170 lines
50 KiB
Plaintext
170 lines
50 KiB
Plaintext
[38;2;255;187;0m[1m[4mAwesome[0m[38;2;255;187;0m[1m[4m [0m[38;2;255;187;0m[1m[4mH2O[0m[38;2;255;187;0m[1m[4m [0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mAwesome[0m[38;5;14m[1m[4m [0m[38;5;14m[1m[4m(https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)[0m[38;2;255;187;0m[1m[4m [0m[38;2;255;187;0m[1m[4m(https://github.com/sindresorhus/awesome)[0m[38;2;255;187;0m[1m[4m [0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mPowered[0m[38;2;255;187;0m[1m[4m [0m[38;2;255;187;0m[1m[4mby[0m[38;2;255;187;0m[1m[4m [0m[38;2;255;187;0m[1m[4mH2O.ai[0m[38;5;14m[1m[4m [0m[38;5;14m[1m[4m(https://img.shields.io/badge/powered%20by-h2oai-yellow.svg)[0m[38;2;255;187;0m[1m[4m [0m
|
||
[38;5;12m [39m[38;2;255;187;0m[1m[4m(https://github.com/h2oai/)[0m
|
||
|
||
[38;5;12m (https://github.com/h2oai/h2o-3)[39m
|
||
|
||
[38;5;12mBelow[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcurated[39m[38;5;12m [39m[38;5;12mlist[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mawesome[39m[38;5;12m [39m[38;5;12mprojects,[39m[38;5;12m [39m[38;5;12mapplications,[39m[38;5;12m [39m[38;5;12mresearch,[39m[38;5;12m [39m[38;5;12mtutorials,[39m[38;5;12m [39m[38;5;12mcourses[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mbooks[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;14m[1mH2O[0m[38;5;12m [39m[38;5;12m(https://github.com/h2oai/h2o-3),[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12mopen[39m[38;5;12m [39m[38;5;12msource,[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mplatform.[39m[38;5;12m [39m[38;5;12mH2O[39m[38;5;12m [39m[38;5;12moffers[39m[38;5;12m [39m[38;5;12mparallelized[39m[38;5;12m [39m
|
||
[38;5;12mimplementations[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12msupervised[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12munsupervised[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mGeneralized[39m[38;5;12m [39m[38;5;12mLinear[39m[38;5;12m [39m[38;5;12mModels,[39m[38;5;12m [39m[38;5;12mGradient[39m[38;5;12m [39m[38;5;12mBoosting[39m[38;5;12m [39m[38;5;12mMachines[39m[38;5;12m [39m[38;5;12m(including[39m[38;5;12m [39m[38;5;12mXGBoost),[39m[38;5;12m [39m[38;5;12mRandom[39m[38;5;12m [39m[38;5;12mForests,[39m[38;5;12m [39m[38;5;12mDeep[39m[38;5;12m [39m[38;5;12mNeural[39m[38;5;12m [39m[38;5;12mNetworks[39m[38;5;12m [39m[38;5;12m(Deep[39m[38;5;12m [39m[38;5;12mLearning),[39m[38;5;12m [39m[38;5;12mStacked[39m[38;5;12m [39m[38;5;12mEnsembles,[39m[38;5;12m [39m[38;5;12mNaive[39m[38;5;12m [39m
|
||
[38;5;12mBayes,[39m[38;5;12m [39m[38;5;12mCox[39m[38;5;12m [39m[38;5;12mProportional[39m[38;5;12m [39m[38;5;12mHazards,[39m[38;5;12m [39m[38;5;12mK-means,[39m[38;5;12m [39m[38;5;12mPCA,[39m[38;5;12m [39m[38;5;12mWord2Vec,[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mfully[39m[38;5;12m [39m[38;5;12mautomatic[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12malgorithm[39m[38;5;12m [39m[38;5;12m(AutoML).[39m
|
||
|
||
[38;5;14m[1mH2O.ai[0m[38;5;12m [39m[38;5;12m(http://www.h2o.ai/about/)[39m[38;5;12m [39m[38;5;12mproduces[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;14m[1mtutorials[0m[38;5;12m [39m[38;5;12m(https://github.com/h2oai/h2o-tutorials),[39m[38;5;12m [39m[38;5;14m[1mblog[0m[38;5;14m[1m [0m[38;5;14m[1mposts[0m[38;5;12m [39m[38;5;12m(http://blog.h2o.ai/),[39m[38;5;12m [39m[38;5;14m[1mpresentations[0m[38;5;12m [39m[38;5;12m(https://github.com/h2oai/h2o-meetups)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;14m[1mvideos[0m[38;5;12m [39m[38;5;12m(https://www.youtube.com/user/0xdata)[39m[38;5;12m [39m[38;5;12mabout[39m[38;5;12m [39m[38;5;12mH2O,[39m
|
||
[38;5;12mbut[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mlist[39m[38;5;12m [39m[38;5;12mbelow[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mcomprised[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mawesome[39m[38;5;12m [39m[38;5;12mcontent[39m[38;5;12m [39m[38;5;12mproduced[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mgreater[39m[38;5;12m [39m[38;5;12mH2O[39m[38;5;12m [39m[38;5;12muser[39m[38;5;12m [39m[38;5;12mcommunity.[39m
|
||
|
||
[38;5;12mWe[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mjust[39m[38;5;12m [39m[38;5;12mgetting[39m[38;5;12m [39m[38;5;12mstarted[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mlist,[39m[38;5;12m [39m[38;5;12mso[39m[38;5;12m [39m[38;5;12mpull[39m[38;5;12m [39m[38;5;12mrequests[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mvery[39m[38;5;12m [39m[38;5;12mmuch[39m[38;5;12m [39m[38;5;12mappreciated![39m[38;5;12m [39m[38;5;12m🙏[39m[38;5;12m [39m[38;5;12mPlease[39m[38;5;12m [39m[38;5;12mreview[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;14m[1mcontribution[0m[38;5;14m[1m [0m[38;5;14m[1mguidelines[0m[38;5;12m [39m[38;5;12m(contributing.md)[39m[38;5;12m [39m[38;5;12mbefore[39m[38;5;12m [39m[38;5;12mmaking[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mpull[39m[38;5;12m [39m[38;5;12mrequest.[39m[38;5;12m [39m[38;5;12mIf[39m[38;5;12m [39m[38;5;12myou're[39m[38;5;12m [39m[38;5;12mnot[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mGitHub[39m[38;5;12m [39m[38;5;12muser[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mwant[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mmake[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcontribution,[39m[38;5;12m [39m
|
||
[38;5;12mplease[39m[38;5;12m [39m[38;5;12msend[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12memail[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcommunity@h2o.ai.[39m
|
||
|
||
[38;5;12mIf you think H2O is awesome too, please ⭐ the [39m[38;5;14m[1mH2O GitHub repository[0m[38;5;12m (https://github.com/h2oai/h2o-3/).[39m
|
||
|
||
[38;2;255;187;0m[4mContents[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mBlog Posts & Tutorials[0m[38;5;12m (#blog-posts--tutorials)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBooks[0m[38;5;12m (#books)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mResearch Papers[0m[38;5;12m (#research-papers)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBenchmarks[0m[38;5;12m (#benchmarks)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPresentations[0m[38;5;12m (#presentations)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCourses[0m[38;5;12m (#courses)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSoftware (built using H2O)[0m[38;5;12m (#software)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mLicense[0m[38;5;12m (#license)[39m
|
||
|
||
[38;2;255;187;0m[4mBlog Posts & Tutorials[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mUsing H2O AutoML to simplify training process (and also predict wine quality)[0m[38;5;12m (https://enjoymachinelearning.com/posts/h2o-auto-machine-learning/) Aug 4, 2020[39m
|
||
[38;5;12m- [39m[38;5;14m[1mVisualizing ML Models with LIME[0m[38;5;12m (https://uc-r.github.io/lime)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mParallel Grid Search in H2O [0m[38;5;12m (https://www.pavel.cool/h2o-3/h2o-parallel-grid-search/) Jan 17, 2020[39m
|
||
[38;5;12m- [39m[38;5;14m[1mImporting, Inspecting and Scoring with MOJO models inside H2O[0m[38;5;12m (https://www.pavel.cool/h2o-3/h2o-mojo-import/) Dec 10, 2019[39m
|
||
[38;5;12m- [39m[38;5;14m[1mArtificial Intelligence Made Easy with H2O.ai: A Comprehensive Guide to Modeling with H2O.ai and AutoML in Python[0m[38;5;12m (https://towardsdatascience.com/artificial-intelligence-made-easy-187ecb90c299) June 12, 2019[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAnomaly Detection With Isolation Forests Using H2O[0m[38;5;12m (https://dzone.com/articles/anomaly-detection-with-isolation-forests-using-h2o-1) Dec 03, 2018[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mPredicting[0m[38;5;14m[1m [0m[38;5;14m[1mresidential[0m[38;5;14m[1m [0m[38;5;14m[1mproperty[0m[38;5;14m[1m [0m[38;5;14m[1mprices[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mBratislava[0m[38;5;14m[1m [0m[38;5;14m[1musing[0m[38;5;14m[1m [0m[38;5;14m[1mrecipes[0m[38;5;14m[1m [0m[38;5;14m[1m-[0m[38;5;14m[1m [0m[38;5;14m[1mH2O[0m[38;5;14m[1m [0m[38;5;14m[1mMachine[0m[38;5;14m[1m [0m[38;5;14m[1mlearning[0m[38;5;12m [39m[38;5;12m(https://www.michal-kapusta.com/post/2018-11-02-predicting-residential-property-prices-in-bratislava-using-recipes-h2o-machine-learning-part-ii/)[39m[38;5;12m [39m[38;5;12mNov[39m[38;5;12m [39m[38;5;12m25,[39m[38;5;12m [39m
|
||
[38;5;12m2018[39m
|
||
[38;5;12m- [39m[38;5;14m[1mInspecting Decision Trees in H2O[0m[38;5;12m (https://dzone.com/articles/inspecting-decision-trees-in-h2o) Nov 07, 2018[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGentle Introduction to AutoML from H2O.ai[0m[38;5;12m (https://medium.com/analytics-vidhya/gentle-introduction-to-automl-from-h2o-ai-a42b393b4ba2) Sep 13, 2018[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine Learning With H2O — Hands-On Guide for Data Scientists[0m[38;5;12m (https://dzone.com/articles/machine-learning-with-h2o-hands-on-guide-for-data) Jun 27, 2018[39m
|
||
[38;5;12m- [39m[38;5;14m[1mUsing machine learning with LIME to understand employee churn[0m[38;5;12m (http://www.business-science.io/business/2018/06/25/lime-local-feature-interpretation.html) June 25, 2018[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAnalytics at Scale: h2o, Apache Spark and R on AWS EMR[0m[38;5;12m (https://redoakstrategic.com/h2oaws/) June 21, 2018[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAutomated and unmysterious machine learning in cancer detection[0m[38;5;12m (https://kkulma.github.io/2017-11-07-automated_machine_learning_in_cancer_detection/) Nov 7, 2017[39m
|
||
[38;5;12m- [39m[38;5;14m[1mTime series machine learning with h2o+timetk[0m[38;5;12m (http://www.business-science.io/code-tools/2017/10/28/demo_week_h2o.html) Oct 28, 2017[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSales Analytics: How to use machine learning to predict and optimize product backorders[0m[38;5;12m (http://www.business-science.io/business/2017/10/16/sales_backorder_prediction.html) Oct 16, 2017[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHR Analytics: Using machine learning to predict employee turnover[0m[38;5;12m (http://www.business-science.io/business/2017/09/18/hr_employee_attrition.html) Sep 18, 2017[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAutoencoders and anomaly detection with machine learning in fraud analytics [0m[38;5;12m (https://shiring.github.io/machine_learning/2017/05/01/fraud) May 1, 2017[39m
|
||
[38;5;12m- [39m[38;5;14m[1mBuilding deep neural nets with h2o and rsparkling that predict arrhythmia of the heart[0m[38;5;12m (https://shiring.github.io/machine_learning/2017/02/27/h2o) Feb 27, 2017[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPredicting food preferences with sparklyr (machine learning)[0m[38;5;12m (https://shiring.github.io/machine_learning/2017/02/19/food_spark) Feb 19, 2017[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMoving largish data from R to H2O - spam detection with Enron emails[0m[38;5;12m (https://ellisp.github.io/blog/2017/02/18/svmlite) Feb 18, 2016[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDeep learning & parameter tuning with mxnet, h2o package in R[0m[38;5;12m (http://blog.hackerearth.com/understanding-deep-learning-parameter-tuning-with-mxnet-h2o-package-in-r) Jan 30, 2017[39m
|
||
|
||
[38;2;255;187;0m[4mBooks[0m
|
||
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mBig[0m[38;5;14m[1m [0m[38;5;14m[1mdata[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mpsychiatry[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mneurology,[0m[38;5;14m[1m [0m[38;5;14m[1mChapter[0m[38;5;14m[1m [0m[38;5;14m[1m11:[0m[38;5;14m[1m [0m[38;5;14m[1mA[0m[38;5;14m[1m [0m[38;5;14m[1mscalable[0m[38;5;14m[1m [0m[38;5;14m[1mmedication[0m[38;5;14m[1m [0m[38;5;14m[1mintake[0m[38;5;14m[1m [0m[38;5;14m[1mmonitoring[0m[38;5;14m[1m [0m[38;5;14m[1msystem[0m[38;5;12m [39m[38;5;12m(https://www.elsevier.com/books/big-data-in-psychiatry-and-neurology/moustafa/978-0-12-822884-5)[39m[38;5;12m [39m[38;5;12mDiane[39m[38;5;12m [39m[38;5;12mMyung-Kyung[39m[38;5;12m [39m[38;5;12mWoodbridge[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mKevin[39m[38;5;12m [39m[38;5;12mBengtson[39m[38;5;12m [39m
|
||
[38;5;12mWong.[39m[38;5;12m [39m[38;5;12m(2021)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHands on Time Series with R[0m[38;5;12m (https://www2.packtpub.com/big-data-and-business-intelligence/hands-time-series-analysis-r) Rami Krispin. (2019)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMastering Machine Learning with Spark 2.x[0m[38;5;12m (https://www.packtpub.com/product/mastering-machine-learning-with-spark-2-x/9781785283451) Alex Tellez, Max Pumperla, Michal Malohlava. (2017)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine Learning Using R[0m[38;5;12m (https://www.amazon.com/Machine-Learning-Using-Karthik-Ramasubramanian/dp/1484223330) Karthik Ramasubramanian, Abhishek Singh. (2016)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPractical Machine Learning with H2O: Powerful, Scalable Techniques for Deep Learning and AI[0m[38;5;12m (https://www.amazon.com/Practical-Machine-Learning-H2O-Techniques/dp/149196460X) Darren Cook. (2016)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDisruptive Analytics[0m[38;5;12m (http://link.springer.com/book/10.1007/978-1-4842-1311-7) Thomas Dinsmore. (2016)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mComputer Age Statistical Inference: Algorithms, Evidence, and Data Science[0m[38;5;12m (https://web.stanford.edu/~hastie/CASI/) Bradley Efron, Trevor Hastie. (2016)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mR Deep Learning Essentials[0m[38;5;12m (https://www.packtpub.com/big-data-and-business-intelligence/r-deep-learning-essentials) Joshua F. Wiley. (2016)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSpark in Action[0m[38;5;12m (https://www.manning.com/books/spark-in-action) Petar Zečević, Marko Bonaći. (2016)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHandbook of Big Data[0m[38;5;12m (https://www.crcpress.com/Handbook-of-Big-Data/Buhlmann-Drineas-Kane-van-der-Laan/p/book/9781482249071) Peter Bühlmann, Petros Drineas, Michael Kane, Mark J. van der Laan (2015)[39m
|
||
|
||
[38;2;255;187;0m[4mResearch Papers[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mAutomated machine learning: AI-driven decision making in business analytics[0m[38;5;12m (https://www.sciencedirect.com/science/article/pii/S2667305323000133) Marc Schmitt. (2023)[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mWater-Quality[0m[38;5;14m[1m [0m[38;5;14m[1mPrediction[0m[38;5;14m[1m [0m[38;5;14m[1mBased[0m[38;5;14m[1m [0m[38;5;14m[1mon[0m[38;5;14m[1m [0m[38;5;14m[1mH2O[0m[38;5;14m[1m [0m[38;5;14m[1mAutoML[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mExplainable[0m[38;5;14m[1m [0m[38;5;14m[1mAI[0m[38;5;14m[1m [0m[38;5;14m[1mTechniques[0m[38;5;12m [39m[38;5;12m(https://www.mdpi.com/2073-4441/15/3/475)[39m[38;5;12m [39m[38;5;12mHamza[39m[38;5;12m [39m[38;5;12mAhmad[39m[38;5;12m [39m[38;5;12mMadni,[39m[38;5;12m [39m[38;5;12mMuhammad[39m[38;5;12m [39m[38;5;12mUmer,[39m[38;5;12m [39m[38;5;12mAbid[39m[38;5;12m [39m[38;5;12mIshaq,[39m[38;5;12m [39m[38;5;12mNihal[39m[38;5;12m [39m[38;5;12mAbuzinadah,[39m[38;5;12m [39m[38;5;12mOumaima[39m[38;5;12m [39m[38;5;12mSaidani,[39m[38;5;12m [39m[38;5;12mShtwai[39m[38;5;12m [39m[38;5;12mAlsubai,[39m[38;5;12m [39m[38;5;12mMonia[39m[38;5;12m [39m[38;5;12mHamdi,[39m[38;5;12m [39m[38;5;12mImran[39m[38;5;12m [39m[38;5;12mAshraf.[39m[38;5;12m [39m
|
||
[38;5;12m(2023)[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mWhich[0m[38;5;14m[1m [0m[38;5;14m[1mmodel[0m[38;5;14m[1m [0m[38;5;14m[1mto[0m[38;5;14m[1m [0m[38;5;14m[1mchoose?[0m[38;5;14m[1m [0m[38;5;14m[1mPerformance[0m[38;5;14m[1m [0m[38;5;14m[1mcomparison[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mstatistical[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mmachine[0m[38;5;14m[1m [0m[38;5;14m[1mlearning[0m[38;5;14m[1m [0m[38;5;14m[1mmodels[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mpredicting[0m[38;5;14m[1m [0m[38;5;14m[1mPM2.5[0m[38;5;14m[1m [0m[38;5;14m[1mfrom[0m[38;5;14m[1m [0m[38;5;14m[1mhigh-resolution[0m[38;5;14m[1m [0m[38;5;14m[1msatellite[0m[38;5;14m[1m [0m[38;5;14m[1maerosol[0m[38;5;14m[1m [0m[38;5;14m[1moptical[0m[38;5;14m[1m [0m[38;5;14m[1mdepth[0m[38;5;12m [39m
|
||
[38;5;12m(https://www.sciencedirect.com/science/article/abs/pii/S1352231022002291?dgcid=coauthor)[39m[38;5;12m [39m[38;5;12mPadmavati[39m[38;5;12m [39m[38;5;12mKulkarnia,[39m[38;5;12m [39m[38;5;12mV.Sreekantha,[39m[38;5;12m [39m[38;5;12mAdithi[39m[38;5;12m [39m[38;5;12mR.Upadhyab,[39m[38;5;12m [39m[38;5;12mHrishikesh[39m[38;5;12m [39m[38;5;12mChandraGautama.[39m[38;5;12m [39m[38;5;12m(2022)[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1m [0m[38;5;14m[1mProspective[0m[38;5;14m[1m [0m[38;5;14m[1mvalidation[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1ma[0m[38;5;14m[1m [0m[38;5;14m[1mtranscriptomic[0m[38;5;14m[1m [0m[38;5;14m[1mseverity[0m[38;5;14m[1m [0m[38;5;14m[1mclassifier[0m[38;5;14m[1m [0m[38;5;14m[1mamong[0m[38;5;14m[1m [0m[38;5;14m[1mpatients[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1msuspected[0m[38;5;14m[1m [0m[38;5;14m[1macute[0m[38;5;14m[1m [0m[38;5;14m[1minfection[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1msepsis[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mthe[0m[38;5;14m[1m [0m[38;5;14m[1memergency[0m[38;5;14m[1m [0m[38;5;14m[1mdepartment[0m[38;5;12m [39m[38;5;12m(https://pubmed.ncbi.nlm.nih.gov/35467566/)[39m[38;5;12m [39m[38;5;12mNoa[39m[38;5;12m [39m[38;5;12mGaltung,[39m[38;5;12m [39m[38;5;12mEva[39m[38;5;12m [39m[38;5;12mDiehl-Wiesenecker,[39m[38;5;12m [39m[38;5;12mDana[39m[38;5;12m [39m[38;5;12mLehmann,[39m[38;5;12m [39m
|
||
[38;5;12mNatallia[39m[38;5;12m [39m[38;5;12mMarkmann,[39m[38;5;12m [39m[38;5;12mWilma[39m[38;5;12m [39m[38;5;12mH[39m[38;5;12m [39m[38;5;12mBergström,[39m[38;5;12m [39m[38;5;12mJames[39m[38;5;12m [39m[38;5;12mWacker,[39m[38;5;12m [39m[38;5;12mOliver[39m[38;5;12m [39m[38;5;12mLiesenfeld,[39m[38;5;12m [39m[38;5;12mMichael[39m[38;5;12m [39m[38;5;12mMayhew,[39m[38;5;12m [39m[38;5;12mLjubomir[39m[38;5;12m [39m[38;5;12mButurovic,[39m[38;5;12m [39m[38;5;12mRoland[39m[38;5;12m [39m[38;5;12mLuethy,[39m[38;5;12m [39m[38;5;12mTimothy[39m[38;5;12m [39m[38;5;12mE[39m[38;5;12m [39m[38;5;12mSweeney[39m[38;5;12m [39m[38;5;12m,[39m[38;5;12m [39m[38;5;12mRudolf[39m[38;5;12m [39m[38;5;12mTauber,[39m[38;5;12m [39m[38;5;12mKai[39m[38;5;12m [39m[38;5;12mKappert,[39m[38;5;12m [39m[38;5;12mRajan[39m[38;5;12m [39m[38;5;12mSomasundaram,[39m[38;5;12m [39m[38;5;12mWolfgang[39m[38;5;12m [39m[38;5;12mBauer.[39m[38;5;12m [39m[38;5;12m(2022)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDepression Level Prediction in People with Parkinson’s Disease during the COVID-19 Pandemic[0m[38;5;12m (https://embc.embs.org/2021/)) Hashneet Kaur, Patrick Ka-Cheong Poon, Sophie Yuefei Wang, Diane Myung-kyung Woodbridge. (2021)[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mMachine[0m[38;5;14m[1m [0m[38;5;14m[1mLearning-based[0m[38;5;14m[1m [0m[38;5;14m[1mMeal[0m[38;5;14m[1m [0m[38;5;14m[1mDetection[0m[38;5;14m[1m [0m[38;5;14m[1mUsing[0m[38;5;14m[1m [0m[38;5;14m[1mContinuous[0m[38;5;14m[1m [0m[38;5;14m[1mGlucose[0m[38;5;14m[1m [0m[38;5;14m[1mMonitoring[0m[38;5;14m[1m [0m[38;5;14m[1mon[0m[38;5;14m[1m [0m[38;5;14m[1mHealthy[0m[38;5;14m[1m [0m[38;5;14m[1mParticipants:[0m[38;5;14m[1m [0m[38;5;14m[1mAn[0m[38;5;14m[1m [0m[38;5;14m[1mObjective[0m[38;5;14m[1m [0m[38;5;14m[1mMeasure[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mParticipant[0m[38;5;14m[1m [0m[38;5;14m[1mCompliance[0m[38;5;14m[1m [0m[38;5;14m[1mto[0m[38;5;14m[1m [0m[38;5;14m[1mProtocol[0m[38;5;12m [39m[38;5;12m(https://embc.embs.org/2021/)[39m[38;5;12m [39m[38;5;12mVictor[39m[38;5;12m [39m[38;5;12mPalacios,[39m[38;5;12m [39m[38;5;12mDiane[39m[38;5;12m [39m[38;5;12mMyung-kyung[39m[38;5;12m [39m[38;5;12mWoodbridge,[39m[38;5;12m [39m[38;5;12mJean[39m[38;5;12m [39m[38;5;12mL.[39m[38;5;12m [39m
|
||
[38;5;12mFry.[39m[38;5;12m [39m[38;5;12m(2021)[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mMaturity[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mgray[0m[38;5;14m[1m [0m[38;5;14m[1mmatter[0m[38;5;14m[1m [0m[38;5;14m[1mstructures[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mwhite[0m[38;5;14m[1m [0m[38;5;14m[1mmatter[0m[38;5;14m[1m [0m[38;5;14m[1mconnectomes,[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mtheir[0m[38;5;14m[1m [0m[38;5;14m[1mrelationship[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1mpsychiatric[0m[38;5;14m[1m [0m[38;5;14m[1msymptoms[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1myouth[0m[38;5;12m [39m[38;5;12m(https://onlinelibrary.wiley.com/doi/full/10.1002/hbm.25565)[39m[38;5;12m [39m[38;5;12mAlex[39m[38;5;12m [39m[38;5;12mLuna,[39m[38;5;12m [39m[38;5;12mJoel[39m[38;5;12m [39m[38;5;12mBernanke,[39m[38;5;12m [39m[38;5;12mKakyeong[39m[38;5;12m [39m[38;5;12mKim,[39m[38;5;12m [39m[38;5;12mNatalie[39m[38;5;12m [39m[38;5;12mAw,[39m[38;5;12m [39m[38;5;12mJordan[39m[38;5;12m [39m
|
||
[38;5;12mD.[39m[38;5;12m [39m[38;5;12mDworkin,[39m[38;5;12m [39m[38;5;12mJiook[39m[38;5;12m [39m[38;5;12mCha,[39m[38;5;12m [39m[38;5;12mJonathan[39m[38;5;12m [39m[38;5;12mPosner[39m[38;5;12m [39m[38;5;12m(2021).[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mAppendectomy[0m[38;5;14m[1m [0m[38;5;14m[1mduring[0m[38;5;14m[1m [0m[38;5;14m[1mthe[0m[38;5;14m[1m [0m[38;5;14m[1mCOVID-19[0m[38;5;14m[1m [0m[38;5;14m[1mpandemic[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mItaly:[0m[38;5;14m[1m [0m[38;5;14m[1ma[0m[38;5;14m[1m [0m[38;5;14m[1mmulticenter[0m[38;5;14m[1m [0m[38;5;14m[1mambispective[0m[38;5;14m[1m [0m[38;5;14m[1mcohort[0m[38;5;14m[1m [0m[38;5;14m[1mstudy[0m[38;5;14m[1m [0m[38;5;14m[1mby[0m[38;5;14m[1m [0m[38;5;14m[1mthe[0m[38;5;14m[1m [0m[38;5;14m[1mItalian[0m[38;5;14m[1m [0m[38;5;14m[1mSociety[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mEndoscopic[0m[38;5;14m[1m [0m[38;5;14m[1mSurgery[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mnew[0m[38;5;14m[1m [0m[38;5;14m[1mtechnologies[0m[38;5;14m[1m [0m[38;5;14m[1m(the[0m[38;5;14m[1m [0m[38;5;14m[1mCRAC[0m[38;5;14m[1m [0m[38;5;14m[1mstudy)[0m[38;5;12m [39m[38;5;12m(https://pubmed.ncbi.nlm.nih.gov/34219197/)[39m[38;5;12m [39m[38;5;12mAlberto[39m[38;5;12m [39m[38;5;12mSartori,[39m[38;5;12m [39m[38;5;12mMauro[39m[38;5;12m [39m
|
||
[38;5;12mPodda,[39m[38;5;12m [39m[38;5;12mEmanuele[39m[38;5;12m [39m[38;5;12mBotteri,[39m[38;5;12m [39m[38;5;12mRoberto[39m[38;5;12m [39m[38;5;12mPassera,[39m[38;5;12m [39m[38;5;12mFerdinando[39m[38;5;12m [39m[38;5;12mAgresta,[39m[38;5;12m [39m[38;5;12mAlberto[39m[38;5;12m [39m[38;5;12mArezzo.[39m[38;5;12m [39m[38;5;12m(2021)[39m[38;5;12m [39m
|
||
[38;5;12m- [39m[38;5;14m[1mForecasting Canadian GDP Growth with Machine Learning[0m[38;5;12m (https://carleton.ca/economics/wp-content/uploads/cewp21-05.pdf) Shafiullah Qureshi, Ba Chu, Fanny S. Demers. (2021)[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mMorphological[0m[38;5;14m[1m [0m[38;5;14m[1mtraits[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mreef[0m[38;5;14m[1m [0m[38;5;14m[1mcorals[0m[38;5;14m[1m [0m[38;5;14m[1mpredict[0m[38;5;14m[1m [0m[38;5;14m[1mextinction[0m[38;5;14m[1m [0m[38;5;14m[1mrisk[0m[38;5;14m[1m [0m[38;5;14m[1mbut[0m[38;5;14m[1m [0m[38;5;14m[1mnot[0m[38;5;14m[1m [0m[38;5;14m[1mconservation[0m[38;5;14m[1m [0m[38;5;14m[1mstatus[0m[38;5;12m [39m[38;5;12m(https://onlinelibrary.wiley.com/doi/10.1111/geb.13321)[39m[38;5;12m [39m[38;5;12mNussaïbah[39m[38;5;12m [39m[38;5;12mB.[39m[38;5;12m [39m[38;5;12mRaja,[39m[38;5;12m [39m[38;5;12mAndreas[39m[38;5;12m [39m[38;5;12mLauchstedt,[39m[38;5;12m [39m[38;5;12mJohn[39m[38;5;12m [39m[38;5;12mM.[39m[38;5;12m [39m[38;5;12mPandolfi,[39m[38;5;12m [39m[38;5;12mSun[39m[38;5;12m [39m[38;5;12mW.[39m[38;5;12m [39m[38;5;12mKim,[39m[38;5;12m [39m[38;5;12mAnn[39m[38;5;12m [39m[38;5;12mF.[39m[38;5;12m [39m[38;5;12mBudd,[39m[38;5;12m [39m[38;5;12mWolfgang[39m[38;5;12m [39m
|
||
[38;5;12mKiessling.[39m[38;5;12m [39m[38;5;12m(2021)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine Learning as a Tool for Improved Housing Price Prediction[0m[38;5;12m (https://openaccess.nhh.no/nhh-xmlui/bitstream/handle/11250/2739783/masterthesis.pdf?sequence=1) Henrik I W. Wolstad and Didrik Dewan. (2020)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCitizen Science Data Show Temperature-Driven Declines in Riverine Sentinel Invertebrates[0m[38;5;12m (https://pubs.acs.org/doi/10.1021/acs.estlett.0c00206) Timothy J. Maguire, Scott O. C. Mundle. (2020)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPredicting Risk of Delays in Postal Deliveries with Neural Networks and Gradient Boosting Machines[0m[38;5;12m (https://www.diva-portal.org/smash/get/diva2:1467609/FULLTEXT01.pdf) Matilda Söderholm. (2020)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mStock Market Analysis using Stacked Ensemble Learning Method[0m[38;5;12m (https://github.com/malhartakle/MastersDissertation/blob/master/Research%20Project%20Report.pdf) Malkar Takle. (2020)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mH2O AutoML: Scalable Automatic Machine Learning[0m[38;5;12m (https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf). Erin LeDell, Sebastien Poirier. (2020)[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mSingle-cell[0m[38;5;14m[1m [0m[38;5;14m[1mmass[0m[38;5;14m[1m [0m[38;5;14m[1mcytometry[0m[38;5;14m[1m [0m[38;5;14m[1mon[0m[38;5;14m[1m [0m[38;5;14m[1mperipheral[0m[38;5;14m[1m [0m[38;5;14m[1mblood[0m[38;5;14m[1m [0m[38;5;14m[1midentifies[0m[38;5;14m[1m [0m[38;5;14m[1mimmune[0m[38;5;14m[1m [0m[38;5;14m[1mcell[0m[38;5;14m[1m [0m[38;5;14m[1msubsets[0m[38;5;14m[1m [0m[38;5;14m[1massociated[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1mprimary[0m[38;5;14m[1m [0m[38;5;14m[1mbiliary[0m[38;5;14m[1m [0m[38;5;14m[1mcholangitis[0m[38;5;12m [39m[38;5;12m(https://www.nature.com/articles/s41598-020-69358-4)[39m[38;5;12m [39m[38;5;12mJin[39m[38;5;12m [39m[38;5;12mSung[39m[38;5;12m [39m[38;5;12mJang,[39m[38;5;12m [39m[38;5;12mBrian[39m[38;5;12m [39m[38;5;12mD.[39m[38;5;12m [39m[38;5;12mJuran,[39m[38;5;12m [39m[38;5;12mKevin[39m[38;5;12m [39m[38;5;12mY.[39m[38;5;12m [39m[38;5;12mCunningham,[39m[38;5;12m [39m[38;5;12mVinod[39m[38;5;12m [39m[38;5;12mK.[39m[38;5;12m [39m[38;5;12mGupta,[39m[38;5;12m [39m
|
||
[38;5;12mYoung[39m[38;5;12m [39m[38;5;12mMin[39m[38;5;12m [39m[38;5;12mSon,[39m[38;5;12m [39m[38;5;12mJu[39m[38;5;12m [39m[38;5;12mDong[39m[38;5;12m [39m[38;5;12mYang,[39m[38;5;12m [39m[38;5;12mAhmad[39m[38;5;12m [39m[38;5;12mH.[39m[38;5;12m [39m[38;5;12mAli,[39m[38;5;12m [39m[38;5;12mElizabeth[39m[38;5;12m [39m[38;5;12mAnn[39m[38;5;12m [39m[38;5;12mL.[39m[38;5;12m [39m[38;5;12mEnninga,[39m[38;5;12m [39m[38;5;12mJaeyun[39m[38;5;12m [39m[38;5;12mSung[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;12mKonstantinos[39m[38;5;12m [39m[38;5;12mN.[39m[38;5;12m [39m[38;5;12mLazaridis.[39m[38;5;12m [39m[38;5;12m(2020)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPrediction of the functional impact of missense variants in BRCA1 and BRCA2 with BRCA-ML[0m[38;5;12m (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190647/) Steven N. Hart, Eric C. Polley, Hermella Shimelis, Siddhartha Yadav, Fergus J. Couch. (2020)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mInnovative deep learning artificial intelligence applications for predicting relationships between individual tree height and diameter at breast height[0m[38;5;12m (https://doi.org/10.1186/s40663-020-00226-3) İlker Ercanlı. (2020)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAn Open Source AutoML Benchmark[0m[38;5;12m (https://www.automl.org/wp-content/uploads/2019/06/automlws2019_Paper45.pdf) Peter Gijsbers, Erin LeDell, Sebastien Poirier, Janek Thomas, Berndt Bischl, Joaquin Vanschoren. (2019)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence[0m[38;5;12m (https://arxiv.org/abs/2002.04803) Sebastian Raschka, Joshua Patterson, Corey Nolet. (2019)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mHuman actions recognition in video scenes from multiple camera viewpoints[0m[38;5;12m (https://www.sciencedirect.com/science/article/pii/S1389041718308970) Fernando Itano, Ricardo Pires, Miguel Angelo de Abreu de Sousa, Emilio Del-Moral-Hernandeza. (2019)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mExtending MLP ANN hyper-parameters Optimization by using Genetic Algorithm[0m[38;5;12m (https://ieeexplore.ieee.org/document/8489520/authors#authors) Fernando Itano, Miguel Angelo de Abreu de Sousa, Emilio Del-Moral-Hernandez. (2018)[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1maskMUSIC:[0m[38;5;14m[1m [0m[38;5;14m[1mLeveraging[0m[38;5;14m[1m [0m[38;5;14m[1ma[0m[38;5;14m[1m [0m[38;5;14m[1mClinical[0m[38;5;14m[1m [0m[38;5;14m[1mRegistry[0m[38;5;14m[1m [0m[38;5;14m[1mto[0m[38;5;14m[1m [0m[38;5;14m[1mDevelop[0m[38;5;14m[1m [0m[38;5;14m[1ma[0m[38;5;14m[1m [0m[38;5;14m[1mNew[0m[38;5;14m[1m [0m[38;5;14m[1mMachine[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mModel[0m[38;5;14m[1m [0m[38;5;14m[1mto[0m[38;5;14m[1m [0m[38;5;14m[1mInform[0m[38;5;14m[1m [0m[38;5;14m[1mPatients[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mProstate[0m[38;5;14m[1m [0m[38;5;14m[1mCancer[0m[38;5;14m[1m [0m[38;5;14m[1mTreatments[0m[38;5;14m[1m [0m[38;5;14m[1mChosen[0m[38;5;14m[1m [0m[38;5;14m[1mby[0m[38;5;14m[1m [0m[38;5;14m[1mSimilar[0m[38;5;14m[1m [0m[38;5;14m[1mMen[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1016/j.eururo.2018.09.050)[39m[38;5;12m [39m[38;5;12mGregory[39m[38;5;12m [39m[38;5;12mB.[39m[38;5;12m [39m[38;5;12mAuffenberg,[39m[38;5;12m [39m[38;5;12mKhurshid[39m[38;5;12m [39m[38;5;12mR.[39m[38;5;12m [39m[38;5;12mGhani,[39m[38;5;12m [39m
|
||
[38;5;12mShreyas[39m[38;5;12m [39m[38;5;12mRamani,[39m[38;5;12m [39m[38;5;12mEtiowo[39m[38;5;12m [39m[38;5;12mUsoro,[39m[38;5;12m [39m[38;5;12mBrian[39m[38;5;12m [39m[38;5;12mDenton,[39m[38;5;12m [39m[38;5;12mCraig[39m[38;5;12m [39m[38;5;12mRogers,[39m[38;5;12m [39m[38;5;12mBenjamin[39m[38;5;12m [39m[38;5;12mStockton,[39m[38;5;12m [39m[38;5;12mDavid[39m[38;5;12m [39m[38;5;12mC.[39m[38;5;12m [39m[38;5;12mMiller,[39m[38;5;12m [39m[38;5;12mKarandeep[39m[38;5;12m [39m[38;5;12mSingh.[39m[38;5;12m [39m[38;5;12m(2018)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine Learning Methods to Perform Pricing Optimization. A Comparison with Standard GLMs[0m[38;5;12m (http://www.variancejournal.org/articlespress/articles/Machine-Spedicato.pdf) Giorgio Alfredo Spedicato, Christophe Dutang, and Leonardo Petrini. (2018)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mComparative Performance Analysis of Neural Networks Architectures on H2O Platform for Various Activation Functions[0m[38;5;12m (https://arxiv.org/abs/1707.04940) Yuriy Kochura, Sergii Stirenko, Yuri Gordienko. (2017)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAlgorithmic trading using deep neural networks on high frequency data[0m[38;5;12m (https://link.springer.com/chapter/10.1007/978-3-319-66963-2_14) Andrés Arévalo, Jaime Niño, German Hernandez, Javier Sandoval, Diego León, Arbey Aragón. (2017)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGeneric online animal activity recognition on collar tags[0m[38;5;12m (https://dl.acm.org/citation.cfm?id=3124407) Jacob W. Kamminga, Helena C. Bisby, Duc V. Le, Nirvana Meratnia, Paul J. M. Havinga. (2017)[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mSoil[0m[38;5;14m[1m [0m[38;5;14m[1mnutrient[0m[38;5;14m[1m [0m[38;5;14m[1mmaps[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mSub-Saharan[0m[38;5;14m[1m [0m[38;5;14m[1mAfrica:[0m[38;5;14m[1m [0m[38;5;14m[1massessment[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1msoil[0m[38;5;14m[1m [0m[38;5;14m[1mnutrient[0m[38;5;14m[1m [0m[38;5;14m[1mcontent[0m[38;5;14m[1m [0m[38;5;14m[1mat[0m[38;5;14m[1m [0m[38;5;14m[1m250[0m[38;5;14m[1m [0m[38;5;14m[1mm[0m[38;5;14m[1m [0m[38;5;14m[1mspatial[0m[38;5;14m[1m [0m[38;5;14m[1mresolution[0m[38;5;14m[1m [0m[38;5;14m[1musing[0m[38;5;14m[1m [0m[38;5;14m[1mmachine[0m[38;5;14m[1m [0m[38;5;14m[1mlearning[0m[38;5;12m [39m[38;5;12m(https://link.springer.com/content/pdf/10.1007%2Fs10705-017-9870-x.pdf)[39m[38;5;12m [39m[38;5;12mTomislav[39m[38;5;12m [39m[38;5;12mHengl,[39m[38;5;12m [39m[38;5;12mJohan[39m[38;5;12m [39m[38;5;12mG.[39m[38;5;12m [39m[38;5;12mB.[39m[38;5;12m [39m[38;5;12mLeenaars,[39m[38;5;12m [39m[38;5;12mKeith[39m
|
||
[38;5;12mD.[39m[38;5;12m [39m[38;5;12mShepherd,[39m[38;5;12m [39m[38;5;12mMarkus[39m[38;5;12m [39m[38;5;12mG.[39m[38;5;12m [39m[38;5;12mWalsh,[39m[38;5;12m [39m[38;5;12mGerard[39m[38;5;12m [39m[38;5;12mB.[39m[38;5;12m [39m[38;5;12mM.[39m[38;5;12m [39m[38;5;12mHeuvelink,[39m[38;5;12m [39m[38;5;12mTekalign[39m[38;5;12m [39m[38;5;12mMamo,[39m[38;5;12m [39m[38;5;12mHelina[39m[38;5;12m [39m[38;5;12mTilahun,[39m[38;5;12m [39m[38;5;12mEzra[39m[38;5;12m [39m[38;5;12mBerkhout,[39m[38;5;12m [39m[38;5;12mMatthew[39m[38;5;12m [39m[38;5;12mCooper,[39m[38;5;12m [39m[38;5;12mEric[39m[38;5;12m [39m[38;5;12mFegraus,[39m[38;5;12m [39m[38;5;12mIchsani[39m[38;5;12m [39m[38;5;12mWheeler,[39m[38;5;12m [39m[38;5;12mNketia[39m[38;5;12m [39m[38;5;12mA.[39m[38;5;12m [39m[38;5;12mKwabena.[39m[38;5;12m [39m[38;5;12m(2017)[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mRobust[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mflexible[0m[38;5;14m[1m [0m[38;5;14m[1mestimation[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mdata-dependent[0m[38;5;14m[1m [0m[38;5;14m[1mstochastic[0m[38;5;14m[1m [0m[38;5;14m[1mmediation[0m[38;5;14m[1m [0m[38;5;14m[1meffects:[0m[38;5;14m[1m [0m[38;5;14m[1ma[0m[38;5;14m[1m [0m[38;5;14m[1mproposed[0m[38;5;14m[1m [0m[38;5;14m[1mmethod[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mexample[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1ma[0m[38;5;14m[1m [0m[38;5;14m[1mrandomized[0m[38;5;14m[1m [0m[38;5;14m[1mtrial[0m[38;5;14m[1m [0m[38;5;14m[1msetting[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/pdf/1707.09021.pdf)[39m[38;5;12m [39m[38;5;12mKara[39m[38;5;12m [39m[38;5;12mE.[39m[38;5;12m [39m[38;5;12mRudolph,[39m[38;5;12m [39m[38;5;12mOleg[39m[38;5;12m [39m[38;5;12mSofrygin,[39m[38;5;12m [39m[38;5;12mWenjing[39m[38;5;12m [39m[38;5;12mZheng,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mMark[39m[38;5;12m [39m[38;5;12mJ.[39m[38;5;12m [39m[38;5;12mvan[39m[38;5;12m [39m[38;5;12mder[39m
|
||
[38;5;12mLaan.[39m[38;5;12m [39m[38;5;12m(2017)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mAutomated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition[0m[38;5;12m (https://arxiv.org/abs/1707.02641) Vincent Dorie, Jennifer Hill, Uri Shalit, Marc Scott, Dan Cervone. (2017)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mUsing deep learning to predict the mortality of leukemia patients[0m[38;5;12m (https://qspace.library.queensu.ca/bitstream/handle/1974/15929/Muthalaly_Reena%20S_201707_MSC.pdf) Reena Shaw Muthalaly. (2017)[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mUse[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1ma[0m[38;5;14m[1m [0m[38;5;14m[1mmachine[0m[38;5;14m[1m [0m[38;5;14m[1mlearning[0m[38;5;14m[1m [0m[38;5;14m[1mframework[0m[38;5;14m[1m [0m[38;5;14m[1mto[0m[38;5;14m[1m [0m[38;5;14m[1mpredict[0m[38;5;14m[1m [0m[38;5;14m[1msubstance[0m[38;5;14m[1m [0m[38;5;14m[1muse[0m[38;5;14m[1m [0m[38;5;14m[1mdisorder[0m[38;5;14m[1m [0m[38;5;14m[1mtreatment[0m[38;5;14m[1m [0m[38;5;14m[1msuccess[0m[38;5;12m [39m[38;5;12m(http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0175383&type=printable)[39m[38;5;12m [39m[38;5;12mLaura[39m[38;5;12m [39m[38;5;12mAcion,[39m[38;5;12m [39m[38;5;12mDiana[39m[38;5;12m [39m[38;5;12mKelmansky,[39m[38;5;12m [39m[38;5;12mMark[39m[38;5;12m [39m[38;5;12mvan[39m[38;5;12m [39m[38;5;12mder[39m[38;5;12m [39m[38;5;12mLaan,[39m[38;5;12m [39m[38;5;12mEthan[39m[38;5;12m [39m
|
||
[38;5;12mSahker,[39m[38;5;12m [39m[38;5;12mDeShauna[39m[38;5;12m [39m[38;5;12mJones,[39m[38;5;12m [39m[38;5;12mStephan[39m[38;5;12m [39m[38;5;12mArnd.[39m[38;5;12m [39m[38;5;12m(2017)[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mUltra-wideband[0m[38;5;14m[1m [0m[38;5;14m[1mantenna-induced[0m[38;5;14m[1m [0m[38;5;14m[1merror[0m[38;5;14m[1m [0m[38;5;14m[1mprediction[0m[38;5;14m[1m [0m[38;5;14m[1musing[0m[38;5;14m[1m [0m[38;5;14m[1mdeep[0m[38;5;14m[1m [0m[38;5;14m[1mlearning[0m[38;5;14m[1m [0m[38;5;14m[1mon[0m[38;5;14m[1m [0m[38;5;14m[1mchannel[0m[38;5;14m[1m [0m[38;5;14m[1mresponse[0m[38;5;14m[1m [0m[38;5;14m[1mdata[0m[38;5;12m [39m[38;5;12m(https://www.kn.e-technik.tu-dortmund.de/.cni-bibliography/publications/cni-publications/Tiemann2017a.pdf)[39m[38;5;12m [39m[38;5;12mJanis[39m[38;5;12m [39m[38;5;12mTiemann,[39m[38;5;12m [39m[38;5;12mJohannes[39m[38;5;12m [39m[38;5;12mPillmann,[39m[38;5;12m [39m[38;5;12mChristian[39m[38;5;12m [39m
|
||
[38;5;12mWietfeld.[39m[38;5;12m [39m[38;5;12m(2017)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mInferring passenger types from commuter eigentravel matrices[0m[38;5;12m (http://www.tandfonline.com/doi/abs/10.1080/21680566.2017.1291377?journalCode=ttrb20) Erika Fille T. Legara, Christopher P. Monterola. (2017)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDeep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500[0m[38;5;12m (http://www.sciencedirect.com/science/article/pii/S0377221716308657) Christopher Krauss, Xuan Anh Doa, Nicolas Huckb. (2016)[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mIdentifying[0m[38;5;14m[1m [0m[38;5;14m[1mIT[0m[38;5;14m[1m [0m[38;5;14m[1mpurchases[0m[38;5;14m[1m [0m[38;5;14m[1manomalies[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mthe[0m[38;5;14m[1m [0m[38;5;14m[1mBrazilian[0m[38;5;14m[1m [0m[38;5;14m[1mgovernment[0m[38;5;14m[1m [0m[38;5;14m[1mprocurement[0m[38;5;14m[1m [0m[38;5;14m[1msystem[0m[38;5;14m[1m [0m[38;5;14m[1musing[0m[38;5;14m[1m [0m[38;5;14m[1mdeep[0m[38;5;14m[1m [0m[38;5;14m[1mlearning[0m[38;5;12m [39m[38;5;12m(http://ieeexplore.ieee.org/document/7838233/?reload=true)[39m[38;5;12m [39m[38;5;12mSilvio[39m[38;5;12m [39m[38;5;12mL.[39m[38;5;12m [39m[38;5;12mDomingos,[39m[38;5;12m [39m[38;5;12mRommel[39m[38;5;12m [39m[38;5;12mN.[39m[38;5;12m [39m[38;5;12mCarvalho,[39m[38;5;12m [39m[38;5;12mRicardo[39m[38;5;12m [39m[38;5;12mS.[39m[38;5;12m [39m[38;5;12mCarvalho,[39m[38;5;12m [39m[38;5;12mGuilherme[39m[38;5;12m [39m[38;5;12mN.[39m[38;5;12m [39m[38;5;12mRamos.[39m[38;5;12m [39m
|
||
[38;5;12m(2016)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mPredicting recovery of credit operations on a Brazilian bank[0m[38;5;12m (http://ieeexplore.ieee.org/abstract/document/7838243/) Rogério G. Lopes, Rommel N. Carvalho, Marcelo Ladeira, Ricardo S. Carvalho. (2016)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDeep learning anomaly detection as support fraud investigation in Brazilian exports and anti-money laundering[0m[38;5;12m (http://ieeexplore.ieee.org/abstract/document/7838276/) Ebberth L. Paula, Marcelo Ladeira, Rommel N. Carvalho, Thiago Marzagão. (2016)[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mDeep[0m[38;5;14m[1m [0m[38;5;14m[1mlearning[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1massociation[0m[38;5;14m[1m [0m[38;5;14m[1mrule[0m[38;5;14m[1m [0m[38;5;14m[1mmining[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mpredicting[0m[38;5;14m[1m [0m[38;5;14m[1mdrug[0m[38;5;14m[1m [0m[38;5;14m[1mresponse[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mcancer[0m[38;5;12m [39m[38;5;12m(https://doi.org/10.1101/070490)[39m[38;5;12m [39m[38;5;12mKonstantinos[39m[38;5;12m [39m[38;5;12mN.[39m[38;5;12m [39m[38;5;12mVougas,[39m[38;5;12m [39m[38;5;12mThomas[39m[38;5;12m [39m[38;5;12mJackson,[39m[38;5;12m [39m[38;5;12mAlexander[39m[38;5;12m [39m[38;5;12mPolyzos,[39m[38;5;12m [39m[38;5;12mMichael[39m[38;5;12m [39m[38;5;12mLiontos,[39m[38;5;12m [39m[38;5;12mElizabeth[39m[38;5;12m [39m[38;5;12mO.[39m[38;5;12m [39m[38;5;12mJohnson,[39m[38;5;12m [39m[38;5;12mVassilis[39m[38;5;12m [39m[38;5;12mGeorgoulias,[39m[38;5;12m [39m[38;5;12mPaul[39m[38;5;12m [39m
|
||
[38;5;12mTownsend,[39m[38;5;12m [39m[38;5;12mJiri[39m[38;5;12m [39m[38;5;12mBartek,[39m[38;5;12m [39m[38;5;12mVassilis[39m[38;5;12m [39m[38;5;12mG.[39m[38;5;12m [39m[38;5;12mGorgoulis.[39m[38;5;12m [39m[38;5;12m(2016)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mThe value of points of interest information in predicting cost-effective charging infrastructure locations[0m[38;5;12m (http://www.rsm.nl/fileadmin/Images_NEW/ECFEB/The_value_of_points_of_interest_information.pdf) Stéphanie Florence Visser. (2016)[39m
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mAdaptive[0m[38;5;14m[1m [0m[38;5;14m[1mmodelling[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mspatial[0m[38;5;14m[1m [0m[38;5;14m[1mdiversification[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1msoil[0m[38;5;14m[1m [0m[38;5;14m[1mclassification[0m[38;5;14m[1m [0m[38;5;14m[1munits.[0m[38;5;14m[1m [0m[38;5;14m[1mJournal[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mWater[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mLand[0m[38;5;14m[1m [0m[38;5;14m[1mDevelopment[0m[38;5;12m [39m[38;5;12m(https://www.degruyter.com/downloadpdf/j/jwld.2016.30.issue-1/jwld-2016-0029/jwld-2016-0029.xml)[39m[38;5;12m [39m[38;5;12mKrzysztof[39m[38;5;12m [39m[38;5;12mUrbański,[39m[38;5;12m [39m[38;5;12mStanisław[39m[38;5;12m [39m
|
||
[38;5;12mGruszczyńsk.[39m[38;5;12m [39m[38;5;12m(2016)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mScalable ensemble learning and computationally efficient variance estimation[0m[38;5;12m (http://www.stat.berkeley.edu/~ledell/papers/ledell-phd-thesis.pdf) Erin LeDell. (2015)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSuperchords: decoding EEG signals in the millisecond range[0m[38;5;12m (https://doi.org/10.7287/peerj.preprints.1265v1) Rogerio Normand, Hugo Alexandre Ferreira. (2015)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mUnderstanding random forests: from theory to practice[0m[38;5;12m (https://github.com/glouppe/phd-thesis) Gilles Louppe. (2014)[39m
|
||
|
||
[38;2;255;187;0m[4mBenchmarks[0m
|
||
|
||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mAre[0m[38;5;14m[1m [0m[38;5;14m[1mcategorical[0m[38;5;14m[1m [0m[38;5;14m[1mvariables[0m[38;5;14m[1m [0m[38;5;14m[1mgetting[0m[38;5;14m[1m [0m[38;5;14m[1mlost[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1myour[0m[38;5;14m[1m [0m[38;5;14m[1mrandom[0m[38;5;14m[1m [0m[38;5;14m[1mforests?[0m[38;5;12m [39m[38;5;12m(http://roamanalytics.com/2016/10/28/are-categorical-variables-getting-lost-in-your-random-forests/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mBenchmark[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mcategorical[39m[38;5;12m [39m[38;5;12mencoding[39m[38;5;12m [39m[38;5;12mschemes[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12meffect[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mtree[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m
|
||
[38;5;12m(Scikit-learn[39m[38;5;12m [39m[38;5;12mvs[39m[38;5;12m [39m[38;5;12mH2O).[39m[38;5;12m [39m[38;5;12mOct[39m[38;5;12m [39m[38;5;12m28,[39m[38;5;12m [39m[38;5;12m2016[39m
|
||
[38;5;12m- [39m[38;5;14m[1mDeep learning in R[0m[38;5;12m (http://www.rblog.uni-freiburg.de/2017/02/07/deep-learning-in-r/) - Benchmark of open source deep learning packages in R. Mar 7, 2016[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSzilard's machine learning benchmark[0m[38;5;12m (https://github.com/szilard/benchm-ml) - Benchmarks of Random Forest, GBM, Deep Learning and GLM implementations in common open source ML frameworks. Jul 3, 2015[39m
|
||
|
||
[38;2;255;187;0m[4mPresentations[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mPipelines for model deployment[0m[38;5;12m (https://www.slideshare.net/rocalabern/digital-origin-pipelines-for-model-deployment) Apr 25, 2017[39m
|
||
[38;5;12m- [39m[38;5;14m[1mMachine learning with H2O.ai[0m[38;5;12m (https://speakerdeck.com/szilard/machine-learning-with-h2o-dot-ai-la-h2o-meetup-at-at-and-t-jan-2017) Jan 23, 2017[39m
|
||
|
||
[38;2;255;187;0m[4mCourses[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mUniversity of San Francisco (USF) Distributed Data System Class (MSDS 697)[0m[38;5;12m (https://github.com/dianewoodbridge/2020-msds697-example) - Master of Science in Data Science Program.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mUniversity of Oslo: Introduction to Automatic and Scalable Machine Learning with H2O and R[0m[38;5;12m (https://www.ub.uio.no/english/courses-events/events/all-libraries/2019/research-bazaar-2019.html) - Research Bazaar 2019[39m
|
||
[38;5;12m- [39m[38;5;14m[1mUCLA: Tools in Data Science (STATS 418)[0m[38;5;12m (https://github.com/szilard/teach-data-science-UCLA-master-appl-stats) - Masters of Applied Statistics Program.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mGWU: Data Mining (Decision Sciences 6279)[0m[38;5;12m (https://github.com/jphall663/GWU_data_mining) - Masters of Science in Business Analytics.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mUniversity of Cape Town: Analytics Module[0m[38;5;12m (http://www.stats.uct.ac.za/stats/study/postgrad/honours) - Postgraduate Honors Program in Statistical Sciences.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mCoursera: How to Win a Data Science Competition: Learn from Top Kagglers[0m[38;5;12m (https://www.coursera.org/learn/competitive-data-science) - Advanced Machine Learning Specialization.[39m
|
||
|
||
[38;2;255;187;0m[4mSoftware[0m
|
||
|
||
[38;5;12m- [39m[38;5;14m[1mmodeltime.h2o R package[0m[38;5;12m (https://business-science.github.io/modeltime.h2o/): Forecasting with H2O AutoML[39m
|
||
[38;5;12m- [39m[38;5;14m[1mEvaporate[0m[38;5;12m (https://github.com/ML4LHS/Evaporate): Run H2O models in the browser via Javascript. More info [39m[38;5;14m[1mhere[0m[38;5;12m (https://twitter.com/kdpsinghlab/status/1367992786239242248).[39m
|
||
[38;5;12m- [39m[38;5;14m[1msplash R package[0m[38;5;12m (https://github.com/ML4LHS/splash): Splashing a User Interface onto H2O MOJO Files. More info [39m[38;5;14m[1mhere[0m[38;5;12m (https://twitter.com/kdpsinghlab/status/1367809740705792008).[39m
|
||
[38;5;12m- [39m[38;5;14m[1mh2oparsnip R package[0m[38;5;12m (https://github.com/stevenpawley/h2oparsnip): Set of wrappers to bind h2o algorthms with the [39m[38;5;14m[1mparsnip[0m[38;5;12m (https://parsnip.tidymodels.org/) package.[39m
|
||
[38;5;12m- [39m[38;5;14m[1mSpin up PySpark and PySparkling on AWS[0m[38;5;12m (https://github.com/kcrandall/EMR_Spark_Automation)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mForecast the US demand for electricity[0m[38;5;12m (https://github.com/RamiKrispin/USelectricity): A real-time [39m[38;5;14m[1mdashboard[0m[38;5;12m (https://ramikrispin.github.io/USelectricity/) of the US electricity demand (forecast using H2O GLM)[39m
|
||
[38;5;12m- [39m[38;5;14m[1mh2o3-pam[0m[38;5;12m (https://github.com/navdeep-G/h2o3-pam): Partition Around Mediods (PAM) clustering algorithm in H2O-3[39m
|
||
[38;5;12m- [39m[38;5;14m[1mh2o3-gapstat[0m[38;5;12m (https://github.com/navdeep-G/h2o3-gapstat): Gap Statistic algorithm in H2O-3[39m
|
||
|
||
[38;2;255;187;0m[4mLicense[0m
|
||
|
||
[38;5;14m[1m![0m[38;5;12mCC0[39m[38;5;14m[1m (https://upload.wikimedia.org/wikipedia/commons/6/69/CC0_button.svg)[0m[38;5;12m (https://creativecommons.org/publicdomain/zero/1.0/)[39m
|
||
|
||
[38;5;12mTo the extent possible under law, [39m[38;5;14m[1mH2O.ai[0m[38;5;12m (http://h2o.ai) has waived all copyright and related or neighboring rights to this work.[39m
|
||
|
||
[38;5;12mh2o Github: https://github.com/h2oai/awesome-h2o[39m
|