attend meetups and local events, go [39m[38;5;14m[1mhere[0m[38;5;12m (https://github.com/josephmisiti/awesome-machine-learning/blob/master/meetups.md).[39m
|
||
|
||
[38;2;255;187;0m[4mTable of Contents[0m
|
||
|
||
[38;2;255;187;0m[4mFrameworks and Libraries[0m
|
||
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAwesome Machine Learning ![0m[38;5;12mAwesome[39m[38;5;14m[1m (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)[0m[38;5;12m (#awesome-machine-learning-)[39m
|
||
[38;5;12m - [39m[38;5;14m[1mTable of Contents[0m[38;5;12m (#table-of-contents)[39m
|
||
[48;5;235m[38;5;249m- **Frameworks and Libraries** (#frameworks-and-libraries)[49m[39m
|
||
[48;5;235m[38;5;249m- **Tools** (#tools)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mAPL[0m[38;5;12m (#apl)[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#apl-general-purpose-machine-learning)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mC[0m[38;5;12m (#c)[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#c-general-purpose-machine-learning)[49m[39m
|
||
[48;5;235m[38;5;249m - **Computer Vision** (#c-computer-vision)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mC++[0m[38;5;12m (#cpp)[39m
|
||
[48;5;235m[38;5;249m - **Computer Vision** (#cpp-computer-vision)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#cpp-general-purpose-machine-learning)[49m[39m
|
||
[48;5;235m[38;5;249m - **Natural Language Processing** (#cpp-natural-language-processing)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Speech Recognition** (#cpp-speech-recognition)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Sequence Analysis** (#cpp-sequence-analysis)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Gesture Detection** (#cpp-gesture-detection)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Reinforcement Learning** (#cpp-reinforcement-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mCommon Lisp[0m[38;5;12m (#common-lisp)[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#common-lisp-general-purpose-machine-learning)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mClojure[0m[38;5;12m (#clojure)[39m
|
||
[48;5;235m[38;5;249m - **Natural Language Processing** (#clojure-natural-language-processing)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#clojure-general-purpose-machine-learning)[49m[39m
|
||
[48;5;235m[38;5;249m - **Deep Learning** (#clojure-deep-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Data Analysis** (#clojure-data-analysis--data-visualization)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Data Visualization** (#clojure-data-visualization)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Interop** (#clojure-interop)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Misc** (#clojure-misc)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Extra** (#clojure-extra)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mCrystal[0m[38;5;12m (#crystal)[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#crystal-general-purpose-machine-learning)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mElixir[0m[38;5;12m (#elixir)[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#elixir-general-purpose-machine-learning)[49m[39m
|
||
[48;5;235m[38;5;249m - **Natural Language Processing** (#elixir-natural-language-processing)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mErlang[0m[38;5;12m (#erlang)[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#erlang-general-purpose-machine-learning)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mFortran[0m[38;5;12m (#fortran)[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#fortran-general-purpose-machine-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Data Analysis / Data Visualization** (#fortran-data-analysis--data-visualization)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mGo[0m[38;5;12m (#go)[39m
|
||
[48;5;235m[38;5;249m - **Natural Language Processing** (#go-natural-language-processing)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#go-general-purpose-machine-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Spatial analysis and geometry** (#go-spatial-analysis-and-geometry)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Data Analysis / Data Visualization** (#go-data-analysis--data-visualization)[49m[39m
|
||
[48;5;235m[38;5;249m - **Computer vision** (#go-computer-vision)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Reinforcement learning** (#go-reinforcement-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mHaskell[0m[38;5;12m (#haskell)[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#haskell-general-purpose-machine-learning)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mJava[0m[38;5;12m (#java)[39m
|
||
[48;5;235m[38;5;249m - **Natural Language Processing** (#java-natural-language-processing)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#java-general-purpose-machine-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Speech Recognition** (#java-speech-recognition)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Data Analysis / Data Visualization** (#java-data-analysis--data-visualization)[49m[39m
|
||
[48;5;235m[38;5;249m - **Deep Learning** (#java-deep-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mJavascript[0m[38;5;12m (#javascript)[39m
|
||
[48;5;235m[38;5;249m - **Natural Language Processing** (#javascript-natural-language-processing)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Data Analysis / Data Visualization** (#javascript-data-analysis--data-visualization)[49m[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#javascript-general-purpose-machine-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Misc** (#javascript-misc)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Demos and Scripts** (#javascript-demos-and-scripts)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mJulia[0m[38;5;12m (#julia)[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#julia-general-purpose-machine-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Natural Language Processing** (#julia-natural-language-processing)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Data Analysis / Data Visualization** (#julia-data-analysis--data-visualization)[49m[39m
|
||
[48;5;235m[38;5;249m - **Misc Stuff / Presentations** (#julia-misc-stuff--presentations)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mKotlin[0m[38;5;12m (#kotlin)[39m
|
||
[48;5;235m[38;5;249m - **Deep Learning** (#kotlin-deep-learning)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mLua[0m[38;5;12m (#lua)[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#lua-general-purpose-machine-learning)[49m[39m
|
||
[48;5;235m[38;5;249m - **Demos and Scripts** (#lua-demos-and-scripts)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mMatlab[0m[38;5;12m (#matlab)[39m
|
||
[48;5;235m[38;5;249m - **Computer Vision** (#matlab-computer-vision)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Natural Language Processing** (#matlab-natural-language-processing)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#matlab-general-purpose-machine-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Data Analysis / Data Visualization** (#matlab-data-analysis--data-visualization)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1m.NET[0m[38;5;12m (#net)[39m
|
||
[48;5;235m[38;5;249m - **Computer Vision** (#net-computer-vision)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Natural Language Processing** (#net-natural-language-processing)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#net-general-purpose-machine-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Data Analysis / Data Visualization** (#net-data-analysis--data-visualization)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mObjective C[0m[38;5;12m (#objective-c)[39m
|
||
[48;5;235m[38;5;249m- **General-Purpose Machine Learning** (#objective-c-general-purpose-machine-learning)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mOCaml[0m[38;5;12m (#ocaml)[39m
|
||
[48;5;235m[38;5;249m- **General-Purpose Machine Learning** (#ocaml-general-purpose-machine-learning)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mOpenCV[0m[38;5;12m (#opencv)[39m
|
||
[48;5;235m[38;5;249m- **Computer Vision** (#opencv-Computer-Vision)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **Text-Detection** (#Text-Character-Number-Detection)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mPerl[0m[38;5;12m (#perl)[39m
|
||
[48;5;235m[38;5;249m- **Data Analysis / Data Visualization** (#perl-data-analysis--data-visualization)[49m[39m
|
||
[48;5;235m[38;5;249m- **General-Purpose Machine Learning** (#perl-general-purpose-machine-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mPerl 6[0m[38;5;12m (#perl-6)[39m
|
||
[48;5;235m[38;5;249m- **Data Analysis / Data Visualization** (#perl-6-data-analysis--data-visualization)[49m[39m
|
||
[48;5;235m[38;5;249m- **General-Purpose Machine Learning** (#perl-6-general-purpose-machine-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mPHP[0m[38;5;12m (#php)[39m
|
||
[48;5;235m[38;5;249m- **Natural Language Processing** (#php-natural-language-processing)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m- **General-Purpose Machine Learning** (#php-general-purpose-machine-learning)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mPython[0m[38;5;12m (#python)[39m
|
||
[48;5;235m[38;5;249m - **Computer Vision** (#python-computer-vision)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Natural Language Processing** (#python-natural-language-processing)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#python-general-purpose-machine-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Data Analysis / Data Visualization** (#python-data-analysis--data-visualization)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Misc Scripts / iPython Notebooks / Codebases** (#python-misc-scripts--ipython-notebooks--codebases)[49m[39m
|
||
[48;5;235m[38;5;249m - **Neural Networks** (#python-neural-networks)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Survival Analysis** (#python-survival-analysis)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Federated Learning** (#python-federated-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Kaggle Competition Source Code** (#python-kaggle-competition-source-code)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Reinforcement Learning** (#python-reinforcement-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Speech Recognition** (#python-speech-recognition)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mRuby[0m[38;5;12m (#ruby)[39m
|
||
[48;5;235m[38;5;249m - **Natural Language Processing** (#ruby-natural-language-processing)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#ruby-general-purpose-machine-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Data Analysis / Data Visualization** (#ruby-data-analysis--data-visualization)[49m[39m
|
||
[48;5;235m[38;5;249m - **Misc** (#ruby-misc)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mRust[0m[38;5;12m (#rust)[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#rust-general-purpose-machine-learning)[49m[39m
|
||
[48;5;235m[38;5;249m - **Deep Learning** (#rust-deep-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Natural Language Processing** (#rust-natural-language-processing)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mR[0m[38;5;12m (#r)[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#r-general-purpose-machine-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Data Analysis / Data Visualization** (#r-data-analysis--data-visualization)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mSAS[0m[38;5;12m (#sas)[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#sas-general-purpose-machine-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Data Analysis / Data Visualization** (#sas-data-analysis--data-visualization)[49m[39m
|
||
[48;5;235m[38;5;249m - **Natural Language Processing** (#sas-natural-language-processing)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Demos and Scripts** (#sas-demos-and-scripts)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mScala[0m[38;5;12m (#scala)[39m
|
||
[48;5;235m[38;5;249m - **Natural Language Processing** (#scala-natural-language-processing)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[48;5;235m[38;5;249m - **Data Analysis / Data Visualization** (#scala-data-analysis--data-visualization)[49m[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#scala-general-purpose-machine-learning)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mScheme[0m[38;5;12m (#scheme)[39m
|
||
[48;5;235m[38;5;249m - **Neural Networks** (#scheme-neural-networks)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mSwift[0m[38;5;12m (#swift)[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#swift-general-purpose-machine-learning)[49m[39m
|
||
[38;5;12m - [39m[38;5;14m[1mTensorFlow[0m[38;5;12m (#tensorflow)[39m
|
||
[48;5;235m[38;5;249m - **General-Purpose Machine Learning** (#tensorflow-general-purpose-machine-learning)[49m[39m
|
||
|
||
[38;5;14m[1m[4mTools[0m[38;2;255;187;0m[4m (#tools-1)[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mNeural Networks[0m[38;5;12m (#tools-neural-networks)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMisc[0m[38;5;12m (#tools-misc)[39m
|
||
|
||
|
||
[38;5;14m[1mCredits[0m[38;5;12m (#credits)[39m
|
||
|
||
|
||
|
||
|
||
[38;2;255;187;0m[4mAPL[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnaive-apl[0m[38;5;12m (https://github.com/mattcunningham/naive-apl) - Naive Bayesian Classifier implementation in APL. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
|
||
|
||
[38;2;255;187;0m[4mC[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDarknet[0m[38;5;12m (https://github.com/pjreddie/darknet) - Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRecommender[0m[38;5;12m (https://github.com/GHamrouni/Recommender) - A C library for product recommendations/suggestions using collaborative filtering (CF).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHybrid Recommender System[0m[38;5;12m (https://github.com/SeniorSA/hybrid-rs-trainner) - A hybrid recommender system based upon scikit-learn algorithms. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mneonrvm[0m[38;5;12m (https://github.com/siavashserver/neonrvm) - neonrvm is an open source machine learning library based on RVM technique. It's written in C programming language and comes with Python programming language bindings.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcONNXr[0m[38;5;12m [39m[38;5;12m(https://github.com/alrevuelta/cONNXr)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAn[39m[38;5;12m [39m[48;5;235m[38;5;249mONNX[49m[39m[38;5;12m [39m[38;5;12mruntime[39m[38;5;12m [39m[38;5;12mwritten[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mpure[39m[38;5;12m [39m[38;5;12mC[39m[38;5;12m [39m[38;5;12m(99)[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mzero[39m[38;5;12m [39m[38;5;12mdependencies[39m[38;5;12m [39m[38;5;12mfocused[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12msmall[39m[38;5;12m [39m[38;5;12membedded[39m[38;5;12m [39m[38;5;12mdevices.[39m[38;5;12m [39m[38;5;12mRun[39m[38;5;12m [39m[38;5;12minference[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mno[39m[38;5;12m [39m[38;5;12mmatter[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mtrain[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mwith.[39m[38;5;12m [39m[38;5;12mEasy[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m
|
||
[38;5;12minstall[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcompiles[39m[38;5;12m [39m[38;5;12meverywhere,[39m[38;5;12m [39m[38;5;12meven[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mvery[39m[38;5;12m [39m[38;5;12mold[39m[38;5;12m [39m[38;5;12mdevices.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mlibonnx[0m[38;5;12m (https://github.com/xboot/libonnx) - A lightweight, portable pure C99 onnx inference engine for embedded devices with hardware acceleration support.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mComputer Vision[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCCV[0m[38;5;12m (https://github.com/liuliu/ccv) - C-based/Cached/Core Computer Vision Library, A Modern Computer Vision Library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVLFeat[0m[38;5;12m (http://www.vlfeat.org/) - VLFeat is an open and portable library of computer vision algorithms, which has a Matlab toolbox.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mC++[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mComputer Vision[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDLib[0m[38;5;12m (http://dlib.net/imaging.html) - DLib has C++ and Python interfaces for face detection and training general object detectors.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEBLearn[0m[38;5;12m (http://eblearn.sourceforge.net/) - Eblearn is an object-oriented C++ library that implements various machine learning models [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpenCV[0m[38;5;12m (https://opencv.org) - OpenCV has C++, C, Python, Java and MATLAB interfaces and supports Windows, Linux, Android and Mac OS.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVIGRA[0m[38;5;12m (https://github.com/ukoethe/vigra) - VIGRA is a genertic cross-platform C++ computer vision and machine learning library for volumes of arbitrary dimensionality with Python bindings.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpenpose[0m[38;5;12m (https://github.com/CMU-Perceptual-Computing-Lab/openpose) - A real-time multi-person keypoint detection library for body, face, hands, and foot estimation[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpeedster[0m[38;5;12m (https://github.com/nebuly-ai/nebullvm/tree/main/apps/accelerate/speedster) -Automatically apply SOTA optimization techniques to achieve the maximum inference speed-up on your hardware. [39m[38;5;14m[1mDEEP LEARNING[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBanditLib[0m[38;5;12m (https://github.com/jkomiyama/banditlib) - A simple Multi-armed Bandit library. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCaffe[0m[38;5;12m (https://github.com/BVLC/caffe) - A deep learning framework developed with cleanliness, readability, and speed in mind. [39m[38;5;14m[1mDEEP LEARNING[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCatBoost[0m[38;5;12m [39m[38;5;12m(https://github.com/catboost/catboost)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mGeneral[39m[38;5;12m [39m[38;5;12mpurpose[39m[38;5;12m [39m[38;5;12mgradient[39m[38;5;12m [39m[38;5;12mboosting[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mdecision[39m[38;5;12m [39m[38;5;12mtrees[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mcategorical[39m[38;5;12m [39m[38;5;12mfeatures[39m[38;5;12m [39m[38;5;12msupport[39m[38;5;12m [39m[38;5;12mout[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbox.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12measy[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12minstall,[39m[38;5;12m [39m[38;5;12mcontains[39m[38;5;12m [39m[38;5;12mfast[39m[38;5;12m [39m[38;5;12minference[39m[38;5;12m [39m[38;5;12mimplementation[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12msupports[39m[38;5;12m [39m[38;5;12mCPU[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||
[38;5;12mGPU[39m[38;5;12m [39m[38;5;12m(even[39m[38;5;12m [39m[38;5;12mmulti-GPU)[39m[38;5;12m [39m[38;5;12mcomputation.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCNTK[0m[38;5;12m (https://github.com/Microsoft/CNTK) - The Computational Network Toolkit (CNTK) by Microsoft Research, is a unified deep-learning toolkit that describes neural networks as a series of computational steps via a directed graph.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCUDA[0m[38;5;12m (https://code.google.com/p/cuda-convnet/) - This is a fast C++/CUDA implementation of convolutional [39m[38;5;14m[1mDEEP LEARNING[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeepDetect[0m[38;5;12m (https://github.com/jolibrain/deepdetect) - A machine learning API and server written in C++11. It makes state of the art machine learning easy to work with and integrate into existing applications.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDistributed[0m[38;5;14m[1m [0m[38;5;14m[1mMachine[0m[38;5;14m[1m [0m[38;5;14m[1mlearning[0m[38;5;14m[1m [0m[38;5;14m[1mTool[0m[38;5;14m[1m [0m[38;5;14m[1mKit[0m[38;5;14m[1m [0m[38;5;14m[1m(DMTK)[0m[38;5;12m [39m[38;5;12m(http://www.dmtk.io/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12m(parameter[39m[38;5;12m [39m[38;5;12mserver)[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mMicrosoft.[39m[38;5;12m [39m[38;5;12mEnables[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12msets[39m[38;5;12m [39m[38;5;12macross[39m[38;5;12m [39m[38;5;12mmultiple[39m[38;5;12m [39m[38;5;12mmachines.[39m[38;5;12m [39m[38;5;12mCurrent[39m[38;5;12m [39m[38;5;12mtools[39m[38;5;12m [39m[38;5;12mbundled[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m
|
||
[38;5;12minclude:[39m[38;5;12m [39m[38;5;12mLightLDA[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mDistributed[39m[38;5;12m [39m[38;5;12m(Multisense)[39m[38;5;12m [39m[38;5;12mWord[39m[38;5;12m [39m[38;5;12mEmbedding.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDLib[0m[38;5;12m (http://dlib.net/ml.html) - A suite of ML tools designed to be easy to imbed in other applications.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDSSTNE[0m[38;5;12m (https://github.com/amznlabs/amazon-dsstne) - A software library created by Amazon for training and deploying deep neural networks using GPUs which emphasizes speed and scale over experimental flexibility.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDyNet[0m[38;5;12m (https://github.com/clab/dynet) - A dynamic neural network library working well with networks that have dynamic structures that change for every training instance. Written in C++ with bindings in Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFido[0m[38;5;12m (https://github.com/FidoProject/Fido) - A highly-modular C++ machine learning library for embedded electronics and robotics.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFlexML[0m[38;5;12m (https://github.com/ozguraslank/flexml) - Easy-to-use and flexible AutoML library for Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1migraph[0m[38;5;12m (http://igraph.org/) - General purpose graph library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIntel®[0m[38;5;14m[1m [0m[38;5;14m[1moneAPI[0m[38;5;14m[1m [0m[38;5;14m[1mData[0m[38;5;14m[1m [0m[38;5;14m[1mAnalytics[0m[38;5;14m[1m [0m[38;5;14m[1mLibrary[0m[38;5;12m [39m[38;5;12m(https://github.com/oneapi-src/oneDAL)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mhigh[39m[38;5;12m [39m[38;5;12mperformance[39m[38;5;12m [39m[38;5;12msoftware[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mdeveloped[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mIntel[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12moptimized[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mIntel's[39m[38;5;12m [39m[38;5;12marchitectures.[39m[38;5;12m [39m[38;5;12mLibrary[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12malgorithmic[39m[38;5;12m [39m[38;5;12mbuilding[39m[38;5;12m [39m[38;5;12mblocks[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mstages[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m
|
||
[38;5;12manalytics[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mallows[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mprocess[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mbatch,[39m[38;5;12m [39m[38;5;12monline[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12mmodes.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLightGBM[0m[38;5;12m [39m[38;5;12m(https://github.com/Microsoft/LightGBM)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mMicrosoft's[39m[38;5;12m [39m[38;5;12mfast,[39m[38;5;12m [39m[38;5;12mdistributed,[39m[38;5;12m [39m[38;5;12mhigh[39m[38;5;12m [39m[38;5;12mperformance[39m[38;5;12m [39m[38;5;12mgradient[39m[38;5;12m [39m[38;5;12mboosting[39m[38;5;12m [39m[38;5;12m(GBDT,[39m[38;5;12m [39m[38;5;12mGBRT,[39m[38;5;12m [39m[38;5;12mGBM[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mMART)[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mdecision[39m[38;5;12m [39m[38;5;12mtree[39m[38;5;12m [39m[38;5;12malgorithms,[39m[38;5;12m [39m[38;5;12mused[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mranking,[39m[38;5;12m [39m[38;5;12mclassification[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m
|
||
[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mtasks.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mlibfm[0m[38;5;12m (https://github.com/srendle/libfm) - A generic approach that allows to mimic most factorization models by feature engineering.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMLDB[0m[38;5;12m (https://mldb.ai) - The Machine Learning Database is a database designed for machine learning. Send it commands over a RESTful API to store data, explore it using SQL, then train machine learning models and expose them as APIs.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmlpack[0m[38;5;12m (https://www.mlpack.org/) - A scalable C++ machine learning library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMXNet[0m[38;5;12m (https://github.com/apache/incubator-mxnet) - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Go, JavaScript and more.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mN2D2[0m[38;5;12m (https://github.com/CEA-LIST/N2D2) - CEA-List's CAD framework for designing and simulating Deep Neural Network, and building full DNN-based applications on embedded platforms[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1moneDNN[0m[38;5;12m (https://github.com/oneapi-src/oneDNN) - An open-source cross-platform performance library for deep learning applications.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpik[0m[38;5;12m [39m[38;5;12m(https://www.comet.com/site/products/opik/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mOpen[39m[38;5;12m [39m[38;5;12msource[39m[38;5;12m [39m[38;5;12mengineering[39m[38;5;12m [39m[38;5;12mplatform[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mdebug,[39m[38;5;12m [39m[38;5;12mevaluate,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmonitor[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mLLM[39m[38;5;12m [39m[38;5;12mapplications,[39m[38;5;12m [39m[38;5;12mRAG[39m[38;5;12m [39m[38;5;12msystems,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12magentic[39m[38;5;12m [39m[38;5;12mworkflows[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mcomprehensive[39m[38;5;12m [39m[38;5;12mtracing,[39m[38;5;12m [39m[38;5;12mautomated[39m[38;5;12m [39m[38;5;12mevaluations,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||
[38;5;12mproduction-ready[39m[38;5;12m [39m[38;5;12mdashboards.[39m[38;5;12m [39m[38;5;12m([39m[38;5;14m[1mSource[0m[38;5;14m[1m [0m[38;5;14m[1mCode[0m[38;5;12m [39m[38;5;12m(https://github.com/comet-ml/opik/))[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mParaMonte[0m[38;5;12m [39m[38;5;12m(https://github.com/cdslaborg/paramonte)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mgeneral-purpose[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mC/C++[39m[38;5;12m [39m[38;5;12minterface[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mBayesian[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12manalysis[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mvisualization[39m[38;5;12m [39m[38;5;12mvia[39m[38;5;12m [39m[38;5;12mserial/parallel[39m[38;5;12m [39m[38;5;12mMonte[39m[38;5;12m [39m[38;5;12mCarlo[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mMCMC[39m[38;5;12m [39m[38;5;12msimulations.[39m[38;5;12m [39m[38;5;12mDocumentation[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mfound[39m[38;5;12m [39m[38;5;14m[1mhere[0m[38;5;12m [39m
|
||
[38;5;12m(https://www.cdslab.org/paramonte/).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mproNet-core[0m[38;5;12m (https://github.com/cnclabs/proNet-core) - A general-purpose network embedding framework: pair-wise representations optimization Network Edit.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyCaret[0m[38;5;12m (https://github.com/pycaret/pycaret) - An open-source, low-code machine learning library in Python that automates machine learning workflows.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyCUDA[0m[38;5;12m (https://mathema.tician.de/software/pycuda/) - Python interface to CUDA[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mROOT[0m[38;5;12m (https://root.cern.ch) - A modular scientific software framework. It provides all the functionalities needed to deal with big data processing, statistical analysis, visualization and storage.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mshark[0m[38;5;12m (http://image.diku.dk/shark/sphinx_pages/build/html/index.html) - A fast, modular, feature-rich open-source C++ machine learning library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mShogun[0m[38;5;12m (https://github.com/shogun-toolbox/shogun) - The Shogun Machine Learning Toolbox.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msofia-ml[0m[38;5;12m (https://code.google.com/archive/p/sofia-ml) - Suite of fast incremental algorithms.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStan[0m[38;5;12m (http://mc-stan.org/) - A probabilistic programming language implementing full Bayesian statistical inference with Hamiltonian Monte Carlo sampling.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTimbl[0m[38;5;12m [39m[38;5;12m(https://languagemachines.github.io/timbl/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12msoftware[39m[38;5;12m [39m[38;5;12mpackage/C++[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mimplementing[39m[38;5;12m [39m[38;5;12mseveral[39m[38;5;12m [39m[38;5;12mmemory-based[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12malgorithms,[39m[38;5;12m [39m[38;5;12mamong[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mIB1-IG,[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12mimplementation[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mk-nearest[39m[38;5;12m [39m[38;5;12mneighbor[39m[38;5;12m [39m[38;5;12mclassification,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mIGTree,[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mdecision-tree[39m[38;5;12m [39m
|
||
[38;5;12mapproximation[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mIB1-IG.[39m[38;5;12m [39m[38;5;12mCommonly[39m[38;5;12m [39m[38;5;12mused[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mNLP.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVowpal Wabbit (VW)[0m[38;5;12m (https://github.com/VowpalWabbit/vowpal_wabbit) - A fast out-of-core learning system.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mWarp-CTC[0m[38;5;12m (https://github.com/baidu-research/warp-ctc) - A fast parallel implementation of Connectionist Temporal Classification (CTC), on both CPU and GPU.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mXGBoost[0m[38;5;12m (https://github.com/dmlc/xgboost) - A parallelized optimized general purpose gradient boosting library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mThunderGBM[0m[38;5;12m (https://github.com/Xtra-Computing/thundergbm) - A fast library for GBDTs and Random Forests on GPUs.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mThunderSVM[0m[38;5;12m (https://github.com/Xtra-Computing/thundersvm) - A fast SVM library on GPUs and CPUs.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLKYDeepNN[0m[38;5;12m (https://github.com/mosdeo/LKYDeepNN) - A header-only C++11 Neural Network library. Low dependency, native traditional chinese document.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mxLearn[0m[38;5;12m [39m[38;5;12m(https://github.com/aksnzhy/xlearn)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mhigh[39m[38;5;12m [39m[38;5;12mperformance,[39m[38;5;12m [39m[38;5;12measy-to-use,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mscalable[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mpackage,[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mused[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12msolve[39m[38;5;12m [39m[38;5;12mlarge-scale[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mproblems.[39m[38;5;12m [39m[38;5;12mxLearn[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mespecially[39m[38;5;12m [39m[38;5;12museful[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12msolving[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m
|
||
[38;5;12mproblems[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mlarge-scale[39m[38;5;12m [39m[38;5;12msparse[39m[38;5;12m [39m[38;5;12mdata,[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mvery[39m[38;5;12m [39m[38;5;12mcommon[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mInternet[39m[38;5;12m [39m[38;5;12mservices[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12monline[39m[38;5;12m [39m[38;5;12madvertising[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mrecommender[39m[38;5;12m [39m[38;5;12msystems.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFeaturetools[0m[38;5;12m [39m[38;5;12m(https://github.com/featuretools/featuretools)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mautomated[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12mengineering.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mexcels[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mtransforming[39m[38;5;12m [39m[38;5;12mtransactional[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mrelational[39m[38;5;12m [39m[38;5;12mdatasets[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12mmatrices[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mreusable[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m
|
||
[38;5;12mengineering[39m[38;5;12m [39m[38;5;12m"primitives".[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mskynet[0m[38;5;12m (https://github.com/Tyill/skynet) - A library for learning neural networks, has C-interface, net set in JSON. Written in C++ with bindings in Python, C++ and C#.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFeast[0m[38;5;12m (https://github.com/gojek/feast) - A feature store for the management, discovery, and access of machine learning features. Feast provides a consistent view of feature data for both model training and model serving.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHopsworks[0m[38;5;12m [39m[38;5;12m(https://github.com/logicalclocks/hopsworks)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mdata-intensive[39m[38;5;12m [39m[38;5;12mplatform[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mAI[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mindustry's[39m[38;5;12m [39m[38;5;12mfirst[39m[38;5;12m [39m[38;5;12mopen-source[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12mstore.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mHopsworks[39m[38;5;12m [39m[38;5;12mFeature[39m[38;5;12m [39m[38;5;12mStore[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12mboth[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12mwarehouse[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mbatch[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mApache[39m[38;5;12m [39m
|
||
[38;5;12mHive[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12mserving[39m[38;5;12m [39m[38;5;12mdatabase,[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mMySQL[39m[38;5;12m [39m[38;5;12mCluster,[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12monline[39m[38;5;12m [39m[38;5;12mapplications.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPolyaxon[0m[38;5;12m (https://github.com/polyaxon/polyaxon) - A platform for reproducible and scalable machine learning and deep learning.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mQuestDB[0m[38;5;12m (https://questdb.io/) - A relational column-oriented database designed for real-time analytics on time series and event data.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPhoenix[0m[38;5;12m (https://phoenix.arize.com) - Uncover insights, surface problems, monitor and fine tune your generative LLM, CV and tabular models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mXAD[0m[38;5;12m (https://github.com/auto-differentiation/XAD) - Comprehensive backpropagation tool for C++.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTruss[0m[38;5;12m (https://truss.baseten.co) - An open source framework for packaging and serving ML models.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mNatural Language Processing[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBLLIP Parser[0m[38;5;12m (https://github.com/BLLIP/bllip-parser) - BLLIP Natural Language Parser (also known as the Charniak-Johnson parser).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcolibri-core[0m[38;5;12m (https://github.com/proycon/colibri-core) - C++ library, command line tools, and Python binding for extracting and working with basic linguistic constructions such as n-grams and skipgrams in a quick and memory-efficient way.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCRF++[0m[38;5;12m (https://taku910.github.io/crfpp/) - Open source implementation of Conditional Random Fields (CRFs) for segmenting/labeling sequential data & other Natural Language Processing tasks. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCRFsuite[0m[38;5;12m (http://www.chokkan.org/software/crfsuite/) - CRFsuite is an implementation of Conditional Random Fields (CRFs) for labeling sequential data. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mfrog[0m[38;5;12m (https://github.com/LanguageMachines/frog) - Memory-based NLP suite developed for Dutch: PoS tagger, lemmatiser, dependency parser, NER, shallow parser, morphological analyzer.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mlibfolia[0m[38;5;12m (https://github.com/LanguageMachines/libfolia) - C++ library for the [39m[38;5;14m[1mFoLiA format[0m[38;5;12m (https://proycon.github.io/folia/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMeTA[0m[38;5;12m (https://github.com/meta-toolkit/meta) - [39m[38;5;14m[1mMeTA : ModErn Text Analysis[0m[38;5;12m (https://meta-toolkit.org/) is a C++ Data Sciences Toolkit that facilitates mining big text data.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMIT Information Extraction Toolkit[0m[38;5;12m (https://github.com/mit-nlp/MITIE) - C, C++, and Python tools for named entity recognition and relation extraction[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mucto[0m[38;5;12m (https://github.com/LanguageMachines/ucto) - Unicode-aware regular-expression based tokenizer for various languages. Tool and C++ library. Supports FoLiA format.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mSpeech Recognition[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKaldi[0m[38;5;12m (https://github.com/kaldi-asr/kaldi) - Kaldi is a toolkit for speech recognition written in C++ and licensed under the Apache License v2.0. Kaldi is intended for use by speech recognition researchers.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mSequence Analysis[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mToPS[0m[38;5;12m (https://github.com/ayoshiaki/tops) - This is an object-oriented framework that facilitates the integration of probabilistic models for sequences over a user defined alphabet. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGesture Detection[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgrt[0m[38;5;12m (https://github.com/nickgillian/grt) - The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, C++ machine learning library designed for real-time gesture recognition.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mReinforcement Learning[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRLtools[0m[38;5;12m (https://github.com/rl-tools/rl-tools) - The fastest deep reinforcement learning library for continuous control, implemented header-only in pure, dependency-free C++ (Python bindings available as well).[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mCommon Lisp[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmgl[0m[38;5;12m (https://github.com/melisgl/mgl/) - Neural networks (boltzmann machines, feed-forward and recurrent nets), Gaussian Processes.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmgl-gpr[0m[38;5;12m (https://github.com/melisgl/mgl-gpr/) - Evolutionary algorithms. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcl-libsvm[0m[38;5;12m (https://github.com/melisgl/cl-libsvm/) - Wrapper for the libsvm support vector machine library. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcl-online-learning[0m[38;5;12m (https://github.com/masatoi/cl-online-learning) - Online learning algorithms (Perceptron, AROW, SCW, Logistic Regression).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcl-random-forest[0m[38;5;12m (https://github.com/masatoi/cl-random-forest) - Implementation of Random Forest in Common Lisp.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mClojure[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mNatural Language Processing[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mClojure-openNLP[0m[38;5;12m (https://github.com/dakrone/clojure-opennlp) - Natural Language Processing in Clojure (opennlp).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mInfections-clj[0m[38;5;12m (https://github.com/r0man/inflections-clj) - Rails-like inflection library for Clojure and ClojureScript.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscicloj.ml[0m[38;5;12m (https://github.com/scicloj/scicloj.ml) - A idiomatic Clojure machine learning library based on tech.ml.dataset with a unique approach for immutable data processing pipelines.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mclj-ml[0m[38;5;12m (https://github.com/joshuaeckroth/clj-ml/) - A machine learning library for Clojure built on top of Weka and friends.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mclj-boost[0m[38;5;12m (https://gitlab.com/alanmarazzi/clj-boost) - Wrapper for XGBoost[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTouchstone[0m[38;5;12m (https://github.com/ptaoussanis/touchstone) - Clojure A/B testing library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mClojush[0m[38;5;12m (https://github.com/lspector/Clojush) - The Push programming language and the PushGP genetic programming system implemented in Clojure.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mlambda-ml[0m[38;5;12m (https://github.com/cloudkj/lambda-ml) - Simple, concise implementations of machine learning techniques and utilities in Clojure.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mInfer[0m[38;5;12m (https://github.com/aria42/infer) - Inference and machine learning in Clojure. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEncog[0m[38;5;12m (https://github.com/jimpil/enclog) - Clojure wrapper for Encog (v3) (Machine-Learning framework that specializes in neural-nets). [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFungp[0m[38;5;12m (https://github.com/vollmerm/fungp) - A genetic programming library for Clojure. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStatistiker[0m[38;5;12m (https://github.com/clojurewerkz/statistiker) - Basic Machine Learning algorithms in Clojure. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mclortex[0m[38;5;12m (https://github.com/htm-community/clortex) - General Machine Learning library using Numenta’s Cortical Learning Algorithm. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcomportex[0m[38;5;12m (https://github.com/htm-community/comportex) - Functionally composable Machine Learning library using Numenta’s Cortical Learning Algorithm. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
|
||
|
||
[38;2;255;187;0m[4mDeep Learning[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMXNet[0m[38;5;12m (https://mxnet.apache.org/versions/1.7.0/api/clojure) - Bindings to Apache MXNet - part of the MXNet project[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeep Diamond[0m[38;5;12m (https://github.com/uncomplicate/deep-diamond) - A fast Clojure Tensor & Deep Learning library[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mjutsu.ai[0m[38;5;12m (https://github.com/hswick/jutsu.ai) - Clojure wrapper for deeplearning4j with some added syntactic sugar.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcortex[0m[38;5;12m (https://github.com/originrose/cortex) - Neural networks, regression and feature learning in Clojure.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFlare[0m[38;5;12m (https://github.com/aria42/flare) - Dynamic Tensor Graph library in Clojure (think PyTorch, DynNet, etc.)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdl4clj[0m[38;5;12m (https://github.com/yetanalytics/dl4clj) - Clojure wrapper for Deeplearning4j.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mData Analysis[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtech.ml.dataset[0m[38;5;12m (https://github.com/techascent/tech.ml.dataset) - Clojure dataframe library and pipeline for data processing and machine learning[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTablecloth[0m[38;5;12m (https://github.com/scicloj/tablecloth) - A dataframe grammar wrapping tech.ml.dataset, inspired by several R libraries[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPanthera[0m[38;5;12m (https://github.com/alanmarazzi/panthera) - Clojure API wrapping Python's Pandas library[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIncanter[0m[38;5;12m (http://incanter.org/) - Incanter is a Clojure-based, R-like platform for statistical computing and graphics.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPigPen[0m[38;5;12m (https://github.com/Netflix/PigPen) - Map-Reduce for Clojure.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGeni[0m[38;5;12m (https://github.com/zero-one-group/geni) - a Clojure dataframe library that runs on Apache Spark[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mData Visualization[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHanami[0m[38;5;12m [39m[38;5;12m(https://github.com/jsa-aerial/hanami)[39m[38;5;12m [39m[38;5;12m:[39m[38;5;12m [39m[38;5;12mClojure(Script)[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mcreating[39m[38;5;12m [39m[38;5;12minteractive[39m[38;5;12m [39m[38;5;12mvisualization[39m[38;5;12m [39m[38;5;12mapplications[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mVega-Lite[39m[38;5;12m [39m[38;5;12m(VGL)[39m[38;5;12m [39m[38;5;12mand/or[39m[38;5;12m [39m[38;5;12mVega[39m[38;5;12m [39m[38;5;12m(VG)[39m[38;5;12m [39m[38;5;12mspecifications.[39m[38;5;12m [39m[38;5;12mAutomatic[39m[38;5;12m [39m[38;5;12mframing[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mlayouts[39m[38;5;12m [39m[38;5;12malong[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m
|
||
[38;5;12mpowerful[39m[38;5;12m [39m[38;5;12mtemplating[39m[38;5;12m [39m[38;5;12msystem[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mabstracting[39m[38;5;12m [39m[38;5;12mvisualization[39m[38;5;12m [39m[38;5;12mspecs[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSaite[0m[38;5;12m (https://github.com/jsa-aerial/saite) - Clojure(Script) client/server application for dynamic interactive explorations and the creation of live shareable documents capturing them using Vega/Vega-Lite, CodeMirror, markdown, and LaTeX[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOz[0m[38;5;12m (https://github.com/metasoarous/oz) - Data visualisation using Vega/Vega-Lite and Hiccup, and a live-reload platform for literate-programming[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEnvision[0m[38;5;12m (https://github.com/clojurewerkz/envision) - Clojure Data Visualisation library, based on Statistiker and D3.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPink Gorilla Notebook[0m[38;5;12m (https://github.com/pink-gorilla/gorilla-notebook) - A Clojure/Clojurescript notebook application/-library based on Gorilla-REPL[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mclojupyter[0m[38;5;12m (https://github.com/clojupyter/clojupyter) - A Jupyter kernel for Clojure - run Clojure code in Jupyter Lab, Notebook and Console.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnotespace[0m[38;5;12m (https://github.com/scicloj/notespace) - Notebook experience in your Clojure namespace[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDelight[0m[38;5;12m (https://github.com/datamechanics/delight) - A listener that streams your spark events logs to delight, a free and improved spark UI[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mInterop[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mJava Interop[0m[38;5;12m (https://clojure.org/reference/java_interop) - Clojure has Native Java Interop from which Java's ML ecosystem can be accessed[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mJavaScript Interop[0m[38;5;12m (https://clojurescript.org/reference/javascript-api) - ClojureScript has Native JavaScript Interop from which JavaScript's ML ecosystem can be accessed[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLibpython-clj[0m[38;5;12m (https://github.com/clj-python/libpython-clj) - Interop with Python[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mClojisR[0m[38;5;12m (https://github.com/scicloj/clojisr) - Interop with R and Renjin (R on the JVM)[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mMisc[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeanderthal[0m[38;5;12m (https://neanderthal.uncomplicate.org/) - Fast Clojure Matrix Library (native CPU, GPU, OpenCL, CUDA)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkixistats[0m[38;5;12m (https://github.com/MastodonC/kixi.stats) - A library of statistical distribution sampling and transducing functions[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mfastmath[0m[38;5;12m (https://github.com/generateme/fastmath) - A collection of functions for mathematical and statistical computing, macine learning, etc., wrapping several JVM libraries[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmatlib[0m[38;5;12m (https://github.com/atisharma/matlib) - A Clojure library of optimisation and control theory tools and convenience functions based on Neanderthal.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mExtra[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mScicloj[0m[38;5;12m (https://scicloj.github.io/pages/libraries/) - Curated list of ML related resources for Clojure.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mCrystal[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmachine[0m[38;5;12m (https://github.com/mathieulaporte/machine) - Simple machine learning algorithm.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcrystal-fann[0m[38;5;12m (https://github.com/NeuraLegion/crystal-fann) - FANN (Fast Artificial Neural Network) binding.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mElixir[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSimple Bayes[0m[38;5;12m (https://github.com/fredwu/simple_bayes) - A Simple Bayes / Naive Bayes implementation in Elixir.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1memel[0m[38;5;12m (https://github.com/mrdimosthenis/emel) - A simple and functional machine learning library written in Elixir.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorflex[0m[38;5;12m (https://github.com/anshuman23/tensorflex) - Tensorflow bindings for the Elixir programming language.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mNatural Language Processing[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStemmer[0m[38;5;12m (https://github.com/fredwu/stemmer) - An English (Porter2) stemming implementation in Elixir.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mErlang[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDisco[0m[38;5;12m (https://github.com/discoproject/disco/) - Map Reduce in Erlang. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
|
||
|
||
[38;2;255;187;0m[4mFortran[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mneural-fortran[0m[38;5;12m (https://github.com/modern-fortran/neural-fortran) - A parallel neural net microframework.[39m
|
||
[38;5;12mRead the paper [39m[38;5;14m[1mhere[0m[38;5;12m (https://arxiv.org/abs/1902.06714).[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mData Analysis / Data Visualization[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mParaMonte[0m[38;5;12m [39m[38;5;12m(https://github.com/cdslaborg/paramonte)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mgeneral-purpose[39m[38;5;12m [39m[38;5;12mFortran[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mBayesian[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12manalysis[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mvisualization[39m[38;5;12m [39m[38;5;12mvia[39m[38;5;12m [39m[38;5;12mserial/parallel[39m[38;5;12m [39m[38;5;12mMonte[39m[38;5;12m [39m[38;5;12mCarlo[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mMCMC[39m[38;5;12m [39m[38;5;12msimulations.[39m[38;5;12m [39m[38;5;12mDocumentation[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mfound[39m[38;5;12m [39m[38;5;14m[1mhere[0m[38;5;12m [39m
|
||
[38;5;12m(https://www.cdslab.org/paramonte/).[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mGo[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mNatural Language Processing[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCybertron[0m[38;5;12m (https://github.com/nlpodyssey/cybertron) - Cybertron: the home planet of the Transformers in Go.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msnowball[0m[38;5;12m (https://github.com/tebeka/snowball) - Snowball Stemmer for Go.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mword-embedding[0m[38;5;12m (https://github.com/ynqa/word-embedding) - Word Embeddings: the full implementation of word2vec, GloVe in Go.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msentences[0m[38;5;12m (https://github.com/neurosnap/sentences) - Golang implementation of Punkt sentence tokenizer.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgo-ngram[0m[38;5;12m (https://github.com/Lazin/go-ngram) - In-memory n-gram index with compression. [39m[48;2;30;30;40m[38;5;14m[1m[3mDeprecated[0m[48;2;30;30;40m[38;5;13m[3m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpaicehusk[0m[38;5;12m (https://github.com/Rookii/paicehusk) - Golang implementation of the Paice/Husk Stemming Algorithm. [39m[48;2;30;30;40m[38;5;14m[1m[3mDeprecated[0m[48;2;30;30;40m[38;5;13m[3m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgo-porterstemmer[0m[38;5;12m (https://github.com/reiver/go-porterstemmer) - A native Go clean room implementation of the Porter Stemming algorithm. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpago[0m[38;5;12m (https://github.com/nlpodyssey/spago) - Self-contained Machine Learning and Natural Language Processing library in Go.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mbirdland[0m[38;5;12m (https://github.com/rlouf/birdland) - A recommendation library in Go.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1meaopt[0m[38;5;12m (https://github.com/MaxHalford/eaopt) - An evolutionary optimization library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mleaves[0m[38;5;12m (https://github.com/dmitryikh/leaves) - A pure Go implementation of the prediction part of GBRTs, including XGBoost and LightGBM.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgobrain[0m[38;5;12m (https://github.com/goml/gobrain) - Neural Networks written in Go.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgo-featureprocessing[0m[38;5;12m (https://github.com/nikolaydubina/go-featureprocessing) - Fast and convenient feature processing for low latency machine learning in Go.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgo-mxnet-predictor[0m[38;5;12m (https://github.com/songtianyi/go-mxnet-predictor) - Go binding for MXNet c_predict_api to do inference with a pre-trained model.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgo-ml-benchmarks[0m[38;5;12m (https://github.com/nikolaydubina/go-ml-benchmarks) — benchmarks of machine learning inference for Go.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgo-ml-transpiler[0m[38;5;12m (https://github.com/znly/go-ml-transpiler) - An open source Go transpiler for machine learning models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgolearn[0m[38;5;12m (https://github.com/sjwhitworth/golearn) - Machine learning for Go.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgoml[0m[38;5;12m (https://github.com/cdipaolo/goml) - Machine learning library written in pure Go.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgorgonia[0m[38;5;12m (https://github.com/gorgonia/gorgonia) - Deep learning in Go.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgoro[0m[38;5;12m (https://github.com/aunum/goro) - A high-level machine learning library in the vein of Keras.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgorse[0m[38;5;12m (https://github.com/zhenghaoz/gorse) - An offline recommender system backend based on collaborative filtering written in Go.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtherfoo[0m[38;5;12m (https://github.com/therfoo/therfoo) - An embedded deep learning library for Go.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mneat[0m[38;5;12m (https://github.com/jinyeom/neat) - Plug-and-play, parallel Go framework for NeuroEvolution of Augmenting Topologies (NEAT). [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgo-pr[0m[38;5;12m (https://github.com/daviddengcn/go-pr) - Pattern recognition package in Go lang. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgo-ml[0m[38;5;12m (https://github.com/alonsovidales/go_ml) - Linear / Logistic regression, Neural Networks, Collaborative Filtering and Gaussian Multivariate Distribution. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGoNN[0m[38;5;12m (https://github.com/fxsjy/gonn) - GoNN is an implementation of Neural Network in Go Language, which includes BPNN, RBF, PCN. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mbayesian[0m[38;5;12m (https://github.com/jbrukh/bayesian) - Naive Bayesian Classification for Golang. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgo-galib[0m[38;5;12m (https://github.com/thoj/go-galib) - Genetic Algorithms library written in Go / Golang. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCloudforest[0m[38;5;12m (https://github.com/ryanbressler/CloudForest) - Ensembles of decision trees in Go/Golang. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgo-dnn[0m[38;5;12m (https://github.com/sudachen/go-dnn) - Deep Neural Networks for Golang (powered by MXNet)[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mSpatial analysis and geometry[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgo-geom[0m[38;5;12m (https://github.com/twpayne/go-geom) - Go library to handle geometries.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgogeo[0m[38;5;12m (https://github.com/golang/geo) - Spherical geometry in Go.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mData Analysis / Data Visualization[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdataframe-go[0m[38;5;12m (https://github.com/rocketlaunchr/dataframe-go) - Dataframes for machine-learning and statistics (similar to pandas).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgota[0m[38;5;12m (https://github.com/go-gota/gota) - Dataframes.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgonum/mat[0m[38;5;12m (https://godoc.org/gonum.org/v1/gonum/mat) - A linear algebra package for Go.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgonum/optimize[0m[38;5;12m (https://godoc.org/gonum.org/v1/gonum/optimize) - Implementations of optimization algorithms.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgonum/plot[0m[38;5;12m (https://godoc.org/gonum.org/v1/plot) - A plotting library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgonum/stat[0m[38;5;12m (https://godoc.org/gonum.org/v1/gonum/stat) - A statistics library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSVGo[0m[38;5;12m (https://github.com/ajstarks/svgo) - The Go Language library for SVG generation.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mglot[0m[38;5;12m (https://github.com/arafatk/glot) - Glot is a plotting library for Golang built on top of gnuplot.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mglobe[0m[38;5;12m (https://github.com/mmcloughlin/globe) - Globe wireframe visualization.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgonum/graph[0m[38;5;12m (https://godoc.org/gonum.org/v1/gonum/graph) - General-purpose graph library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgo-graph[0m[38;5;12m (https://github.com/StepLg/go-graph) - Graph library for Go/Golang language. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRF[0m[38;5;12m (https://github.com/fxsjy/RF.go) - Random forests implementation in Go. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
|
||
|
||
[38;2;255;187;0m[4mComputer vision[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGoCV[0m[38;5;12m (https://github.com/hybridgroup/gocv) - Package for computer vision using OpenCV 4 and beyond.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mReinforcement learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgold[0m[38;5;12m (https://github.com/aunum/gold) - A reinforcement learning library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mstable-baselines3[0m[38;5;12m (https://github.com/DLR-RM/stable-baselines3) - PyTorch implementations of Stable Baselines (deep) reinforcement learning algorithms.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mHaskell[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mhaskell-ml[0m[38;5;12m (https://github.com/ajtulloch/haskell-ml) - Haskell implementations of various ML algorithms. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHLearn[0m[38;5;12m (https://github.com/mikeizbicki/HLearn) - a suite of libraries for interpreting machine learning models according to their algebraic structure. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mhnn[0m[38;5;12m (https://github.com/alpmestan/HNN) - Haskell Neural Network library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mhopfield-networks[0m[38;5;12m (https://github.com/ajtulloch/hopfield-networks) - Hopfield Networks for unsupervised learning in Haskell. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDNNGraph[0m[38;5;12m (https://github.com/ajtulloch/dnngraph) - A DSL for deep neural networks. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLambdaNet[0m[38;5;12m (https://github.com/jbarrow/LambdaNet) - Configurable Neural Networks in Haskell. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
|
||
|
||
[38;2;255;187;0m[4mJava[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mNatural Language Processing[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCortical.io[0m[38;5;12m (https://www.cortical.io/) - Retina: an API performing complex NLP operations (disambiguation, classification, streaming text filtering, etc...) as quickly and intuitively as the brain.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIRIS[0m[38;5;12m (https://github.com/cortical-io/Iris) - [39m[38;5;14m[1mCortical.io's[0m[38;5;12m (https://cortical.io) FREE NLP, Retina API Analysis Tool (written in JavaFX!) - [39m[38;5;14m[1mSee the Tutorial Video[0m[38;5;12m (https://www.youtube.com/watch?v=CsF4pd7fGF0).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCoreNLP[0m[38;5;12m (https://nlp.stanford.edu/software/corenlp.shtml) - Stanford CoreNLP provides a set of natural language analysis tools which can take raw English language text input and give the base forms of words.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStanford Parser[0m[38;5;12m (https://nlp.stanford.edu/software/lex-parser.shtml) - A natural language parser is a program that works out the grammatical structure of sentences.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStanford POS Tagger[0m[38;5;12m (https://nlp.stanford.edu/software/tagger.shtml) - A Part-Of-Speech Tagger (POS Tagger).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStanford Name Entity Recognizer[0m[38;5;12m (https://nlp.stanford.edu/software/CRF-NER.shtml) - Stanford NER is a Java implementation of a Named Entity Recognizer.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStanford Word Segmenter[0m[38;5;12m (https://nlp.stanford.edu/software/segmenter.shtml) - Tokenization of raw text is a standard pre-processing step for many NLP tasks.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTregex, Tsurgeon and Semgrex[0m
|
||
[38;5;12m (https://nlp.stanford.edu/software/tregex.shtml) - Tregex is a utility for matching patterns in trees, based on tree relationships and regular expression matches on nodes (the name is short for "tree regular expressions").[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStanford Phrasal: A Phrase-Based Translation System[0m[38;5;12m (https://nlp.stanford.edu/phrasal/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStanford English Tokenizer[0m[38;5;12m (https://nlp.stanford.edu/software/tokenizer.shtml) - Stanford Phrasal is a state-of-the-art statistical phrase-based machine translation system, written in Java.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStanford Tokens Regex[0m[38;5;12m (https://nlp.stanford.edu/software/tokensregex.shtml) - A tokenizer divides text into a sequence of tokens, which roughly correspond to "words".[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStanford Temporal Tagger[0m[38;5;12m (https://nlp.stanford.edu/software/sutime.shtml) - SUTime is a library for recognizing and normalizing time expressions.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStanford SPIED[0m[38;5;12m (https://nlp.stanford.edu/software/patternslearning.shtml) - Learning entities from unlabeled text starting with seed sets using patterns in an iterative fashion.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTwitter Text Java[0m[38;5;12m (https://github.com/twitter/twitter-text/tree/master/java) - A Java implementation of Twitter's text processing library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMALLET[0m[38;5;12m (http://mallet.cs.umass.edu/) - A Java-based package for statistical natural language processing, document classification, clustering, topic modelling, information extraction, and other machine learning applications to text.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpenNLP[0m[38;5;12m (https://opennlp.apache.org/) - A machine learning based toolkit for the processing of natural language text.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLingPipe[0m[38;5;12m (http://alias-i.com/lingpipe/index.html) - A tool kit for processing text using computational linguistics.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mClearTK[0m[38;5;12m (https://github.com/ClearTK/cleartk) - ClearTK provides a framework for developing statistical natural language processing (NLP) components in Java and is built on top of Apache UIMA. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache cTAKES[0m
|
||
[38;5;12m (https://ctakes.apache.org/) - Apache Clinical Text Analysis and Knowledge Extraction System (cTAKES) is an open-source natural language processing system for information extraction from electronic medical record clinical free-text.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNLP4J[0m[38;5;12m [39m[38;5;12m(https://github.com/emorynlp/nlp4j)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mNLP4J[39m[38;5;12m [39m[38;5;12mproject[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12msoftware[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mresources[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mnatural[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12mprocessing.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mproject[39m[38;5;12m [39m[38;5;12mstarted[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mCenter[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mComputational[39m[38;5;12m [39m[38;5;12mLanguage[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mEducAtion[39m[38;5;12m [39m[38;5;12mResearch,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mcurrently[39m[38;5;12m [39m[38;5;12mdeveloped[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m
|
||
[38;5;12mthe[39m[38;5;12m [39m[38;5;12mCenter[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mLanguage[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mInformation[39m[38;5;12m [39m[38;5;12mResearch[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mEmory[39m[38;5;12m [39m[38;5;12mUniversity.[39m[38;5;12m [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCogcompNLP[0m[38;5;12m [39m[38;5;12m(https://github.com/CogComp/cogcomp-nlp)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mproject[39m[38;5;12m [39m[38;5;12mcollects[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mnumber[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mcore[39m[38;5;12m [39m[38;5;12mlibraries[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mNatural[39m[38;5;12m [39m[38;5;12mLanguage[39m[38;5;12m [39m[38;5;12mProcessing[39m[38;5;12m [39m[38;5;12m(NLP)[39m[38;5;12m [39m[38;5;12mdeveloped[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mUniversity[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mIllinois'[39m[38;5;12m [39m[38;5;12mCognitive[39m[38;5;12m [39m[38;5;12mComputation[39m[38;5;12m [39m[38;5;12mGroup,[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mexample[39m[38;5;12m [39m
|
||
[48;5;235m[38;5;249millinois-core-utilities[49m[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mset[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mNLP-friendly[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mstructures[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mnumber[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mNLP-related[39m[38;5;12m [39m[38;5;12mutilities[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12msupport[39m[38;5;12m [39m[38;5;12mwriting[39m[38;5;12m [39m[38;5;12mNLP[39m[38;5;12m [39m[38;5;12mapplications,[39m[38;5;12m [39m[38;5;12mrunning[39m[38;5;12m [39m[38;5;12mexperiments,[39m[38;5;12m [39m[38;5;12metc,[39m[38;5;12m [39m[48;5;235m[38;5;249millinois-edison[49m[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12mextraction[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m
|
||
[38;5;12millinois-core-utilities[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mstructures[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[38;5;12mpackages.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1maerosolve[0m[38;5;12m (https://github.com/airbnb/aerosolve) - A machine learning library by Airbnb designed from the ground up to be human friendly.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAMIDST Toolbox[0m[38;5;12m (http://www.amidsttoolbox.com/) - A Java Toolbox for Scalable Probabilistic Machine Learning.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mChips-n-Salsa[0m[38;5;12m (https://github.com/cicirello/Chips-n-Salsa) - A Java library for genetic algorithms, evolutionary computation, and stochastic local search, with a focus on self-adaptation / self-tuning, as well as parallel execution.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDatumbox[0m[38;5;12m (https://github.com/datumbox/datumbox-framework) - Machine Learning framework for rapid development of Machine Learning and Statistical applications.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mELKI[0m[38;5;12m (https://elki-project.github.io/) - Java toolkit for data mining. (unsupervised: clustering, outlier detection etc.)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEncog[0m[38;5;12m [39m[38;5;12m(https://github.com/encog/encog-java-core)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAn[39m[38;5;12m [39m[38;5;12madvanced[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetwork[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mframework.[39m[38;5;12m [39m[38;5;12mEncog[39m[38;5;12m [39m[38;5;12mcontains[39m[38;5;12m [39m[38;5;12mclasses[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcreate[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mwide[39m[38;5;12m [39m[38;5;12mvariety[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mnetworks,[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12msupport[39m[38;5;12m [39m[38;5;12mclasses[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mnormalize[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mprocess[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mthese[39m[38;5;12m [39m[38;5;12mneural[39m
|
||
[38;5;12mnetworks.[39m[38;5;12m [39m[38;5;12mEncog[39m[38;5;12m [39m[38;5;12mtrainings[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mmultithreaded[39m[38;5;12m [39m[38;5;12mresilient[39m[38;5;12m [39m[38;5;12mpropagation.[39m[38;5;12m [39m[38;5;12mEncog[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mmake[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mGPU[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mfurther[39m[38;5;12m [39m[38;5;12mspeed[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mtime.[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mGUI[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12mworkbench[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mprovided[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mhelp[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mtrain[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetworks.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFlinkML in Apache Flink[0m[38;5;12m (https://ci.apache.org/projects/flink/flink-docs-master/dev/libs/ml/index.html) - Distributed machine learning library in Flink.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mH2O[0m[38;5;12m (https://github.com/h2oai/h2o-3) - ML engine that supports distributed learning on Hadoop, Spark or your laptop via APIs in R, Python, Scala, REST/JSON.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mhtm.java[0m[38;5;12m (https://github.com/numenta/htm.java) - General Machine Learning library using Numenta’s Cortical Learning Algorithm.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mliblinear-java[0m[38;5;12m (https://github.com/bwaldvogel/liblinear-java) - Java version of liblinear.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMahout[0m[38;5;12m (https://github.com/apache/mahout) - Distributed machine learning.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMeka[0m[38;5;12m (http://meka.sourceforge.net/) - An open source implementation of methods for multi-label classification and evaluation (extension to Weka).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMLlib in Apache Spark[0m[38;5;12m (https://spark.apache.org/docs/latest/mllib-guide.html) - Distributed machine learning library in Spark.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHydrosphere Mist[0m[38;5;12m (https://github.com/Hydrospheredata/mist) - a service for deployment Apache Spark MLLib machine learning models as realtime, batch or reactive web services.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeuroph[0m[38;5;12m (http://neuroph.sourceforge.net/) - Neuroph is lightweight Java neural network framework.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mORYX[0m[38;5;12m (https://github.com/oryxproject/oryx) - Lambda Architecture Framework using Apache Spark and Apache Kafka with a specialization for real-time large-scale machine learning.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSamoa[0m[38;5;12m (https://samoa.incubator.apache.org/) SAMOA is a framework that includes distributed machine learning for data streams with an interface to plug-in different stream processing platforms.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRankLib[0m[38;5;12m (https://sourceforge.net/p/lemur/wiki/RankLib/) - RankLib is a library of learning to rank algorithms. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrapaio[0m[38;5;12m (https://github.com/padreati/rapaio) - statistics, data mining and machine learning toolbox in Java.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRapidMiner[0m[38;5;12m (https://rapidminer.com) - RapidMiner integration into Java code.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStanford Classifier[0m[38;5;12m (https://nlp.stanford.edu/software/classifier.shtml) - A classifier is a machine learning tool that will take data items and place them into one of k classes.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSmile[0m[38;5;12m (https://haifengl.github.io/) - Statistical Machine Intelligence & Learning Engine.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSystemML[0m[38;5;12m (https://github.com/apache/systemml) - flexible, scalable machine learning (ML) language.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTribou[0m[38;5;12m (https://tribuo.org) - A machine learning library written in Java by Oracle.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mWeka[0m[38;5;12m (https://www.cs.waikato.ac.nz/ml/weka/) - Weka is a collection of machine learning algorithms for data mining tasks.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLBJava[0m[38;5;12m [39m[38;5;12m(https://github.com/CogComp/lbjava)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mLearning[39m[38;5;12m [39m[38;5;12mBased[39m[38;5;12m [39m[38;5;12mJava[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mmodelling[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mrapid[39m[38;5;12m [39m[38;5;12mdevelopment[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12msoftware[39m[38;5;12m [39m[38;5;12msystems,[39m[38;5;12m [39m[38;5;12moffers[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mconvenient,[39m[38;5;12m [39m[38;5;12mdeclarative[39m[38;5;12m [39m[38;5;12msyntax[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mclassifier[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mconstraint[39m[38;5;12m [39m[38;5;12mdefinition[39m[38;5;12m [39m[38;5;12mdirectly[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mterms[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m
|
||
[38;5;12mobjects[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mprogrammer's[39m[38;5;12m [39m[38;5;12mapplication.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mknn-java-library[0m[38;5;12m (https://github.com/felipexw/knn-java-library) - Just a simple implementation of K-Nearest Neighbors algorithm using with a bunch of similarity measures.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mSpeech Recognition[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCMU Sphinx[0m[38;5;12m (https://cmusphinx.github.io) - Open Source Toolkit For Speech Recognition purely based on Java speech recognition library.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mData Analysis / Data Visualization[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFlink[0m[38;5;12m (https://flink.apache.org/) - Open source platform for distributed stream and batch data processing.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHadoop[0m[38;5;12m (https://github.com/apache/hadoop) - Hadoop/HDFS.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOnyx[0m[38;5;12m (https://github.com/onyx-platform/onyx) - Distributed, masterless, high performance, fault tolerant data processing. Written entirely in Clojure.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpark[0m[38;5;12m (https://github.com/apache/spark) - Spark is a fast and general engine for large-scale data processing.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStorm[0m[38;5;12m (https://storm.apache.org/) - Storm is a distributed realtime computation system.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mImpala[0m[38;5;12m (https://github.com/cloudera/impala) - Real-time Query for Hadoop.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDataMelt[0m[38;5;12m (https://jwork.org/dmelt/) - Mathematics software for numeric computation, statistics, symbolic calculations, data analysis and data visualization.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDr. Michael Thomas Flanagan's Java Scientific Library.[0m[38;5;12m (https://www.ee.ucl.ac.uk/~mflanaga/java/) [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
|
||
|
||
[38;2;255;187;0m[4mDeep Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeeplearning4j[0m[38;5;12m (https://github.com/deeplearning4j/deeplearning4j) - Scalable deep learning for industry with parallel GPUs.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKeras Beginner Tutorial[0m[38;5;12m (https://victorzhou.com/blog/keras-neural-network-tutorial/) - Friendly guide on using Keras to implement a simple Neural Network in Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdeepjavalibrary/djl[0m
|
||
[38;5;12m (https://github.com/deepjavalibrary/djl) - Deep Java Library (DJL) is an open-source, high-level, engine-agnostic Java framework for deep learning, designed to be easy to get started with and simple to use for Java developers.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mJavaScript[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mNatural Language Processing[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTwitter-text[0m[38;5;12m (https://github.com/twitter/twitter-text) - A JavaScript implementation of Twitter's text processing library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnatural[0m[38;5;12m (https://github.com/NaturalNode/natural) - General natural language facilities for node.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKnwl.js[0m[38;5;12m (https://github.com/loadfive/Knwl.js) - A Natural Language Processor in JS.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRetext[0m[38;5;12m (https://github.com/retextjs/retext) - Extensible system for analyzing and manipulating natural language.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNLP Compromise[0m[38;5;12m (https://github.com/spencermountain/compromise) - Natural Language processing in the browser.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnlp.js[0m[38;5;12m (https://github.com/axa-group/nlp.js) - An NLP library built in node over Natural, with entity extraction, sentiment analysis, automatic language identify, and so more.[39m
|
||
|
||
|
||
|
||
|
||
[38;2;255;187;0m[4mData Analysis / Data Visualization[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mD3.js[0m[38;5;12m (https://d3js.org/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHigh Charts[0m[38;5;12m (https://www.highcharts.com/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNVD3.js[0m[38;5;12m (http://nvd3.org/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdc.js[0m[38;5;12m (https://dc-js.github.io/dc.js/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mchartjs[0m[38;5;12m (https://www.chartjs.org/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdimple[0m[38;5;12m (http://dimplejs.org/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mamCharts[0m[38;5;12m (https://www.amcharts.com/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mD3xter[0m[38;5;12m (https://github.com/NathanEpstein/D3xter) - Straight forward plotting built on D3. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mstatkit[0m[38;5;12m (https://github.com/rigtorp/statkit) - Statistics kit for JavaScript. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdatakit[0m[38;5;12m (https://github.com/nathanepstein/datakit) - A lightweight framework for data analysis in JavaScript[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscience.js[0m[38;5;12m (https://github.com/jasondavies/science.js/) - Scientific and statistical computing in JavaScript. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mZ3d[0m[38;5;12m (https://github.com/NathanEpstein/Z3d) - Easily make interactive 3d plots built on Three.js [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSigma.js[0m[38;5;12m (http://sigmajs.org/) - JavaScript library dedicated to graph drawing.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mC3.js[0m[38;5;12m (https://c3js.org/) - customizable library based on D3.js for easy chart drawing.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDatamaps[0m[38;5;12m (https://datamaps.github.io/) - Customizable SVG map/geo visualizations using D3.js. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mZingChart[0m[38;5;12m (https://www.zingchart.com/) - library written on Vanilla JS for big data visualization.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcheminfo[0m[38;5;12m (https://www.cheminfo.org/) - Platform for data visualization and analysis, using the [39m[38;5;14m[1mvisualizer[0m[38;5;12m (https://github.com/npellet/visualizer) project.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLearn JS Data[0m[38;5;12m (http://learnjsdata.com/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAnyChart[0m[38;5;12m (https://www.anychart.com/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFusionCharts[0m[38;5;12m (https://www.fusioncharts.com/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNivo[0m[38;5;12m (https://nivo.rocks) - built on top of the awesome d3 and Reactjs libraries[39m
|
||
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAuto ML[0m[38;5;12m (https://github.com/ClimbsRocks/auto_ml) - Automated machine learning, data formatting, ensembling, and hyperparameter optimization for competitions and exploration- just give it a .csv file! [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mConvnet.js[0m[38;5;12m (https://cs.stanford.edu/people/karpathy/convnetjs/) - ConvNetJS is a JavaScript library for training Deep Learning models[39m[38;5;14m[1mDEEP LEARNING[0m[38;5;12m [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCreatify MCP[0m[38;5;12m (https://github.com/TSavo/creatify-mcp) - Model Context Protocol server that exposes Creatify AI's video generation capabilities to AI assistants, enabling natural language video creation workflows.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mClusterfck[0m[38;5;12m (https://harthur.github.io/clusterfck/) - Agglomerative hierarchical clustering implemented in JavaScript for Node.js and the browser. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mClustering.js[0m[38;5;12m (https://github.com/emilbayes/clustering.js) - Clustering algorithms implemented in JavaScript for Node.js and the browser. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDecision Trees[0m[38;5;12m (https://github.com/serendipious/nodejs-decision-tree-id3) - NodeJS Implementation of Decision Tree using ID3 Algorithm. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDN2A[0m[38;5;12m (https://github.com/antoniodeluca/dn2a.js) - Digital Neural Networks Architecture. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mfigue[0m[38;5;12m (https://code.google.com/archive/p/figue) - K-means, fuzzy c-means and agglomerative clustering.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGaussian Mixture Model[0m[38;5;12m (https://github.com/lukapopijac/gaussian-mixture-model) - Unsupervised machine learning with multivariate Gaussian mixture model.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNode-fann[0m[38;5;12m (https://github.com/rlidwka/node-fann) - FANN (Fast Artificial Neural Network Library) bindings for Node.js [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKeras.js[0m[38;5;12m (https://github.com/transcranial/keras-js) - Run Keras models in the browser, with GPU support provided by WebGL 2.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKmeans.js[0m[38;5;12m (https://github.com/emilbayes/kMeans.js) - Simple JavaScript implementation of the k-means algorithm, for node.js and the browser. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLDA.js[0m[38;5;12m (https://github.com/primaryobjects/lda) - LDA topic modelling for Node.js[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLearning.js[0m[38;5;12m (https://github.com/yandongliu/learningjs) - JavaScript implementation of logistic regression/c4.5 decision tree [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmachinelearn.js[0m[38;5;12m (https://github.com/machinelearnjs/machinelearnjs) - Machine Learning library for the web, Node.js and developers[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmil-tokyo[0m[38;5;12m (https://github.com/mil-tokyo) - List of several machine learning libraries.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNode-SVM[0m[38;5;12m (https://github.com/nicolaspanel/node-svm) - Support Vector Machine for Node.js[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBrain[0m[38;5;12m (https://github.com/harthur/brain) - Neural networks in JavaScript [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBrain.js[0m[38;5;12m (https://github.com/BrainJS/brain.js) - Neural networks in JavaScript - continued community fork of [39m[38;5;14m[1mBrain[0m[38;5;12m (https://github.com/harthur/brain).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBayesian-Bandit[0m[38;5;12m (https://github.com/omphalos/bayesian-bandit.js) - Bayesian bandit implementation for Node and the browser. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSynaptic[0m[38;5;12m (https://github.com/cazala/synaptic) - Architecture-free neural network library for Node.js and the browser.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkNear[0m[38;5;12m (https://github.com/NathanEpstein/kNear) - JavaScript implementation of the k nearest neighbors algorithm for supervised learning.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeuralN[0m[38;5;12m (https://github.com/totemstech/neuraln) - C++ Neural Network library for Node.js. It has advantage on large dataset and multi-threaded training. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkalman[0m[38;5;12m (https://github.com/itamarwe/kalman) - Kalman filter for JavaScript. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mshaman[0m[38;5;12m (https://github.com/luccastera/shaman) - Node.js library with support for both simple and multiple linear regression. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mml.js[0m[38;5;12m (https://github.com/mljs/ml) - Machine learning and numerical analysis tools for Node.js and the Browser![39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mml5[0m[38;5;12m (https://github.com/ml5js/ml5-library) - Friendly machine learning for the web![39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPavlov.js[0m[38;5;12m (https://github.com/NathanEpstein/Pavlov.js) - Reinforcement learning using Markov Decision Processes.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMXNet[0m[38;5;12m (https://github.com/apache/incubator-mxnet) - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Go, JavaScript and more.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorFlow.js[0m[38;5;12m (https://js.tensorflow.org/) - A WebGL accelerated, browser based JavaScript library for training and deploying ML models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mJSMLT[0m[38;5;12m (https://github.com/jsmlt/jsmlt) - Machine learning toolkit with classification and clustering for Node.js; supports visualization (see [39m[38;5;14m[1mvisualml.io[0m[38;5;12m (https://visualml.io)).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mxgboost-node[0m[38;5;12m (https://github.com/nuanio/xgboost-node) - Run XGBoost model and make predictions in Node.js.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNetron[0m[38;5;12m (https://github.com/lutzroeder/netron) - Visualizer for machine learning models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtensor-js[0m[38;5;12m (https://github.com/Hoff97/tensorjs) - A deep learning library for the browser, accelerated by WebGL and WebAssembly.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mWebDNN[0m[38;5;12m (https://github.com/mil-tokyo/webdnn) - Fast Deep Neural Network JavaScript Framework. WebDNN uses next generation JavaScript API, WebGPU for GPU execution, and WebAssembly for CPU execution.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mWebNN[0m[38;5;12m (https://webnn.dev) - A new web standard that allows web apps and frameworks to accelerate deep neural networks with on-device hardware such as GPUs, CPUs, or purpose-built AI accelerators.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mMisc[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mstdlib[0m[38;5;12m [39m[38;5;12m(https://github.com/stdlib-js/stdlib)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mstandard[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mJavaScript[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mNode.js,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12memphasis[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mnumeric[39m[38;5;12m [39m[38;5;12mcomputing.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcollection[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mrobust,[39m[38;5;12m [39m[38;5;12mhigh[39m[38;5;12m [39m[38;5;12mperformance[39m[38;5;12m [39m[38;5;12mlibraries[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmathematics,[39m[38;5;12m [39m[38;5;12mstatistics,[39m[38;5;12m [39m[38;5;12mstreams,[39m[38;5;12m [39m
|
||
[38;5;12mutilities,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmore.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msylvester[0m[38;5;12m (https://github.com/jcoglan/sylvester) - Vector and Matrix math for JavaScript. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msimple-statistics[0m[38;5;12m [39m[38;5;12m(https://github.com/simple-statistics/simple-statistics)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mJavaScript[39m[38;5;12m [39m[38;5;12mimplementation[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdescriptive,[39m[38;5;12m [39m[38;5;12mregression,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12minference[39m[38;5;12m [39m[38;5;12mstatistics.[39m[38;5;12m [39m[38;5;12mImplemented[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mliterate[39m[38;5;12m [39m[38;5;12mJavaScript[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mno[39m[38;5;12m [39m[38;5;12mdependencies,[39m[38;5;12m [39m[38;5;12mdesigned[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mwork[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m
|
||
[38;5;12mmodern[39m[38;5;12m [39m[38;5;12mbrowsers[39m[38;5;12m [39m[38;5;12m(including[39m[38;5;12m [39m[38;5;12mIE)[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mNode.js.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mregression-js[0m[38;5;12m (https://github.com/Tom-Alexander/regression-js) - A javascript library containing a collection of least squares fitting methods for finding a trend in a set of data.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLyric[0m[38;5;12m (https://github.com/flurry/Lyric) - Linear Regression library. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGreatCircle[0m[38;5;12m (https://github.com/mwgg/GreatCircle) - Library for calculating great circle distance.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMLPleaseHelp[0m[38;5;12m [39m[38;5;12m(https://github.com/jgreenemi/MLPleaseHelp)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mMLPleaseHelp[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msimple[39m[38;5;12m [39m[38;5;12mML[39m[38;5;12m [39m[38;5;12mresource[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mengine.[39m[38;5;12m [39m[38;5;12mYou[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mengine[39m[38;5;12m [39m[38;5;12mright[39m[38;5;12m [39m[38;5;12mnow[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;14m[1mhttps://jgreenemi.github.io/MLPleaseHelp/[0m[38;5;12m [39m[38;5;12m(https://jgreenemi.github.io/MLPleaseHelp/),[39m[38;5;12m [39m
|
||
[38;5;12mprovided[39m[38;5;12m [39m[38;5;12mvia[39m[38;5;12m [39m[38;5;12mGitHub[39m[38;5;12m [39m[38;5;12mPages.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPipcook[0m[38;5;12m (https://github.com/alibaba/pipcook) - A JavaScript application framework for machine learning and its engineering.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mDemos and Scripts[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mThe Bot[0m[38;5;12m (https://github.com/sta-ger/TheBot) - Example of how the neural network learns to predict the angle between two points created with [39m[38;5;14m[1mSynaptic[0m[38;5;12m (https://github.com/cazala/synaptic).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHalf Beer[0m[38;5;12m (https://github.com/sta-ger/HalfBeer) - Beer glass classifier created with [39m[38;5;14m[1mSynaptic[0m[38;5;12m (https://github.com/cazala/synaptic).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNSFWJS[0m[38;5;12m (http://nsfwjs.com) - Indecent content checker with TensorFlow.js[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRock Paper Scissors[0m[38;5;12m (https://rps-tfjs.netlify.com/) - Rock Paper Scissors trained in the browser with TensorFlow.js[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHeroes Wear Masks[0m[38;5;12m (https://heroeswearmasks.fun/) - A fun TensorFlow.js-based oracle that tells, whether one wears a face mask or not. It can even tell when one wears the mask incorrectly.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mJulia[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMachineLearning[0m[38;5;12m (https://github.com/benhamner/MachineLearning.jl) - Julia Machine Learning library. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMLBase[0m[38;5;12m (https://github.com/JuliaStats/MLBase.jl) - A set of functions to support the development of machine learning algorithms.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPGM[0m[38;5;12m (https://github.com/JuliaStats/PGM.jl) - A Julia framework for probabilistic graphical models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDA[0m[38;5;12m (https://github.com/trthatcher/DiscriminantAnalysis.jl) - Julia package for Regularized Discriminant Analysis.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRegression[0m[38;5;12m (https://github.com/lindahua/Regression.jl) - Algorithms for regression analysis (e.g. linear regression and logistic regression). [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLocal Regression[0m[38;5;12m (https://github.com/JuliaStats/Loess.jl) - Local regression, so smooooth![39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNaive Bayes[0m[38;5;12m (https://github.com/nutsiepully/NaiveBayes.jl) - Simple Naive Bayes implementation in Julia. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMixed Models[0m[38;5;12m (https://github.com/dmbates/MixedModels.jl) - A Julia package for fitting (statistical) mixed-effects models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSimple MCMC[0m[38;5;12m (https://github.com/fredo-dedup/SimpleMCMC.jl) - basic MCMC sampler implemented in Julia. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDistances[0m[38;5;12m (https://github.com/JuliaStats/Distances.jl) - Julia module for Distance evaluation.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDecision Tree[0m[38;5;12m (https://github.com/bensadeghi/DecisionTree.jl) - Decision Tree Classifier and Regressor.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeural[0m[38;5;12m (https://github.com/compressed/BackpropNeuralNet.jl) - A neural network in Julia.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMCMC[0m[38;5;12m (https://github.com/doobwa/MCMC.jl) - MCMC tools for Julia. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMamba[0m[38;5;12m (https://github.com/brian-j-smith/Mamba.jl) - Markov chain Monte Carlo (MCMC) for Bayesian analysis in Julia.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGLM[0m[38;5;12m (https://github.com/JuliaStats/GLM.jl) - Generalized linear models in Julia.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGaussian Processes[0m[38;5;12m (https://github.com/STOR-i/GaussianProcesses.jl) - Julia package for Gaussian processes.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOnline Learning[0m[38;5;12m (https://github.com/lendle/OnlineLearning.jl) [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGLMNet[0m[38;5;12m (https://github.com/simonster/GLMNet.jl) - Julia wrapper for fitting Lasso/ElasticNet GLM models using glmnet.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mClustering[0m[38;5;12m (https://github.com/JuliaStats/Clustering.jl) - Basic functions for clustering data: k-means, dp-means, etc.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSVM[0m[38;5;12m (https://github.com/JuliaStats/SVM.jl) - SVM for Julia. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKernel Density[0m[38;5;12m (https://github.com/JuliaStats/KernelDensity.jl) - Kernel density estimators for Julia.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMultivariateStats[0m[38;5;12m (https://github.com/JuliaStats/MultivariateStats.jl) - Methods for dimensionality reduction.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNMF[0m[38;5;12m (https://github.com/JuliaStats/NMF.jl) - A Julia package for non-negative matrix factorization.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mANN[0m[38;5;12m (https://github.com/EricChiang/ANN.jl) - Julia artificial neural networks. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMocha[0m[38;5;12m (https://github.com/pluskid/Mocha.jl) - Deep Learning framework for Julia inspired by Caffe. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mXGBoost[0m[38;5;12m (https://github.com/dmlc/XGBoost.jl) - eXtreme Gradient Boosting Package in Julia.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mManifoldLearning[0m[38;5;12m (https://github.com/wildart/ManifoldLearning.jl) - A Julia package for manifold learning and nonlinear dimensionality reduction.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMXNet[0m[38;5;12m (https://github.com/apache/incubator-mxnet) - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Go, JavaScript and more.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMerlin[0m[38;5;12m (https://github.com/hshindo/Merlin.jl) - Flexible Deep Learning Framework in Julia.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mROCAnalysis[0m[38;5;12m (https://github.com/davidavdav/ROCAnalysis.jl) - Receiver Operating Characteristics and functions for evaluation probabilistic binary classifiers.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGaussianMixtures[0m[38;5;12m (https://github.com/davidavdav/GaussianMixtures.jl) - Large scale Gaussian Mixture Models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mScikitLearn[0m[38;5;12m (https://github.com/cstjean/ScikitLearn.jl) - Julia implementation of the scikit-learn API.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKnet[0m[38;5;12m (https://github.com/denizyuret/Knet.jl) - Koç University Deep Learning Framework.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFlux[0m[38;5;12m (https://fluxml.ai/) - Relax! Flux is the ML library that doesn't make you tensor[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMLJ[0m[38;5;12m (https://github.com/alan-turing-institute/MLJ.jl) - A Julia machine learning framework.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCluGen[0m[38;5;12m (https://github.com/clugen/CluGen.jl/) - Multidimensional cluster generation in Julia.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mNatural Language Processing[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTopic Models[0m[38;5;12m (https://github.com/slycoder/TopicModels.jl) - TopicModels for Julia. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mText Analysis[0m[38;5;12m (https://github.com/JuliaText/TextAnalysis.jl) - Julia package for text analysis.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mWord Tokenizers[0m[38;5;12m (https://github.com/JuliaText/WordTokenizers.jl) - Tokenizers for Natural Language Processing in Julia[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCorpus Loaders[0m[38;5;12m (https://github.com/JuliaText/CorpusLoaders.jl) - A Julia package providing a variety of loaders for various NLP corpora.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEmbeddings[0m[38;5;12m (https://github.com/JuliaText/Embeddings.jl) - Functions and data dependencies for loading various word embeddings[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLanguages[0m[38;5;12m (https://github.com/JuliaText/Languages.jl) - Julia package for working with various human languages[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mWordNet[0m[38;5;12m (https://github.com/JuliaText/WordNet.jl) - A Julia package for Princeton's WordNet[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mData Analysis / Data Visualization[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGraph Layout[0m[38;5;12m (https://github.com/IainNZ/GraphLayout.jl) - Graph layout algorithms in pure Julia.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLightGraphs[0m[38;5;12m (https://github.com/JuliaGraphs/LightGraphs.jl) - Graph modelling and analysis.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mData Frames Meta[0m[38;5;12m (https://github.com/JuliaData/DataFramesMeta.jl) - Metaprogramming tools for DataFrames.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mJulia Data[0m[38;5;12m (https://github.com/nfoti/JuliaData) - library for working with tabular data in Julia. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mData Read[0m[38;5;12m (https://github.com/queryverse/ReadStat.jl) - Read files from Stata, SAS, and SPSS.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHypothesis Tests[0m[38;5;12m (https://github.com/JuliaStats/HypothesisTests.jl) - Hypothesis tests for Julia.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGadfly[0m[38;5;12m (https://github.com/GiovineItalia/Gadfly.jl) - Crafty statistical graphics for Julia.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStats[0m[38;5;12m (https://github.com/JuliaStats/StatsKit.jl) - Statistical tests for Julia.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRDataSets[0m[38;5;12m (https://github.com/johnmyleswhite/RDatasets.jl) - Julia package for loading many of the data sets available in R.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDataFrames[0m[38;5;12m (https://github.com/JuliaData/DataFrames.jl) - library for working with tabular data in Julia.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDistributions[0m[38;5;12m (https://github.com/JuliaStats/Distributions.jl) - A Julia package for probability distributions and associated functions.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mData Arrays[0m[38;5;12m (https://github.com/JuliaStats/DataArrays.jl) - Data structures that allow missing values. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTime Series[0m[38;5;12m (https://github.com/JuliaStats/TimeSeries.jl) - Time series toolkit for Julia.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSampling[0m[38;5;12m (https://github.com/lindahua/Sampling.jl) - Basic sampling algorithms for Julia.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mMisc Stuff / Presentations[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDSP[0m[38;5;12m (https://github.com/JuliaDSP/DSP.jl) - Digital Signal Processing (filtering, periodograms, spectrograms, window functions).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mJuliaCon Presentations[0m[38;5;12m (https://github.com/JuliaCon/presentations) - Presentations for JuliaCon.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSignalProcessing[0m[38;5;12m (https://github.com/JuliaDSP/DSP.jl) - Signal Processing tools for Julia.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mImages[0m[38;5;12m (https://github.com/JuliaImages/Images.jl) - An image library for Julia.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDataDeps[0m[38;5;12m (https://github.com/oxinabox/DataDeps.jl) - Reproducible data setup for reproducible science.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mKotlin[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mDeep Learning[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKotlinDL[0m[38;5;12m (https://github.com/JetBrains/KotlinDL) - Deep learning framework written in Kotlin.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mLua[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTorch7[0m[38;5;12m (http://torch.ch/)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcephes[0m[38;5;12m [39m[38;5;12m(https://github.com/deepmind/torch-cephes)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mCephes[39m[38;5;12m [39m[38;5;12mmathematical[39m[38;5;12m [39m[38;5;12mfunctions[39m[38;5;12m [39m[38;5;12mlibrary,[39m[38;5;12m [39m[38;5;12mwrapped[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mTorch.[39m[38;5;12m [39m[38;5;12mProvides[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mwraps[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12m180+[39m[38;5;12m [39m[38;5;12mspecial[39m[38;5;12m [39m[38;5;12mmathematical[39m[38;5;12m [39m[38;5;12mfunctions[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mCephes[39m[38;5;12m [39m[38;5;12mmathematical[39m[38;5;12m [39m[38;5;12mlibrary,[39m[38;5;12m [39m[38;5;12mdeveloped[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mStephen[39m[38;5;12m [39m[38;5;12mL.[39m[38;5;12m [39m[38;5;12mMoshier.[39m[38;5;12m [39m[38;5;12mIt[39m
|
||
[38;5;12mis[39m[38;5;12m [39m[38;5;12mused,[39m[38;5;12m [39m[38;5;12mamong[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[38;5;12mplaces,[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mheart[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mSciPy.[39m[38;5;12m [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mautograd[0m[38;5;12m (https://github.com/twitter/torch-autograd) - Autograd automatically differentiates native Torch code. Inspired by the original Python version.[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgraph[0m[38;5;12m (https://github.com/torch/graph) - Graph package for Torch. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrandomkit[0m[38;5;12m (https://github.com/deepmind/torch-randomkit) - Numpy's randomkit, wrapped for Torch. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msignal[0m[38;5;12m (https://github.com/soumith/torch-signal) - A signal processing toolbox for Torch-7. FFT, DCT, Hilbert, cepstrums, stft.[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnn[0m[38;5;12m (https://github.com/torch/nn) - Neural Network package for Torch.[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtorchnet[0m[38;5;12m (https://github.com/torchnet/torchnet) - framework for torch which provides a set of abstractions aiming at encouraging code re-use as well as encouraging modular programming.[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnngraph[0m[38;5;12m (https://github.com/torch/nngraph) - This package provides graphical computation for nn library in Torch7.[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnnx[0m[38;5;12m (https://github.com/clementfarabet/lua---nnx) - A completely unstable and experimental package that extends Torch's builtin nn library.[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrnn[0m[38;5;12m (https://github.com/Element-Research/rnn) - A Recurrent Neural Network library that extends Torch's nn. RNNs, LSTMs, GRUs, BRNNs, BLSTMs, etc.[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdpnn[0m[38;5;12m (https://github.com/Element-Research/dpnn) - Many useful features that aren't part of the main nn package.[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdp[0m[38;5;12m [39m[38;5;12m(https://github.com/nicholas-leonard/dp)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mdesigned[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mstreamlining[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdevelopment[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mTorch7[39m[38;5;12m [39m[38;5;12mdistribution.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12memphasizes[39m[38;5;12m [39m[38;5;12mflexibility[39m[38;5;12m [39m[38;5;12mthrough[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12melegant[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mobject-oriented[39m[38;5;12m [39m[38;5;12mdesign[39m[38;5;12m [39m[38;5;12mpatterns.[39m[38;5;12m [39m
|
||
[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1moptim[0m[38;5;12m (https://github.com/torch/optim) - An optimization library for Torch. SGD, Adagrad, Conjugate-Gradient, LBFGS, RProp and more.[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1munsup[0m[38;5;12m (https://github.com/koraykv/unsup) - A package for unsupervised learning in Torch. Provides modules that are compatible with nn (LinearPsd, ConvPsd, AutoEncoder, ...), and self-contained algorithms (k-means, PCA). [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmanifold[0m[38;5;12m (https://github.com/clementfarabet/manifold) - A package to manipulate manifolds.[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msvm[0m[38;5;12m (https://github.com/koraykv/torch-svm) - Torch-SVM library. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mlbfgs[0m[38;5;12m (https://github.com/clementfarabet/lbfgs) - FFI Wrapper for liblbfgs. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mvowpalwabbit[0m[38;5;12m (https://github.com/clementfarabet/vowpal_wabbit) - An old vowpalwabbit interface to torch. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpenGM[0m[38;5;12m (https://github.com/clementfarabet/lua---opengm) - OpenGM is a C++ library for graphical modelling, and inference. The Lua bindings provide a simple way of describing graphs, from Lua, and then optimizing them with OpenGM. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mspaghetti[0m[38;5;12m (https://github.com/MichaelMathieu/lua---spaghetti) - Spaghetti (sparse linear) module for torch7 by @MichaelMathieu [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLuaSHKit[0m[38;5;12m (https://github.com/ocallaco/LuaSHkit) - A Lua wrapper around the Locality sensitive hashing library SHKit [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkernel smoothing[0m[38;5;12m (https://github.com/rlowrance/kernel-smoothers) - KNN, kernel-weighted average, local linear regression smoothers. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcutorch[0m[38;5;12m (https://github.com/torch/cutorch) - Torch CUDA Implementation.[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcunn[0m[38;5;12m (https://github.com/torch/cunn) - Torch CUDA Neural Network Implementation.[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mimgraph[0m[38;5;12m (https://github.com/clementfarabet/lua---imgraph) - An image/graph library for Torch. This package provides routines to construct graphs on images, segment them, build trees out of them, and convert them back to images. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mvideograph[0m[38;5;12m (https://github.com/clementfarabet/videograph) - A video/graph library for Torch. This package provides routines to construct graphs on videos, segment them, build trees out of them, and convert them back to videos. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msaliency[0m[38;5;12m (https://github.com/marcoscoffier/torch-saliency) - code and tools around integral images. A library for finding interest points based on fast integral histograms. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mstitch[0m[38;5;12m (https://github.com/marcoscoffier/lua---stitch) - allows us to use hugin to stitch images and apply same stitching to a video sequence. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msfm[0m[38;5;12m (https://github.com/marcoscoffier/lua---sfm) - A bundle adjustment/structure from motion package. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mfex[0m[38;5;12m (https://github.com/koraykv/fex) - A package for feature extraction in Torch. Provides SIFT and dSIFT modules. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOverFeat[0m[38;5;12m (https://github.com/sermanet/OverFeat) - A state-of-the-art generic dense feature extractor. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mwav2letter[0m[38;5;12m (https://github.com/facebookresearch/wav2letter) - a simple and efficient end-to-end Automatic Speech Recognition (ASR) system from Facebook AI Research.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNumeric Lua[0m[38;5;12m (http://numlua.luaforge.net/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLunatic Python[0m[38;5;12m (https://labix.org/lunatic-python)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSciLua[0m[38;5;12m (http://scilua.org/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLua - Numerical Algorithms[0m[38;5;12m (https://bitbucket.org/lucashnegri/lna) [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLunum[0m[38;5;12m (https://github.com/jzrake/lunum) [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKeras GPT Copilot[0m[38;5;12m (https://github.com/fabprezja/keras-gpt-copilot) - A python package that integrates an LLM copilot inside the keras model development workflow.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mDemos and Scripts[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCore torch7 demos repository[0m[38;5;12m (https://github.com/e-lab/torch7-demos).[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mlinear-regression, logistic-regression[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mface detector (training and detection as separate demos)[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mmst-based-segmenter[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mtrain-a-digit-classifier[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mtrain-autoencoder[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12moptical flow demo[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mtrain-on-housenumbers[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mtrain-on-cifar[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mtracking with deep nets[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mkinect demo[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mfilter-bank visualization[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12msaliency-networks[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTraining a Convnet for the Galaxy-Zoo Kaggle challenge(CUDA demo)[0m[38;5;12m (https://github.com/soumith/galaxyzoo)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtorch-datasets[0m[38;5;12m (https://github.com/rosejn/torch-datasets) - Scripts to load several popular datasets including:[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mBSR 500[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mCIFAR-10[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mCOIL[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mStreet View House Numbers[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMNIST[39m
|
||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mNORB[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAtari2600[0m[38;5;12m (https://github.com/fidlej/aledataset) - Scripts to generate a dataset with static frames from the Arcade Learning Environment.[39m
|
||
|
||
|
||
|
||
|
||
[38;2;255;187;0m[4mMatlab[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mComputer Vision[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mContourlets[0m[38;5;12m (http://www.ifp.illinois.edu/~minhdo/software/contourlet_toolbox.tar) - MATLAB source code that implements the contourlet transform and its utility functions.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mShearlets[0m[38;5;12m (https://www3.math.tu-berlin.de/numerik/www.shearlab.org/software) - MATLAB code for shearlet transform.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCurvelets[0m[38;5;12m (http://www.curvelet.org/software.html) - The Curvelet transform is a higher dimensional generalization of the Wavelet transform designed to represent images at different scales and different angles.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBandlets[0m[38;5;12m (http://www.cmap.polytechnique.fr/~peyre/download/) - MATLAB code for bandlet transform.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmexopencv[0m[38;5;12m (https://kyamagu.github.io/mexopencv/) - Collection and a development kit of MATLAB mex functions for OpenCV library.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mNatural Language Processing[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNLP[0m[38;5;12m (https://amplab.cs.berkeley.edu/an-nlp-library-for-matlab/) - A NLP library for Matlab.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTraining a deep autoencoder or a classifier[0m
|
||
[38;5;12mon MNIST digits[39m[38;5;14m[1m (https://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html) - Training a deep autoencoder or a classifier[0m
|
||
[38;5;12mon MNIST digits[39m[38;5;14m[1mDEEP LEARNING[0m[38;5;12m .[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mConvolutional-Recursive[0m[38;5;14m[1m [0m[38;5;14m[1mDeep[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1m3D[0m[38;5;14m[1m [0m[38;5;14m[1mObject[0m[38;5;14m[1m [0m[38;5;14m[1mClassification[0m[38;5;12m [39m[38;5;12m(https://www.socher.org/index.php/Main/Convolutional-RecursiveDeepLearningFor3DObjectClassification)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mConvolutional-Recursive[39m[38;5;12m [39m[38;5;12mDeep[39m[38;5;12m [39m[38;5;12mLearning[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12m3D[39m[38;5;12m [39m[38;5;12mObject[39m[38;5;12m [39m[38;5;12mClassification[39m[38;5;14m[1mDEEP[0m[38;5;14m[1m [0m
|
||
[38;5;14m[1mLEARNING[0m[38;5;12m [39m[38;5;12m.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpider[0m[38;5;12m (https://people.kyb.tuebingen.mpg.de/spider/) - The spider is intended to be a complete object orientated environment for machine learning in Matlab.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLibSVM[0m[38;5;12m (https://www.csie.ntu.edu.tw/~cjlin/libsvm/#matlab) - A Library for Support Vector Machines.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mThunderSVM[0m[38;5;12m (https://github.com/Xtra-Computing/thundersvm) - An Open-Source SVM Library on GPUs and CPUs[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLibLinear[0m[38;5;12m (https://www.csie.ntu.edu.tw/~cjlin/liblinear/#download) - A Library for Large Linear Classification.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMachine Learning Module[0m[38;5;12m (https://github.com/josephmisiti/machine-learning-module) - Class on machine w/ PDF, lectures, code[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCaffe[0m[38;5;12m (https://github.com/BVLC/caffe) - A deep learning framework developed with cleanliness, readability, and speed in mind.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPattern Recognition Toolbox[0m[38;5;12m (https://github.com/covartech/PRT) - A complete object-oriented environment for machine learning in Matlab.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPattern Recognition and Machine Learning[0m[38;5;12m (https://github.com/PRML/PRMLT) - This package contains the matlab implementation of the algorithms described in the book Pattern Recognition and Machine Learning by C. Bishop.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOptunity[0m[38;5;12m [39m[38;5;12m(https://optunity.readthedocs.io/en/latest/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mdedicated[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mautomated[39m[38;5;12m [39m[38;5;12mhyperparameter[39m[38;5;12m [39m[38;5;12moptimization[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msimple,[39m[38;5;12m [39m[38;5;12mlightweight[39m[38;5;12m [39m[38;5;12mAPI[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mfacilitate[39m[38;5;12m [39m[38;5;12mdrop-in[39m[38;5;12m [39m[38;5;12mreplacement[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mgrid[39m[38;5;12m [39m[38;5;12msearch.[39m[38;5;12m [39m[38;5;12mOptunity[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mwritten[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12minterfaces[39m[38;5;12m [39m
|
||
[38;5;12mseamlessly[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mMATLAB.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMXNet[0m[38;5;12m (https://github.com/apache/incubator-mxnet/) - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Go, JavaScript and more.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMachine Learning in MatLab/Octave[0m
|
||
[38;5;12m (https://github.com/trekhleb/machine-learning-octave) - Examples of popular machine learning algorithms (neural networks, linear/logistic regressions, K-Means, etc.) with code examples and mathematics behind them being explained.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMOCluGen[0m[38;5;12m (https://github.com/clugen/MOCluGen/) - Multidimensional cluster generation in MATLAB/Octave.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mData Analysis / Data Visualization[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mParaMonte[0m[38;5;12m [39m[38;5;12m(https://github.com/cdslaborg/paramonte)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mgeneral-purpose[39m[38;5;12m [39m[38;5;12mMATLAB[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mBayesian[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12manalysis[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mvisualization[39m[38;5;12m [39m[38;5;12mvia[39m[38;5;12m [39m[38;5;12mserial/parallel[39m[38;5;12m [39m[38;5;12mMonte[39m[38;5;12m [39m[38;5;12mCarlo[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mMCMC[39m[38;5;12m [39m[38;5;12msimulations.[39m[38;5;12m [39m[38;5;12mDocumentation[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mfound[39m[38;5;12m [39m[38;5;14m[1mhere[0m[38;5;12m [39m
|
||
[38;5;12m(https://www.cdslab.org/paramonte/).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmatlab_bgl[0m[38;5;12m (https://www.cs.purdue.edu/homes/dgleich/packages/matlab_bgl/) - MatlabBGL is a Matlab package for working with graphs.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgaimc[0m[38;5;12m (https://www.mathworks.com/matlabcentral/fileexchange/24134-gaimc---graph-algorithms-in-matlab-code) - Efficient pure-Matlab implementations of graph algorithms to complement MatlabBGL's mex functions.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4m.NET[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mComputer Vision[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpenCVDotNet[0m[38;5;12m (https://code.google.com/archive/p/opencvdotnet) - A wrapper for the OpenCV project to be used with .NET applications.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEmgu CV[0m[38;5;12m (http://www.emgu.com/wiki/index.php/Main_Page) - Cross platform wrapper of OpenCV which can be compiled in Mono to be run on Windows, Linus, Mac OS X, iOS, and Android.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAForge.NET[0m[38;5;12m (http://www.aforgenet.com/framework/) - Open source C# framework for developers and researchers in the fields of Computer Vision and Artificial Intelligence. Development has now shifted to GitHub.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAccord.NET[0m[38;5;12m (http://accord-framework.net) - Together with AForge.NET, this library can provide image processing and computer vision algorithms to Windows, Windows RT and Windows Phone. Some components are also available for Java and Android.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mNatural Language Processing[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStanford.NLP for .NET[0m[38;5;12m (https://github.com/sergey-tihon/Stanford.NLP.NET/) - A full port of Stanford NLP packages to .NET and also available precompiled as a NuGet package.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAccord-Framework[0m[38;5;12m (http://accord-framework.net/) -The Accord.NET Framework is a complete framework for building machine learning, computer vision, computer audition, signal processing and statistical applications.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAccord.MachineLearning[0m[38;5;12m [39m[38;5;12m(https://www.nuget.org/packages/Accord.MachineLearning/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mSupport[39m[38;5;12m [39m[38;5;12mVector[39m[38;5;12m [39m[38;5;12mMachines,[39m[38;5;12m [39m[38;5;12mDecision[39m[38;5;12m [39m[38;5;12mTrees,[39m[38;5;12m [39m[38;5;12mNaive[39m[38;5;12m [39m[38;5;12mBayesian[39m[38;5;12m [39m[38;5;12mmodels,[39m[38;5;12m [39m[38;5;12mK-means,[39m[38;5;12m [39m[38;5;12mGaussian[39m[38;5;12m [39m[38;5;12mMixture[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mgeneral[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mRansac,[39m[38;5;12m [39m[38;5;12mCross-validation[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||
[38;5;12mGrid-Search[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmachine-learning[39m[38;5;12m [39m[38;5;12mapplications.[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mpackage[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mpart[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mAccord.NET[39m[38;5;12m [39m[38;5;12mFramework.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDiffSharp[0m[38;5;12m [39m[38;5;12m(https://diffsharp.github.io/DiffSharp/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAn[39m[38;5;12m [39m[38;5;12mautomatic[39m[38;5;12m [39m[38;5;12mdifferentiation[39m[38;5;12m [39m[38;5;12m(AD)[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mproviding[39m[38;5;12m [39m[38;5;12mexact[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mefficient[39m[38;5;12m [39m[38;5;12mderivatives[39m[38;5;12m [39m[38;5;12m(gradients,[39m[38;5;12m [39m[38;5;12mHessians,[39m[38;5;12m [39m[38;5;12mJacobians,[39m[38;5;12m [39m[38;5;12mdirectional[39m[38;5;12m [39m[38;5;12mderivatives,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmatrix-free[39m[38;5;12m [39m[38;5;12mHessian-[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mJacobian-vector[39m[38;5;12m [39m
|
||
[38;5;12mproducts)[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12moptimization[39m[38;5;12m [39m[38;5;12mapplications.[39m[38;5;12m [39m[38;5;12mOperations[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mnested[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12many[39m[38;5;12m [39m[38;5;12mlevel,[39m[38;5;12m [39m[38;5;12mmeaning[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mcompute[39m[38;5;12m [39m[38;5;12mexact[39m[38;5;12m [39m[38;5;12mhigher-order[39m[38;5;12m [39m[38;5;12mderivatives[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdifferentiate[39m[38;5;12m [39m[38;5;12mfunctions[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12minternally[39m[38;5;12m [39m[38;5;12mmaking[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdifferentiation,[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m
|
||
[38;5;12mapplications[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mhyperparameter[39m[38;5;12m [39m[38;5;12moptimization.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEncog[0m[38;5;12m [39m[38;5;12m(https://www.nuget.org/packages/encog-dotnet-core/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAn[39m[38;5;12m [39m[38;5;12madvanced[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetwork[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mframework.[39m[38;5;12m [39m[38;5;12mEncog[39m[38;5;12m [39m[38;5;12mcontains[39m[38;5;12m [39m[38;5;12mclasses[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcreate[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mwide[39m[38;5;12m [39m[38;5;12mvariety[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mnetworks,[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12msupport[39m[38;5;12m [39m[38;5;12mclasses[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mnormalize[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mprocess[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m
|
||
[38;5;12mthese[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetworks.[39m[38;5;12m [39m[38;5;12mEncog[39m[38;5;12m [39m[38;5;12mtrains[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mmultithreaded[39m[38;5;12m [39m[38;5;12mresilient[39m[38;5;12m [39m[38;5;12mpropagation.[39m[38;5;12m [39m[38;5;12mEncog[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mmake[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mGPU[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mfurther[39m[38;5;12m [39m[38;5;12mspeed[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mtime.[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mGUI[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12mworkbench[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mprovided[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mhelp[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mtrain[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetworks.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGeneticSharp[0m
|
||
[38;5;12m (https://github.com/giacomelli/GeneticSharp) - Multi-platform genetic algorithm library for .NET Core and .NET Framework. The library has several implementations of GA operators, like: selection, crossover, mutation, reinsertion and termination.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mInfer.NET[0m[38;5;12m [39m[38;5;12m(https://dotnet.github.io/infer/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mInfer.NET[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mrunning[39m[38;5;12m [39m[38;5;12mBayesian[39m[38;5;12m [39m[38;5;12minference[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mgraphical[39m[38;5;12m [39m[38;5;12mmodels.[39m[38;5;12m [39m[38;5;12mOne[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;12mInfer.NET[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12msolve[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mdifferent[39m[38;5;12m [39m[38;5;12mkinds[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mproblems,[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mstandard[39m[38;5;12m [39m[38;5;12mproblems[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m
|
||
[38;5;12mclassification,[39m[38;5;12m [39m[38;5;12mrecommendation[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mclustering[39m[38;5;12m [39m[38;5;12mthrough[39m[38;5;12m [39m[38;5;12mcustomized[39m[38;5;12m [39m[38;5;12msolutions[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mdomain-specific[39m[38;5;12m [39m[38;5;12mproblems.[39m[38;5;12m [39m[38;5;12mInfer.NET[39m[38;5;12m [39m[38;5;12mhas[39m[38;5;12m [39m[38;5;12mbeen[39m[38;5;12m [39m[38;5;12mused[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mwide[39m[38;5;12m [39m[38;5;12mvariety[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdomains[39m[38;5;12m [39m[38;5;12mincluding[39m[38;5;12m [39m[38;5;12minformation[39m[38;5;12m [39m[38;5;12mretrieval,[39m[38;5;12m [39m[38;5;12mbioinformatics,[39m[38;5;12m [39m[38;5;12mepidemiology,[39m[38;5;12m [39m[38;5;12mvision,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mothers.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mML.NET[0m[38;5;12m [39m[38;5;12m(https://github.com/dotnet/machinelearning)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mML.NET[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcross-platform[39m[38;5;12m [39m[38;5;12mopen-source[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mmakes[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12maccessible[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12m.NET[39m[38;5;12m [39m[38;5;12mdevelopers.[39m[38;5;12m [39m[38;5;12mML.NET[39m[38;5;12m [39m[38;5;12mwas[39m[38;5;12m [39m[38;5;12moriginally[39m[38;5;12m [39m[38;5;12mdeveloped[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mMicrosoft[39m[38;5;12m [39m[38;5;12mResearch[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mevolved[39m
|
||
[38;5;12minto[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msignificant[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mover[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mlast[39m[38;5;12m [39m[38;5;12mdecade[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mused[39m[38;5;12m [39m[38;5;12macross[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mproduct[39m[38;5;12m [39m[38;5;12mgroups[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mMicrosoft[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m[38;5;12mWindows,[39m[38;5;12m [39m[38;5;12mBing,[39m[38;5;12m [39m[38;5;12mPowerPoint,[39m[38;5;12m [39m[38;5;12mExcel[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmore.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeural[0m[38;5;14m[1m [0m[38;5;14m[1mNetwork[0m[38;5;14m[1m [0m[38;5;14m[1mDesigner[0m[38;5;12m [39m[38;5;12m(https://sourceforge.net/projects/nnd/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mDBMS[39m[38;5;12m [39m[38;5;12mmanagement[39m[38;5;12m [39m[38;5;12msystem[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdesigner[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetworks.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mdesigner[39m[38;5;12m [39m[38;5;12mapplication[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mdeveloped[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mWPF,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12muser[39m[38;5;12m [39m[38;5;12minterface[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mallows[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mdesign[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetwork,[39m[38;5;12m [39m
|
||
[38;5;12mquery[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mnetwork,[39m[38;5;12m [39m[38;5;12mcreate[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mconfigure[39m[38;5;12m [39m[38;5;12mchat[39m[38;5;12m [39m[38;5;12mbots[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mcapable[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12masking[39m[38;5;12m [39m[38;5;12mquestions[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mfeedback.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mchat[39m[38;5;12m [39m[38;5;12mbots[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12meven[39m[38;5;12m [39m[38;5;12mscrape[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12minternet[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12minformation[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mreturn[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m[38;5;12moutput[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mlearning.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSynapses[0m[38;5;12m (https://github.com/mrdimosthenis/Synapses) - Neural network library in F#.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVulpes[0m[38;5;12m (https://github.com/fsprojects/Vulpes) - Deep belief and deep learning implementation written in F# and leverages CUDA GPU execution with Alea.cuBase.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMxNet.Sharp[0m
|
||
[38;5;12m (https://github.com/tech-quantum/MxNet.Sharp) - .NET Standard bindings for Apache MxNet with Imperative, Symbolic and Gluon Interface for developing, training and deploying Machine Learning models in C#. https://mxnet.tech-quantum.com/[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mData Analysis / Data Visualization[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnuml[0m[38;5;12m (https://www.nuget.org/packages/numl/) - numl is a machine learning library intended to ease the use of using standard modelling techniques for both prediction and clustering.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMath.NET[0m[38;5;14m[1m [0m[38;5;14m[1mNumerics[0m[38;5;12m [39m[38;5;12m(https://www.nuget.org/packages/MathNet.Numerics/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mNumerical[39m[38;5;12m [39m[38;5;12mfoundation[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mMath.NET[39m[38;5;12m [39m[38;5;12mproject,[39m[38;5;12m [39m[38;5;12maiming[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mprovide[39m[38;5;12m [39m[38;5;12mmethods[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mnumerical[39m[38;5;12m [39m[38;5;12mcomputations[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mscience,[39m[38;5;12m [39m[38;5;12mengineering[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12meveryday[39m[38;5;12m [39m[38;5;12muse.[39m[38;5;12m [39m[38;5;12mSupports[39m[38;5;12m [39m[38;5;12m.Net[39m[38;5;12m [39m
|
||
[38;5;12m4.0,[39m[38;5;12m [39m[38;5;12m.Net[39m[38;5;12m [39m[38;5;12m3.5[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mMono[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mWindows,[39m[38;5;12m [39m[38;5;12mLinux[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mMac;[39m[38;5;12m [39m[38;5;12mSilverlight[39m[38;5;12m [39m[38;5;12m5,[39m[38;5;12m [39m[38;5;12mWindowsPhone/SL[39m[38;5;12m [39m[38;5;12m8,[39m[38;5;12m [39m[38;5;12mWindowsPhone[39m[38;5;12m [39m[38;5;12m8.1[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mWindows[39m[38;5;12m [39m[38;5;12m8[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mPCL[39m[38;5;12m [39m[38;5;12mPortable[39m[38;5;12m [39m[38;5;12mProfiles[39m[38;5;12m [39m[38;5;12m47[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12m344;[39m[38;5;12m [39m[38;5;12mAndroid/iOS[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mXamarin.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSho[0m[38;5;12m [39m[38;5;12m(https://www.microsoft.com/en-us/research/project/sho-the-net-playground-for-data/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mSho[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12minteractive[39m[38;5;12m [39m[38;5;12menvironment[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12manalysis[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mscientific[39m[38;5;12m [39m[38;5;12mcomputing[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mlets[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mseamlessly[39m[38;5;12m [39m[38;5;12mconnect[39m[38;5;12m [39m[38;5;12mscripts[39m[38;5;12m [39m[38;5;12m(in[39m[38;5;12m [39m[38;5;12mIronPython)[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mcompiled[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m
|
||
[38;5;12m(in[39m[38;5;12m [39m[38;5;12m.NET)[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12menable[39m[38;5;12m [39m[38;5;12mfast[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mflexible[39m[38;5;12m [39m[38;5;12mprototyping.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12menvironment[39m[38;5;12m [39m[38;5;12mincludes[39m[38;5;12m [39m[38;5;12mpowerful[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mefficient[39m[38;5;12m [39m[38;5;12mlibraries[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mlinear[39m[38;5;12m [39m[38;5;12malgebra[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mvisualization[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mused[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12many[39m[38;5;12m [39m[38;5;12m.NET[39m[38;5;12m [39m[38;5;12mlanguage,[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mfeature-rich[39m[38;5;12m [39m[38;5;12minteractive[39m[38;5;12m [39m[38;5;12mshell[39m[38;5;12m [39m[38;5;12mfor[39m
|
||
[38;5;12mrapid[39m[38;5;12m [39m[38;5;12mdevelopment.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mObjective C[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mYCML[0m[38;5;12m (https://github.com/yconst/YCML) - A Machine Learning framework for Objective-C and Swift (OS X / iOS).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMLPNeuralNet[0m[38;5;12m [39m[38;5;12m(https://github.com/nikolaypavlov/MLPNeuralNet)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mFast[39m[38;5;12m [39m[38;5;12mmultilayer[39m[38;5;12m [39m[38;5;12mperceptron[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetwork[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12miOS[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mMac[39m[38;5;12m [39m[38;5;12mOS[39m[38;5;12m [39m[38;5;12mX.[39m[38;5;12m [39m[38;5;12mMLPNeuralNet[39m[38;5;12m [39m[38;5;12mpredicts[39m[38;5;12m [39m[38;5;12mnew[39m[38;5;12m [39m[38;5;12mexamples[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mtrained[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetworks.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mbuilt[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mtop[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mApple's[39m[38;5;12m [39m[38;5;12mAccelerate[39m[38;5;12m [39m
|
||
[38;5;12mFramework,[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mvectorized[39m[38;5;12m [39m[38;5;12moperations[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mhardware[39m[38;5;12m [39m[38;5;12macceleration[39m[38;5;12m [39m[38;5;12mif[39m[38;5;12m [39m[38;5;12mavailable.[39m[38;5;12m [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMAChineLearning[0m[38;5;12m [39m[38;5;12m(https://github.com/gianlucabertani/MAChineLearning)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAn[39m[38;5;12m [39m[38;5;12mObjective-C[39m[38;5;12m [39m[38;5;12mmultilayer[39m[38;5;12m [39m[38;5;12mperceptron[39m[38;5;12m [39m[38;5;12mlibrary,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mfull[39m[38;5;12m [39m[38;5;12msupport[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mthrough[39m[38;5;12m [39m[38;5;12mbackpropagation.[39m[38;5;12m [39m[38;5;12mImplemented[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mvDSP[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mvecLib,[39m[38;5;12m [39m[38;5;12mit's[39m[38;5;12m [39m[38;5;12m20[39m[38;5;12m [39m[38;5;12mtimes[39m[38;5;12m [39m[38;5;12mfaster[39m[38;5;12m [39m[38;5;12mthan[39m[38;5;12m [39m[38;5;12mits[39m[38;5;12m [39m[38;5;12mJava[39m[38;5;12m [39m
|
||
[38;5;12mequivalent.[39m[38;5;12m [39m[38;5;12mIncludes[39m[38;5;12m [39m[38;5;12msample[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mSwift.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBPN-NeuralNetwork[0m[38;5;12m [39m[38;5;12m(https://github.com/Kalvar/ios-BPN-NeuralNetwork)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mimplemented[39m[38;5;12m [39m[38;5;12m3[39m[38;5;12m [39m[38;5;12mlayers[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetworks[39m[38;5;12m [39m[38;5;12m([39m[38;5;12m [39m[38;5;12mInput[39m[38;5;12m [39m[38;5;12mLayer,[39m[38;5;12m [39m[38;5;12mHidden[39m[38;5;12m [39m[38;5;12mLayer[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mOutput[39m[38;5;12m [39m[38;5;12mLayer[39m[38;5;12m [39m[38;5;12m)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mwas[39m[38;5;12m [39m[38;5;12mnamed[39m[38;5;12m [39m[38;5;12mBack[39m[38;5;12m [39m[38;5;12mPropagation[39m[38;5;12m [39m[38;5;12mNeural[39m[38;5;12m [39m[38;5;12mNetworks[39m[38;5;12m [39m[38;5;12m(BPN).[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mnetwork[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mused[39m[38;5;12m [39m[38;5;12min[39m
|
||
[38;5;12mproducts[39m[38;5;12m [39m[38;5;12mrecommendation,[39m[38;5;12m [39m[38;5;12muser[39m[38;5;12m [39m[38;5;12mbehavior[39m[38;5;12m [39m[38;5;12manalysis,[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mmining[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12manalysis.[39m[38;5;12m [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMulti-Perceptron-NeuralNetwork[0m
|
||
[38;5;12m (https://github.com/Kalvar/ios-Multi-Perceptron-NeuralNetwork) - It implemented multi-perceptrons neural network (ニューラルネットワーク) based on Back Propagation Neural Networks (BPN) and designed unlimited-hidden-layers.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKRHebbian-Algorithm[0m[38;5;12m (https://github.com/Kalvar/ios-KRHebbian-Algorithm) - It is a non-supervisory and self-learning algorithm (adjust the weights) in the neural network of Machine Learning. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKRKmeans-Algorithm[0m[38;5;12m (https://github.com/Kalvar/ios-KRKmeans-Algorithm) - It implemented K-Means clustering and classification algorithm. It could be used in data mining and image compression. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKRFuzzyCMeans-Algorithm[0m[38;5;12m [39m[38;5;12m(https://github.com/Kalvar/ios-KRFuzzyCMeans-Algorithm)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mimplemented[39m[38;5;12m [39m[38;5;12mFuzzy[39m[38;5;12m [39m[38;5;12mC-Means[39m[38;5;12m [39m[38;5;12m(FCM)[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mfuzzy[39m[38;5;12m [39m[38;5;12mclustering[39m[38;5;12m [39m[38;5;12m/[39m[38;5;12m [39m[38;5;12mclassification[39m[38;5;12m [39m[38;5;12malgorithm[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mMachine[39m[38;5;12m [39m[38;5;12mLearning.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mcould[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mused[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mmining[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mimage[39m[38;5;12m [39m[38;5;12mcompression.[39m[38;5;12m [39m
|
||
[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
|
||
|
||
[38;2;255;187;0m[4mOCaml[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOml[0m[38;5;12m (https://github.com/rleonid/oml) - A general statistics and machine learning library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGPR[0m[38;5;12m (https://mmottl.github.io/gpr/) - Efficient Gaussian Process Regression in OCaml.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLibra-Tk[0m[38;5;12m (https://libra.cs.uoregon.edu) - Algorithms for learning and inference with discrete probabilistic models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorFlow[0m[38;5;12m (https://github.com/LaurentMazare/tensorflow-ocaml) - OCaml bindings for TensorFlow.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mOpenCV[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mOpenSource-Computer-Vision[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpenCV[0m[38;5;12m (https://github.com/opencv/opencv) - A OpenSource Computer Vision Library[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mPerl[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mData Analysis / Data Visualization[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPerl Data Language[0m[38;5;12m (https://metacpan.org/pod/Paws::MachineLearning), a pluggable architecture for data and image processing, which can[39m
|
||
[38;5;12mbe [39m[38;5;14m[1mused for machine learning[0m[38;5;12m (https://github.com/zenogantner/PDL-ML).[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMXnet for Deep Learning, in Perl[0m[38;5;12m (https://github.com/apache/incubator-mxnet/tree/master/perl-package),[39m
|
||
[38;5;12malso [39m[38;5;14m[1mreleased in CPAN[0m[38;5;12m (https://metacpan.org/pod/AI::MXNet).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPerl Data Language[0m[38;5;12m (https://metacpan.org/pod/Paws::MachineLearning),[39m
|
||
[38;5;12musing AWS machine learning platform from Perl.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAlgorithm::SVMLight[0m[38;5;12m (https://metacpan.org/pod/Algorithm::SVMLight),[39m
|
||
[38;5;12m implementation of Support Vector Machines with SVMLight under it. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSeveral machine learning and artificial intelligence models are[39m
|
||
[38;5;12m included in the [39m[48;5;235m[38;5;249m[1mAI[0m[38;5;12m (https://metacpan.org/search?size=20&q=AI)[39m
|
||
[38;5;12m namespace. For instance, you can[39m
|
||
[38;5;12m find [39m[38;5;14m[1mNaïve Bayes[0m[38;5;12m (https://metacpan.org/pod/AI::NaiveBayes).[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mPerl 6[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSupport Vector Machines[0m[38;5;12m (https://github.com/titsuki/p6-Algorithm-LibSVM)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNaïve Bayes[0m[38;5;12m (https://github.com/titsuki/p6-Algorithm-NaiveBayes)[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mData Analysis / Data Visualization[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPerl Data Language[0m[38;5;12m (https://metacpan.org/pod/Paws::MachineLearning),[39m
|
||
[38;5;12ma pluggable architecture for data and image processing, which can[39m
|
||
[38;5;12mbe[39m
|
||
[38;5;14m[1mused for machine learning[0m[38;5;12m (https://github.com/zenogantner/PDL-ML).[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mPHP[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mNatural Language Processing[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mjieba-php[0m[38;5;12m (https://github.com/fukuball/jieba-php) - Chinese Words Segmentation Utilities.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPHP-ML[0m[38;5;12m (https://gitlab.com/php-ai/php-ml) - Machine Learning library for PHP. Algorithms, Cross Validation, Neural Network, Preprocessing, Feature Extraction and much more in one library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPredictionBuilder[0m[38;5;12m (https://github.com/denissimon/prediction-builder) - A library for machine learning that builds predictions using a linear regression.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRubix ML[0m[38;5;12m (https://github.com/RubixML) - A high-level machine learning (ML) library that lets you build programs that learn from data using the PHP language.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m19 Questions[0m[38;5;12m (https://github.com/fulldecent/19-questions) - A machine learning / bayesian inference assigning attributes to objects.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mPython[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mComputer Vision[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLightlyTrain[0m[38;5;12m (https://github.com/lightly-ai/lightly-train) - Pretrain computer vision models on unlabeled data for industrial applications[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mScikit-Image[0m[38;5;12m (https://github.com/scikit-image/scikit-image) - A collection of algorithms for image processing in Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mScikit-Opt[0m[38;5;12m (https://github.com/guofei9987/scikit-opt) - Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm, Artificial Fish Swarm Algorithm in Python)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSimpleCV[0m[38;5;12m (http://simplecv.org/) - An open source computer vision framework that gives access to several high-powered computer vision libraries, such as OpenCV. Written on Python and runs on Mac, Windows, and Ubuntu Linux.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVigranumpy[0m[38;5;12m (https://github.com/ukoethe/vigra) - Python bindings for the VIGRA C++ computer vision library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpenFace[0m[38;5;12m (https://cmusatyalab.github.io/openface/) - Free and open source face recognition with deep neural networks.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPCV[0m[38;5;12m (https://github.com/jesolem/PCV) - Open source Python module for computer vision. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mface_recognition[0m[38;5;12m (https://github.com/ageitgey/face_recognition) - Face recognition library that recognizes and manipulates faces from Python or from the command line.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdeepface[0m[38;5;12m [39m[38;5;12m(https://github.com/serengil/deepface)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mlightweight[39m[38;5;12m [39m[38;5;12mface[39m[38;5;12m [39m[38;5;12mrecognition[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mfacial[39m[38;5;12m [39m[38;5;12mattribute[39m[38;5;12m [39m[38;5;12manalysis[39m[38;5;12m [39m[38;5;12m(age,[39m[38;5;12m [39m[38;5;12mgender,[39m[38;5;12m [39m[38;5;12memotion[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mrace)[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mcovering[39m[38;5;12m [39m[38;5;12mcutting-edge[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mVGG-Face,[39m[38;5;12m [39m[38;5;12mFaceNet,[39m[38;5;12m [39m[38;5;12mOpenFace,[39m[38;5;12m [39m[38;5;12mDeepFace,[39m[38;5;12m [39m
|
||
[38;5;12mDeepID,[39m[38;5;12m [39m[38;5;12mDlib[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mArcFace.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mretinaface[0m[38;5;12m (https://github.com/serengil/retinaface) - deep learning based cutting-edge facial detector for Python coming with facial landmarks[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdockerface[0m[38;5;12m (https://github.com/natanielruiz/dockerface) - Easy to install and use deep learning Faster R-CNN face detection for images and video in a docker container. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDetectron[0m[38;5;12m [39m[38;5;12m(https://github.com/facebookresearch/Detectron)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mFAIR's[39m[38;5;12m [39m[38;5;12msoftware[39m[38;5;12m [39m[38;5;12msystem[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mimplements[39m[38;5;12m [39m[38;5;12mstate-of-the-art[39m[38;5;12m [39m[38;5;12mobject[39m[38;5;12m [39m[38;5;12mdetection[39m[38;5;12m [39m[38;5;12malgorithms,[39m[38;5;12m [39m[38;5;12mincluding[39m[38;5;12m [39m[38;5;12mMask[39m[38;5;12m [39m[38;5;12mR-CNN.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mwritten[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mpowered[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mCaffe2[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mframework.[39m[38;5;12m [39m
|
||
[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdetectron2[0m[38;5;12m [39m[38;5;12m(https://github.com/facebookresearch/detectron2)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mFAIR's[39m[38;5;12m [39m[38;5;12mnext-generation[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12mplatform[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mobject[39m[38;5;12m [39m[38;5;12mdetection[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12msegmentation.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mground-up[39m[38;5;12m [39m[38;5;12mrewrite[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mprevious[39m[38;5;12m [39m[38;5;12mversion,[39m[38;5;12m [39m[38;5;12mDetectron,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mpowered[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mPyTorch[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m
|
||
[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mframework.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1malbumentations[0m[38;5;12m [39m[38;5;12m(https://github.com/albu/albumentations)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mА[39m[38;5;12m [39m[38;5;12mfast[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12magnostic[39m[38;5;12m [39m[38;5;12mimage[39m[38;5;12m [39m[38;5;12maugmentation[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mimplements[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mdiverse[39m[38;5;12m [39m[38;5;12mset[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12maugmentation[39m[38;5;12m [39m[38;5;12mtechniques.[39m[38;5;12m [39m[38;5;12mSupports[39m[38;5;12m [39m[38;5;12mclassification,[39m[38;5;12m [39m[38;5;12msegmentation,[39m[38;5;12m [39m[38;5;12mdetection[39m[38;5;12m [39m[38;5;12mout[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbox.[39m[38;5;12m [39m[38;5;12mWas[39m[38;5;12m [39m
|
||
[38;5;12mused[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mwin[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mnumber[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mDeep[39m[38;5;12m [39m[38;5;12mLearning[39m[38;5;12m [39m[38;5;12mcompetitions[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mKaggle,[39m[38;5;12m [39m[38;5;12mTopcoder[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthose[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mwere[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mpart[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mCVPR[39m[38;5;12m [39m[38;5;12mworkshops.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpytessarct[0m[38;5;12m [39m[38;5;12m(https://github.com/madmaze/pytesseract)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mPython-tesseract[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12moptical[39m[38;5;12m [39m[38;5;12mcharacter[39m[38;5;12m [39m[38;5;12mrecognition[39m[38;5;12m [39m[38;5;12m(OCR)[39m[38;5;12m [39m[38;5;12mtool[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mpython.[39m[38;5;12m [39m[38;5;12mThat[39m[38;5;12m [39m[38;5;12mis,[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mwill[39m[38;5;12m [39m[38;5;12mrecognize[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12m"read"[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mtext[39m[38;5;12m [39m[38;5;12membedded[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mimages.[39m[38;5;12m [39m[38;5;12mPython-tesseract[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mwrapper[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;14m[1mGoogle's[0m[38;5;14m[1m [0m
|
||
[38;5;14m[1mTesseract-OCR[0m[38;5;14m[1m [0m[38;5;14m[1mEngine[0m[38;5;12m [39m[38;5;12m(https://github.com/tesseract-ocr/tesseract).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mimutils[0m[38;5;12m [39m[38;5;12m(https://github.com/jrosebr1/imutils)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mcontaining[39m[38;5;12m [39m[38;5;12mConvenience[39m[38;5;12m [39m[38;5;12mfunctions[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mmake[39m[38;5;12m [39m[38;5;12mbasic[39m[38;5;12m [39m[38;5;12mimage[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12moperations[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mtranslation,[39m[38;5;12m [39m[38;5;12mrotation,[39m[38;5;12m [39m[38;5;12mresizing,[39m[38;5;12m [39m[38;5;12mskeletonization,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdisplaying[39m[38;5;12m [39m[38;5;12mMatplotlib[39m[38;5;12m [39m[38;5;12mimages[39m[38;5;12m [39m[38;5;12measier[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mOpenCV[39m[38;5;12m [39m
|
||
[38;5;12mand[39m[38;5;12m [39m[38;5;12mPython.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyTorchCV[0m[38;5;12m (https://github.com/donnyyou/PyTorchCV) - A PyTorch-Based Framework for Deep Learning in Computer Vision.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mjoliGEN[0m[38;5;12m (https://github.com/jolibrain/joliGEN) - Generative AI Image Toolset with GANs and Diffusion for Real-World Applications.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSelf-supervised learning[0m[38;5;12m (https://pytorch-lightning-bolts.readthedocs.io/en/latest/self_supervised_models.html)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mneural-style-pt[0m[38;5;12m (https://github.com/ProGamerGov/neural-style-pt) - A PyTorch implementation of Justin Johnson's neural-style (neural style transfer).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDetecto[0m[38;5;12m (https://github.com/alankbi/detecto) - Train and run a computer vision model with 5-10 lines of code.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mneural-dream[0m[38;5;12m (https://github.com/ProGamerGov/neural-dream) - A PyTorch implementation of DeepDream.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpenpose[0m[38;5;12m (https://github.com/CMU-Perceptual-Computing-Lab/openpose) - A real-time multi-person keypoint detection library for body, face, hands, and foot estimation[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeep High-Resolution-Net[0m[38;5;12m (https://github.com/leoxiaobin/deep-high-resolution-net.pytorch) - A PyTorch implementation of CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTF-GAN[0m[38;5;12m (https://github.com/tensorflow/gan) - TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdream-creator[0m[38;5;12m (https://github.com/ProGamerGov/dream-creator) - A PyTorch implementation of DeepDream. Allows individuals to quickly and easily train their own custom GoogleNet models with custom datasets for DeepDream.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLucent[0m[38;5;12m (https://github.com/greentfrapp/lucent) - Tensorflow and OpenAI Clarity's Lucid adapted for PyTorch.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mlightly[0m[38;5;12m (https://github.com/lightly-ai/lightly) - Lightly is a computer vision framework for self-supervised learning.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLearnergy[0m[38;5;12m (https://github.com/gugarosa/learnergy) - Energy-based machine learning models built upon PyTorch.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpenVisionAPI[0m[38;5;12m (https://github.com/openvisionapi) - Open source computer vision API based on open source models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIoT Owl[0m[38;5;12m (https://github.com/Ret2Me/IoT-Owl) - Light face detection and recognition system with huge possibilities, based on Microsoft Face API and TensorFlow made for small IoT devices like raspberry pi.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mExadel[0m[38;5;14m[1m [0m[38;5;14m[1mCompreFace[0m[38;5;12m [39m[38;5;12m(https://github.com/exadel-inc/CompreFace)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mface[39m[38;5;12m [39m[38;5;12mrecognition[39m[38;5;12m [39m[38;5;12msystem[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12measily[39m[38;5;12m [39m[38;5;12mintegrated[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12many[39m[38;5;12m [39m[38;5;12msystem[39m[38;5;12m [39m[38;5;12mwithout[39m[38;5;12m [39m[38;5;12mprior[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mskills.[39m[38;5;12m [39m[38;5;12mCompreFace[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12mREST[39m[38;5;12m [39m[38;5;12mAPI[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mface[39m[38;5;12m [39m[38;5;12mrecognition,[39m[38;5;12m [39m[38;5;12mface[39m[38;5;12m [39m[38;5;12mverification,[39m[38;5;12m [39m
|
||
[38;5;12mface[39m[38;5;12m [39m[38;5;12mdetection,[39m[38;5;12m [39m[38;5;12mface[39m[38;5;12m [39m[38;5;12mmask[39m[38;5;12m [39m[38;5;12mdetection,[39m[38;5;12m [39m[38;5;12mlandmark[39m[38;5;12m [39m[38;5;12mdetection,[39m[38;5;12m [39m[38;5;12mage,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mgender[39m[38;5;12m [39m[38;5;12mrecognition[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12measily[39m[38;5;12m [39m[38;5;12mdeployed[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mdocker.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcomputer-vision-in-action[0m[38;5;12m [39m[38;5;12m(https://github.com/Charmve/computer-vision-in-action)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mknown[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mL0CV[39m[38;5;12m,[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mnew[39m[38;5;12m [39m[38;5;12mgeneration[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mcomputer[39m[38;5;12m [39m[38;5;12mvision[39m[38;5;12m [39m[38;5;12mopen[39m[38;5;12m [39m[38;5;12msource[39m[38;5;12m [39m[38;5;12monline[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mmedia,[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcross-platform[39m[38;5;12m [39m[38;5;12minteractive[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mintegrating[39m[38;5;12m [39m[38;5;12mgraphics,[39m
|
||
[38;5;12msource[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mHTML.[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mL0CV[39m[38;5;12m [39m[38;5;12mecosystem[39m[38;5;12m [39m[38;5;12m—[39m[38;5;12m [39m[38;5;12mNotebook,[39m[38;5;12m [39m[38;5;12mDatasets,[39m[38;5;12m [39m[38;5;12mSource[39m[38;5;12m [39m[38;5;12mCode,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mDiving-in[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mAdvanced[39m[38;5;12m [39m[38;5;12m—[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mL0CV[39m[38;5;12m [39m[38;5;12mHub.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtimm[0m[38;5;12m (https://github.com/rwightman/pytorch-image-models) - PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msegmentation_models.pytorch[0m[38;5;12m [39m[38;5;12m(https://github.com/qubvel/segmentation_models.pytorch)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mPyTorch-based[39m[38;5;12m [39m[38;5;12mtoolkit[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12moffers[39m[38;5;12m [39m[38;5;12mpre-trained[39m[38;5;12m [39m[38;5;12msegmentation[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mcomputer[39m[38;5;12m [39m[38;5;12mvision[39m[38;5;12m [39m[38;5;12mtasks.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12msimplifies[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mdevelopment[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mimage[39m[38;5;12m [39m[38;5;12msegmentation[39m[38;5;12m [39m
|
||
[38;5;12mapplications[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mproviding[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcollection[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mpopular[39m[38;5;12m [39m[38;5;12marchitecture[39m[38;5;12m [39m[38;5;12mimplementations,[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mUNet[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mPSPNet,[39m[38;5;12m [39m[38;5;12malong[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mpre-trained[39m[38;5;12m [39m[38;5;12mweights,[39m[38;5;12m [39m[38;5;12mmaking[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12measier[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mresearchers[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdevelopers[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12machieve[39m[38;5;12m [39m[38;5;12mhigh-quality[39m[38;5;12m [39m[38;5;12mpixel-level[39m[38;5;12m [39m[38;5;12mobject[39m[38;5;12m [39m[38;5;12msegmentation[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m
|
||
[38;5;12mimages.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msegmentation_models[0m[38;5;12m [39m[38;5;12m(https://github.com/qubvel/segmentation_models)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mTensorFlow[39m[38;5;12m [39m[38;5;12mKeras-based[39m[38;5;12m [39m[38;5;12mtoolkit[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12moffers[39m[38;5;12m [39m[38;5;12mpre-trained[39m[38;5;12m [39m[38;5;12msegmentation[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mcomputer[39m[38;5;12m [39m[38;5;12mvision[39m[38;5;12m [39m[38;5;12mtasks.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12msimplifies[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mdevelopment[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mimage[39m[38;5;12m [39m[38;5;12msegmentation[39m[38;5;12m [39m[38;5;12mapplications[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m
|
||
[38;5;12mproviding[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcollection[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mpopular[39m[38;5;12m [39m[38;5;12marchitecture[39m[38;5;12m [39m[38;5;12mimplementations,[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mUNet[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mPSPNet,[39m[38;5;12m [39m[38;5;12malong[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mpre-trained[39m[38;5;12m [39m[38;5;12mweights,[39m[38;5;12m [39m[38;5;12mmaking[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12measier[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mresearchers[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdevelopers[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12machieve[39m[38;5;12m [39m[38;5;12mhigh-quality[39m[38;5;12m [39m[38;5;12mpixel-level[39m[38;5;12m [39m[38;5;12mobject[39m[38;5;12m [39m[38;5;12msegmentation[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mimages.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMLX[0m[38;5;12m (https://github.com/ml-explore/mlx)- MLX is an array framework for machine learning on Apple silicon, developed by Apple machine learning research.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mNatural Language Processing[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpkuseg-python[0m[38;5;12m (https://github.com/lancopku/pkuseg-python) - A better version of Jieba, developed by Peking University.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNLTK[0m[38;5;12m (https://www.nltk.org/) - A leading platform for building Python programs to work with human language data.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPattern[0m[38;5;12m (https://github.com/clips/pattern) - A web mining module for the Python programming language. It has tools for natural language processing, machine learning, among others.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mQuepy[0m[38;5;12m (https://github.com/machinalis/quepy) - A python framework to transform natural language questions to queries in a database query language.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTextBlob[0m[38;5;12m (http://textblob.readthedocs.io/en/dev/) - Providing a consistent API for diving into common natural language processing (NLP) tasks. Stands on the giant shoulders of NLTK and Pattern, and plays nicely with both.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mYAlign[0m[38;5;12m (https://github.com/machinalis/yalign) - A sentence aligner, a friendly tool for extracting parallel sentences from comparable corpora. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mjieba[0m[38;5;12m (https://github.com/fxsjy/jieba#jieba-1) - Chinese Words Segmentation Utilities.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSnowNLP[0m[38;5;12m (https://github.com/isnowfy/snownlp) - A library for processing Chinese text.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mspammy[0m[38;5;12m (https://github.com/tasdikrahman/spammy) - A library for email Spam filtering built on top of NLTK[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mloso[0m[38;5;12m (https://github.com/fangpenlin/loso) - Another Chinese segmentation library. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgenius[0m[38;5;12m (https://github.com/duanhongyi/genius) - A Chinese segment based on Conditional Random Field.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKoNLPy[0m[38;5;12m (http://konlpy.org) - A Python package for Korean natural language processing.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnut[0m[38;5;12m (https://github.com/pprett/nut) - Natural language Understanding Toolkit. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRosetta[0m[38;5;12m (https://github.com/columbia-applied-data-science/rosetta) - Text processing tools and wrappers (e.g. Vowpal Wabbit)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBLLIP Parser[0m[38;5;12m (https://pypi.org/project/bllipparser/) - Python bindings for the BLLIP Natural Language Parser (also known as the Charniak-Johnson parser). [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyNLPl[0m[38;5;12m [39m[38;5;12m(https://github.com/proycon/pynlpl)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mNatural[39m[38;5;12m [39m[38;5;12mLanguage[39m[38;5;12m [39m[38;5;12mProcessing[39m[38;5;12m [39m[38;5;12mLibrary.[39m[38;5;12m [39m[38;5;12mGeneral[39m[38;5;12m [39m[38;5;12mpurpose[39m[38;5;12m [39m[38;5;12mNLP[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mPython.[39m[38;5;12m [39m[38;5;12mAlso[39m[38;5;12m [39m[38;5;12mcontains[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m[38;5;12mspecific[39m[38;5;12m [39m[38;5;12mmodules[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mparsing[39m[38;5;12m [39m[38;5;12mcommon[39m[38;5;12m [39m[38;5;12mNLP[39m[38;5;12m [39m[38;5;12mformats,[39m[38;5;12m [39m[38;5;12mmost[39m[38;5;12m [39m[38;5;12mnotably[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;14m[1mFoLiA[0m[38;5;12m [39m
|
||
[38;5;12m(https://proycon.github.io/folia/),[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mARPA[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12mmodels,[39m[38;5;12m [39m[38;5;12mMoses[39m[38;5;12m [39m[38;5;12mphrasetables,[39m[38;5;12m [39m[38;5;12mGIZA++[39m[38;5;12m [39m[38;5;12malignments.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPySS3[0m[38;5;12m [39m[38;5;12m(https://github.com/sergioburdisso/pyss3)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mpackage[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mimplements[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mnovel[39m[38;5;12m [39m[38;5;12mwhite-box[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mtext[39m[38;5;12m [39m[38;5;12mclassification,[39m[38;5;12m [39m[38;5;12mcalled[39m[38;5;12m [39m[38;5;12mSS3.[39m[38;5;12m [39m[38;5;12mSince[39m[38;5;12m [39m[38;5;12mSS3[39m[38;5;12m [39m[38;5;12mhas[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mability[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mvisually[39m[38;5;12m [39m[38;5;12mexplain[39m[38;5;12m [39m[38;5;12mits[39m[38;5;12m [39m[38;5;12mrationale,[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mpackage[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mcomes[39m[38;5;12m [39m
|
||
[38;5;12mwith[39m[38;5;12m [39m[38;5;12measy-to-use[39m[38;5;12m [39m[38;5;12minteractive[39m[38;5;12m [39m[38;5;12mvisualizations[39m[38;5;12m [39m[38;5;12mtools[39m[38;5;12m [39m[38;5;12m([39m[38;5;14m[1monline[0m[38;5;14m[1m [0m[38;5;14m[1mdemos[0m[38;5;12m [39m[38;5;12m(http://tworld.io/ss3/)).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpython-ucto[0m[38;5;12m (https://github.com/proycon/python-ucto) - Python binding to ucto (a unicode-aware rule-based tokenizer for various languages).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpython-frog[0m[38;5;12m (https://github.com/proycon/python-frog) - Python binding to Frog, an NLP suite for Dutch. (pos tagging, lemmatisation, dependency parsing, NER)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpython-zpar[0m[38;5;12m (https://github.com/EducationalTestingService/python-zpar) - Python bindings for [39m[38;5;14m[1mZPar[0m[38;5;12m (https://github.com/frcchang/zpar), a statistical part-of-speech-tagger, constituency parser, and dependency parser for English.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcolibri-core[0m[38;5;12m (https://github.com/proycon/colibri-core) - Python binding to C++ library for extracting and working with basic linguistic constructions such as n-grams and skipgrams in a quick and memory-efficient way.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mspaCy[0m[38;5;12m (https://github.com/explosion/spaCy) - Industrial strength NLP with Python and Cython.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyStanfordDependencies[0m[38;5;12m (https://github.com/dmcc/PyStanfordDependencies) - Python interface for converting Penn Treebank trees to Stanford Dependencies.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDistance[0m[38;5;12m (https://github.com/doukremt/distance) - Levenshtein and Hamming distance computation. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFuzzy Wuzzy[0m[38;5;12m (https://github.com/seatgeek/fuzzywuzzy) - Fuzzy String Matching in Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeofuzz[0m[38;5;12m (https://github.com/x-tabdeveloping/neofuzz) - Blazing fast, lightweight and customizable fuzzy and semantic text search in Python with fuzzywuzzy/thefuzz compatible API.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mjellyfish[0m[38;5;12m (https://github.com/jamesturk/jellyfish) - a python library for doing approximate and phonetic matching of strings.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1meditdistance[0m[38;5;12m (https://pypi.org/project/editdistance/) - fast implementation of edit distance.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtextacy[0m[38;5;12m (https://github.com/chartbeat-labs/textacy) - higher-level NLP built on Spacy.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mstanford-corenlp-python[0m[38;5;12m (https://github.com/dasmith/stanford-corenlp-python) - Python wrapper for [39m[38;5;14m[1mStanford CoreNLP[0m[38;5;12m (https://github.com/stanfordnlp/CoreNLP) [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCLTK[0m[38;5;12m (https://github.com/cltk/cltk) - The Classical Language Toolkit.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRasa[0m[38;5;12m (https://github.com/RasaHQ/rasa) - A "machine learning framework to automate text-and voice-based conversations."[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1myase[0m[38;5;12m (https://github.com/PPACI/yase) - Transcode sentence (or other sequence) to list of word vector.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPolyglot[0m[38;5;12m (https://github.com/aboSamoor/polyglot) - Multilingual text (NLP) processing toolkit.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDrQA[0m[38;5;12m (https://github.com/facebookresearch/DrQA) - Reading Wikipedia to answer open-domain questions.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDedupe[0m[38;5;12m (https://github.com/dedupeio/dedupe) - A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSnips NLU[0m[38;5;12m (https://github.com/snipsco/snips-nlu) - Natural Language Understanding library for intent classification and entity extraction[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeuroNER[0m[38;5;12m (https://github.com/Franck-Dernoncourt/NeuroNER) - Named-entity recognition using neural networks providing state-of-the-art-results[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeepPavlov[0m[38;5;12m (https://github.com/deepmipt/DeepPavlov/) - conversational AI library with many pre-trained Russian NLP models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBigARTM[0m[38;5;12m (https://github.com/bigartm/bigartm) - topic modelling platform.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNALP[0m[38;5;12m (https://github.com/gugarosa/nalp) - A Natural Adversarial Language Processing framework built over Tensorflow.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDL Translate[0m[38;5;12m (https://github.com/xhlulu/dl-translate) - A deep learning-based translation library between 50 languages, built with [39m[48;5;235m[38;5;249mtransformers[49m[39m[38;5;12m.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHaystack[0m[38;5;12m (https://github.com/deepset-ai/haystack) - A framework for building industrial-strength applications with Transformer models and LLMs.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCometLLM[0m[38;5;12m (https://github.com/comet-ml/comet-llm) - Track, log, visualize and evaluate your LLM prompts and prompt chains.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTransformers[0m[38;5;12m (https://github.com/huggingface/transformers) - A deep learning library containing thousands of pre-trained models on different tasks. The goto place for anything related to Large Language Models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTextCL[0m[38;5;12m (https://github.com/alinapetukhova/textcl) - Text preprocessing package for use in NLP tasks.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mXAD[0m[38;5;12m (https://pypi.org/project/xad/) -> Fast and easy-to-use backpropagation tool.[39m
|
||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAim[0m[38;5;12m (https://github.com/aimhubio/aim) -> An easy-to-use & supercharged open-source AI metadata tracker.[39m
|
||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRexMex[0m[38;5;12m (https://github.com/AstraZeneca/rexmex) -> A general purpose recommender metrics library for fair evaluation.[39m
|
||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mChemicalX[0m[38;5;12m (https://github.com/AstraZeneca/chemicalx) -> A PyTorch based deep learning library for drug pair scoring[39m
|
||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMicrosoft ML for Apache Spark[0m[38;5;12m (https://github.com/Azure/mmlspark) -> A distributed machine learning framework Apache Spark[39m
|
||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mShapley[0m[38;5;12m (https://github.com/benedekrozemberczki/shapley) -> A data-driven framework to quantify the value of classifiers in a machine learning ensemble.[39m
|
||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1migel[0m[38;5;12m (https://github.com/nidhaloff/igel) -> A delightful machine learning tool that allows you to train/fit, test and use models [39m[38;5;14m[1mwithout writing code[0m
|
||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mML Model building[0m[38;5;12m (https://github.com/Shanky-21/Machine_learning) -> A Repository Containing Classification, Clustering, Regression, Recommender Notebooks with illustration to make them.[39m
|
||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mML/DL project template[0m[38;5;12m (https://github.com/PyTorchLightning/deep-learning-project-template)[39m
|
||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyTorch Frame[0m[38;5;12m (https://github.com/pyg-team/pytorch-frame) -> A Modular Framework for Multi-Modal Tabular Learning.[39m
|
||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyTorch Geometric[0m[38;5;12m (https://github.com/pyg-team/pytorch_geometric) -> Graph Neural Network Library for PyTorch.[39m
|
||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyTorch Geometric Temporal[0m[38;5;12m (https://github.com/benedekrozemberczki/pytorch_geometric_temporal) -> A temporal extension of PyTorch Geometric for dynamic graph representation learning.[39m
|
||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLittle Ball of Fur[0m[38;5;12m (https://github.com/benedekrozemberczki/littleballoffur) -> A graph sampling extension library for NetworkX with a Scikit-Learn like API.[39m
|
||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKarate Club[0m[38;5;12m (https://github.com/benedekrozemberczki/karateclub) -> An unsupervised machine learning extension library for NetworkX with a Scikit-Learn like API.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAuto_ViML[0m[38;5;12m [39m[38;5;12m(https://github.com/AutoViML/Auto_ViML)[39m[38;5;12m [39m[38;5;12m->[39m[38;5;12m [39m[38;5;12mAutomatically[39m[38;5;12m [39m[38;5;12mBuild[39m[38;5;12m [39m[38;5;12mVariant[39m[38;5;12m [39m[38;5;12mInterpretable[39m[38;5;12m [39m[38;5;12mML[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mfast![39m[38;5;12m [39m[38;5;12mAuto_ViML[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mpronounced[39m[38;5;12m [39m[38;5;12m"auto[39m[38;5;12m [39m[38;5;12mvimal",[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcomprehensive[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mscalable[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mAutoML[39m[38;5;12m [39m[38;5;12mtoolkit[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mimbalanced[39m[38;5;12m [39m[38;5;12mhandling,[39m[38;5;12m [39m[38;5;12mensembling,[39m[38;5;12m [39m
|
||
[38;5;12mstacking[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mbuilt-in[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12mselection.[39m[38;5;12m [39m[38;5;12mFeatured[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12m.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyOD[0m[38;5;12m [39m[38;5;12m(https://github.com/yzhao062/pyod)[39m[38;5;12m [39m[38;5;12m->[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mOutlier[39m[38;5;12m [39m[38;5;12mDetection,[39m[38;5;12m [39m[38;5;12mcomprehensive[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mscalable[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mtoolkit[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mdetecting[39m[38;5;12m [39m[38;5;12moutlying[39m[38;5;12m [39m[38;5;12mobjects[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mmultivariate[39m[38;5;12m [39m[38;5;12mdata.[39m[38;5;12m [39m[38;5;12mFeatured[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mAdvanced[39m[38;5;12m [39m[38;5;12mmodels,[39m[38;5;12m [39m[38;5;12mincluding[39m[38;5;12m [39m[38;5;12mNeural[39m[38;5;12m [39m[38;5;12mNetworks/Deep[39m[38;5;12m [39m[38;5;12mLearning[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||
[38;5;12mOutlier[39m[38;5;12m [39m[38;5;12mEnsembles.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msteppy[0m[38;5;12m (https://github.com/neptune-ml/steppy) -> Lightweight, Python library for fast and reproducible machine learning experimentation. Introduces a very simple interface that enables clean machine learning pipeline design.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msteppy-toolkit[0m[38;5;12m (https://github.com/neptune-ml/steppy-toolkit) -> Curated collection of the neural networks, transformers and models that make your machine learning work faster and more effective.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCNTK[0m[38;5;12m (https://github.com/Microsoft/CNTK) - Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit. Documentation can be found [39m[38;5;14m[1mhere[0m[38;5;12m (https://docs.microsoft.com/cognitive-toolkit/).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCouler[0m[38;5;12m (https://github.com/couler-proj/couler) - Unified interface for constructing and managing machine learning workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mauto_ml[0m[38;5;12m [39m[38;5;12m(https://github.com/ClimbsRocks/auto_ml)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAutomated[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mproduction[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12manalytics.[39m[38;5;12m [39m[38;5;12mLets[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mfocus[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mfun[39m[38;5;12m [39m[38;5;12mparts[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mML,[39m[38;5;12m [39m[38;5;12mwhile[39m[38;5;12m [39m[38;5;12moutputting[39m[38;5;12m [39m[38;5;12mproduction-ready[39m[38;5;12m [39m[38;5;12mcode,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdetailed[39m[38;5;12m [39m[38;5;12manalytics[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mdataset[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mresults.[39m[38;5;12m [39m
|
||
[38;5;12mIncludes[39m[38;5;12m [39m[38;5;12msupport[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mNLP,[39m[38;5;12m [39m[38;5;12mXGBoost,[39m[38;5;12m [39m[38;5;12mCatBoost,[39m[38;5;12m [39m[38;5;12mLightGBM,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12msoon,[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdtaidistance[0m[38;5;12m (https://github.com/wannesm/dtaidistance) - High performance library for time series distances (DTW) and time series clustering.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1meinops[0m[38;5;12m (https://github.com/arogozhnikov/einops) - Deep learning operations reinvented (for pytorch, tensorflow, jax and others).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmachine[0m[38;5;14m[1m [0m[38;5;14m[1mlearning[0m[38;5;12m [39m[38;5;12m(https://github.com/jeff1evesque/machine-learning)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mautomated[39m[38;5;12m [39m[38;5;12mbuild[39m[38;5;12m [39m[38;5;12mconsisting[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;14m[1mweb-interface[0m[38;5;12m [39m[38;5;12m(https://github.com/jeff1evesque/machine-learning#web-interface),[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mset[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;14m[1mprogrammatic-interface[0m[38;5;12m [39m
|
||
[38;5;12m(https://github.com/jeff1evesque/machine-learning#programmatic-interface)[39m[38;5;12m [39m[38;5;12mAPI,[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12msupport[39m[38;5;12m [39m[38;5;12mvector[39m[38;5;12m [39m[38;5;12mmachines.[39m[38;5;12m [39m[38;5;12mCorresponding[39m[38;5;12m [39m[38;5;12mdataset(s)[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mstored[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mSQL[39m[38;5;12m [39m[38;5;12mdatabase,[39m[38;5;12m [39m[38;5;12mthen[39m[38;5;12m [39m[38;5;12mgenerated[39m[38;5;12m [39m[38;5;12mmodel(s)[39m[38;5;12m [39m[38;5;12mused[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mprediction(s),[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mstored[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mNoSQL[39m[38;5;12m [39m
|
||
[38;5;12mdatastore.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mXGBoost[0m[38;5;12m (https://github.com/dmlc/xgboost) - Python bindings for eXtreme Gradient Boosting (Tree) Library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mChefBoost[0m[38;5;12m [39m[38;5;12m(https://github.com/serengil/chefboost)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mlightweight[39m[38;5;12m [39m[38;5;12mdecision[39m[38;5;12m [39m[38;5;12mtree[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mcategorical[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12msupport[39m[38;5;12m [39m[38;5;12mcovering[39m[38;5;12m [39m[38;5;12mregular[39m[38;5;12m [39m[38;5;12mdecision[39m[38;5;12m [39m[38;5;12mtree[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mID3,[39m[38;5;12m [39m[38;5;12mC4.5,[39m[38;5;12m [39m[38;5;12mCART,[39m[38;5;12m [39m[38;5;12mCHAID[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mregression[39m[38;5;12m [39m[38;5;12mtree;[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m
|
||
[38;5;12madvanced[39m[38;5;12m [39m[38;5;12mbagging[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mboosting[39m[38;5;12m [39m[38;5;12mtechniques[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mgradient[39m[38;5;12m [39m[38;5;12mboosting,[39m[38;5;12m [39m[38;5;12mrandom[39m[38;5;12m [39m[38;5;12mforest[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12madaboost.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache SINGA[0m[38;5;12m (https://singa.apache.org) - An Apache Incubating project for developing an open source machine learning library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBayesian Methods for Hackers[0m[38;5;12m (https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers) - Book/iPython notebooks on Probabilistic Programming in Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFeatureforge[0m[38;5;12m (https://github.com/machinalis/featureforge) A set of tools for creating and testing machine learning features, with a scikit-learn compatible API.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMLlib in Apache Spark[0m[38;5;12m (http://spark.apache.org/docs/latest/mllib-guide.html) - Distributed machine learning library in Spark[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHydrosphere Mist[0m[38;5;12m (https://github.com/Hydrospheredata/mist) - A service for deployment Apache Spark MLLib machine learning models as realtime, batch or reactive web services.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTowhee[0m[38;5;12m (https://towhee.io) - A Python module that encode unstructured data into embeddings.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscikit-learn[0m[38;5;12m (https://scikit-learn.org/) - A Python module for machine learning built on top of SciPy.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmetric-learn[0m[38;5;12m (https://github.com/metric-learn/metric-learn) - A Python module for metric learning.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpenMetricLearning[0m[38;5;12m (https://github.com/OML-Team/open-metric-learning) - A PyTorch-based framework to train and validate the models producing high-quality embeddings.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIntel(R) Extension for Scikit-learn[0m[38;5;12m (https://github.com/intel/scikit-learn-intelex) - A seamless way to speed up your Scikit-learn applications with no accuracy loss and code changes.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSimpleAI[0m[38;5;12m [39m[38;5;12m(https://github.com/simpleai-team/simpleai)[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mimplementation[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12martificial[39m[38;5;12m [39m[38;5;12mintelligence[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12mdescribed[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbook[39m[38;5;12m [39m[38;5;12m"Artificial[39m[38;5;12m [39m[38;5;12mIntelligence,[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mModern[39m[38;5;12m [39m[38;5;12mApproach".[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mfocuses[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mproviding[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12measy[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12muse,[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m
|
||
[38;5;12mdocumented[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mtested[39m[38;5;12m [39m[38;5;12mlibrary.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mastroML[0m[38;5;12m (https://www.astroml.org/) - Machine Learning and Data Mining for Astronomy.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgraphlab-create[0m[38;5;12m (https://turi.com/products/create/docs/) - A library with various machine learning models (regression, clustering, recommender systems, graph analytics, etc.) implemented on top of a disk-backed DataFrame.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBigML[0m[38;5;12m (https://bigml.com) - A library that contacts external servers.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpattern[0m[38;5;12m (https://github.com/clips/pattern) - Web mining module for Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNuPIC[0m[38;5;12m (https://github.com/numenta/nupic) - Numenta Platform for Intelligent Computing.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPylearn2[0m[38;5;12m (https://github.com/lisa-lab/pylearn2) - A Machine Learning library based on [39m[38;5;14m[1mTheano[0m[38;5;12m (https://github.com/Theano/Theano). [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkeras[0m[38;5;12m (https://github.com/keras-team/keras) - High-level neural networks frontend for [39m[38;5;14m[1mTensorFlow[0m[38;5;12m (https://github.com/tensorflow/tensorflow), [39m[38;5;14m[1mCNTK[0m[38;5;12m (https://github.com/Microsoft/CNTK) and [39m[38;5;14m[1mTheano[0m[38;5;12m (https://github.com/Theano/Theano).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLasagne[0m[38;5;12m (https://github.com/Lasagne/Lasagne) - Lightweight library to build and train neural networks in Theano.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mhebel[0m[38;5;12m (https://github.com/hannes-brt/hebel) - GPU-Accelerated Deep Learning Library in Python. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mChainer[0m[38;5;12m (https://github.com/chainer/chainer) - Flexible neural network framework.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mprophet[0m[38;5;12m (https://facebook.github.io/prophet/) - Fast and automated time series forecasting framework by Facebook.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mskforecast[0m[38;5;12m [39m[38;5;12m(https://github.com/skforecast/skforecast)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mtime[39m[38;5;12m [39m[38;5;12mseries[39m[38;5;12m [39m[38;5;12mforecasting[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mmodels.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mworks[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12many[39m[38;5;12m [39m[38;5;12mregressor[39m[38;5;12m [39m[38;5;12mcompatible[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mscikit-learn[39m[38;5;12m [39m[38;5;12mAPI,[39m[38;5;12m [39m[38;5;12mincluding[39m[38;5;12m [39m[38;5;12mpopular[39m[38;5;12m [39m[38;5;12moptions[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m[38;5;12mLightGBM,[39m[38;5;12m [39m
|
||
[38;5;12mXGBoost,[39m[38;5;12m [39m[38;5;12mCatBoost,[39m[38;5;12m [39m[38;5;12mKeras,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mothers.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFeature-engine[0m[38;5;12m (https://github.com/feature-engine/feature_engine) - Open source library with an exhaustive battery of feature engineering and selection methods based on pandas and scikit-learn.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgensim[0m[38;5;12m (https://github.com/RaRe-Technologies/gensim) - Topic Modelling for Humans.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtweetopic[0m[38;5;12m (https://centre-for-humanities-computing.github.io/tweetopic/) - Blazing fast short-text-topic-modelling for Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtopicwizard[0m[38;5;12m (https://github.com/x-tabdeveloping/topic-wizard) - Interactive topic model visualization/interpretation framework.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtopik[0m[38;5;12m (https://github.com/ContinuumIO/topik) - Topic modelling toolkit. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyBrain[0m[38;5;12m (https://github.com/pybrain/pybrain) - Another Python Machine Learning Library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBrainstorm[0m[38;5;12m (https://github.com/IDSIA/brainstorm) - Fast, flexible and fun neural networks. This is the successor of PyBrain.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSurprise[0m[38;5;12m (https://surpriselib.com) - A scikit for building and analyzing recommender systems.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mimplicit[0m[38;5;12m (https://implicit.readthedocs.io/en/latest/quickstart.html) - Fast Python Collaborative Filtering for Implicit Datasets.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLightFM[0m[38;5;12m (https://making.lyst.com/lightfm/docs/home.html) - A Python implementation of a number of popular recommendation algorithms for both implicit and explicit feedback.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCrab[0m[38;5;12m (https://github.com/muricoca/crab) - A flexible, fast recommender engine. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpython-recsys[0m[38;5;12m (https://github.com/ocelma/python-recsys) - A Python library for implementing a Recommender System.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mthinking bayes[0m[38;5;12m (https://github.com/AllenDowney/ThinkBayes) - Book on Bayesian Analysis.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mImage-to-Image[0m[38;5;14m[1m [0m[38;5;14m[1mTranslation[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1mConditional[0m[38;5;14m[1m [0m[38;5;14m[1mAdversarial[0m[38;5;14m[1m [0m[38;5;14m[1mNetworks[0m[38;5;12m [39m[38;5;12m(https://github.com/williamFalcon/pix2pix-keras)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mImplementation[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mimage[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mimage[39m[38;5;12m [39m[38;5;12m(pix2pix)[39m[38;5;12m [39m[38;5;12mtranslation[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mpaper[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;14m[1misola[0m[38;5;14m[1m [0m[38;5;14m[1met[0m[38;5;14m[1m [0m[38;5;14m[1mal[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/pdf/1611.07004.pdf).[39m[38;5;14m[1mDEEP[0m
|
||
[38;5;14m[1mLEARNING[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRestricted Boltzmann Machines[0m[38;5;12m (https://github.com/echen/restricted-boltzmann-machines) -Restricted Boltzmann Machines in Python. [39m[38;5;14m[1mDEEP LEARNING[0m[38;5;12m [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBolt[0m[38;5;12m (https://github.com/pprett/bolt) - Bolt Online Learning Toolbox. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCoverTree[0m[38;5;12m (https://github.com/patvarilly/CoverTree) - Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnilearn[0m[38;5;12m (https://github.com/nilearn/nilearn) - Machine learning for NeuroImaging in Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mneuropredict[0m[38;5;12m [39m[38;5;12m(https://github.com/raamana/neuropredict)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAimed[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mnovice[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearners[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mnon-expert[39m[38;5;12m [39m[38;5;12mprogrammers,[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mpackage[39m[38;5;12m [39m[38;5;12moffers[39m[38;5;12m [39m[38;5;12measy[39m[38;5;12m [39m[38;5;12m(no[39m[38;5;12m [39m[38;5;12mcoding[39m[38;5;12m [39m[38;5;12mneeded)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcomprehensive[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12m(evaluation[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mfull[39m[38;5;12m [39m[38;5;12mreport[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mpredictive[39m[38;5;12m [39m
|
||
[38;5;12mperformance[39m[38;5;12m [39m[38;5;12mWITHOUT[39m[38;5;12m [39m[38;5;12mrequiring[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcode)[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mNeuroImaging[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12many[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[38;5;12mtype[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mfeatures.[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12maimed[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mabsorbing[39m[38;5;12m [39m[38;5;12mmuch[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mML[39m[38;5;12m [39m[38;5;12mworkflow,[39m[38;5;12m [39m[38;5;12munlike[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[38;5;12mpackages[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m[38;5;12mnilearn[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mpymvpa,[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mrequire[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mlearn[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m[38;5;12mAPI[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcode[39m
|
||
[38;5;12mto[39m[38;5;12m [39m[38;5;12mproduce[39m[38;5;12m [39m[38;5;12manything[39m[38;5;12m [39m[38;5;12museful.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mimbalanced-learn[0m[38;5;12m (https://imbalanced-learn.org/stable/) - Python module to perform under sampling and oversampling with various techniques.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mimbalanced-ensemble[0m[38;5;12m [39m[38;5;12m(https://github.com/ZhiningLiu1998/imbalanced-ensemble)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mtoolbox[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mquick[39m[38;5;12m [39m[38;5;12mimplementation,[39m[38;5;12m [39m[38;5;12mmodification,[39m[38;5;12m [39m[38;5;12mevaluation,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mvisualization[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mensemble[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mclass-imbalanced[39m[38;5;12m [39m[38;5;12mdata.[39m[38;5;12m [39m[38;5;12mSupports[39m[38;5;12m [39m
|
||
[38;5;12mout-of-the-box[39m[38;5;12m [39m[38;5;12mmulti-class[39m[38;5;12m [39m[38;5;12mimbalanced[39m[38;5;12m [39m[38;5;12m(long-tailed)[39m[38;5;12m [39m[38;5;12mclassification.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mShogun[0m[38;5;12m (https://github.com/shogun-toolbox/shogun) - The Shogun Machine Learning Toolbox.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyevolve[0m[38;5;12m (https://github.com/perone/Pyevolve) - Genetic algorithm framework. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCaffe[0m[38;5;12m (https://github.com/BVLC/caffe) - A deep learning framework developed with cleanliness, readability, and speed in mind.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mbreze[0m[38;5;12m (https://github.com/breze-no-salt/breze) - Theano based library for deep and recurrent neural networks.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCortex[0m[38;5;12m (https://github.com/cortexlabs/cortex) - Open source platform for deploying machine learning models in production.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpyhsmm[0m[38;5;12m [39m[38;5;12m(https://github.com/mattjj/pyhsmm)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mapproximate[39m[38;5;12m [39m[38;5;12munsupervised[39m[38;5;12m [39m[38;5;12minference[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mBayesian[39m[38;5;12m [39m[38;5;12mHidden[39m[38;5;12m [39m[38;5;12mMarkov[39m[38;5;12m [39m[38;5;12mModels[39m[38;5;12m [39m[38;5;12m(HMMs)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mexplicit-duration[39m[38;5;12m [39m[38;5;12mHidden[39m[38;5;12m [39m[38;5;12msemi-Markov[39m[38;5;12m [39m[38;5;12mModels[39m[38;5;12m [39m[38;5;12m(HSMMs),[39m[38;5;12m [39m[38;5;12mfocusing[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mBayesian[39m[38;5;12m [39m[38;5;12mNonparametric[39m[38;5;12m [39m[38;5;12mextensions,[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m
|
||
[38;5;12mHDP-HMM[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mHDP-HSMM,[39m[38;5;12m [39m[38;5;12mmostly[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mweak-limit[39m[38;5;12m [39m[38;5;12mapproximations.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSKLL[0m[38;5;12m (https://github.com/EducationalTestingService/skll) - A wrapper around scikit-learn that makes it simpler to conduct experiments.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mneurolab[0m[38;5;12m (https://github.com/zueve/neurolab)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpearmint[0m[38;5;12m [39m[38;5;12m(https://github.com/HIPS/Spearmint)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mSpearmint[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mpackage[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mperform[39m[38;5;12m [39m[38;5;12mBayesian[39m[38;5;12m [39m[38;5;12moptimization[39m[38;5;12m [39m[38;5;12maccording[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12moutlined[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mpaper:[39m[38;5;12m [39m[38;5;12mPractical[39m[38;5;12m [39m[38;5;12mBayesian[39m[38;5;12m [39m[38;5;12mOptimization[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mMachine[39m[38;5;12m [39m[38;5;12mLearning[39m[38;5;12m [39m[38;5;12mAlgorithms.[39m[38;5;12m [39m[38;5;12mJasper[39m[38;5;12m [39m[38;5;12mSnoek,[39m[38;5;12m [39m[38;5;12mHugo[39m[38;5;12m [39m
|
||
[38;5;12mLarochelle[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mRyan[39m[38;5;12m [39m[38;5;12mP.[39m[38;5;12m [39m[38;5;12mAdams.[39m[38;5;12m [39m[38;5;12mAdvances[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mNeural[39m[38;5;12m [39m[38;5;12mInformation[39m[38;5;12m [39m[38;5;12mProcessing[39m[38;5;12m [39m[38;5;12mSystems,[39m[38;5;12m [39m[38;5;12m2012.[39m[38;5;12m [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPebl[0m[38;5;12m (https://github.com/abhik/pebl/) - Python Environment for Bayesian Learning. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTheano[0m[38;5;12m (https://github.com/Theano/Theano/) - Optimizing GPU-meta-programming code generating array oriented optimizing math compiler in Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorFlow[0m[38;5;12m (https://github.com/tensorflow/tensorflow/) - Open source software library for numerical computation using data flow graphs.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpomegranate[0m[38;5;12m (https://github.com/jmschrei/pomegranate) - Hidden Markov Models for Python, implemented in Cython for speed and efficiency.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpython-timbl[0m[38;5;12m (https://github.com/proycon/python-timbl) - A Python extension module wrapping the full TiMBL C++ programming interface. Timbl is an elaborate k-Nearest Neighbours machine learning toolkit.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdeap[0m[38;5;12m (https://github.com/deap/deap) - Evolutionary algorithm framework.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpydeep[0m[38;5;12m (https://github.com/andersbll/deeppy) - Deep Learning In Python. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmlxtend[0m[38;5;12m (https://github.com/rasbt/mlxtend) - A library consisting of useful tools for data science and machine learning tasks.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mneon[0m[38;5;12m (https://github.com/NervanaSystems/neon) - Nervana's [39m[38;5;14m[1mhigh-performance[0m[38;5;12m (https://github.com/soumith/convnet-benchmarks) Python-based Deep Learning framework [39m[38;5;14m[1mDEEP LEARNING[0m[38;5;12m . [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOptunity[0m[38;5;12m (https://optunity.readthedocs.io/en/latest/) - A library dedicated to automated hyperparameter optimization with a simple, lightweight API to facilitate drop-in replacement of grid search.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeural Networks and Deep Learning[0m[38;5;12m (https://github.com/mnielsen/neural-networks-and-deep-learning) - Code samples for my book "Neural Networks and Deep Learning" [39m[38;5;14m[1mDEEP LEARNING[0m[38;5;12m .[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAnnoy[0m[38;5;12m (https://github.com/spotify/annoy) - Approximate nearest neighbours implementation.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTPOT[0m[38;5;12m (https://github.com/EpistasisLab/tpot) - Tool that automatically creates and optimizes machine learning pipelines using genetic programming. Consider it your personal data science assistant, automating a tedious part of machine learning.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpgmpy[0m[38;5;12m (https://github.com/pgmpy/pgmpy) A python library for working with Probabilistic Graphical Models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDIGITS[0m[38;5;12m (https://github.com/NVIDIA/DIGITS) - The Deep Learning GPU Training System (DIGITS) is a web application for training deep learning models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOrange[0m[38;5;12m (https://orange.biolab.si/) - Open source data visualization and data analysis for novices and experts.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMXNet[0m[38;5;12m (https://github.com/apache/incubator-mxnet) - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Go, JavaScript and more.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmilk[0m[38;5;12m (https://github.com/luispedro/milk) - Machine learning toolkit focused on supervised classification. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTFLearn[0m[38;5;12m (https://github.com/tflearn/tflearn) - Deep learning library featuring a higher-level API for TensorFlow.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mREP[0m[38;5;12m [39m[38;5;12m(https://github.com/yandex/rep)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12mIPython-based[39m[38;5;12m [39m[38;5;12menvironment[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mconducting[39m[38;5;12m [39m[38;5;12mdata-driven[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mconsistent[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mreproducible[39m[38;5;12m [39m[38;5;12mway.[39m[38;5;12m [39m[38;5;12mREP[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mnot[39m[38;5;12m [39m[38;5;12mtrying[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12msubstitute[39m[38;5;12m [39m[38;5;12mscikit-learn,[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12mextends[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12mbetter[39m[38;5;12m [39m[38;5;12muser[39m[38;5;12m [39m[38;5;12mexperience.[39m[38;5;12m [39m
|
||
[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrgf_python[0m[38;5;12m (https://github.com/RGF-team/rgf) - Python bindings for Regularized Greedy Forest (Tree) Library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mskbayes[0m[38;5;12m (https://github.com/AmazaspShumik/sklearn-bayes) - Python package for Bayesian Machine Learning with scikit-learn API.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mfuku-ml[0m[38;5;12m (https://github.com/fukuball/fuku-ml) - Simple machine learning library, including Perceptron, Regression, Support Vector Machine, Decision Tree and more, it's easy to use and easy to learn for beginners.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mXcessiv[0m[38;5;12m (https://github.com/reiinakano/xcessiv) - A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyTorch[0m[38;5;12m (https://github.com/pytorch/pytorch) - Tensors and Dynamic neural networks in Python with strong GPU acceleration[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyTorch Lightning[0m[38;5;12m (https://github.com/PyTorchLightning/pytorch-lightning) - The lightweight PyTorch wrapper for high-performance AI research.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyTorch Lightning Bolts[0m[38;5;12m (https://github.com/PyTorchLightning/pytorch-lightning-bolts) - Toolbox of models, callbacks, and datasets for AI/ML researchers.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mskorch[0m[38;5;12m (https://github.com/skorch-dev/skorch) - A scikit-learn compatible neural network library that wraps PyTorch.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mML-From-Scratch[0m[38;5;12m (https://github.com/eriklindernoren/ML-From-Scratch) - Implementations of Machine Learning models from scratch in Python with a focus on transparency. Aims to showcase the nuts and bolts of ML in an accessible way.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEdward[0m[38;5;12m (http://edwardlib.org/) - A library for probabilistic modelling, inference, and criticism. Built on top of TensorFlow.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mxRBM[0m[38;5;12m (https://github.com/omimo/xRBM) - A library for Restricted Boltzmann Machine (RBM) and its conditional variants in Tensorflow.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCatBoost[0m
|
||
[38;5;12m (https://github.com/catboost/catboost) - General purpose gradient boosting on decision trees library with categorical features support out of the box. It is easy to install, well documented and supports CPU and GPU (even multi-GPU) computation.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mstacked_generalization[0m[38;5;12m (https://github.com/fukatani/stacked_generalization) - Implementation of machine learning stacking technique as a handy library in Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmodAL[0m[38;5;12m (https://github.com/modAL-python/modAL) - A modular active learning framework for Python, built on top of scikit-learn.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCogitare[0m[38;5;12m (https://github.com/cogitare-ai/cogitare): A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mParris[0m[38;5;12m (https://github.com/jgreenemi/Parris) - Parris, the automated infrastructure setup tool for machine learning algorithms.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mneonrvm[0m[38;5;12m (https://github.com/siavashserver/neonrvm) - neonrvm is an open source machine learning library based on RVM technique. It's written in C programming language and comes with Python programming language bindings.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTuri[0m[38;5;14m[1m [0m[38;5;14m[1mCreate[0m[38;5;12m [39m[38;5;12m(https://github.com/apple/turicreate)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mMachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mApple.[39m[38;5;12m [39m[38;5;12mTuri[39m[38;5;12m [39m[38;5;12mCreate[39m[38;5;12m [39m[38;5;12msimplifies[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mdevelopment[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mcustom[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mmodels.[39m[38;5;12m [39m[38;5;12mYou[39m[38;5;12m [39m[38;5;12mdon't[39m[38;5;12m [39m[38;5;12mhave[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mexpert[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12madd[39m[38;5;12m [39m[38;5;12mrecommendations,[39m[38;5;12m [39m[38;5;12mobject[39m[38;5;12m [39m[38;5;12mdetection,[39m[38;5;12m [39m
|
||
[38;5;12mimage[39m[38;5;12m [39m[38;5;12mclassification,[39m[38;5;12m [39m[38;5;12mimage[39m[38;5;12m [39m[38;5;12msimilarity[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mactivity[39m[38;5;12m [39m[38;5;12mclassification[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mapp.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mxLearn[0m[38;5;12m [39m[38;5;12m(https://github.com/aksnzhy/xlearn)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mhigh[39m[38;5;12m [39m[38;5;12mperformance,[39m[38;5;12m [39m[38;5;12measy-to-use,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mscalable[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mpackage,[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mused[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12msolve[39m[38;5;12m [39m[38;5;12mlarge-scale[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mproblems.[39m[38;5;12m [39m[38;5;12mxLearn[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mespecially[39m[38;5;12m [39m[38;5;12museful[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12msolving[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m
|
||
[38;5;12mproblems[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mlarge-scale[39m[38;5;12m [39m[38;5;12msparse[39m[38;5;12m [39m[38;5;12mdata,[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mvery[39m[38;5;12m [39m[38;5;12mcommon[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mInternet[39m[38;5;12m [39m[38;5;12mservices[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12monline[39m[38;5;12m [39m[38;5;12madvertisement[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mrecommender[39m[38;5;12m [39m[38;5;12msystems.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmlens[0m[38;5;12m (https://github.com/flennerhag/mlens) - A high performance, memory efficient, maximally parallelized ensemble learning, integrated with scikit-learn.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mThampi[0m[38;5;12m (https://github.com/scoremedia/thampi) - Machine Learning Prediction System on AWS Lambda[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMindsDB[0m[38;5;12m (https://github.com/mindsdb/mindsdb) - Open Source framework to streamline use of neural networks.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMicrosoft[0m[38;5;14m[1m [0m[38;5;14m[1mRecommenders[0m[38;5;12m [39m[38;5;12m(https://github.com/Microsoft/Recommenders):[39m[38;5;12m [39m[38;5;12mExamples[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mbest[39m[38;5;12m [39m[38;5;12mpractices[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mbuilding[39m[38;5;12m [39m[38;5;12mrecommendation[39m[38;5;12m [39m[38;5;12msystems,[39m[38;5;12m [39m[38;5;12mprovided[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mJupyter[39m[38;5;12m [39m[38;5;12mnotebooks.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mrepo[39m[38;5;12m [39m[38;5;12mcontains[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mlatest[39m[38;5;12m [39m[38;5;12mstate[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mart[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mMicrosoft[39m[38;5;12m [39m
|
||
[38;5;12mResearch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[38;5;12mcompanies[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12minstitutions.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStellarGraph[0m[38;5;12m (https://github.com/stellargraph/stellargraph): Machine Learning on Graphs, a Python library for machine learning on graph-structured (network-structured) data.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBentoML[0m[38;5;12m (https://github.com/bentoml/bentoml): Toolkit for package and deploy machine learning models for serving in production[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMiraiML[0m[38;5;12m (https://github.com/arthurpaulino/miraiml): An asynchronous engine for continuous & autonomous machine learning, built for real-time usage.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnumpy-ML[0m[38;5;12m (https://github.com/ddbourgin/numpy-ml): Reference implementations of ML models written in numpy[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeuraxle[0m[38;5;12m (https://github.com/Neuraxio/Neuraxle): A framework providing the right abstractions to ease research, development, and deployment of your ML pipelines.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCornac[0m[38;5;12m (https://github.com/PreferredAI/cornac) - A comparative framework for multimodal recommender systems with a focus on models leveraging auxiliary data.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mJAX[0m[38;5;12m (https://github.com/google/jax) - JAX is Autograd and XLA, brought together for high-performance machine learning research.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCatalyst[0m[38;5;12m [39m[38;5;12m(https://github.com/catalyst-team/catalyst)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mHigh-level[39m[38;5;12m [39m[38;5;12mutils[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mPyTorch[39m[38;5;12m [39m[38;5;12mDL[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;12mRL[39m[38;5;12m [39m[38;5;12mresearch.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mwas[39m[38;5;12m [39m[38;5;12mdeveloped[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mfocus[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mreproducibility,[39m[38;5;12m [39m[38;5;12mfast[39m[38;5;12m [39m[38;5;12mexperimentation[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcode/ideas[39m[38;5;12m [39m[38;5;12mreusing.[39m[38;5;12m [39m[38;5;12mBeing[39m[38;5;12m [39m[38;5;12mable[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mresearch/develop[39m[38;5;12m [39m[38;5;12msomething[39m[38;5;12m [39m[38;5;12mnew,[39m[38;5;12m [39m
|
||
[38;5;12mrather[39m[38;5;12m [39m[38;5;12mthan[39m[38;5;12m [39m[38;5;12mwrite[39m[38;5;12m [39m[38;5;12manother[39m[38;5;12m [39m[38;5;12mregular[39m[38;5;12m [39m[38;5;12mtrain[39m[38;5;12m [39m[38;5;12mloop.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFastai[0m[38;5;12m (https://github.com/fastai/fastai) - High-level wrapper built on the top of Pytorch which supports vision, text, tabular data and collaborative filtering.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscikit-multiflow[0m[38;5;12m (https://github.com/scikit-multiflow/scikit-multiflow) - A machine learning framework for multi-output/multi-label and stream data.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLightwood[0m[38;5;12m (https://github.com/mindsdb/lightwood) - A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glued together seamlessly with objective to build predictive models with one line of code.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mbayeso[0m[38;5;12m (https://github.com/jungtaekkim/bayeso) - A simple, but essential Bayesian optimization package, written in Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmljar-supervised[0m
|
||
[38;5;12m (https://github.com/mljar/mljar-supervised) - An Automated Machine Learning (AutoML) python package for tabular data. It can handle: Binary Classification, MultiClass Classification and Regression. It provides explanations and markdown reports.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mevostra[0m[38;5;12m (https://github.com/alirezamika/evostra) - A fast Evolution Strategy implementation in Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDetermined[0m[38;5;12m (https://github.com/determined-ai/determined) - Scalable deep learning training platform, including integrated support for distributed training, hyperparameter tuning, experiment tracking, and model management.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPySyft[0m[38;5;12m (https://github.com/OpenMined/PySyft) - A Python library for secure and private Deep Learning built on PyTorch and TensorFlow.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyGrid[0m[38;5;12m (https://github.com/OpenMined/PyGrid/) - Peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msktime[0m[38;5;12m (https://github.com/alan-turing-institute/sktime) - A unified framework for machine learning with time series[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOPFython[0m[38;5;12m (https://github.com/gugarosa/opfython) - A Python-inspired implementation of the Optimum-Path Forest classifier.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpytimizer[0m[38;5;12m (https://github.com/gugarosa/opytimizer) - Python-based meta-heuristic optimization techniques.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGradio[0m
|
||
[38;5;12m (https://github.com/gradio-app/gradio) - A Python library for quickly creating and sharing demos of models. Debug models interactively in your browser, get feedback from collaborators, and generate public links without deploying anything.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHub[0m[38;5;12m [39m[38;5;12m(https://github.com/activeloopai/Hub)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mFastest[39m[38;5;12m [39m[38;5;12munstructured[39m[38;5;12m [39m[38;5;12mdataset[39m[38;5;12m [39m[38;5;12mmanagement[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mTensorFlow/PyTorch.[39m[38;5;12m [39m[38;5;12mStream[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;12mversion-control[39m[38;5;12m [39m[38;5;12mdata.[39m[38;5;12m [39m[38;5;12mStore[39m[38;5;12m [39m[38;5;12meven[39m[38;5;12m [39m[38;5;12mpetabyte-scale[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msingle[39m[38;5;12m [39m[38;5;12mnumpy-like[39m[38;5;12m [39m[38;5;12marray[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mcloud[39m[38;5;12m [39m[38;5;12maccessible[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12many[39m[38;5;12m [39m[38;5;12mmachine.[39m[38;5;12m [39m[38;5;12mVisit[39m
|
||
[38;5;14m[1mactiveloop.ai[0m[38;5;12m [39m[38;5;12m(https://activeloop.ai)[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12minfo.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSynthia[0m[38;5;12m (https://github.com/dmey/synthia) - Multidimensional synthetic data generation in Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mByteHub[0m[38;5;12m (https://github.com/bytehub-ai/bytehub) - An easy-to-use, Python-based feature store. Optimized for time-series data.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBackprop[0m[38;5;12m (https://github.com/backprop-ai/backprop) - Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRiver[0m[38;5;12m (https://github.com/online-ml/river): A framework for general purpose online machine learning.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFEDOT[0m[38;5;12m [39m[38;5;12m(https://github.com/nccr-itmo/FEDOT):[39m[38;5;12m [39m[38;5;12mAn[39m[38;5;12m [39m[38;5;12mAutoML[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mautomated[39m[38;5;12m [39m[38;5;12mdesign[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mcomposite[39m[38;5;12m [39m[38;5;12mmodelling[39m[38;5;12m [39m[38;5;12mpipelines.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mhandle[39m[38;5;12m [39m[38;5;12mclassification,[39m[38;5;12m [39m[38;5;12mregression,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mtime[39m[38;5;12m [39m[38;5;12mseries[39m[38;5;12m [39m[38;5;12mforecasting[39m[38;5;12m [39m[38;5;12mtasks[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mdifferent[39m[38;5;12m [39m[38;5;12mtypes[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12m(including[39m[38;5;12m [39m
|
||
[38;5;12mmulti-modal[39m[38;5;12m [39m[38;5;12mdatasets).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSklearn-genetic-opt[0m[38;5;12m (https://github.com/rodrigo-arenas/Sklearn-genetic-opt): An AutoML package for hyperparameters tuning using evolutionary algorithms, with built-in callbacks, plotting, remote logging and more.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEvidently[0m[38;5;12m (https://github.com/evidentlyai/evidently): Interactive reports to analyze machine learning models during validation or production monitoring.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStreamlit[0m[38;5;12m (https://github.com/streamlit/streamlit): Streamlit is an framework to create beautiful data apps in hours, not weeks.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOptuna[0m[38;5;12m (https://github.com/optuna/optuna): Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeepchecks[0m[38;5;12m [39m[38;5;12m(https://github.com/deepchecks/deepchecks):[39m[38;5;12m [39m[38;5;12mValidation[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;12mtesting[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mduring[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mdevelopment,[39m[38;5;12m [39m[38;5;12mdeployment,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mproduction.[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mincludes[39m[38;5;12m [39m[38;5;12mchecks[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12msuites[39m[38;5;12m [39m[38;5;12mrelated[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mvarious[39m[38;5;12m [39m[38;5;12mtypes[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12missues,[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m
|
||
[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mperformance,[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mintegrity,[39m[38;5;12m [39m[38;5;12mdistribution[39m[38;5;12m [39m[38;5;12mmismatches,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmore.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mShapash[0m[38;5;12m (https://github.com/MAIF/shapash) : Shapash is a Python library that provides several types of visualization that display explicit labels that everyone can understand.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEurybia[0m[38;5;12m (https://github.com/MAIF/eurybia): Eurybia monitors data and model drift over time and securizes model deployment with data validation.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mColossal-AI[0m[38;5;12m (https://github.com/hpcaitech/ColossalAI): An open-source deep learning system for large-scale model training and inference with high efficiency and low cost.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mskrub[0m[38;5;12m (https://github.com/skrub-data/skrub) - Skrub is a Python library that eases preprocessing and feature engineering for machine learning on dataframes.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mUpgini[0m[38;5;12m [39m[38;5;12m(https://github.com/upgini/upgini):[39m[38;5;12m [39m[38;5;12mFree[39m[38;5;12m [39m[38;5;12mautomated[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12menrichment[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mautomatically[39m[38;5;12m [39m[38;5;12msearches[39m[38;5;12m [39m[38;5;12mthrough[39m[38;5;12m [39m[38;5;12mthousands[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mready-to-use[39m[38;5;12m [39m[38;5;12mfeatures[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mpublic[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcommunity[39m[38;5;12m [39m[38;5;12mshared[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12msources[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12menriches[39m[38;5;12m [39m[38;5;12myour[39m
|
||
[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mdataset[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12monly[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12maccuracy[39m[38;5;12m [39m[38;5;12mimproving[39m[38;5;12m [39m[38;5;12mfeatures.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAutoML-Implementation-for-Static-and-Dynamic-Data-Analytics[0m[38;5;12m [39m[38;5;12m(https://github.com/Western-OC2-Lab/AutoML-Implementation-for-Static-and-Dynamic-Data-Analytics):[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mtutorial[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mhelp[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mresearchers[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mautomatically[39m[38;5;12m [39m[38;5;12mobtain[39m[38;5;12m [39m[38;5;12moptimized[39m[38;5;12m [39m
|
||
[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12moptimal[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mperformance[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12many[39m[38;5;12m [39m[38;5;12mspecific[39m[38;5;12m [39m[38;5;12mtask.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSKBEL[0m[38;5;12m (https://github.com/robinthibaut/skbel): A Python library for Bayesian Evidential Learning (BEL) in order to estimate the uncertainty of a prediction.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNannyML[0m[38;5;12m (https://bit.ly/nannyml-github-machinelearning): Python library capable of fully capturing the impact of data drift on performance. Allows estimation of post-deployment model performance without access to targets.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcleanlab[0m[38;5;12m (https://github.com/cleanlab/cleanlab): The standard data-centric AI package for data quality and machine learning with messy, real-world data and labels.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAutoGluon[0m[38;5;12m (https://github.com/awslabs/autogluon): AutoML for Image, Text, Tabular, Time-Series, and MultiModal Data.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyBroker[0m[38;5;12m (https://github.com/edtechre/pybroker) - Algorithmic Trading with Machine Learning.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFrouros[0m[38;5;12m (https://github.com/IFCA/frouros): Frouros is an open source Python library for drift detection in machine learning systems.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCometML[0m[38;5;12m (https://github.com/comet-ml/comet-examples): The best-in-class MLOps platform with experiment tracking, model production monitoring, a model registry, and data lineage from training straight through to production.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOkrolearn[0m[38;5;12m (https://github.com/Okerew/okrolearn): A python machine learning library created to combine powefull data analasys features with tensors and machine learning components, while maintaining support for other libraries.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpik[0m[38;5;12m (https://github.com/comet-ml/opik): Evaluate, trace, test, and ship LLM applications across your dev and production lifecycles.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpyclugen[0m[38;5;12m (https://github.com/clugen/pyclugen) - Multidimensional cluster generation in Python.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mData Analysis / Data Visualization[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDataComPy[0m[38;5;12m (https://github.com/capitalone/datacompy) - A library to compare Pandas, Polars, and Spark data frames. It provides stats and lets users adjust for match accuracy.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDataVisualization[0m[38;5;12m (https://github.com/Shanky-21/Data_visualization) - A GitHub Repository Where you can Learn Datavisualizatoin Basics to Intermediate level.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCartopy[0m[38;5;12m (https://scitools.org.uk/cartopy/docs/latest/) - Cartopy is a Python package designed for geospatial data processing in order to produce maps and other geospatial data analyses.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSciPy[0m[38;5;12m (https://www.scipy.org/) - A Python-based ecosystem of open-source software for mathematics, science, and engineering.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNumPy[0m[38;5;12m (https://www.numpy.org/) - A fundamental package for scientific computing with Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAutoViz[0m[38;5;12m (https://github.com/AutoViML/AutoViz) AutoViz performs automatic visualization of any dataset with a single line of Python code. Give it any input file (CSV, txt or JSON) of any size and AutoViz will visualize it. See .[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNumba[0m[38;5;12m (https://numba.pydata.org/) - Python JIT (just in time) compiler to LLVM aimed at scientific Python by the developers of Cython and NumPy.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMars[0m[38;5;12m (https://github.com/mars-project/mars) - A tensor-based framework for large-scale data computation which is often regarded as a parallel and distributed version of NumPy.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNetworkX[0m[38;5;12m (https://networkx.github.io/) - A high-productivity software for complex networks.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1migraph[0m[38;5;12m (https://igraph.org/python/) - binding to igraph library - General purpose graph library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPandas[0m[38;5;12m (https://pandas.pydata.org/) - A library providing high-performance, easy-to-use data structures and data analysis tools.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mParaMonte[0m[38;5;12m [39m[38;5;12m(https://github.com/cdslaborg/paramonte)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mgeneral-purpose[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mBayesian[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12manalysis[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mvisualization[39m[38;5;12m [39m[38;5;12mvia[39m[38;5;12m [39m[38;5;12mserial/parallel[39m[38;5;12m [39m[38;5;12mMonte[39m[38;5;12m [39m[38;5;12mCarlo[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mMCMC[39m[38;5;12m [39m[38;5;12msimulations.[39m[38;5;12m [39m[38;5;12mDocumentation[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mfound[39m[38;5;12m [39m[38;5;14m[1mhere[0m[38;5;12m [39m
|
||
[38;5;12m(https://www.cdslab.org/paramonte/).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVaex[0m[38;5;12m (https://github.com/vaexio/vaex) - A high performance Python library for lazy Out-of-Core DataFrames (similar to Pandas), to visualize and explore big tabular datasets. Documentation can be found [39m[38;5;14m[1mhere[0m[38;5;12m (https://vaex.io/docs/index.html).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpen Mining[0m[38;5;12m (https://github.com/mining/mining) - Business Intelligence (BI) in Python (Pandas web interface) [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyMC[0m[38;5;12m (https://github.com/pymc-devs/pymc) - Markov Chain Monte Carlo sampling toolkit.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mzipline[0m[38;5;12m (https://github.com/quantopian/zipline) - A Pythonic algorithmic trading library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyDy[0m[38;5;12m (https://www.pydy.org/) - Short for Python Dynamics, used to assist with workflow in the modelling of dynamic motion based around NumPy, SciPy, IPython, and matplotlib.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSymPy[0m[38;5;12m (https://github.com/sympy/sympy) - A Python library for symbolic mathematics.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mstatsmodels[0m[38;5;12m (https://github.com/statsmodels/statsmodels) - Statistical modelling and econometrics in Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mastropy[0m[38;5;12m (https://www.astropy.org/) - A community Python library for Astronomy.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmatplotlib[0m[38;5;12m (https://matplotlib.org/) - A Python 2D plotting library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mbokeh[0m[38;5;12m (https://github.com/bokeh/bokeh) - Interactive Web Plotting for Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mplotly[0m[38;5;12m (https://plot.ly/python/) - Collaborative web plotting for Python and matplotlib.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1maltair[0m[38;5;12m (https://github.com/altair-viz/altair) - A Python to Vega translator.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1md3py[0m[38;5;12m (https://github.com/mikedewar/d3py) - A plotting library for Python, based on [39m[38;5;14m[1mD3.js[0m[38;5;12m (https://d3js.org/).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyDexter[0m[38;5;12m (https://github.com/D3xterjs/pydexter) - Simple plotting for Python. Wrapper for D3xterjs; easily render charts in-browser.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mggplot[0m[38;5;12m (https://github.com/yhat/ggpy) - Same API as ggplot2 for R. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mggfortify[0m[38;5;12m (https://github.com/sinhrks/ggfortify) - Unified interface to ggplot2 popular R packages.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKartograph.py[0m[38;5;12m (https://github.com/kartograph/kartograph.py) - Rendering beautiful SVG maps in Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpygal[0m[38;5;12m (http://pygal.org/en/stable/) - A Python SVG Charts Creator.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyQtGraph[0m[38;5;12m (https://github.com/pyqtgraph/pyqtgraph) - A pure-python graphics and GUI library built on PyQt4 / PySide and NumPy.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpycascading[0m[38;5;12m (https://github.com/twitter/pycascading) [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPetrel[0m[38;5;12m (https://github.com/AirSage/Petrel) - Tools for writing, submitting, debugging, and monitoring Storm topologies in pure Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBlaze[0m[38;5;12m (https://github.com/blaze/blaze) - NumPy and Pandas interface to Big Data.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1memcee[0m[38;5;12m (https://github.com/dfm/emcee) - The Python ensemble sampling toolkit for affine-invariant MCMC.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mwindML[0m[38;5;12m (https://github.com/cigroup-ol/windml) - A Python Framework for Wind Energy Analysis and Prediction.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mvispy[0m[38;5;12m (https://github.com/vispy/vispy) - GPU-based high-performance interactive OpenGL 2D/3D data visualization library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcerebro2[0m[38;5;12m (https://github.com/numenta/nupic.cerebro2) A web-based visualization and debugging platform for NuPIC. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNuPIC Studio[0m[38;5;12m (https://github.com/htm-community/nupic.studio) An all-in-one NuPIC Hierarchical Temporal Memory visualization and debugging super-tool! [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSparklingPandas[0m[38;5;12m (https://github.com/sparklingpandas/sparklingpandas) Pandas on PySpark (POPS).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSeaborn[0m[38;5;12m (https://seaborn.pydata.org/) - A python visualization library based on matplotlib.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mipychart[0m[38;5;12m (https://github.com/nicohlr/ipychart) - The power of Chart.js in Jupyter Notebook.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mbqplot[0m[38;5;12m (https://github.com/bloomberg/bqplot) - An API for plotting in Jupyter (IPython).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpastalog[0m[38;5;12m (https://github.com/rewonc/pastalog) - Simple, realtime visualization of neural network training performance.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSuperset[0m[38;5;12m (https://github.com/apache/incubator-superset) - A data exploration platform designed to be visual, intuitive, and interactive.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDora[0m[38;5;12m (https://github.com/nathanepstein/dora) - Tools for exploratory data analysis in Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRuffus[0m[38;5;12m (http://www.ruffus.org.uk) - Computation Pipeline library for python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSOMPY[0m[38;5;12m (https://github.com/sevamoo/SOMPY) - Self Organizing Map written in Python (Uses neural networks for data analysis).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msomoclu[0m[38;5;12m (https://github.com/peterwittek/somoclu) Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters, has python API.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHDBScan[0m[38;5;12m (https://github.com/lmcinnes/hdbscan) - implementation of the hdbscan algorithm in Python - used for clustering[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mvisualize_ML[0m[38;5;12m (https://github.com/ayush1997/visualize_ML) - A python package for data exploration and data analysis. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscikit-plot[0m[38;5;12m (https://github.com/reiinakano/scikit-plot) - A visualization library for quick and easy generation of common plots in data analysis and machine learning.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBowtie[0m[38;5;12m (https://github.com/jwkvam/bowtie) - A dashboard library for interactive visualizations using flask socketio and react.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mlime[0m[38;5;12m (https://github.com/marcotcr/lime) - Lime is about explaining what machine learning classifiers (or models) are doing. It is able to explain any black box classifier, with two or more classes.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyCM[0m[38;5;12m [39m[38;5;12m(https://github.com/sepandhaghighi/pycm)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mPyCM[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mmulti-class[39m[38;5;12m [39m[38;5;12mconfusion[39m[38;5;12m [39m[38;5;12mmatrix[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mwritten[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12msupports[39m[38;5;12m [39m[38;5;12mboth[39m[38;5;12m [39m[38;5;12minput[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mvectors[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdirect[39m[38;5;12m [39m[38;5;12mmatrix,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mproper[39m[38;5;12m [39m[38;5;12mtool[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mpost-classification[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mevaluation[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12msupports[39m[38;5;12m [39m
|
||
[38;5;12mmost[39m[38;5;12m [39m[38;5;12mclasses[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12moverall[39m[38;5;12m [39m[38;5;12mstatistics[39m[38;5;12m [39m[38;5;12mparameters[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDash[0m[38;5;12m (https://github.com/plotly/dash) - A framework for creating analytical web applications built on top of Plotly.js, React, and Flask[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLambdo[0m[38;5;12m [39m[38;5;12m(https://github.com/asavinov/lambdo)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mworkflow[39m[38;5;12m [39m[38;5;12mengine[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12msolving[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mproblems[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mcombining[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mone[39m[38;5;12m [39m[38;5;12manalysis[39m[38;5;12m [39m[38;5;12mpipeline[39m[38;5;12m [39m[38;5;12m(i)[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12mengineering[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12m(ii)[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mprediction[39m[38;5;12m [39m[38;5;12m(iii)[39m[38;5;12m [39m[38;5;12mtable[39m[38;5;12m [39m[38;5;12mpopulation[39m[38;5;12m [39m
|
||
[38;5;12mand[39m[38;5;12m [39m[38;5;12mcolumn[39m[38;5;12m [39m[38;5;12mevaluation[39m[38;5;12m [39m[38;5;12mvia[39m[38;5;12m [39m[38;5;12muser-defined[39m[38;5;12m [39m[38;5;12m(Python)[39m[38;5;12m [39m[38;5;12mfunctions.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorWatch[0m[38;5;12m [39m[38;5;12m(https://github.com/microsoft/tensorwatch)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mDebugging[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mvisualization[39m[38;5;12m [39m[38;5;12mtool[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscience.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mextensively[39m[38;5;12m [39m[38;5;12mleverages[39m[38;5;12m [39m[38;5;12mJupyter[39m[38;5;12m [39m[38;5;12mNotebook[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mshow[39m[38;5;12m [39m[38;5;12mreal-time[39m[38;5;12m [39m[38;5;12mvisualizations[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mrunning[39m[38;5;12m [39m[38;5;12mprocesses[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m
|
||
[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mtraining.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdowel[0m[38;5;12m (https://github.com/rlworkgroup/dowel) - A little logger for machine learning research. Output any object to the terminal, CSV, TensorBoard, text logs on disk, and more with just one call to [39m[48;5;235m[38;5;249mlogger.log()[49m[39m[38;5;12m.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFlama[0m[38;5;12m (https://github.com/vortico/flama) - Ignite your models into blazing-fast machine learning APIs with a modern framework.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mMisc Scripts / iPython Notebooks / Codebases[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMiniGrad[0m[38;5;12m (https://github.com/kennysong/minigrad) – A minimal, educational, Pythonic implementation of autograd (~100 loc).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMap/Reduce[0m[38;5;14m[1m [0m[38;5;14m[1mimplementations[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mcommon[0m[38;5;14m[1m [0m[38;5;14m[1mML[0m[38;5;14m[1m [0m[38;5;14m[1malgorithms[0m[38;5;12m [39m[38;5;12m(https://github.com/Yannael/BigDataAnalytics_INFOH515):[39m[38;5;12m [39m[38;5;12mJupyter[39m[38;5;12m [39m[38;5;12mnotebooks[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcover[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mimplement[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mscratch[39m[38;5;12m [39m[38;5;12mdifferent[39m[38;5;12m [39m[38;5;12mML[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12m(ordinary[39m[38;5;12m [39m[38;5;12mleast[39m[38;5;12m [39m[38;5;12msquares,[39m[38;5;12m [39m[38;5;12mgradient[39m[38;5;12m [39m[38;5;12mdescent,[39m[38;5;12m [39m[38;5;12mk-means,[39m[38;5;12m [39m
|
||
[38;5;12malternating[39m[38;5;12m [39m[38;5;12mleast[39m[38;5;12m [39m[38;5;12msquares),[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mNumPy,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mthen[39m[38;5;12m [39m[38;5;12mmake[39m[38;5;12m [39m[38;5;12mthese[39m[38;5;12m [39m[38;5;12mimplementations[39m[38;5;12m [39m[38;5;12mscalable[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mMap/Reduce[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mSpark.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBioPy[0m[38;5;12m (https://github.com/jaredthecoder/BioPy) - Biologically-Inspired and Machine Learning Algorithms in Python. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCAEs for Data Assimilation[0m[38;5;12m (https://github.com/julianmack/Data_Assimilation) - Convolutional autoencoders for 3D image/field compression applied to reduced order [39m[38;5;14m[1mData Assimilation[0m[38;5;12m (https://en.wikipedia.org/wiki/Data_assimilation).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mhandsonml[0m[38;5;12m (https://github.com/ageron/handson-ml) - Fundamentals of machine learning in python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSVM Explorer[0m[38;5;12m (https://github.com/plotly/dash-svm) - Interactive SVM Explorer, using Dash and scikit-learn[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpattern_classification[0m[38;5;12m (https://github.com/rasbt/pattern_classification)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mthinking stats 2[0m[38;5;12m (https://github.com/Wavelets/ThinkStats2)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mhyperopt[0m[38;5;12m (https://github.com/hyperopt/hyperopt-sklearn)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnumpic[0m[38;5;12m (https://github.com/numenta/nupic)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2012-paper-diginorm[0m[38;5;12m (https://github.com/dib-lab/2012-paper-diginorm)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mA gallery of interesting IPython notebooks[0m[38;5;12m (https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mipython-notebooks[0m[38;5;12m (https://github.com/ogrisel/notebooks)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdata-science-ipython-notebooks[0m
|
||
[38;5;12m (https://github.com/donnemartin/data-science-ipython-notebooks) - Continually updated Data Science Python Notebooks: Spark, Hadoop MapReduce, HDFS, AWS, Kaggle, scikit-learn, matplotlib, pandas, NumPy, SciPy, and various command lines.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdecision-weights[0m[38;5;12m (https://github.com/CamDavidsonPilon/decision-weights)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSarah Palin LDA[0m[38;5;12m (https://github.com/Wavelets/sarah-palin-lda) - Topic Modelling the Sarah Palin emails.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDiffusion Segmentation[0m[38;5;12m (https://github.com/Wavelets/diffusion-segmentation) - A collection of image segmentation algorithms based on diffusion methods.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mScipy Tutorials[0m[38;5;12m (https://github.com/Wavelets/scipy-tutorials) - SciPy tutorials. This is outdated, check out scipy-lecture-notes.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCrab[0m[38;5;12m (https://github.com/marcelcaraciolo/crab) - A recommendation engine library for Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBayesPy[0m[38;5;12m (https://github.com/maxsklar/BayesPy) - Bayesian Inference Tools in Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscikit-learn tutorials[0m[38;5;12m (https://github.com/GaelVaroquaux/scikit-learn-tutorial) - Series of notebooks for learning scikit-learn.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msentiment-analyzer[0m[38;5;12m (https://github.com/madhusudancs/sentiment-analyzer) - Tweets Sentiment Analyzer[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msentiment_classifier[0m[38;5;12m (https://github.com/kevincobain2000/sentiment_classifier) - Sentiment classifier using word sense disambiguation.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgroup-lasso[0m[38;5;12m (https://github.com/fabianp/group_lasso) - Some experiments with the coordinate descent algorithm used in the (Sparse) Group Lasso model.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mjProcessing[0m[38;5;12m [39m[38;5;12m(https://github.com/kevincobain2000/jProcessing)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mKanji[39m[38;5;12m [39m[38;5;12m/[39m[38;5;12m [39m[38;5;12mHiragana[39m[38;5;12m [39m[38;5;12m/[39m[38;5;12m [39m[38;5;12mKatakana[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mRomaji[39m[38;5;12m [39m[38;5;12mConverter.[39m[38;5;12m [39m[38;5;12mEdict[39m[38;5;12m [39m[38;5;12mDictionary[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;12mparallel[39m[38;5;12m [39m[38;5;12msentences[39m[38;5;12m [39m[38;5;12mSearch.[39m[38;5;12m [39m[38;5;12mSentence[39m[38;5;12m [39m[38;5;12mSimilarity[39m[38;5;12m [39m[38;5;12mbetween[39m[38;5;12m [39m[38;5;12mtwo[39m[38;5;12m [39m[38;5;12mJP[39m[38;5;12m [39m[38;5;12mSentences.[39m[38;5;12m [39m[38;5;12mSentiment[39m[38;5;12m [39m[38;5;12mAnalysis[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mJapanese[39m[38;5;12m [39m[38;5;12mText.[39m[38;5;12m [39m[38;5;12mRun[39m
|
||
[38;5;12mCabocha(ISO--8859-1[39m[38;5;12m [39m[38;5;12mconfigured)[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mPython.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmne-python-notebooks[0m[38;5;12m (https://github.com/mne-tools/mne-python-notebooks) - IPython notebooks for EEG/MEG data processing using mne-python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeon Course[0m[38;5;12m (https://github.com/NervanaSystems/neon_course) - IPython notebooks for a complete course around understanding Nervana's Neon.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpandas cookbook[0m[38;5;12m (https://github.com/jvns/pandas-cookbook) - Recipes for using Python's pandas library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mclimin[0m[38;5;12m (https://github.com/BRML/climin) - Optimization library focused on machine learning, pythonic implementations of gradient descent, LBFGS, rmsprop, adadelta and others.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAllen Downey’s Data Science Course[0m[38;5;12m (https://github.com/AllenDowney/DataScience) - Code for Data Science at Olin College, Spring 2014.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAllen Downey’s Think Bayes Code[0m[38;5;12m (https://github.com/AllenDowney/ThinkBayes) - Code repository for Think Bayes.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAllen Downey’s Think Complexity Code[0m[38;5;12m (https://github.com/AllenDowney/ThinkComplexity) - Code for Allen Downey's book Think Complexity.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAllen Downey’s Think OS Code[0m[38;5;12m (https://github.com/AllenDowney/ThinkOS) - Text and supporting code for Think OS: A Brief Introduction to Operating Systems.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPython Programming for the Humanities[0m[38;5;12m (https://www.karsdorp.io/python-course/) - Course for Python programming for the Humanities, assuming no prior knowledge. Heavy focus on text processing / NLP.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGreatCircle[0m[38;5;12m (https://github.com/mwgg/GreatCircle) - Library for calculating great circle distance.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOptunity examples[0m[38;5;12m (http://optunity.readthedocs.io/en/latest/notebooks/index.html) - Examples demonstrating how to use Optunity in synergy with machine learning libraries.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDive[0m[38;5;14m[1m [0m[38;5;14m[1minto[0m[38;5;14m[1m [0m[38;5;14m[1mMachine[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1mPython[0m[38;5;14m[1m [0m[38;5;14m[1mJupyter[0m[38;5;14m[1m [0m[38;5;14m[1mnotebook[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mscikit-learn[0m[38;5;12m [39m[38;5;12m(https://github.com/hangtwenty/dive-into-machine-learning)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12m"I[39m[38;5;12m [39m[38;5;12mlearned[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mhacking[39m[38;5;12m [39m[38;5;12mfirst,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mgetting[39m[38;5;12m [39m[38;5;12mserious[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mlater.[0m[38;5;12m [39m[38;5;12mI[39m[38;5;12m [39m[38;5;12mwanted[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mdo[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mMachine[39m[38;5;12m [39m[38;5;12mLearning.[39m[38;5;12m [39m[38;5;12mIf[39m[38;5;12m [39m
|
||
[38;5;12mthis[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mstyle,[39m[38;5;12m [39m[38;5;12mjoin[39m[38;5;12m [39m[38;5;12mme[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mgetting[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mbit[39m[38;5;12m [39m[38;5;12mahead[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12myourself."[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTDB[0m[38;5;12m (https://github.com/ericjang/tdb) - TensorDebugger (TDB) is a visual debugger for deep learning. It features interactive, node-by-node debugging and visualization for TensorFlow.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSuiron[0m[38;5;12m (https://github.com/kendricktan/suiron/) - Machine Learning for RC Cars.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIntroduction to machine learning with scikit-learn[0m[38;5;12m (https://github.com/justmarkham/scikit-learn-videos) - IPython notebooks from Data School's video tutorials on scikit-learn.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPractical XGBoost in Python[0m[38;5;12m (https://parrotprediction.teachable.com/p/practical-xgboost-in-python) - comprehensive online course about using XGBoost in Python.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIntroduction to Machine Learning with Python[0m[38;5;12m (https://github.com/amueller/introduction_to_ml_with_python) - Notebooks and code for the book "Introduction to Machine Learning with Python"[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPydata book[0m[38;5;12m (https://github.com/wesm/pydata-book) - Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHomemade Machine Learning[0m[38;5;12m (https://github.com/trekhleb/homemade-machine-learning) - Python examples of popular machine learning algorithms with interactive Jupyter demos and math being explained[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mProdmodel[0m[38;5;12m (https://github.com/prodmodel/prodmodel) - Build tool for data science pipelines.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mthe-elements-of-statistical-learning[0m[38;5;12m (https://github.com/maitbayev/the-elements-of-statistical-learning) - This repository contains Jupyter notebooks implementing the algorithms found in the book and summary of the textbook.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHyperparameter-Optimization-of-Machine-Learning-Algorithms[0m
|
||
[38;5;12m (https://github.com/LiYangHart/Hyperparameter-Optimization-of-Machine-Learning-Algorithms) - Code for hyperparameter tuning/optimization of machine learning and deep learning algorithms.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHeart_Disease-Prediction[0m[38;5;12m (https://github.com/ShivamChoudhary17/Heart_Disease) - Given clinical parameters about a patient, can we predict whether or not they have heart disease?[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFlight Fare Prediction[0m[38;5;12m (https://github.com/ShivamChoudhary17/Flight_Fare_Prediction) - This basically to gauge the understanding of Machine Learning Workflow and Regression technique in specific.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKeras Tuner[0m[38;5;12m (https://github.com/keras-team/keras-tuner) - An easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search.[39m
|
||
|
||
|
||
|
||
|
||
[38;2;255;187;0m[4mNeural Networks[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKinho[0m[38;5;12m (https://github.com/kinhosz/Neural) - Simple API for Neural Network. Better for image processing with CPU/GPU + Transfer Learning.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnn_builder[0m[38;5;12m (https://github.com/p-christ/nn_builder) - nn_builder is a python package that lets you build neural networks in 1 line[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeuralTalk[0m[38;5;12m (https://github.com/karpathy/neuraltalk) - NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeuralTalk[0m[38;5;12m (https://github.com/karpathy/neuraltalk2) - NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeuron[0m[38;5;12m [39m[38;5;12m(https://github.com/molcik/python-neuron)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mNeuron[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12msimple[39m[38;5;12m [39m[38;5;12mclass[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mtime[39m[38;5;12m [39m[38;5;12mseries[39m[38;5;12m [39m[38;5;12mpredictions.[39m[38;5;12m [39m[38;5;12mIt's[39m[38;5;12m [39m[38;5;12mutilize[39m[38;5;12m [39m[38;5;12mLNU[39m[38;5;12m [39m[38;5;12m(Linear[39m[38;5;12m [39m[38;5;12mNeural[39m[38;5;12m [39m[38;5;12mUnit),[39m[38;5;12m [39m[38;5;12mQNU[39m[38;5;12m [39m[38;5;12m(Quadratic[39m[38;5;12m [39m[38;5;12mNeural[39m[38;5;12m [39m[38;5;12mUnit),[39m[38;5;12m [39m[38;5;12mRBF[39m[38;5;12m [39m[38;5;12m(Radial[39m[38;5;12m [39m[38;5;12mBasis[39m[38;5;12m [39m[38;5;12mFunction),[39m[38;5;12m [39m[38;5;12mMLP[39m[38;5;12m [39m[38;5;12m(Multi[39m[38;5;12m [39m[38;5;12mLayer[39m[38;5;12m [39m[38;5;12mPerceptron),[39m[38;5;12m [39m[38;5;12mMLP-ELM[39m[38;5;12m [39m[38;5;12m(Multi[39m
|
||
[38;5;12mLayer[39m[38;5;12m [39m[38;5;12mPerceptron[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mExtreme[39m[38;5;12m [39m[38;5;12mLearning[39m[38;5;12m [39m[38;5;12mMachine)[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetworks[39m[38;5;12m [39m[38;5;12mlearned[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mGradient[39m[38;5;12m [39m[38;5;12mdescent[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mLeLevenberg–Marquardt[39m[38;5;12m [39m[38;5;12malgorithm.[39m[38;5;12m [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mData Driven Code[0m[38;5;12m (https://github.com/atmb4u/data-driven-code) - Very simple implementation of neural networks for dummies in python without using any libraries, with detailed comments.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMachine Learning, Data Science and Deep Learning with Python[0m
|
||
[38;5;12m (https://www.manning.com/livevideo/machine-learning-data-science-and-deep-learning-with-python) - LiveVideo course that covers machine learning, Tensorflow, artificial intelligence, and neural networks.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTResNet: High Performance GPU-Dedicated Architecture[0m[38;5;12m (https://github.com/mrT23/TResNet) - TResNet models were designed and optimized to give the best speed-accuracy tradeoff out there on GPUs.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTResNet: Simple and powerful neural network library for python[0m[38;5;12m (https://github.com/zueve/neurolab) - Variety of supported types of Artificial Neural Network and learning algorithms.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mJina AI[0m[38;5;12m (https://jina.ai/) An easier way to build neural search in the cloud. Compatible with Jupyter Notebooks.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msequitur[0m[38;5;12m (https://github.com/shobrook/sequitur) PyTorch library for creating and training sequence autoencoders in just two lines of code[39m
|
||
|
||
|
||
|
||
[38;2;255;187;0m[4mSpiking Neural Networks[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRockpool[0m[38;5;12m (https://github.com/synsense/rockpool) - A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSinabs[0m[38;5;12m (https://github.com/synsense/sinabs) - A deep learning library for spiking neural networks which is based on PyTorch, focuses on fast training and supports inference on neuromorphic hardware.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTonic[0m[38;5;12m (https://github.com/neuromorphs/tonic) - A library that makes downloading publicly available neuromorphic datasets a breeze and provides event-based data transformation/augmentation pipelines.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mPython Survival Analysis[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mlifelines[0m[38;5;12m (https://github.com/CamDavidsonPilon/lifelines) - lifelines is a complete survival analysis library, written in pure Python[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mScikit-Survival[0m[38;5;12m [39m[38;5;12m(https://github.com/sebp/scikit-survival)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mscikit-survival[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mmodule[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12msurvival[39m[38;5;12m [39m[38;5;12manalysis[39m[38;5;12m [39m[38;5;12mbuilt[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mtop[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mscikit-learn.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mallows[39m[38;5;12m [39m[38;5;12mdoing[39m[38;5;12m [39m[38;5;12msurvival[39m[38;5;12m [39m[38;5;12manalysis[39m[38;5;12m [39m[38;5;12mwhile[39m[38;5;12m [39m[38;5;12mutilizing[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mpower[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mscikit-learn,[39m[38;5;12m [39m[38;5;12me.g.,[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m
|
||
[38;5;12mpre-processing[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mdoing[39m[38;5;12m [39m[38;5;12mcross-validation.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mFederated Learning[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFlower[0m[38;5;12m (https://flower.dev/) - A unified approach to federated learning, analytics, and evaluation. Federate any workload, any ML framework, and any programming language.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPySyft[0m[38;5;12m (https://github.com/OpenMined/PySyft) - A Python library for secure and private Deep Learning.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorflow-Federated[0m[38;5;12m (https://www.tensorflow.org/federated) A federated learning framework for machine learning and other computations on decentralized data.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mKaggle Competition Source Code[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mopen-solution-home-credit[0m[38;5;12m [39m[38;5;12m(https://github.com/neptune-ml/open-solution-home-credit)[39m[38;5;12m [39m[38;5;12m->[39m[38;5;12m [39m[38;5;12msource[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;14m[1mexperiments[0m[38;5;14m[1m [0m[38;5;14m[1mresults[0m[38;5;12m [39m[38;5;12m(https://app.neptune.ml/neptune-ml/Home-Credit-Default-Risk)[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;14m[1mHome[0m[38;5;14m[1m [0m[38;5;14m[1mCredit[0m[38;5;14m[1m [0m[38;5;14m[1mDefault[0m[38;5;14m[1m [0m[38;5;14m[1mRisk[0m[38;5;12m [39m
|
||
[38;5;12m(https://www.kaggle.com/c/home-credit-default-risk).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mopen-solution-googleai-object-detection[0m[38;5;12m [39m[38;5;12m(https://github.com/neptune-ml/open-solution-googleai-object-detection)[39m[38;5;12m [39m[38;5;12m->[39m[38;5;12m [39m[38;5;12msource[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;14m[1mexperiments[0m[38;5;14m[1m [0m[38;5;14m[1mresults[0m[38;5;12m [39m[38;5;12m(https://app.neptune.ml/neptune-ml/Google-AI-Object-Detection-Challenge)[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;14m[1mGoogle[0m[38;5;14m[1m [0m[38;5;14m[1mAI[0m[38;5;14m[1m [0m[38;5;14m[1mOpen[0m[38;5;14m[1m [0m
|
||
[38;5;14m[1mImages[0m[38;5;14m[1m [0m[38;5;14m[1m-[0m[38;5;14m[1m [0m[38;5;14m[1mObject[0m[38;5;14m[1m [0m[38;5;14m[1mDetection[0m[38;5;14m[1m [0m[38;5;14m[1mTrack[0m[38;5;12m [39m[38;5;12m(https://www.kaggle.com/c/google-ai-open-images-object-detection-track).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mopen-solution-salt-identification[0m[38;5;12m [39m[38;5;12m(https://github.com/neptune-ml/open-solution-salt-identification)[39m[38;5;12m [39m[38;5;12m->[39m[38;5;12m [39m[38;5;12msource[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;14m[1mexperiments[0m[38;5;14m[1m [0m[38;5;14m[1mresults[0m[38;5;12m [39m[38;5;12m(https://app.neptune.ml/neptune-ml/Salt-Detection)[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;14m[1mTGS[0m[38;5;14m[1m [0m[38;5;14m[1mSalt[0m[38;5;14m[1m [0m[38;5;14m[1mIdentification[0m[38;5;14m[1m [0m[38;5;14m[1mChallenge[0m[38;5;12m [39m
|
||
[38;5;12m(https://www.kaggle.com/c/tgs-salt-identification-challenge).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mopen-solution-ship-detection[0m[38;5;12m [39m[38;5;12m(https://github.com/neptune-ml/open-solution-ship-detection)[39m[38;5;12m [39m[38;5;12m->[39m[38;5;12m [39m[38;5;12msource[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;14m[1mexperiments[0m[38;5;14m[1m [0m[38;5;14m[1mresults[0m[38;5;12m [39m[38;5;12m(https://app.neptune.ml/neptune-ml/Ships)[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;14m[1mAirbus[0m[38;5;14m[1m [0m[38;5;14m[1mShip[0m[38;5;14m[1m [0m[38;5;14m[1mDetection[0m[38;5;14m[1m [0m[38;5;14m[1mChallenge[0m[38;5;12m [39m
|
||
[38;5;12m(https://www.kaggle.com/c/airbus-ship-detection).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mopen-solution-data-science-bowl-2018[0m[38;5;12m [39m[38;5;12m(https://github.com/neptune-ml/open-solution-data-science-bowl-2018)[39m[38;5;12m [39m[38;5;12m->[39m[38;5;12m [39m[38;5;12msource[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;14m[1mexperiments[0m[38;5;14m[1m [0m[38;5;14m[1mresults[0m[38;5;12m [39m[38;5;12m(https://app.neptune.ml/neptune-ml/Data-Science-Bowl-2018)[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;14m[1m2018[0m[38;5;14m[1m [0m[38;5;14m[1mData[0m[38;5;14m[1m [0m[38;5;14m[1mScience[0m[38;5;14m[1m [0m[38;5;14m[1mBowl[0m[38;5;12m [39m
|
||
[38;5;12m(https://www.kaggle.com/c/data-science-bowl-2018).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mopen-solution-value-prediction[0m[38;5;12m [39m[38;5;12m(https://github.com/neptune-ml/open-solution-value-prediction)[39m[38;5;12m [39m[38;5;12m->[39m[38;5;12m [39m[38;5;12msource[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;14m[1mexperiments[0m[38;5;14m[1m [0m[38;5;14m[1mresults[0m[38;5;12m [39m[38;5;12m(https://app.neptune.ml/neptune-ml/Santander-Value-Prediction-Challenge)[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;14m[1mSantander[0m[38;5;14m[1m [0m[38;5;14m[1mValue[0m[38;5;14m[1m [0m[38;5;14m[1mPrediction[0m[38;5;14m[1m [0m
|
||
[38;5;14m[1mChallenge[0m[38;5;12m [39m[38;5;12m(https://www.kaggle.com/c/santander-value-prediction-challenge).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mopen-solution-toxic-comments[0m[38;5;12m (https://github.com/neptune-ml/open-solution-toxic-comments) -> source code for [39m[38;5;14m[1mToxic Comment Classification Challenge[0m[38;5;12m (https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mwiki challenge[0m[38;5;12m (https://github.com/hammer/wikichallenge) - An implementation of Dell Zhang's solution to Wikipedia's Participation Challenge on Kaggle.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkaggle insults[0m[38;5;12m (https://github.com/amueller/kaggle_insults) - Kaggle Submission for "Detecting Insults in Social Commentary".[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkaggle_acquire-valued-shoppers-challenge[0m[38;5;12m (https://github.com/MLWave/kaggle_acquire-valued-shoppers-challenge) - Code for the Kaggle acquire valued shoppers challenge.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkaggle-cifar[0m[38;5;12m (https://github.com/zygmuntz/kaggle-cifar) - Code for the CIFAR-10 competition at Kaggle, uses cuda-convnet.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkaggle-blackbox[0m[38;5;12m (https://github.com/zygmuntz/kaggle-blackbox) - Deep learning made easy.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkaggle-accelerometer[0m[38;5;12m (https://github.com/zygmuntz/kaggle-accelerometer) - Code for Accelerometer Biometric Competition at Kaggle.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkaggle-advertised-salaries[0m[38;5;12m (https://github.com/zygmuntz/kaggle-advertised-salaries) - Predicting job salaries from ads - a Kaggle competition.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkaggle amazon[0m[38;5;12m (https://github.com/zygmuntz/kaggle-amazon) - Amazon access control challenge.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkaggle-bestbuy_big[0m[38;5;12m (https://github.com/zygmuntz/kaggle-bestbuy_big) - Code for the Best Buy competition at Kaggle.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkaggle-bestbuy_small[0m[38;5;12m (https://github.com/zygmuntz/kaggle-bestbuy_small)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKaggle Dogs vs. Cats[0m[38;5;12m (https://github.com/kastnerkyle/kaggle-dogs-vs-cats) - Code for Kaggle Dogs vs. Cats competition.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKaggle Galaxy Challenge[0m[38;5;12m (https://github.com/benanne/kaggle-galaxies) - Winning solution for the Galaxy Challenge on Kaggle.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKaggle Gender[0m[38;5;12m (https://github.com/zygmuntz/kaggle-gender) - A Kaggle competition: discriminate gender based on handwriting.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKaggle Merck[0m[38;5;12m (https://github.com/zygmuntz/kaggle-merck) - Merck challenge at Kaggle.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKaggle Stackoverflow[0m[38;5;12m (https://github.com/zygmuntz/kaggle-stackoverflow) - Predicting closed questions on Stack Overflow.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkaggle_acquire-valued-shoppers-challenge[0m[38;5;12m (https://github.com/MLWave/kaggle_acquire-valued-shoppers-challenge) - Code for the Kaggle acquire valued shoppers challenge.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mwine-quality[0m[38;5;12m (https://github.com/zygmuntz/wine-quality) - Predicting wine quality.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mReinforcement Learning[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeepMind[0m[38;5;14m[1m [0m[38;5;14m[1mLab[0m[38;5;12m [39m[38;5;12m(https://github.com/deepmind/lab)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mDeepMind[39m[38;5;12m [39m[38;5;12mLab[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12m3D[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12menvironment[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mid[39m[38;5;12m [39m[38;5;12mSoftware's[39m[38;5;12m [39m[38;5;12mQuake[39m[38;5;12m [39m[38;5;12mIII[39m[38;5;12m [39m[38;5;12mArena[39m[38;5;12m [39m[38;5;12mvia[39m[38;5;12m [39m[38;5;12mioquake3[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[38;5;12mopen[39m[38;5;12m [39m[38;5;12msource[39m[38;5;12m [39m[38;5;12msoftware.[39m[38;5;12m [39m[38;5;12mIts[39m[38;5;12m [39m[38;5;12mprimary[39m[38;5;12m [39m[38;5;12mpurpose[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mact[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mtestbed[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12martificial[39m
|
||
[38;5;12mintelligence,[39m[38;5;12m [39m[38;5;12mespecially[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mreinforcement[39m[38;5;12m [39m[38;5;12mlearning.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGymnasium[0m[38;5;12m (https://github.com/Farama-Foundation/Gymnasium) - A library for developing and comparing reinforcement learning algorithms (successor of [39m[38;5;14m[1mgym[0m[38;5;12m )(https://github.com/openai/gym).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSerpent.AI[0m[38;5;12m (https://github.com/SerpentAI/SerpentAI) - Serpent.AI is a game agent framework that allows you to turn any video game you own into a sandbox to develop AI and machine learning experiments. For both researchers and hobbyists.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mViZDoom[0m[38;5;12m [39m[38;5;12m(https://github.com/mwydmuch/ViZDoom)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mViZDoom[39m[38;5;12m [39m[38;5;12mallows[39m[38;5;12m [39m[38;5;12mdeveloping[39m[38;5;12m [39m[38;5;12mAI[39m[38;5;12m [39m[38;5;12mbots[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mplay[39m[38;5;12m [39m[38;5;12mDoom[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12monly[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mvisual[39m[38;5;12m [39m[38;5;12minformation[39m[38;5;12m [39m[38;5;12m(the[39m[38;5;12m [39m[38;5;12mscreen[39m[38;5;12m [39m[38;5;12mbuffer).[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mprimarily[39m[38;5;12m [39m[38;5;12mintended[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mvisual[39m[38;5;12m [39m[38;5;12mlearning,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mreinforcement[39m[38;5;12m [39m
|
||
[38;5;12mlearning,[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mparticular.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRoboschool[0m[38;5;12m (https://github.com/openai/roboschool) - Open-source software for robot simulation, integrated with OpenAI Gym.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRetro[0m[38;5;12m (https://github.com/openai/retro) - Retro Games in Gym[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSLM Lab[0m[38;5;12m (https://github.com/kengz/SLM-Lab) - Modular Deep Reinforcement Learning framework in PyTorch.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCoach[0m[38;5;12m (https://github.com/NervanaSystems/coach) - Reinforcement Learning Coach by Intel® AI Lab enables easy experimentation with state of the art Reinforcement Learning algorithms[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgarage[0m[38;5;12m (https://github.com/rlworkgroup/garage) - A toolkit for reproducible reinforcement learning research[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmetaworld[0m[38;5;12m (https://github.com/rlworkgroup/metaworld) - An open source robotics benchmark for meta- and multi-task reinforcement learning[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1macme[0m[38;5;12m (https://deepmind.com/research/publications/Acme) - An Open Source Distributed Framework for Reinforcement Learning that makes build and train your agents easily.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpinning Up[0m[38;5;12m (https://spinningup.openai.com) - An educational resource designed to let anyone learn to become a skilled practitioner in deep reinforcement learning[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMaze[0m[38;5;12m (https://github.com/enlite-ai/maze) - Application-oriented deep reinforcement learning framework addressing real-world decision problems.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRLlib[0m[38;5;12m (https://github.com/ray-project/ray) - RLlib is an industry level, highly scalable RL library for tf and torch, based on Ray. It's used by companies like Amazon and Microsoft to solve real-world decision making problems at scale.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDI-engine[0m[38;5;12m [39m[38;5;12m(https://github.com/opendilab/DI-engine)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mDI-engine[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgeneralized[39m[38;5;12m [39m[38;5;12mDecision[39m[38;5;12m [39m[38;5;12mIntelligence[39m[38;5;12m [39m[38;5;12mengine.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12msupports[39m[38;5;12m [39m[38;5;12mmost[39m[38;5;12m [39m[38;5;12mbasic[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mreinforcement[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12m(DRL)[39m[38;5;12m [39m[38;5;12malgorithms,[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mDQN,[39m[38;5;12m [39m[38;5;12mPPO,[39m[38;5;12m [39m[38;5;12mSAC,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdomain-specific[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m[38;5;12mQMIX[39m[38;5;12m [39m
|
||
[38;5;12min[39m[38;5;12m [39m[38;5;12mmulti-agent[39m[38;5;12m [39m[38;5;12mRL,[39m[38;5;12m [39m[38;5;12mGAIL[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12minverse[39m[38;5;12m [39m[38;5;12mRL,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mRND[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mexploration[39m[38;5;12m [39m[38;5;12mproblems.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGym4ReaL[0m[38;5;12m [39m[38;5;12m(https://github.com/Daveonwave/gym4ReaL)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mGym4ReaL[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcomprehensive[39m[38;5;12m [39m[38;5;12msuite[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mrealistic[39m[38;5;12m [39m[38;5;12menvironments[39m[38;5;12m [39m[38;5;12mdesigned[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12msupport[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mdevelopment[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mevaluation[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mRL[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12moperate[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mreal-world[39m[38;5;12m [39m[38;5;12mscenarios.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12msuite[39m[38;5;12m [39m[38;5;12mincludes[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m
|
||
[38;5;12mdiverse[39m[38;5;12m [39m[38;5;12mset[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mtasks[39m[38;5;12m [39m[38;5;12mexposing[39m[38;5;12m [39m[38;5;12mRL[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mvariety[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mpractical[39m[38;5;12m [39m[38;5;12mchallenges.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mSpeech Recognition[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEspNet[0m[38;5;12m (https://github.com/espnet/espnet) - ESPnet is an end-to-end speech processing toolkit for tasks like speech recognition, translation, and enhancement, using PyTorch and Kaldi-style data processing.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mRuby[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mNatural Language Processing[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAwesome NLP with Ruby[0m[38;5;12m (https://github.com/arbox/nlp-with-ruby) - Curated link list for practical natural language processing in Ruby.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTreat[0m[38;5;12m (https://github.com/louismullie/treat) - Text Retrieval and Annotation Toolkit, definitely the most comprehensive toolkit I’ve encountered so far for Ruby.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStemmer[0m[38;5;12m (https://github.com/aurelian/ruby-stemmer) - Expose libstemmer_c to Ruby. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRaspell[0m[38;5;12m (https://sourceforge.net/projects/raspell/) - raspell is an interface binding for ruby. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mUEA Stemmer[0m[38;5;12m (https://github.com/ealdent/uea-stemmer) - Ruby port of UEALite Stemmer - a conservative stemmer for search and indexing.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTwitter-text-rb[0m[38;5;12m (https://github.com/twitter/twitter-text/tree/master/rb) - A library that does auto linking and extraction of usernames, lists and hashtags in tweets.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAwesome Machine Learning with Ruby[0m[38;5;12m (https://github.com/arbox/machine-learning-with-ruby) - Curated list of ML related resources for Ruby.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRuby Machine Learning[0m[38;5;12m (https://github.com/tsycho/ruby-machine-learning) - Some Machine Learning algorithms, implemented in Ruby. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMachine Learning Ruby[0m[38;5;12m (https://github.com/mizoR/machine-learning-ruby) [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mjRuby Mahout[0m[38;5;12m (https://github.com/vasinov/jruby_mahout) - JRuby Mahout is a gem that unleashes the power of Apache Mahout in the world of JRuby. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCardMagic-Classifier[0m[38;5;12m (https://github.com/cardmagic/classifier) - A general classifier module to allow Bayesian and other types of classifications.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrb-libsvm[0m[38;5;12m (https://github.com/febeling/rb-libsvm) - Ruby language bindings for LIBSVM which is a Library for Support Vector Machines.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mScoruby[0m[38;5;12m (https://github.com/asafschers/scoruby) - Creates Random Forest classifiers from PMML files.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrumale[0m[38;5;12m (https://github.com/yoshoku/rumale) - Rumale is a machine learning library in Ruby[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mData Analysis / Data Visualization[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrsruby[0m[38;5;12m (https://github.com/alexgutteridge/rsruby) - Ruby - R bridge.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdata-visualization-ruby[0m[38;5;12m (https://github.com/chrislo/data_visualisation_ruby) - Source code and supporting content for my Ruby Manor presentation on Data Visualisation with Ruby. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mruby-plot[0m[38;5;12m (https://www.ruby-toolbox.com/projects/ruby-plot) - gnuplot wrapper for Ruby, especially for plotting ROC curves into SVG files. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mplot-rb[0m[38;5;12m (https://github.com/zuhao/plotrb) - A plotting library in Ruby built on top of Vega and D3. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscruffy[0m[38;5;12m (https://github.com/delano/scruffy) - A beautiful graphing toolkit for Ruby.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSciRuby[0m[38;5;12m (http://sciruby.com/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGlean[0m[38;5;12m (https://github.com/glean/glean) - A data management tool for humans. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBioruby[0m[38;5;12m (https://github.com/bioruby/bioruby)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mArel[0m[38;5;12m (https://github.com/nkallen/arel) [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
|
||
|
||
[38;2;255;187;0m[4mMisc[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBig Data For Chimps[0m[38;5;12m (https://github.com/infochimps-labs/big_data_for_chimps)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mListof[0m[38;5;12m [39m[38;5;12m(https://github.com/kevincobain2000/listof)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mCommunity[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mcollection,[39m[38;5;12m [39m[38;5;12mpacked[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mgem.[39m[38;5;12m [39m[38;5;12mGet[39m[38;5;12m [39m[38;5;12mlist[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mpretty[39m[38;5;12m [39m[38;5;12mmuch[39m[38;5;12m [39m[38;5;12manything[39m[38;5;12m [39m[38;5;12m(stop[39m[38;5;12m [39m[38;5;12mwords,[39m[38;5;12m [39m[38;5;12mcountries,[39m[38;5;12m [39m[38;5;12mnon[39m[38;5;12m [39m[38;5;12mwords)[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mtxt,[39m[38;5;12m [39m[38;5;12mJSON[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mhash.[39m[38;5;12m [39m[38;5;14m[1mDemo/Search[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1ma[0m[38;5;14m[1m [0m[38;5;14m[1mlist[0m[38;5;12m [39m
|
||
[38;5;12m(http://kevincobain2000.github.io/listof/)[39m
|
||
|
||
|
||
|
||
[38;2;255;187;0m[4mRust[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msmartcore[0m[38;5;12m (https://github.com/smartcorelib/smartcore) - "The Most Advanced Machine Learning Library In Rust."[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mlinfa[0m[38;5;12m (https://github.com/rust-ml/linfa) - a comprehensive toolkit to build Machine Learning applications with Rust[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdeeplearn-rs[0m[38;5;12m (https://github.com/tedsta/deeplearn-rs) - deeplearn-rs provides simple networks that use matrix multiplication, addition, and ReLU under the MIT license.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrustlearn[0m[38;5;12m (https://github.com/maciejkula/rustlearn) - a machine learning framework featuring logistic regression, support vector machines, decision trees and random forests.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrusty-machine[0m[38;5;12m (https://github.com/AtheMathmo/rusty-machine) - a pure-rust machine learning library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mleaf[0m[38;5;12m [39m[38;5;12m(https://github.com/autumnai/leaf)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mopen[39m[38;5;12m [39m[38;5;12msource[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mintelligence,[39m[38;5;12m [39m[38;5;12msharing[39m[38;5;12m [39m[38;5;12mconcepts[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mTensorFlow[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mCaffe.[39m[38;5;12m [39m[38;5;12mAvailable[39m[38;5;12m [39m[38;5;12munder[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mMIT[39m[38;5;12m [39m[38;5;12mlicense.[39m[38;5;12m [39m[38;5;14m[1mDeprecated[0m[38;5;12m [39m[38;5;12m [39m
|
||
[38;5;12m(https://medium.com/@mjhirn/tensorflow-wins-89b78b29aafb#.s0a3uy4cc)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRustNN[0m[38;5;12m (https://github.com/jackm321/RustNN) - RustNN is a feedforward neural network library. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRusticSOM[0m[38;5;12m (https://github.com/avinashshenoy97/RusticSOM) - A Rust library for Self Organising Maps (SOM).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcandle[0m[38;5;12m (https://github.com/huggingface/candle) - Candle is a minimalist ML framework for Rust with a focus on performance (including GPU support) and ease of use.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mlinfa[0m[38;5;12m (https://github.com/rust-ml/linfa) - [39m[48;5;235m[38;5;249mlinfa[49m[39m[38;5;12m aims to provide a comprehensive toolkit to build Machine Learning applications with Rust[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdelta[0m[38;5;12m (https://github.com/delta-rs/delta) - An open source machine learning framework in Rust Δ[39m
|
||
|
||
[38;2;255;187;0m[4mDeep Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtch-rs[0m[38;5;12m (https://github.com/LaurentMazare/tch-rs) - Rust bindings for the C++ API of PyTorch[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdfdx[0m[38;5;12m (https://github.com/coreylowman/dfdx) - Deep learning in Rust, with shape checked tensors and neural networks[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mburn[0m[38;5;12m (https://github.com/tracel-ai/burn) - Burn is a new comprehensive dynamic Deep Learning Framework built using Rust with extreme flexibility, compute efficiency and portability as its primary goals[39m
|
||
|
||
[38;2;255;187;0m[4mNatural Language Processing[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mhuggingface/tokenizers[0m[38;5;12m (https://github.com/huggingface/tokenizers) - Fast State-of-the-Art Tokenizers optimized for Research and Production[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrust-bert[0m[38;5;12m (https://github.com/guillaume-be/rust-bert) - Rust native ready-to-use NLP pipelines and transformer-based models (BERT, DistilBERT, GPT2,...)[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mR[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mahaz[0m[38;5;12m (https://cran.r-project.org/web/packages/ahaz/index.html) - ahaz: Regularization for semiparametric additive hazards regression. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1marules[0m[38;5;12m (https://cran.r-project.org/web/packages/arules/index.html) - arules: Mining Association Rules and Frequent Itemsets[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mbiglasso[0m[38;5;12m (https://cran.r-project.org/web/packages/biglasso/index.html) - biglasso: Extending Lasso Model Fitting to Big Data in R.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mbmrm[0m[38;5;12m (https://cran.r-project.org/web/packages/bmrm/index.html) - bmrm: Bundle Methods for Regularized Risk Minimization Package.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBoruta[0m[38;5;12m (https://cran.r-project.org/web/packages/Boruta/index.html) - Boruta: A wrapper algorithm for all-relevant feature selection.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mbst[0m[38;5;12m (https://cran.r-project.org/web/packages/bst/index.html) - bst: Gradient Boosting.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mC50[0m[38;5;12m (https://cran.r-project.org/web/packages/C50/index.html) - C50: C5.0 Decision Trees and Rule-Based Models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcaret[0m[38;5;12m (https://topepo.github.io/caret/index.html) - Classification and Regression Training: Unified interface to ~150 ML algorithms in R.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcaretEnsemble[0m[38;5;12m (https://cran.r-project.org/web/packages/caretEnsemble/index.html) - caretEnsemble: Framework for fitting multiple caret models as well as creating ensembles of such models. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCatBoost[0m[38;5;12m (https://github.com/catboost/catboost) - General purpose gradient boosting on decision trees library with categorical features support out of the box for R.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mClever Algorithms For Machine Learning[0m[38;5;12m (https://machinelearningmastery.com/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCORElearn[0m[38;5;12m (https://cran.r-project.org/web/packages/CORElearn/index.html) - CORElearn: Classification, regression, feature evaluation and ordinal evaluation.[39m
|
||
[38;5;12m-[39m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;14m[1m[3mCoxBoost[0m[48;2;30;30;40m[38;5;13m[3m (https://cran.r-project.org/web/packages/CoxBoost/index.html) - CoxBoost: Cox models by likelihood based boosting for a single survival endpoint or competing risks [0m[48;2;30;30;40m[38;5;13m[3mDeprecated[0m[48;2;30;30;40m[38;5;14m[1m[3m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCubist[0m[38;5;12m (https://cran.r-project.org/web/packages/Cubist/index.html) - Cubist: Rule- and Instance-Based Regression Modelling.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1me1071[0m[38;5;12m (https://cran.r-project.org/web/packages/e1071/index.html) - e1071: Misc Functions of the Department of Statistics (e1071), TU Wien[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mearth[0m[38;5;12m (https://cran.r-project.org/web/packages/earth/index.html) - earth: Multivariate Adaptive Regression Spline Models[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1melasticnet[0m[38;5;12m (https://cran.r-project.org/web/packages/elasticnet/index.html) - elasticnet: Elastic-Net for Sparse Estimation and Sparse PCA.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mElemStatLearn[0m[38;5;12m [39m[38;5;12m(https://cran.r-project.org/web/packages/ElemStatLearn/index.html)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mElemStatLearn:[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12msets,[39m[38;5;12m [39m[38;5;12mfunctions[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mexamples[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbook:[39m[38;5;12m [39m[38;5;12m"The[39m[38;5;12m [39m[38;5;12mElements[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mStatistical[39m[38;5;12m [39m[38;5;12mLearning,[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mMining,[39m[38;5;12m [39m[38;5;12mInference,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mPrediction"[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mTrevor[39m[38;5;12m [39m[38;5;12mHastie,[39m[38;5;12m [39m
|
||
[38;5;12mRobert[39m[38;5;12m [39m[38;5;12mTibshirani[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mJerome[39m[38;5;12m [39m[38;5;12mFriedman[39m[38;5;12m [39m[38;5;12mPrediction"[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mTrevor[39m[38;5;12m [39m[38;5;12mHastie,[39m[38;5;12m [39m[38;5;12mRobert[39m[38;5;12m [39m[38;5;12mTibshirani[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mJerome[39m[38;5;12m [39m[38;5;12mFriedman.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mevtree[0m[38;5;12m (https://cran.r-project.org/web/packages/evtree/index.html) - evtree: Evolutionary Learning of Globally Optimal Trees.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mforecast[0m[38;5;12m (https://cran.r-project.org/web/packages/forecast/index.html) - forecast: Timeseries forecasting using ARIMA, ETS, STLM, TBATS, and neural network models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mforecastHybrid[0m[38;5;12m (https://cran.r-project.org/web/packages/forecastHybrid/index.html) - forecastHybrid: Automatic ensemble and cross validation of ARIMA, ETS, STLM, TBATS, and neural network models from the "forecast" package.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mfpc[0m[38;5;12m (https://cran.r-project.org/web/packages/fpc/index.html) - fpc: Flexible procedures for clustering.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mfrbs[0m[38;5;12m (https://cran.r-project.org/web/packages/frbs/index.html) - frbs: Fuzzy Rule-based Systems for Classification and Regression Tasks. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGAMBoost[0m[38;5;12m (https://cran.r-project.org/web/packages/GAMBoost/index.html) - GAMBoost: Generalized linear and additive models by likelihood based boosting. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgamboostLSS[0m[38;5;12m (https://cran.r-project.org/web/packages/gamboostLSS/index.html) - gamboostLSS: Boosting Methods for GAMLSS.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgbm[0m[38;5;12m (https://cran.r-project.org/web/packages/gbm/index.html) - gbm: Generalized Boosted Regression Models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mglmnet[0m[38;5;12m (https://cran.r-project.org/web/packages/glmnet/index.html) - glmnet: Lasso and elastic-net regularized generalized linear models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mglmpath[0m[38;5;12m (https://cran.r-project.org/web/packages/glmpath/index.html) - glmpath: L1 Regularization Path for Generalized Linear Models and Cox Proportional Hazards Model.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGMMBoost[0m[38;5;12m (https://cran.r-project.org/web/packages/GMMBoost/index.html) - GMMBoost: Likelihood-based Boosting for Generalized mixed models. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgrplasso[0m[38;5;12m (https://cran.r-project.org/web/packages/grplasso/index.html) - grplasso: Fitting user specified models with Group Lasso penalty.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgrpreg[0m[38;5;12m (https://cran.r-project.org/web/packages/grpreg/index.html) - grpreg: Regularization paths for regression models with grouped covariates.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mh2o[0m[38;5;12m (https://cran.r-project.org/web/packages/h2o/index.html) - A framework for fast, parallel, and distributed machine learning algorithms at scale -- Deeplearning, Random forests, GBM, KMeans, PCA, GLM.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mhda[0m[38;5;12m (https://cran.r-project.org/web/packages/hda/index.html) - hda: Heteroscedastic Discriminant Analysis. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIntroduction to Statistical Learning[0m[38;5;12m (https://www-bcf.usc.edu/~gareth/ISL/)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mipred[0m[38;5;12m (https://cran.r-project.org/web/packages/ipred/index.html) - ipred: Improved Predictors.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkernlab[0m[38;5;12m (https://cran.r-project.org/web/packages/kernlab/index.html) - kernlab: Kernel-based Machine Learning Lab.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mklaR[0m[38;5;12m (https://cran.r-project.org/web/packages/klaR/index.html) - klaR: Classification and visualization.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mL0Learn[0m[38;5;12m (https://cran.r-project.org/web/packages/L0Learn/index.html) - L0Learn: Fast algorithms for best subset selection.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mlars[0m[38;5;12m (https://cran.r-project.org/web/packages/lars/index.html) - lars: Least Angle Regression, Lasso and Forward Stagewise. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mlasso2[0m[38;5;12m (https://cran.r-project.org/web/packages/lasso2/index.html) - lasso2: L1 constrained estimation aka ‘lasso’.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLiblineaR[0m[38;5;12m (https://cran.r-project.org/web/packages/LiblineaR/index.html) - LiblineaR: Linear Predictive Models Based On The Liblinear C/C++ Library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLogicReg[0m[38;5;12m (https://cran.r-project.org/web/packages/LogicReg/index.html) - LogicReg: Logic Regression.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMachine Learning For Hackers[0m[38;5;12m (https://github.com/johnmyleswhite/ML_for_Hackers)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmaptree[0m[38;5;12m (https://cran.r-project.org/web/packages/maptree/index.html) - maptree: Mapping, pruning, and graphing tree models. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmboost[0m[38;5;12m (https://cran.r-project.org/web/packages/mboost/index.html) - mboost: Model-Based Boosting.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmedley[0m[38;5;12m (https://www.kaggle.com/general/3661) - medley: Blending regression models, using a greedy stepwise approach.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmlr[0m[38;5;12m (https://cran.r-project.org/web/packages/mlr/index.html) - mlr: Machine Learning in R.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mncvreg[0m[38;5;12m (https://cran.r-project.org/web/packages/ncvreg/index.html) - ncvreg: Regularization paths for SCAD- and MCP-penalized regression models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnnet[0m[38;5;12m (https://cran.r-project.org/web/packages/nnet/index.html) - nnet: Feed-forward Neural Networks and Multinomial Log-Linear Models. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpamr[0m[38;5;12m (https://cran.r-project.org/web/packages/pamr/index.html) - pamr: Pam: prediction analysis for microarrays. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mparty[0m[38;5;12m (https://cran.r-project.org/web/packages/party/index.html) - party: A Laboratory for Recursive Partitioning[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpartykit[0m[38;5;12m (https://cran.r-project.org/web/packages/partykit/index.html) - partykit: A Toolkit for Recursive Partitioning.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpenalized[0m[38;5;12m (https://cran.r-project.org/web/packages/penalized/index.html) - penalized: L1 (lasso and fused lasso) and L2 (ridge) penalized estimation in GLMs and in the Cox model.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpenalizedLDA[0m[38;5;12m (https://cran.r-project.org/web/packages/penalizedLDA/index.html) - penalizedLDA: Penalized classification using Fisher's linear discriminant. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpenalizedSVM[0m[38;5;12m (https://cran.r-project.org/web/packages/penalizedSVM/index.html) - penalizedSVM: Feature Selection SVM using penalty functions.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mquantregForest[0m[38;5;12m (https://cran.r-project.org/web/packages/quantregForest/index.html) - quantregForest: Quantile Regression Forests.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrandomForest[0m[38;5;12m (https://cran.r-project.org/web/packages/randomForest/index.html) - randomForest: Breiman and Cutler's random forests for classification and regression.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrandomForestSRC[0m[38;5;12m (https://cran.r-project.org/web/packages/randomForestSRC/index.html) - randomForestSRC: Random Forests for Survival, Regression and Classification (RF-SRC).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrattle[0m[38;5;12m (https://cran.r-project.org/web/packages/rattle/index.html) - rattle: Graphical user interface for data mining in R.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrda[0m[38;5;12m (https://cran.r-project.org/web/packages/rda/index.html) - rda: Shrunken Centroids Regularized Discriminant Analysis.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrdetools[0m[38;5;12m (https://cran.r-project.org/web/packages/rdetools/index.html) - rdetools: Relevant Dimension Estimation (RDE) in Feature Spaces. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mREEMtree[0m[38;5;12m (https://cran.r-project.org/web/packages/REEMtree/index.html) - REEMtree: Regression Trees with Random Effects for Longitudinal (Panel) Data. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrelaxo[0m[38;5;12m (https://cran.r-project.org/web/packages/relaxo/index.html) - relaxo: Relaxed Lasso. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrgenoud[0m[38;5;12m (https://cran.r-project.org/web/packages/rgenoud/index.html) - rgenoud: R version of GENetic Optimization Using Derivatives[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRmalschains[0m[38;5;12m (https://cran.r-project.org/web/packages/Rmalschains/index.html) - Rmalschains: Continuous Optimization using Memetic Algorithms with Local Search Chains (MA-LS-Chains) in R.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrminer[0m[38;5;12m (https://cran.r-project.org/web/packages/rminer/index.html) - rminer: Simpler use of data mining methods (e.g. NN and SVM) in classification and regression. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mROCR[0m[38;5;12m (https://cran.r-project.org/web/packages/ROCR/index.html) - ROCR: Visualizing the performance of scoring classifiers. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRoughSets[0m[38;5;12m (https://cran.r-project.org/web/packages/RoughSets/index.html) - RoughSets: Data Analysis Using Rough Set and Fuzzy Rough Set Theories. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrpart[0m[38;5;12m (https://cran.r-project.org/web/packages/rpart/index.html) - rpart: Recursive Partitioning and Regression Trees.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRPMM[0m[38;5;12m (https://cran.r-project.org/web/packages/RPMM/index.html) - RPMM: Recursively Partitioned Mixture Model.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRSNNS[0m[38;5;12m (https://cran.r-project.org/web/packages/RSNNS/index.html) - RSNNS: Neural Networks in R using the Stuttgart Neural Network Simulator (SNNS).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRWeka[0m[38;5;12m (https://cran.r-project.org/web/packages/RWeka/index.html) - RWeka: R/Weka interface.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRXshrink[0m[38;5;12m (https://cran.r-project.org/web/packages/RXshrink/index.html) - RXshrink: Maximum Likelihood Shrinkage via Generalized Ridge or Least Angle Regression.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msda[0m[38;5;12m (https://cran.r-project.org/web/packages/sda/index.html) - sda: Shrinkage Discriminant Analysis and CAT Score Variable Selection. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mspectralGraphTopology[0m[38;5;12m (https://cran.r-project.org/web/packages/spectralGraphTopology/index.html) - spectralGraphTopology: Learning Graphs from Data via Spectral Constraints.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSuperLearner[0m[38;5;12m (https://github.com/ecpolley/SuperLearner) - Multi-algorithm ensemble learning packages.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msvmpath[0m[38;5;12m (https://cran.r-project.org/web/packages/svmpath/index.html) - svmpath: svmpath: the SVM Path algorithm. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtgp[0m[38;5;12m (https://cran.r-project.org/web/packages/tgp/index.html) - tgp: Bayesian treed Gaussian process models. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtree[0m[38;5;12m (https://cran.r-project.org/web/packages/tree/index.html) - tree: Classification and regression trees.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mvarSelRF[0m[38;5;12m (https://cran.r-project.org/web/packages/varSelRF/index.html) - varSelRF: Variable selection using random forests.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mXGBoost.R[0m[38;5;12m (https://github.com/tqchen/xgboost/tree/master/R-package) - R binding for eXtreme Gradient Boosting (Tree) Library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOptunity[0m[38;5;12m [39m[38;5;12m(https://optunity.readthedocs.io/en/latest/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mdedicated[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mautomated[39m[38;5;12m [39m[38;5;12mhyperparameter[39m[38;5;12m [39m[38;5;12moptimization[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msimple,[39m[38;5;12m [39m[38;5;12mlightweight[39m[38;5;12m [39m[38;5;12mAPI[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mfacilitate[39m[38;5;12m [39m[38;5;12mdrop-in[39m[38;5;12m [39m[38;5;12mreplacement[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mgrid[39m[38;5;12m [39m[38;5;12msearch.[39m[38;5;12m [39m[38;5;12mOptunity[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mwritten[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12minterfaces[39m[38;5;12m [39m
|
||
[38;5;12mseamlessly[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mR.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1migraph[0m[38;5;12m (https://igraph.org/r/) - binding to igraph library - General purpose graph library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMXNet[0m[38;5;12m (https://github.com/apache/incubator-mxnet) - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Go, JavaScript and more.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTDSP-Utilities[0m[38;5;12m (https://github.com/Azure/Azure-TDSP-Utilities) - Two data science utilities in R from Microsoft: 1) Interactive Data Exploration, Analysis, and Reporting (IDEAR) ; 2) Automated Modelling and Reporting (AMR).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mclugenr[0m[38;5;12m (https://github.com/clugen/clugenr/) - Multidimensional cluster generation in R.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mData Manipulation | Data Analysis | Data Visualization[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdata.table[0m[38;5;12m (https://rdatatable.gitlab.io/data.table/) - [39m[48;5;235m[38;5;249mdata.table[49m[39m[38;5;12m provides a high-performance version of base R’s [39m[48;5;235m[38;5;249mdata.frame[49m[39m[38;5;12m with syntax and feature enhancements for ease of use, convenience and programming speed.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdplyr[0m[38;5;12m (https://www.rdocumentation.org/packages/dplyr/versions/0.7.8) - A data manipulation package that helps to solve the most common data manipulation problems.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mggplot2[0m[38;5;12m (https://ggplot2.tidyverse.org/) - A data visualization package based on the grammar of graphics.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtmap[0m[38;5;12m (https://cran.r-project.org/web/packages/tmap/vignettes/tmap-getstarted.html) for visualizing geospatial data with static maps and [39m[38;5;14m[1mleaflet[0m[38;5;12m (https://rstudio.github.io/leaflet/) for interactive maps[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtm[0m[38;5;12m (https://www.rdocumentation.org/packages/tm/) and [39m[38;5;14m[1mquanteda[0m[38;5;12m (https://quanteda.io/) are the main packages for managing, analyzing, and visualizing textual data.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mshiny[0m[38;5;12m [39m[38;5;12m(https://shiny.rstudio.com/)[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbasis[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mtruly[39m[38;5;12m [39m[38;5;12minteractive[39m[38;5;12m [39m[38;5;12mdisplays[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdashboards[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mR.[39m[38;5;12m [39m[38;5;12mHowever,[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m[38;5;12mmeasure[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12minteractivity[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12machieved[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;14m[1mhtmlwidgets[0m[38;5;12m [39m[38;5;12m(https://www.htmlwidgets.org/)[39m[38;5;12m [39m[38;5;12mbringing[39m[38;5;12m [39m[38;5;12mjavascript[39m[38;5;12m [39m[38;5;12mlibraries[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mR.[39m[38;5;12m [39m[38;5;12mThese[39m
|
||
[38;5;12minclude,[39m[38;5;12m [39m[38;5;14m[1mplotly[0m[38;5;12m [39m[38;5;12m(https://plot.ly/r/),[39m[38;5;12m [39m[38;5;14m[1mdygraphs[0m[38;5;12m [39m[38;5;12m(http://rstudio.github.io/dygraphs),[39m[38;5;12m [39m[38;5;14m[1mhighcharter[0m[38;5;12m [39m[38;5;12m(http://jkunst.com/highcharter/),[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mseveral[39m[38;5;12m [39m[38;5;12mothers.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mSAS[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVisual[0m[38;5;14m[1m [0m[38;5;14m[1mData[0m[38;5;14m[1m [0m[38;5;14m[1mMining[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mMachine[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;12m [39m[38;5;12m(https://www.sas.com/en_us/software/visual-data-mining-machine-learning.html)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mInteractive,[39m[38;5;12m [39m[38;5;12mautomated,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mprogrammatic[39m[38;5;12m [39m[38;5;12mmodelling[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mlatest[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mend-to-end[39m[38;5;12m [39m[38;5;12manalytics[39m[38;5;12m [39m
|
||
[38;5;12menvironment,[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mprep[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mdeployment.[39m[38;5;12m [39m[38;5;12mFree[39m[38;5;12m [39m[38;5;12mtrial[39m[38;5;12m [39m[38;5;12mavailable.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEnterprise Miner[0m[38;5;12m (https://www.sas.com/en_us/software/enterprise-miner.html) - Data mining and machine learning that creates deployable models using a GUI or code.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFactory Miner[0m[38;5;12m (https://www.sas.com/en_us/software/factory-miner.html) - Automatically creates deployable machine learning models across numerous market or customer segments using a GUI.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mData Analysis / Data Visualization[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSAS/STAT[0m[38;5;12m (https://www.sas.com/en_us/software/stat.html) - For conducting advanced statistical analysis.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mUniversity Edition[0m[38;5;12m (https://www.sas.com/en_us/software/university-edition.html) - FREE! Includes all SAS packages necessary for data analysis and visualization, and includes online SAS courses.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mNatural Language Processing[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mContextual Analysis[0m[38;5;12m (https://www.sas.com/en_us/software/contextual-analysis.html) - Add structure to unstructured text using a GUI.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSentiment Analysis[0m[38;5;12m (https://www.sas.com/en_us/software/sentiment-analysis.html) - Extract sentiment from text using a GUI.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mText Miner[0m[38;5;12m (https://www.sas.com/en_us/software/text-miner.html) - Text mining using a GUI or code.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mDemos and Scripts[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mML_Tables[0m[38;5;12m (https://github.com/sassoftware/enlighten-apply/tree/master/ML_tables) - Concise cheat sheets containing machine learning best practices.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1menlighten-apply[0m[38;5;12m (https://github.com/sassoftware/enlighten-apply) - Example code and materials that illustrate applications of SAS machine learning techniques.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1menlighten-integration[0m[38;5;12m (https://github.com/sassoftware/enlighten-integration) - Example code and materials that illustrate techniques for integrating SAS with other analytics technologies in Java, PMML, Python and R.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1menlighten-deep[0m[38;5;12m (https://github.com/sassoftware/enlighten-deep) - Example code and materials that illustrate using neural networks with several hidden layers in SAS.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdm-flow[0m[38;5;12m (https://github.com/sassoftware/dm-flow) - Library of SAS Enterprise Miner process flow diagrams to help you learn by example about specific data mining topics.[39m
|
||
|
||
|
||
|
||
[38;2;255;187;0m[4mScala[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mNatural Language Processing[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mScalaNLP[0m[38;5;12m (http://www.scalanlp.org/) - ScalaNLP is a suite of machine learning and numerical computing libraries.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBreeze[0m[38;5;12m (https://github.com/scalanlp/breeze) - Breeze is a numerical processing library for Scala.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mChalk[0m[38;5;12m (https://github.com/scalanlp/chalk) - Chalk is a natural language processing library. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFACTORIE[0m[38;5;12m [39m[38;5;12m(https://github.com/factorie/factorie)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mFACTORIE[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mtoolkit[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mdeployable[39m[38;5;12m [39m[38;5;12mprobabilistic[39m[38;5;12m [39m[38;5;12mmodelling,[39m[38;5;12m [39m[38;5;12mimplemented[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msoftware[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mScala.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12mits[39m[38;5;12m [39m[38;5;12musers[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msuccinct[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mcreating[39m[38;5;12m [39m[38;5;12mrelational[39m[38;5;12m [39m[38;5;12mfactor[39m[38;5;12m [39m[38;5;12mgraphs,[39m[38;5;12m [39m
|
||
[38;5;12mestimating[39m[38;5;12m [39m[38;5;12mparameters[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mperforming[39m[38;5;12m [39m[38;5;12minference.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMontague[0m[38;5;12m (https://github.com/Workday/upshot-montague) - Montague is a semantic parsing library for Scala with an easy-to-use DSL.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpark[0m[38;5;14m[1m [0m[38;5;14m[1mNLP[0m[38;5;12m [39m[38;5;12m(https://github.com/JohnSnowLabs/spark-nlp)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mNatural[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mbuilt[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mtop[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mApache[39m[38;5;12m [39m[38;5;12mSpark[39m[38;5;12m [39m[38;5;12mML[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mprovide[39m[38;5;12m [39m[38;5;12msimple,[39m[38;5;12m [39m[38;5;12mperformant,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12maccurate[39m[38;5;12m [39m[38;5;12mNLP[39m[38;5;12m [39m[38;5;12mannotations[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mpipelines,[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mscale[39m[38;5;12m [39m[38;5;12measily[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m
|
||
[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12menvironment.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mData Analysis / Data Visualization[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNDScala[0m[38;5;12m (https://github.com/SciScala/NDScala) - N-dimensional arrays in Scala 3. Think NumPy ndarray, but with compile-time type-checking/inference over shapes, tensor/axis labels & numeric data types[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMLlib in Apache Spark[0m[38;5;12m (https://spark.apache.org/docs/latest/mllib-guide.html) - Distributed machine learning library in Spark[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHydrosphere Mist[0m[38;5;12m (https://github.com/Hydrospheredata/mist) - a service for deployment Apache Spark MLLib machine learning models as realtime, batch or reactive web services.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mScalding[0m[38;5;12m (https://github.com/twitter/scalding) - A Scala API for Cascading.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSumming Bird[0m[38;5;12m (https://github.com/twitter/summingbird) - Streaming MapReduce with Scalding and Storm.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAlgebird[0m[38;5;12m (https://github.com/twitter/algebird) - Abstract Algebra for Scala.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mxerial[0m[38;5;12m (https://github.com/xerial/xerial) - Data management utilities for Scala. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPredictionIO[0m[38;5;12m (https://github.com/apache/predictionio) - PredictionIO, a machine learning server for software developers and data engineers.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBIDMat[0m[38;5;12m (https://github.com/BIDData/BIDMat) - CPU and GPU-accelerated matrix library intended to support large-scale exploratory data analysis.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFlink[0m[38;5;12m (https://flink.apache.org/) - Open source platform for distributed stream and batch data processing.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpark Notebook[0m[38;5;12m (http://spark-notebook.io) - Interactive and Reactive Data Science using Scala and Spark.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMicrosoft ML for Apache Spark[0m[38;5;12m (https://github.com/Azure/mmlspark) -> A distributed machine learning framework Apache Spark[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mONNX-Scala[0m[38;5;12m (https://github.com/EmergentOrder/onnx-scala) - An ONNX (Open Neural Network eXchange) API and backend for typeful, functional deep learning in Scala (3).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeepLearning.scala[0m[38;5;12m (https://deeplearning.thoughtworks.school/) - Creating statically typed dynamic neural networks from object-oriented & functional programming constructs.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mConjecture[0m[38;5;12m (https://github.com/etsy/Conjecture) - Scalable Machine Learning in Scalding.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mbrushfire[0m[38;5;12m (https://github.com/stripe/brushfire) - Distributed decision tree ensemble learning in Scala.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mganitha[0m[38;5;12m (https://github.com/tresata/ganitha) - Scalding powered machine learning. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1madam[0m[38;5;12m (https://github.com/bigdatagenomics/adam) - A genomics processing engine and specialized file format built using Apache Avro, Apache Spark and Parquet. Apache 2 licensed.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mbioscala[0m[38;5;12m (https://github.com/bioscala/bioscala) - Bioinformatics for the Scala programming language[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBIDMach[0m[38;5;12m (https://github.com/BIDData/BIDMach) - CPU and GPU-accelerated Machine Learning Library.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFigaro[0m[38;5;12m (https://github.com/p2t2/figaro) - a Scala library for constructing probabilistic models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mH2O Sparkling Water[0m[38;5;12m (https://github.com/h2oai/sparkling-water) - H2O and Spark interoperability.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFlinkML in Apache Flink[0m[38;5;12m (https://ci.apache.org/projects/flink/flink-docs-master/dev/libs/ml/index.html) - Distributed machine learning library in Flink.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDynaML[0m[38;5;12m (https://github.com/transcendent-ai-labs/DynaML) - Scala Library/REPL for Machine Learning Research.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSaul[0m[38;5;12m (https://github.com/CogComp/saul) - Flexible Declarative Learning-Based Programming.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSwiftLearner[0m[38;5;12m (https://github.com/valdanylchuk/swiftlearner/) - Simply written algorithms to help study ML or write your own implementations.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSmile[0m[38;5;12m (https://haifengl.github.io/) - Statistical Machine Intelligence and Learning Engine.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdoddle-model[0m[38;5;12m (https://github.com/picnicml/doddle-model) - An in-memory machine learning library built on top of Breeze. It provides immutable objects and exposes its functionality through a scikit-learn-like API.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorFlow Scala[0m[38;5;12m (https://github.com/eaplatanios/tensorflow_scala) - Strongly-typed Scala API for TensorFlow.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1misolation-forest[0m[38;5;12m [39m[38;5;12m(https://github.com/linkedin/isolation-forest)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12mSpark/Scala[39m[38;5;12m [39m[38;5;12mimplementation[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12misolation[39m[38;5;12m [39m[38;5;12mforest[39m[38;5;12m [39m[38;5;12malgorithm[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12munsupervised[39m[38;5;12m [39m[38;5;12moutlier[39m[38;5;12m [39m[38;5;12mdetection,[39m[38;5;12m [39m[38;5;12mfeaturing[39m[38;5;12m [39m[38;5;12msupport[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mscalable[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mONNX[39m[38;5;12m [39m[38;5;12mexport[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12measy[39m[38;5;12m [39m
|
||
[38;5;12mcross-platform[39m[38;5;12m [39m[38;5;12minference.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mScheme[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mNeural Networks[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mlayer[0m[38;5;12m (https://github.com/cloudkj/layer) - Neural network inference from the command line, implemented in [39m[38;5;14m[1mCHICKEN Scheme[0m[38;5;12m (https://www.call-cc.org/).[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mSwift[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBender[0m[38;5;12m (https://github.com/xmartlabs/Bender) - Fast Neural Networks framework built on top of Metal. Supports TensorFlow models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSwift AI[0m[38;5;12m (https://github.com/Swift-AI/Swift-AI) - Highly optimized artificial intelligence and machine learning library written in Swift.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSwift for Tensorflow[0m[38;5;12m (https://github.com/tensorflow/swift) - a next-generation platform for machine learning, incorporating the latest research across machine learning, compilers, differentiable programming, systems design, and beyond.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBrainCore[0m[38;5;12m (https://github.com/alejandro-isaza/BrainCore) - The iOS and OS X neural network framework.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mswix[0m[38;5;12m (https://github.com/stsievert/swix) - A bare bones library that includes a general matrix language and wraps some OpenCV for iOS development. [39m[38;5;12mDeprecated[39m[38;5;14m[1m [0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAIToolbox[0m[38;5;12m (https://github.com/KevinCoble/AIToolbox) - A toolbox framework of AI modules written in Swift: Graphs/Trees, Linear Regression, Support Vector Machines, Neural Networks, PCA, KMeans, Genetic Algorithms, MDP, Mixture of Gaussians.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMLKit[0m[38;5;12m (https://github.com/Somnibyte/MLKit) - A simple Machine Learning Framework written in Swift. Currently features Simple Linear Regression, Polynomial Regression, and Ridge Regression.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSwift[0m[38;5;14m[1m [0m[38;5;14m[1mBrain[0m[38;5;12m [39m[38;5;12m(https://github.com/vlall/Swift-Brain)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mfirst[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetwork[39m[38;5;12m [39m[38;5;12m/[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mwritten[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mSwift.[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mproject[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mAI[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mSwift[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12miOS[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mOS[39m[38;5;12m [39m[38;5;12mX[39m[38;5;12m [39m[38;5;12mdevelopment.[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mproject[39m[38;5;12m [39m[38;5;12mincludes[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12mfocused[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m
|
||
[38;5;12mBayes[39m[38;5;12m [39m[38;5;12mtheorem,[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetworks,[39m[38;5;12m [39m[38;5;12mSVMs,[39m[38;5;12m [39m[38;5;12mMatrices,[39m[38;5;12m [39m[38;5;12metc...[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPerfect TensorFlow[0m[38;5;12m (https://github.com/PerfectlySoft/Perfect-TensorFlow) - Swift Language Bindings of TensorFlow. Using native TensorFlow models on both macOS / Linux.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPredictionBuilder[0m[38;5;12m (https://github.com/denissimon/prediction-builder-swift) - A library for machine learning that builds predictions using a linear regression.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAwesome CoreML[0m[38;5;12m (https://github.com/SwiftBrain/awesome-CoreML-models) - A curated list of pretrained CoreML models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAwesome Core ML Models[0m[38;5;12m (https://github.com/likedan/Awesome-CoreML-Models) - A curated list of machine learning models in CoreML format.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mTensorFlow[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mGeneral-Purpose Machine Learning[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAwesome Keras[0m[38;5;12m (https://github.com/markusschanta/awesome-keras) - A curated list of awesome Keras projects, libraries and resources.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAwesome TensorFlow[0m[38;5;12m (https://github.com/jtoy/awesome-tensorflow) - A list of all things related to TensorFlow.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGolden TensorFlow[0m[38;5;12m (https://golden.com/wiki/TensorFlow) - A page of content on TensorFlow, including academic papers and links to related topics.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mTools[0m
|
||
|
||
|
||
[38;2;255;187;0m[4mNeural Networks[0m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mlayer[0m[38;5;12m (https://github.com/cloudkj/layer) - Neural network inference from the command line[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mMisc[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mWallaroo.AI[0m[38;5;12m (https://wallaroo.ai/) - Production AI plaftorm for deploying, managing, and observing any model at scale across any environment from cloud to edge. Let's go from python notebook to inferencing in minutes. [39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mInfinity[0m[38;5;12m (https://github.com/infiniflow/infinity) - The AI-native database built for LLM applications, providing incredibly fast vector and full-text search. Developed using C++20[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSynthical[0m[38;5;12m [39m[38;5;12m(https://synthical.com)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAI-powered[39m[38;5;12m [39m[38;5;12mcollaborative[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12menvironment.[39m[38;5;12m [39m[38;5;12mYou[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mget[39m[38;5;12m [39m[38;5;12mrecommendations[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12marticles[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mreading[39m[38;5;12m [39m[38;5;12mhistory,[39m[38;5;12m [39m[38;5;12msimplify[39m[38;5;12m [39m[38;5;12mpapers,[39m[38;5;12m [39m[38;5;12mfind[39m[38;5;12m [39m[38;5;12mout[39m[38;5;12m [39m[38;5;12mwhat[39m[38;5;12m [39m[38;5;12marticles[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mtrending,[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12marticles[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mmeaning[39m[38;5;12m [39m[38;5;12m(not[39m
|
||
[38;5;12mjust[39m[38;5;12m [39m[38;5;12mkeywords),[39m[38;5;12m [39m[38;5;12mcreate[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mshare[39m[38;5;12m [39m[38;5;12mfolders[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12marticles,[39m[38;5;12m [39m[38;5;12msee[39m[38;5;12m [39m[38;5;12mlists[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12marticles[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mspecific[39m[38;5;12m [39m[38;5;12mcompanies[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12muniversities,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12madd[39m[38;5;12m [39m[38;5;12mhighlights.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHumanloop[0m[38;5;12m (https://humanloop.com) – Humanloop is a platform for prompt experimentation, finetuning models for better performance, cost optimization, and collecting model generated data and user feedback.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mQdrant[0m[38;5;12m (https://qdrant.tech) – Qdrant is [39m[38;5;14m[1mopen source[0m[38;5;12m (https://github.com/qdrant/qdrant) vector similarity search engine with extended filtering support, written in Rust.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLocalforge[0m[38;5;12m [39m[38;5;12m(https://localforge.dev/)[39m[38;5;12m [39m[38;5;12m–[39m[38;5;12m [39m[38;5;12mIs[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;14m[1mopen[0m[38;5;14m[1m [0m[38;5;14m[1msource[0m[38;5;12m [39m[38;5;12m(https://github.com/rockbite/localforge)[39m[38;5;12m [39m[38;5;12mon-prem[39m[38;5;12m [39m[38;5;12mAI[39m[38;5;12m [39m[38;5;12mcoding[39m[38;5;12m [39m[38;5;12mautonomous[39m[38;5;12m [39m[38;5;12massistant[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mlives[39m[38;5;12m [39m[38;5;12minside[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mrepo,[39m[38;5;12m [39m[38;5;12medits[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mtests[39m[38;5;12m [39m[38;5;12mfiles[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mSSD[39m[38;5;12m [39m[38;5;12mspeed.[39m[38;5;12m [39m[38;5;12mThink[39m[38;5;12m [39m[38;5;12mClaude[39m[38;5;12m [39m[38;5;12mCode[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mUI.[39m[38;5;12m [39m[38;5;12mplug[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12many[39m
|
||
[38;5;12mLLM[39m[38;5;12m [39m[38;5;12m(OpenAI,[39m[38;5;12m [39m[38;5;12mGemini,[39m[38;5;12m [39m[38;5;12mOllama,[39m[38;5;12m [39m[38;5;12metc.)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mlet[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mwork[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12myou.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmilvus[0m[38;5;12m (https://milvus.io) – Milvus is [39m[38;5;14m[1mopen source[0m[38;5;12m (https://github.com/milvus-io/milvus) vector database for production AI, written in Go and C++, scalable and blazing fast for billions of embedding vectors.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mWeaviate[0m[38;5;12m [39m[38;5;12m(https://www.semi.technology/developers/weaviate/current/)[39m[38;5;12m [39m[38;5;12m–[39m[38;5;12m [39m[38;5;12mWeaviate[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;14m[1mopen[0m[38;5;14m[1m [0m[38;5;14m[1msource[0m[38;5;12m [39m[38;5;12m(https://github.com/semi-technologies/weaviate)[39m[38;5;12m [39m[38;5;12mvector[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mengine[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mvector[39m[38;5;12m [39m[38;5;12mdatabase.[39m[38;5;12m [39m[38;5;12mWeaviate[39m[38;5;12m [39m[38;5;12muses[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mvectorize[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mstore[39m[38;5;12m [39m
|
||
[38;5;12mdata,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mfind[39m[38;5;12m [39m[38;5;12manswers[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mnatural[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12mqueries.[39m[38;5;12m [39m[38;5;12mWith[39m[38;5;12m [39m[38;5;12mWeaviate[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mbring[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mcustom[39m[38;5;12m [39m[38;5;12mML[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mproduction[39m[38;5;12m [39m[38;5;12mscale.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtxtai[0m[38;5;12m (https://github.com/neuml/txtai) - Build semantic search applications and workflows.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMLReef[0m[38;5;12m (https://about.mlreef.com/) - MLReef is an end-to-end development platform using the power of git to give structure and deep collaboration possibilities to the ML development process.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mChroma[0m[38;5;12m (https://www.trychroma.com/) - Chroma - the AI-native open-source embedding database[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPinecone[0m[38;5;12m (https://www.pinecone.io/) - Vector database for applications that require real-time, scalable vector embedding and similarity search.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCatalyzeX[0m[38;5;12m [39m[38;5;12m(https://chrome.google.com/webstore/detail/code-finder-for-research/aikkeehnlfpamidigaffhfmgbkdeheil)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mBrowser[39m[38;5;12m [39m[38;5;12mextension[39m[38;5;12m [39m[38;5;12m([39m[38;5;14m[1mChrome[0m[38;5;12m [39m[38;5;12m(https://chrome.google.com/webstore/detail/code-finder-for-research/aikkeehnlfpamidigaffhfmgbkdeheil)[39m[38;5;12m [39m
|
||
[38;5;12mand[39m[38;5;12m [39m[38;5;14m[1mFirefox[0m[38;5;12m [39m[38;5;12m(https://addons.mozilla.org/en-US/firefox/addon/code-finder-catalyzex/))[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mautomatically[39m[38;5;12m [39m[38;5;12mfinds[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mshows[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12mimplementations[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mpapers[39m[38;5;12m [39m[38;5;12manywhere:[39m[38;5;12m [39m[38;5;12mGoogle,[39m[38;5;12m [39m[38;5;12mTwitter,[39m[38;5;12m [39m[38;5;12mArxiv,[39m[38;5;12m [39m[38;5;12mScholar,[39m[38;5;12m [39m[38;5;12metc.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mML[0m[38;5;14m[1m [0m[38;5;14m[1mWorkspace[0m[38;5;12m [39m[38;5;12m(https://github.com/ml-tooling/ml-workspace)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAll-in-one[39m[38;5;12m [39m[38;5;12mweb-based[39m[38;5;12m [39m[38;5;12mIDE[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscience.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mworkspace[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mdeployed[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mdocker[39m[38;5;12m [39m[38;5;12mcontainer[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mpreloaded[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mvariety[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mpopular[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mscience[39m[38;5;12m [39m[38;5;12mlibraries[39m[38;5;12m [39m[38;5;12m(e.g.,[39m
|
||
[38;5;12mTensorflow,[39m[38;5;12m [39m[38;5;12mPyTorch)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdev[39m[38;5;12m [39m[38;5;12mtools[39m[38;5;12m [39m[38;5;12m(e.g.,[39m[38;5;12m [39m[38;5;12mJupyter,[39m[38;5;12m [39m[38;5;12mVS[39m[38;5;12m [39m[38;5;12mCode).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNotebooks[0m[38;5;12m [39m[38;5;12m(https://github.com/rlan/notebooks)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mstarter[39m[38;5;12m [39m[38;5;12mkit[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mJupyter[39m[38;5;12m [39m[38;5;12mnotebooks[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning.[39m[38;5;12m [39m[38;5;12mCompanion[39m[38;5;12m [39m[38;5;12mdocker[39m[38;5;12m [39m[38;5;12mimages[39m[38;5;12m [39m[38;5;12mconsist[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mcombinations[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mpython[39m[38;5;12m [39m[38;5;12mversions,[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mframeworks[39m[38;5;12m [39m[38;5;12m(Keras,[39m[38;5;12m [39m[38;5;12mPyTorch[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mTensorflow)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||
[38;5;12mCPU/CUDA[39m[38;5;12m [39m[38;5;12mversions.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDVC[0m[38;5;12m (https://github.com/iterative/dvc) - Data Science Version Control is an open-source version control system for machine learning projects with pipelines support. It makes ML projects reproducible and shareable.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDVClive[0m[38;5;12m (https://github.com/iterative/dvclive) - Python library for experiment metrics logging into simply formatted local files.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVDP[0m[38;5;12m [39m[38;5;12m(https://github.com/instill-ai/vdp)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mopen[39m[38;5;12m [39m[38;5;12msource[39m[38;5;12m [39m[38;5;12mvisual[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mETL[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mstreamline[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mend-to-end[39m[38;5;12m [39m[38;5;12mvisual[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mpipeline:[39m[38;5;12m [39m[38;5;12mextract[39m[38;5;12m [39m[38;5;12munstructured[39m[38;5;12m [39m[38;5;12mvisual[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mpre-built[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12msources,[39m[38;5;12m [39m[38;5;12mtransform[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12manalysable[39m[38;5;12m [39m[38;5;12mstructured[39m[38;5;12m [39m[38;5;12minsights[39m[38;5;12m [39m
|
||
[38;5;12mby[39m[38;5;12m [39m[38;5;12mVision[39m[38;5;12m [39m[38;5;12mAI[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mimported[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mvarious[39m[38;5;12m [39m[38;5;12mML[39m[38;5;12m [39m[38;5;12mplatforms,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mload[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12minsights[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12mwarehouses[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mapplications.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKedro[0m[38;5;12m (https://github.com/quantumblacklabs/kedro/) - Kedro is a data and development workflow framework that implements best practices for data pipelines with an eye towards productionizing machine learning models.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHamilton[0m[38;5;12m (https://github.com/dagworks-inc/hamilton) - a lightweight library to define data transformations as a directed-acyclic graph (DAG). It helps author reliable feature engineering and machine learning pipelines, and more.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mguild.ai[0m[38;5;12m (https://guild.ai/) - Tool to log, analyze, compare and "optimize" experiments. It's cross-platform and framework independent, and provided integrated visualizers such as tensorboard.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSacred[0m
|
||
[38;5;12m (https://github.com/IDSIA/sacred) - Python tool to help you configure, organize, log and reproduce experiments. Like a notebook lab in the context of Chemistry/Biology. The community has built multiple add-ons leveraging the proposed standard.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mComet[0m[38;5;12m [39m[38;5;12m(https://www.comet.com/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mML[39m[38;5;12m [39m[38;5;12mplatform[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mtracking[39m[38;5;12m [39m[38;5;12mexperiments,[39m[38;5;12m [39m[38;5;12mhyper-parameters,[39m[38;5;12m [39m[38;5;12martifacts[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmore.[39m[38;5;12m [39m[38;5;12mIt's[39m[38;5;12m [39m[38;5;12mdeeply[39m[38;5;12m [39m[38;5;12mintegrated[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mover[39m[38;5;12m [39m[38;5;12m15+[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mframeworks[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12morchestration[39m[38;5;12m [39m[38;5;12mtools.[39m[38;5;12m [39m[38;5;12mUsers[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mplatform[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mmonitor[39m[38;5;12m [39m
|
||
[38;5;12mtheir[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mproduction.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMLFlow[0m[38;5;12m (https://mlflow.org/) - platform to manage the ML lifecycle, including experimentation, reproducibility and deployment. Framework and language agnostic, take a look at all the built-in integrations.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mWeights & Biases[0m[38;5;12m (https://www.wandb.com/) - Machine learning experiment tracking, dataset versioning, hyperparameter search, visualization, and collaboration[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMore[39m[38;5;12m [39m[38;5;12mtools[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mimprove[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mML[39m[38;5;12m [39m[38;5;12mlifecycle:[39m[38;5;12m [39m[38;5;14m[1mCatalyst[0m[38;5;12m [39m[38;5;12m(https://github.com/catalyst-team/catalyst),[39m[38;5;12m [39m[38;5;14m[1mPachydermIO[0m[38;5;12m [39m[38;5;12m(https://www.pachyderm.io/).[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mfollowing[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mGitHub-alike[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mtargeting[39m[38;5;12m [39m[38;5;12mteams[39m[38;5;12m [39m[38;5;14m[1mWeights[0m[38;5;14m[1m [0m[38;5;14m[1m&[0m[38;5;14m[1m [0m[38;5;14m[1mBiases[0m[38;5;12m [39m[38;5;12m(https://www.wandb.com/),[39m[38;5;12m [39m[38;5;14m[1mNeptune.ai[0m[38;5;12m [39m
|
||
[38;5;12m(https://neptune.ai/),[39m[38;5;12m [39m[38;5;14m[1mComet.ml[0m[38;5;12m [39m[38;5;12m(https://www.comet.ml/),[39m[38;5;12m [39m[38;5;14m[1mValohai.ai[0m[38;5;12m [39m[38;5;12m(https://valohai.com/),[39m[38;5;12m [39m[38;5;14m[1mDAGsHub[0m[38;5;12m [39m[38;5;12m(https://DAGsHub.com/).[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mArize AI[0m[38;5;12m (https://www.arize.com) - Model validation and performance monitoring, drift detection, explainability, visualization across structured and unstructured data[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMachineLearningWithTensorFlow2ed[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/machine-learning-with-tensorflow-second-edition)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mbook[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mgeneral[39m[38;5;12m [39m[38;5;12mpurpose[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mtechniques[39m[38;5;12m [39m[38;5;12mregression,[39m[38;5;12m [39m[38;5;12mclassification,[39m[38;5;12m [39m[38;5;12munsupervised[39m[38;5;12m [39m[38;5;12mclustering,[39m[38;5;12m [39m[38;5;12mreinforcement[39m[38;5;12m [39m
|
||
[38;5;12mlearning,[39m[38;5;12m [39m[38;5;12mauto[39m[38;5;12m [39m[38;5;12mencoders,[39m[38;5;12m [39m[38;5;12mconvolutional[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetworks,[39m[38;5;12m [39m[38;5;12mRNNs,[39m[38;5;12m [39m[38;5;12mLSTMs,[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mTensorFlow[39m[38;5;12m [39m[38;5;12m1.14.1.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mm2cgen[0m[38;5;12m (https://github.com/BayesWitnesses/m2cgen) - A tool that allows the conversion of ML models into native code (Java, C, Python, Go, JavaScript, Visual Basic, C#, R, PowerShell, PHP, Dart) with zero dependencies.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCML[0m[38;5;12m [39m[38;5;12m(https://github.com/iterative/cml)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mdoing[39m[38;5;12m [39m[38;5;12mcontinuous[39m[38;5;12m [39m[38;5;12mintegration[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mML[39m[38;5;12m [39m[38;5;12mprojects.[39m[38;5;12m [39m[38;5;12mUse[39m[38;5;12m [39m[38;5;12mGitHub[39m[38;5;12m [39m[38;5;12mActions[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;12mGitLab[39m[38;5;12m [39m[38;5;12mCI[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mtrain[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mevaluate[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mproduction[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m[38;5;12menvironments[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mautomatically[39m[38;5;12m [39m[38;5;12mgenerate[39m[38;5;12m [39m[38;5;12mvisual[39m[38;5;12m [39m[38;5;12mreports[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m
|
||
[38;5;12mmetrics[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mgraphs[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mpull/merge[39m[38;5;12m [39m[38;5;12mrequests.[39m[38;5;12m [39m[38;5;12mFramework[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12magnostic.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPythonizr[0m[38;5;12m (https://pythonizr.com) - An online tool to generate boilerplate machine learning code that uses scikit-learn.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFlyte[0m[38;5;12m (https://flyte.org/) - Flyte makes it easy to create concurrent, scalable, and maintainable workflows for machine learning and data processing.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mChaos Genius[0m[38;5;12m (https://github.com/chaos-genius/chaos_genius/) - ML powered analytics engine for outlier/anomaly detection and root cause analysis.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMLEM[0m[38;5;12m (https://github.com/iterative/mlem) - Version and deploy your ML models following GitOps principles[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDockerDL[0m[38;5;12m (https://github.com/matifali/dockerdl) - Ready to use deeplearning docker images.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAqueduct[0m[38;5;12m (https://github.com/aqueducthq/aqueduct) - Aqueduct enables you to easily define, run, and manage AI & ML tasks on any cloud infrastructure.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAmbrosia[0m[38;5;12m (https://github.com/reactorsh/ambrosia) - Ambrosia helps you clean up your LLM datasets using _other_ LLMs.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFiddler[0m[38;5;14m[1m [0m[38;5;14m[1mAI[0m[38;5;12m [39m[38;5;12m(https://www.fiddler.ai)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mall-in-one[39m[38;5;12m [39m[38;5;12mAI[39m[38;5;12m [39m[38;5;12mObservability[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mSecurity[39m[38;5;12m [39m[38;5;12mplatform[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mresponsible[39m[38;5;12m [39m[38;5;12mAI.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12mmonitoring,[39m[38;5;12m [39m[38;5;12manalytics,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcentralized[39m[38;5;12m [39m[38;5;12mcontrols[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12moperationalize[39m[38;5;12m [39m[38;5;12mML,[39m[38;5;12m [39m[38;5;12mGenAI,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mLLM[39m[38;5;12m [39m[38;5;12mapplications[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mtrust.[39m[38;5;12m [39m[38;5;12mFiddler[39m[38;5;12m [39m
|
||
[38;5;12mhelps[39m[38;5;12m [39m[38;5;12menterprises[39m[38;5;12m [39m[38;5;12mscale[39m[38;5;12m [39m[38;5;12mLLM[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mML[39m[38;5;12m [39m[38;5;12mdeployments[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mdeliver[39m[38;5;12m [39m[38;5;12mhigh[39m[38;5;12m [39m[38;5;12mperformance[39m[38;5;12m [39m[38;5;12mAI,[39m[38;5;12m [39m[38;5;12mreduce[39m[38;5;12m [39m[38;5;12mcosts,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mresponsible[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mgovernance.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMaxim AI[0m[38;5;12m (https://getmaxim.ai) - The agent simulation, evaluation, and observability platform helping product teams ship their AI applications with the quality and speed needed for real-world use.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAgentic[0m[38;5;14m[1m [0m[38;5;14m[1mRadar[0m[38;5;12m [39m[38;5;12m(https://github.com/splx-ai/agentic-radar)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mOpen-source[39m[38;5;12m [39m[38;5;12mCLI[39m[38;5;12m [39m[38;5;12msecurity[39m[38;5;12m [39m[38;5;12mscanner[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12magentic[39m[38;5;12m [39m[38;5;12mworkflows.[39m[38;5;12m [39m[38;5;12mScans[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mworkflow’s[39m[38;5;12m [39m[38;5;12msource[39m[38;5;12m [39m[38;5;12mcode,[39m[38;5;12m [39m[38;5;12mdetects[39m[38;5;12m [39m[38;5;12mvulnerabilities,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mgenerates[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12minteractive[39m[38;5;12m [39m[38;5;12mvisualization[39m[38;5;12m [39m[38;5;12malong[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mdetailed[39m[38;5;12m [39m
|
||
[38;5;12msecurity[39m[38;5;12m [39m[38;5;12mreport.[39m[38;5;12m [39m[38;5;12mSupports[39m[38;5;12m [39m[38;5;12mLangGraph,[39m[38;5;12m [39m[38;5;12mCrewAI,[39m[38;5;12m [39m[38;5;12mn8n,[39m[38;5;12m [39m[38;5;12mOpenAI[39m[38;5;12m [39m[38;5;12mAgents,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmore.[39m
|
||
|
||
|
||
[38;2;255;187;0m[4mBooks[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDistributed[0m[38;5;14m[1m [0m[38;5;14m[1mMachine[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mPatterns[0m[38;5;12m [39m[38;5;12m(https://github.com/terrytangyuan/distributed-ml-patterns)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mbook[39m[38;5;12m [39m[38;5;12mteaches[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mtake[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mpersonal[39m[38;5;12m [39m[38;5;12mlaptop[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12mclusters.[39m[38;5;12m [39m[38;5;12mYou’ll[39m[38;5;12m [39m[38;5;12mexplore[39m[38;5;12m [39m[38;5;12mkey[39m[38;5;12m [39m[38;5;12mconcepts[39m[38;5;12m [39m
|
||
[38;5;12mand[39m[38;5;12m [39m[38;5;12mpatterns[39m[38;5;12m [39m[38;5;12mbehind[39m[38;5;12m [39m[38;5;12msuccessful[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12msystems,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mlearn[39m[38;5;12m [39m[38;5;12mtechnologies[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m[38;5;12mTensorFlow,[39m[38;5;12m [39m[38;5;12mKubernetes,[39m[38;5;12m [39m[38;5;12mKubeflow,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mArgo[39m[38;5;12m [39m[38;5;12mWorkflows[39m[38;5;12m [39m[38;5;12mdirectly[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mkey[39m[38;5;12m [39m[38;5;12mmaintainer[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcontributor,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mreal-world[39m[38;5;12m [39m[38;5;12mscenarios[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mhands-on[39m[38;5;12m [39m[38;5;12mprojects.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGrokking Machine Learning[0m[38;5;12m (https://www.manning.com/books/grokking-machine-learning) - Grokking Machine Learning teaches you how to apply ML to your projects using only standard Python code and high school-level math.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMachine Learning Bookcamp[0m[38;5;12m (https://www.manning.com/books/machine-learning-bookcamp) - Learn the essentials of machine learning by completing a carefully designed set of real-world projects.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHands-On[0m[38;5;14m[1m [0m[38;5;14m[1mMachine[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1mScikit-Learn,[0m[38;5;14m[1m [0m[38;5;14m[1mKeras,[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mTensorFlow[0m[38;5;12m [39m[38;5;12m(https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1098125975)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThrough[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mrecent[39m[38;5;12m [39m[38;5;12mseries[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mbreakthroughs,[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mhas[39m[38;5;12m [39m[38;5;12mboosted[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mentire[39m[38;5;12m [39m[38;5;12mfield[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m
|
||
[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning.[39m[38;5;12m [39m[38;5;12mNow,[39m[38;5;12m [39m[38;5;12meven[39m[38;5;12m [39m[38;5;12mprogrammers[39m[38;5;12m [39m[38;5;12mwho[39m[38;5;12m [39m[38;5;12mknow[39m[38;5;12m [39m[38;5;12mclose[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mnothing[39m[38;5;12m [39m[38;5;12mabout[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mtechnology[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;12msimple,[39m[38;5;12m [39m[38;5;12mefficient[39m[38;5;12m [39m[38;5;12mtools[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mimplement[39m[38;5;12m [39m[38;5;12mprograms[39m[38;5;12m [39m[38;5;12mcapable[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mdata.[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mbestselling[39m[38;5;12m [39m[38;5;12mbook[39m[38;5;12m [39m[38;5;12muses[39m[38;5;12m [39m[38;5;12mconcrete[39m[38;5;12m [39m[38;5;12mexamples,[39m[38;5;12m [39m[38;5;12mminimal[39m[38;5;12m [39m[38;5;12mtheory,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||
[38;5;12mproduction-ready[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mframeworks[39m[38;5;12m [39m[38;5;12m(Scikit-Learn,[39m[38;5;12m [39m[38;5;12mKeras,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mTensorFlow)[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mhelp[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mgain[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12mintuitive[39m[38;5;12m [39m[38;5;12munderstanding[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mconcepts[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mtools[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mbuilding[39m[38;5;12m [39m[38;5;12mintelligent[39m[38;5;12m [39m[38;5;12msystems.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMachine Learning Books for Beginners[0m
|
||
[38;5;12m (https://www.appliedaicourse.com/blog/machine-learning-books/) - This blog provides a curated list of introductory books to help aspiring ML professionals to grasp foundational machine learning concepts and techniques.[39m
|
||
|
||
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNetron[0m[38;5;12m (https://netron.app/) - An opensource viewer for neural network, deep learning and machine learning models[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTeachable Machine[0m[38;5;12m (https://teachablemachine.withgoogle.com/) - Train Machine Learning models on the fly to recognize your own images, sounds, & poses.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPollinations.AI[0m[38;5;12m (https://pollinations.ai) - Free, no-signup APIs for text, image, and audio generation with no API keys required. Offers OpenAI-compatible interfaces and React hooks for easy integration.[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mModel Zoo[0m[38;5;12m (https://modelzoo.co/) - Discover open source deep learning code and pretrained models.[39m
|
||
|
||
[38;2;255;187;0m[4mCredits[0m
|
||
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSome of the python libraries were cut-and-pasted from [39m[38;5;14m[1mvinta[0m[38;5;12m (https://github.com/vinta/awesome-python)[39m
|
||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mReferences for Go were mostly cut-and-pasted from [39m[38;5;14m[1mgopherdata[0m[38;5;12m (https://github.com/gopherdata/resources/tree/master/tooling)[39m
|
||
|
||
[38;5;12mmachinelearning Github: https://github.com/josephmisiti/awesome-machine-learning[39m
|