Files
awesome-awesomeness/terminal/graphclassification
2025-07-18 23:13:11 +02:00

36 lines
5.5 KiB
Plaintext
Raw Permalink Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
 Awesome Graph Classification
!Awesome (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg) (https://github.com/sindresorhus/awesome)
!PRs Welcome (https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square) (http://makeapullrequest.com)
!License (https://img.shields.io/github/license/benedekrozemberczki/awesome-graph-embedding.svg?color=blue)
!repo size (https://img.shields.io/github/repo-size/benedekrozemberczki/awesome-graph-classification.svg) (https://github.com/benedekrozemberczki/awesome-graph-classification/archive/master.zip) !benedekrozemberczki 
(https://img.shields.io/twitter/follow/benrozemberczki?style=social&logo=twitter) (https://twitter.com/intent/follow?screen_name=benrozemberczki) 
A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers with reference implementations.
Relevant graph classification benchmark datasets are available here  (https://github.com/shiruipan/graph_datasets).
Similar collections about community detection (https://github.com/benedekrozemberczki/awesome-community-detection), classification/regression tree (https://github.com/benedekrozemberczki/awesome-decision-tree-papers), fraud detection 
(https://github.com/benedekrozemberczki/awesome-fraud-detection-papers), Monte Carlo tree search (https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers), and gradient boosting 
(https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers) papers with implementations.
 
――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――
Contents 
1. Matrix Factorization (https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/chapters/matrix_factorization.md) 
2. Spectral and Statistical Fingerprints (https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/chapters/fingerprints.md)
3. Deep Learning (https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/chapters/deep_learning.md) 
4. Graph Kernels (https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/chapters/kernels.md)
――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――
License
- CC0 Universal (https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/LICENSE)
graphclassification Github: https://github.com/benedekrozemberczki/awesome-graph-classification