Files
awesome-awesomeness/html/networkembedding.html
2025-07-18 23:13:11 +02:00

938 lines
36 KiB
HTML
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<h1 id="awesome-network-embedding">awesome-network-embedding</h1>
<p><a href="https://github.com/sindresorhus/awesome"><img
src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg"
alt="Awesome" /></a> <a href="http://makeapullrequest.com"><img
src="https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square"
alt="PRs Welcome" /></a> <a
href="https://gitter.im/awesome-network-embedding/Lobby"><img
src="https://badges.gitter.im/Join%20Chat.svg"
alt="Gitter chat for developers at https://gitter.im/dmlc/xgboost" /></a></p>
<p>Also called network representation learning, graph embedding,
knowledge embedding, etc.</p>
<p>The task is to learn the representations of the vertices from a given
network.</p>
<p>CALL FOR HELP: Im planning to re-organize the papers with clear
classification index in the near future. Please feel free to submit a
commit if you find any interesting related work:)</p>
<p><img src="NE.png" width="480"></p>
<h1 id="paper-references-with-the-implementations">Paper References with
the implementation(s)</h1>
<ul>
<li><strong>GraphGym</strong>
<ul>
<li>A platform for designing and evaluating Graph Neural Networks (GNN),
NeurIPS 2020</li>
<li><a
href="https://proceedings.neurips.cc/paper/2020/file/c5c3d4fe6b2cc463c7d7ecba17cc9de7-Paper.pdf">[Paper]</a></li>
<li><a
href="https://github.com/snap-stanford/graphgym">[Python]</a></li>
</ul></li>
<li><strong>FEATHER</strong>
<ul>
<li>Characteristic Functions on Graphs: Birds of a Feather, from
Statistical Descriptors to Parametric Models, CIKM 2020</li>
<li><a href="https://arxiv.org/abs/2005.07959">[Paper]</a></li>
<li><a
href="https://github.com/benedekrozemberczki/FEATHER">[Python]</a></li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">[Python
KarateClub]</a></li>
</ul></li>
<li><strong>HeGAN</strong>
<ul>
<li>Adversarial Learning on Heterogeneous Information Networks, KDD
2019</li>
<li><a
href="https://fangyuan1st.github.io/paper/KDD19_HeGAN.pdf">[Paper]</a></li>
<li><a href="https://github.com/librahu/HeGAN">[Python]</a></li>
</ul></li>
<li><strong>NetMF</strong>
<ul>
<li>Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE,
PTE, and Node2Vec, WSDM 2018</li>
<li><a
href="https://keg.cs.tsinghua.edu.cn/jietang/publications/WSDM18-Qiu-et-al-NetMF-network-embedding.pdf">[Paper]</a></li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">[Python
KarateClub]</a></li>
</ul></li>
<li><strong>GL2Vec</strong>
<ul>
<li>GL2vec: Graph Embedding Enriched by Line Graphs with Edge Features,
ICONIP 2019</li>
<li><a
href="https://link.springer.com/chapter/10.1007/978-3-030-36718-3_1">[Paper]</a></li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">[Python
KarateClub]</a></li>
</ul></li>
<li><strong>NNSED</strong>
<ul>
<li>A Non-negative Symmetric Encoder-Decoder Approach for Community
Detection, CIKM 2017</li>
<li><a
href="http://www.bigdatalab.ac.cn/~shenhuawei/publications/2017/cikm-sun.pdf">[Paper]</a></li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">[Python
KarateClub]</a></li>
</ul></li>
<li><strong>SymmNMF</strong>
<ul>
<li>Symmetric Nonnegative Matrix Factorization for Graph Clustering, SDM
2012</li>
<li><a
href="https://www.cc.gatech.edu/~hpark/papers/DaDingParkSDM12.pdf">[Paper]</a></li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">[Python
KarateClub]</a></li>
</ul></li>
<li><strong>RECT</strong>
<ul>
<li>Network Embedding with Completely-Imbalanced Labels, TKDE 2020</li>
<li><a
href="https://zhengwang100.github.io/pdf/TKDE20_wzheng.pdf">[Paper]</a></li>
<li><a href="https://github.com/zhengwang100/RECT">[Python]</a></li>
</ul></li>
<li><strong>GEMSEC</strong>
<ul>
<li>GEMSEC: Graph Embedding with Self Clustering, ASONAM 2019</li>
<li><a href="https://arxiv.org/abs/1802.03997">[Paper]</a></li>
<li><a
href="https://github.com/benedekrozemberczki/GEMSEC">[Python]</a></li>
</ul></li>
<li><strong>AmpliGraph</strong>
<ul>
<li>Library for learning knowledge graph embeddings with TensorFlow</li>
<li><a href="http://docs.ampligraph.org">[Project]</a></li>
<li><a href="https://github.com/Accenture/AmpliGraph">[code]</a></li>
</ul></li>
<li><strong>jodie</strong>
<ul>
<li>Predicting Dynamic Embedding Trajectory in Temporal Interaction
Networks, KDD19</li>
<li><a href="http://snap.stanford.edu/jodie/">[Project]</a></li>
<li><a href="https://github.com/srijankr/jodie/">[Code]</a></li>
</ul></li>
<li><strong>PyTorch-BigGraph</strong>
<ul>
<li>Pytorch-BigGraph - a distributed system for learning graph
embeddings for large graphs, SysML19</li>
<li><a
href="https://github.com/facebookresearch/PyTorch-BigGraph">[github]</a></li>
</ul></li>
<li><strong>ATP</strong>
<ul>
<li>ATP: Directed Graph Embedding with Asymmetric Transitivity
Preservation, AAAI19</li>
<li><a href="https://arxiv.org/abs/1811.00839">[paper]</a></li>
<li><a href="https://github.com/zhenv5/atp">[code]</a></li>
</ul></li>
<li><strong>MUSAE</strong>
<ul>
<li>Multi-scale Attributed Node Embedding, ArXiv 2019</li>
<li><a href="https://arxiv.org/abs/1909.13021">[paper]</a></li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">[Python
KarateClub]</a></li>
<li><a
href="https://github.com/benedekrozemberczki/MUSAE">[Python]</a></li>
</ul></li>
<li><strong>SEAL-CI</strong>
<ul>
<li>Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective, WWW19</li>
<li><a href="https://arxiv.org/pdf/1904.05003.pdf">[paper]</a></li>
<li><a href="https://github.com/benedekrozemberczki/SEAL-CI">[Python
PyTorch]</a></li>
</ul></li>
<li><strong>N-GCN and MixHop</strong>
<ul>
<li>A Higher-Order Graph Convolutional Layer, NIPS18 (workshop)</li>
<li><a
href="http://sami.haija.org/papers/high-order-gc-layer.pdf">[paper]</a></li>
<li><a
href="https://github.com/benedekrozemberczki/MixHop-and-N-GCN">[Python
PyTorch]</a></li>
</ul></li>
<li><strong>CapsGNN</strong>
<ul>
<li>Capsule Graph Neural Network, ICLR19</li>
<li><a
href="https://openreview.net/forum?id=Byl8BnRcYm">[paper]</a></li>
<li><a href="https://github.com/benedekrozemberczki/CapsGNN">[Python
PyTorch]</a></li>
</ul></li>
<li><strong>Splitter</strong>
<ul>
<li>Splitter: Learning Node Representations that Capture Multiple Social
Contexts, WWW19</li>
<li><a
href="http://epasto.org/papers/www2019splitter.pdf">[paper]</a></li>
<li><a href="https://github.com/benedekrozemberczki/Splitter">[Python
PyTorch]</a></li>
</ul></li>
<li><strong>REGAL</strong>
<ul>
<li>REGAL: Representation Learning-based Graph Alignment. International
Conference on Information and Knowledge Management, CIKM18</li>
<li><a href="https://arxiv.org/pdf/1802.06257.pdf">[arxiv]</a></li>
<li><a
href="https://dl.acm.org/citation.cfm?id=3271788">[paper]</a></li>
<li><a href="https://github.com/GemsLab/REGAL">[code]</a></li>
</ul></li>
<li><strong>PyTorch Geometric</strong>
<ul>
<li>Fast Graph Representation Learning With PyTorch Geometric</li>
<li><a href="https://arxiv.org/pdf/1903.02428.pdf">[paper]</a></li>
<li><a href="https://github.com/rusty1s/pytorch_geometric">[Python
PyTorch]</a></li>
</ul></li>
<li><strong>TuckER</strong>
<ul>
<li>Tensor Factorization for Knowledge Graph Completion, Arxiv19</li>
<li><a href="https://arxiv.org/pdf/1901.09590.pdf">[paper]</a></li>
<li><a href="https://github.com/ibalazevic/TuckER">[Python
PyTorch]</a></li>
</ul></li>
<li><strong>HypER</strong>
<ul>
<li>Hypernetwork Knowledge Graph Embeddings, Arxiv18</li>
<li><a href="https://arxiv.org/pdf/1808.07018.pdf">[paper]</a></li>
<li><a href="https://github.com/ibalazevic/HypER">[Python
PyTorch]</a></li>
</ul></li>
<li><strong>GWNN</strong>
<ul>
<li>Graph Wavelet Neural Network, ICLR19</li>
<li><a
href="https://openreview.net/forum?id=H1ewdiR5tQ">[paper]</a></li>
<li><a
href="https://github.com/benedekrozemberczki/GraphWaveletNeuralNetwork">[Python
PyTorch]</a></li>
<li><a href="https://github.com/Eilene/GWNN">[Python
TensorFlow]</a></li>
</ul></li>
<li><strong>APPNP</strong>
<ul>
<li>Combining Neural Networks with Personalized PageRank for
Classification on Graphs, ICLR19</li>
<li><a href="https://arxiv.org/abs/1810.05997">[paper]</a></li>
<li><a href="https://github.com/benedekrozemberczki/APPNP">[Python
PyTorch]</a></li>
<li><a href="https://github.com/klicperajo/ppnp">[Python
TensorFlow]</a></li>
</ul></li>
<li><strong>role2vec</strong>
<ul>
<li>Learning Role-based Graph Embeddings, IJCAI18</li>
<li><a href="https://arxiv.org/pdf/1802.02896.pdf">[paper]</a></li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">[Python
KarateClub]</a></li>
<li><a
href="https://github.com/benedekrozemberczki/role2vec">[Python]</a></li>
</ul></li>
<li><strong>AttentionWalk</strong>
<ul>
<li>Watch Your Step: Learning Node Embeddings via Graph Attention,
NIPS18</li>
<li><a href="https://arxiv.org/pdf/1710.09599.pdf">[paper]</a></li>
<li><a href="http://sami.haija.org/graph/context">[Python]</a></li>
<li><a
href="https://github.com/benedekrozemberczki/AttentionWalk">[Python
PyTorch]</a></li>
<li><a
href="https://github.com/google-research/google-research/tree/master/graph_embedding/watch_your_step/">[Python
TensorFlow]</a></li>
</ul></li>
<li><strong>GAT</strong>
<ul>
<li>Graph Attention Networks, ICLR18</li>
<li><a href="https://arxiv.org/pdf/1710.10903.pdf">[paper]</a></li>
<li><a href="https://github.com/Diego999/pyGAT">[Python
PyTorch]</a></li>
<li><a href="https://github.com/PetarV-/GAT">[Python
TensorFlow]</a></li>
</ul></li>
<li><strong>SINE</strong>
<ul>
<li>SINE: Scalable Incomplete Network Embedding, ICDM18</li>
<li><a
href="https://github.com/benedekrozemberczki/SINE/blob/master/paper.pdf">[paper]</a></li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">[Python
KarateClub]</a></li>
<li><a href="https://github.com/benedekrozemberczki/SINE/">[Python
PyTorch]</a></li>
<li><a href="https://github.com/daokunzhang/SINE">[C++]</a></li>
</ul></li>
<li><strong>SGCN</strong>
<ul>
<li>Signed Graph Convolutional Network, ICDM18</li>
<li><a
href="https://github.com/benedekrozemberczki/SGCN/blob/master/sgcn.pdf">[paper]</a></li>
<li><a
href="https://github.com/benedekrozemberczki/SGCN">[Python]</a></li>
</ul></li>
<li><strong>TENE</strong>
<ul>
<li>Enhanced Network Embedding with Text Information, ICPR18</li>
<li><a
href="https://github.com/benedekrozemberczki/TENE/blob/master/tene_paper.pdf">[paper]</a></li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">[Python
KarateClub]</a></li>
<li><a
href="https://github.com/benedekrozemberczki/TENE">[Python]</a></li>
</ul></li>
<li><strong>DANMF</strong>
<ul>
<li>Deep Autoencoder-like Nonnegative Matrix Factorization for Community
Detection, CIKM18</li>
<li><a
href="https://smartyfh.com/Documents/18DANMF.pdf">[paper]</a></li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">[Python
KarateClub]</a></li>
<li><a
href="https://github.com/benedekrozemberczki/DANMF">[Python]</a></li>
<li><a href="https://github.com/smartyfh/DANMF">[Matlab]</a><br />
</li>
</ul></li>
<li><strong>BANE</strong>
<ul>
<li>Binarized Attributed Network Embedding, ICDM18</li>
<li><a
href="https://www.researchgate.net/publication/328688614_Binarized_Attributed_Network_Embedding">[paper]</a></li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">[Python
KarateClub]</a></li>
<li><a
href="https://github.com/benedekrozemberczki/BANE">[Python]</a></li>
<li><a href="https://github.com/ICDM2018-BANE/BANE">[Matlab]</a></li>
</ul></li>
<li><strong>GCN Insights</strong>
<ul>
<li>Deeper Insights into Graph Convolutional Networks for
Semi-Supervised Learning, AAAI18</li>
<li><a href="https://liqimai.github.io/blog/AAAI-18/">[Project]</a></li>
<li><a
href="https://github.com/liqimai/gcn/tree/AAAI-18/">[code]</a></li>
</ul></li>
<li><strong>PCTADW</strong>
<ul>
<li>Learning Embeddings of Directed Networks with Text-Associated
Nodes—with Applications in Software Package Dependency Networks</li>
<li><a href="https://arxiv.org/pdf/1809.02270.pdf">[paper]</a></li>
<li><a href="https://github.com/shudan/PCTADW">[Python]</a></li>
<li><a href="https://doi.org/10.5281/zenodo.1410669">[dataset]</a></li>
</ul></li>
<li><strong>LGCN</strong>
<ul>
<li>Large-Scale Learnable Graph Convolutional Networks, KDD18</li>
<li><a
href="http://www.kdd.org/kdd2018/accepted-papers/view/large-scale-learnable-graph-convolutional-networks">[paper]</a></li>
<li><a href="https://github.com/HongyangGao/LGCN">[Python]</a></li>
</ul></li>
<li><strong>AspEm</strong>
<ul>
<li>AspEm: Embedding Learning by Aspects in Heterogeneous Information
Networks</li>
<li><a
href="http://yushi2.web.engr.illinois.edu/sdm18.pdf">[paper]</a></li>
<li><a href="https://github.com/ysyushi/aspem">[Python]</a></li>
</ul></li>
<li><strong>Walklets</strong>
<ul>
<li>Dont Walk, Skip! Online Learning of Multi-scale Network
Embeddings</li>
<li><a href="https://arxiv.org/pdf/1605.02115.pdf">[paper]</a></li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">[Python
Karateclub]</a><br />
</li>
<li><a
href="https://github.com/benedekrozemberczki/walklets">[Python]</a><br />
</li>
</ul></li>
<li><strong>gat2vec</strong>
<ul>
<li>gat2vec: Representation learning for attributed graphs</li>
<li><a href="https://doi.org/10.1007/s00607-018-0622-9">[paper]</a></li>
<li><a href="https://github.com/snash4/GAT2VEC">[Python]</a></li>
</ul></li>
<li><strong>FSCNMF</strong>
<ul>
<li>FSCNMF: Fusing Structure and Content via Non-negative Matrix
Factorization for Embedding Information Networks</li>
<li><a href="https://arxiv.org/abs/1804.05313">[paper]</a></li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">[Python
Karateclub]</a></li>
<li><a href="https://github.com/sambaranban/FSCNMF">[Python]</a><br />
</li>
<li><a
href="https://github.com/benedekrozemberczki/FSCNMF">[Python]</a></li>
</ul></li>
<li><strong>SIDE</strong>
<ul>
<li>SIDE: Representation Learning in Signed Directed Networks</li>
<li><a
href="https://datalab.snu.ac.kr/side/resources/side.pdf">[paper]</a></li>
<li><a
href="https://datalab.snu.ac.kr/side/resources/side.zip">[Python]</a></li>
<li><a href="https://datalab.snu.ac.kr/side/">[Site]</a></li>
</ul></li>
<li><strong>AWE</strong>
<ul>
<li>Anonymous Walk Embeddings, ICML18</li>
<li><a
href="https://www.researchgate.net/publication/325114285_Anonymous_Walk_Embeddings">[paper]</a></li>
<li><a
href="https://github.com/nd7141/Anonymous-Walk-Embeddings">[Python]</a></li>
</ul></li>
<li><strong>BiNE</strong>
<ul>
<li>BiNE: Bipartite Network Embedding, SIGIR18</li>
<li><a
href="http://staff.ustc.edu.cn/~hexn/papers/sigir18-bipartiteNE.pdf">[paper]</a></li>
<li><a href="https://github.com/clhchtcjj/BiNE">[Python]</a></li>
</ul></li>
<li><strong>HOPE</strong>
<ul>
<li>Asymmetric Transitivity Preserving Graph Embedding</li>
<li><a
href="http://www.kdd.org/kdd2016/papers/files/rfp0184-ouA.pdf">[KDD
2016]</a></li>
<li><a href="https://github.com/AnryYang/HOPE">[Python]</a></li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">[Python
KarateClub]</a></li>
</ul></li>
<li><strong>VERSE</strong>
<ul>
<li>VERSE, Versatile Graph Embeddings from Similarity Measures</li>
<li><a href="https://arxiv.org/abs/1803.04742">[Arxiv]</a> [[WWW
2018]]</li>
<li><a href="https://github.com/xgfs/verse">[Python]</a></li>
</ul></li>
<li><strong>AGNN</strong>
<ul>
<li>Attention-based Graph Neural Network for semi-supervised
learning</li>
<li><a href="https://openreview.net/forum?id=rJg4YGWRb">[ICLR 2018
OpenReview (rejected)]</a></li>
<li><a
href="https://github.com/dawnranger/pytorch-AGNN">[Python]</a></li>
</ul></li>
<li><strong>SEANO</strong>
<ul>
<li>Semi-supervised Embedding in Attributed Networks with Outliers</li>
<li><a href="https://arxiv.org/pdf/1703.08100.pdf">[Paper]</a> (SDM
2018)</li>
<li><a href="http://jiongqianliang.com/SEANO/">[Python]</a><br />
</li>
</ul></li>
<li><strong>Hyperbolics</strong>
<ul>
<li>Representation Tradeoffs for Hyperbolic Embeddings</li>
<li><a href="https://arxiv.org/abs/1804.03329">[Arxiv]</a></li>
<li><a
href="https://github.com/HazyResearch/hyperbolics">[Python]</a><br />
</li>
</ul></li>
<li><strong>DGCNN</strong>
<ul>
<li>An End-to-End Deep Learning Architecture for Graph
Classification</li>
<li><a
href="http://www.cse.wustl.edu/~muhan/papers/AAAI_2018_DGCNN.pdf">[AAAI
2018]</a></li>
<li><a href="https://github.com/muhanzhang/DGCNN">[Lua]</a> <a
href="https://github.com/muhanzhang/pytorch_DGCNN">[Python]</a><br />
</li>
</ul></li>
<li><strong>structure2vec</strong>
<ul>
<li>Discriminative Embeddings of Latent Variable Models for Structured
Data</li>
<li><a href="https://arxiv.org/abs/1603.05629">[Arxiv]</a></li>
<li><a
href="https://github.com/Hanjun-Dai/pytorch_structure2vec">[Python]</a><br />
</li>
</ul></li>
<li><strong>Decagon</strong>
<ul>
<li>Decagon, Graph Neural Network for Multirelational Link
Prediction</li>
<li><a href="https://arxiv.org/abs/1802.00543">[Arxiv]</a> <a
href="http://snap.stanford.edu/decagon/">[SNAP]</a> [[ISMB 2018]]</li>
<li><a href="https://github.com/marinkaz/decagon">[Python]</a><br />
</li>
</ul></li>
<li><strong>DHNE</strong>
<ul>
<li>Structural Deep Embedding for Hyper-Networks</li>
<li><a
href="http://nrl.thumedialab.com/Structural-Deep-Embedding-for-Hyper-Networks">[AAAI
2018]</a><a href="https://arxiv.org/abs/1711.10146">[Arxiv]</a></li>
<li><a href="https://github.com/tadpole/DHNE">[Python]</a><br />
</li>
</ul></li>
<li><strong>Ohmnet</strong>
<ul>
<li>Feature Learning in Multi-Layer Networks</li>
<li><a href="https://arxiv.org/abs/1707.04638">[Arxiv]</a> <a
href="http://snap.stanford.edu/ohmnet/">[SNAP]</a></li>
<li><a href="https://github.com/marinkaz/ohmnet">[Python]</a><br />
</li>
</ul></li>
<li><strong>SDNE</strong>
<ul>
<li>Structural Deep Network Embedding</li>
<li><a
href="http://www.kdd.org/kdd2016/papers/files/rfp0191-wangAemb.pdf">[KDD
2016]</a></li>
<li><a
href="https://github.com/xiaohan2012/sdne-keras">[Python]</a></li>
</ul></li>
<li><strong>STWalk</strong>
<ul>
<li>STWalk: Learning Trajectory Representations in Temporal Graphs]</li>
<li><a href="https://arxiv.org/abs/1711.04150">[Arxiv]</a></li>
<li><a
href="https://github.com/supriya-pandhre/STWalk">[Python]</a></li>
</ul></li>
<li><strong>LoNGAE</strong>
<ul>
<li>Learning to Make Predictions on Graphs with Autoencoders</li>
<li><a href="https://arxiv.org/abs/1802.08352">[Arxiv]</a></li>
<li><a
href="https://github.com/vuptran/graph-representation-learning">[Python]</a><br />
</li>
</ul></li>
<li><strong>RSDNE</strong>
<ul>
<li><a href="https://zhengwang100.github.io/AAAI18_RSDNE.pdf">RSDNE:
Exploring Relaxed Similarity and Dissimilarity from
Completely-imbalanced Labels for Network Embedding.</a>, AAAI 2018</li>
<li><a href="https://github.com/zhengwang100/RSDNE">[Matlab]</a></li>
</ul></li>
<li><strong>FastGCN</strong>
<ul>
<li>FastGCN: Fast Learning with Graph Convolutional Networks via
Importance Sampling</li>
<li><a href="https://arxiv.org/abs/1801.10247">[Arxiv]</a>, <a
href="https://openreview.net/forum?id=rytstxWAW">[ICLR 2018
OpenReview]</a></li>
<li><a href="https://github.com/matenure/FastGCN">[Python]</a></li>
</ul></li>
<li><strong>diff2vec</strong>
<ul>
<li><a
href="http://homepages.inf.ed.ac.uk/s1668259/papers/sequence.pdf">Fast
Sequence Based Embedding with Diffusion Graphs</a>, CompleNet 2018</li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">[Python
KarateClub]</a></li>
<li><a
href="https://github.com/benedekrozemberczki/diff2vec">[Python]</a></li>
</ul></li>
<li><strong>Poincare</strong>
<ul>
<li><a
href="https://papers.nips.cc/paper/7213-poincare-embeddings-for-learning-hierarchical-representations">Poincaré
Embeddings for Learning Hierarchical Representations</a>, NIPS 2017</li>
<li><a
href="https://github.com/facebookresearch/poincare-embeddings">[PyTorch]</a>
<a
href="https://radimrehurek.com/gensim/models/poincare.html">[Python]</a>
<a
href="https://github.com/TatsuyaShirakawa/poincare-embedding">[C++]</a></li>
</ul></li>
<li><strong>PEUNE</strong>
<ul>
<li><a
href="https://papers.nips.cc/paper/7110-prune-preserving-proximity-and-global-ranking-for-network-embedding">PRUNE:
Preserving Proximity and Global Ranking for Network Embedding</a>, NIPS
2017</li>
<li><a href="https://github.com/ntumslab/PRUNE">[code]</a></li>
</ul></li>
<li><strong>ASNE</strong>
<ul>
<li>Attributed Social Network Embedding, TKDE18</li>
<li><a href="https://arxiv.org/abs/1706.01860">[arxiv]</a></li>
<li><a href="https://github.com/lizi-git/ASNE">[Python]</a></li>
<li><a href="https://github.com/benedekrozemberczki/ASNE">[Fast
Python]</a></li>
</ul></li>
<li><strong>GraphWave</strong>
<ul>
<li><a href="http://snap.stanford.edu/graphwave/">Spectral Graph
Wavelets for Structural Role Similarity in Networks</a>,</li>
<li><a href="https://arxiv.org/abs/1710.10321">[arxiv]</a>, <a
href="https://openreview.net/forum?id=rytstxWAW">[ICLR 2018
OpenReview]</a></li>
<li><a href="https://github.com/snap-stanford/graphwave">[Python]</a> <a
href="https://github.com/benedekrozemberczki/GraphWaveMachine">[faster
version]</a></li>
</ul></li>
<li><strong>StarSpace</strong>
<ul>
<li><a href="https://arxiv.org/pdf/1709.03856">StarSpace: Embed All The
Things!</a>, arxiv17</li>
<li><a
href="https://github.com/facebookresearch/Starspace">[code]</a></li>
</ul></li>
<li><strong>proNet-core</strong>
<ul>
<li>Vertex-Context Sampling for Weighted Network Embedding,
arxiv17</li>
<li><a href="https://arxiv.org/abs/1711.00227">[arxiv]</a> <a
href="https://github.com/cnclabs/proNet-core">[code]</a></li>
</ul></li>
<li><strong>struc2vec</strong>
<ul>
<li><a href="https://dl.acm.org/citation.cfm?id=3098061">struc2vec:
Learning Node Representations from Structural Identity</a>, KDD17</li>
<li><a href="https://github.com/leoribeiro/struc2vec">[Python]</a></li>
</ul></li>
<li><strong>ComE</strong>
<ul>
<li>Learning Community Embedding with Community Detection and Node
Embedding on Graphs, CIKM17</li>
<li><a href="https://github.com/andompesta/ComE">[Python]</a></li>
</ul></li>
<li><strong>BoostedNE</strong>
<ul>
<li><a href="https://arxiv.org/abs/1808.08627">Multi-Level Network
Embedding with Boosted Low-Rank Matrix Approximation</a>, 18</li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">[Python
KarateClub]</a></li>
<li><a
href="https://github.com/benedekrozemberczki/BoostedFactorization">[Python]</a></li>
</ul></li>
<li><strong>M-NMF</strong>
<ul>
<li>Community Preserving Network Embedding, AAAI17</li>
<li><a href="https://github.com/benedekrozemberczki/M-NMF">[Python
TensorFlow]</a></li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">[Python
KarateClub]</a></li>
</ul></li>
<li><strong>GraphSAGE</strong>
<ul>
<li>Inductive Representation Learning on Large Graphs, NIPS17</li>
<li><a href="https://arxiv.org/abs/1706.02216">[arxiv]</a> <a
href="https://github.com/williamleif/GraphSAGE">[TF]</a> <a
href="https://github.com/williamleif/graphsage-simple/">[PyTorch]</a></li>
</ul></li>
<li><strong>ICE</strong>
<ul>
<li><a href="http://dl.acm.org/citation.cfm?id=3080807">ICE: Item
Concept Embedding via Textual Information</a>, SIGIR17</li>
<li><a href="https://cnclabs.github.io/ICE/">[demo]</a> <a
href="https://github.com/cnclabs/ICE">[code]</a></li>
</ul></li>
<li><strong>GuidedHeteEmbedding</strong>
<ul>
<li>Task-guided and path-augmented heterogeneous network embedding for
author identification, WSDM17</li>
<li><a href="https://arxiv.org/pdf/1612.02814.pdf">[paper]</a> <a
href="https://github.com/chentingpc/GuidedHeteEmbedding">[code]</a></li>
</ul></li>
<li><strong>metapath2vec</strong>
<ul>
<li>metapath2vec: Scalable Representation Learning for Heterogeneous
Networks, KDD17</li>
<li><a
href="https://www3.nd.edu/~dial/publications/dong2017metapath2vec.pdf">[paper]</a>
<a href="https://ericdongyx.github.io/metapath2vec/m2v.html">[project
website]</a></li>
</ul></li>
<li><strong>GCN</strong>
<ul>
<li>Semi-Supervised Classification with Graph Convolutional Networks,
ICLR17</li>
<li><a href="https://arxiv.org/abs/1609.02907">[arxiv]</a> <a
href="https://github.com/tkipf/gcn">[Python Tensorflow]</a></li>
</ul></li>
<li><strong>GAE</strong>
<ul>
<li>Variational Graph Auto-Encoders, arxiv</li>
<li><a href="https://arxiv.org/abs/1611.07308">[arxiv]</a> <a
href="https://github.com/tkipf/gae">[Python Tensorflow]</a></li>
</ul></li>
<li><strong>CANE</strong>
<ul>
<li>CANE: Context-Aware Network Embedding for Relation Modeling,
ACL17</li>
<li><a
href="http://www.thunlp.org/~tcc/publications/acl2017_cane.pdf">[paper]</a>
<a href="https://github.com/thunlp/cane">[Python]</a></li>
</ul></li>
<li><strong>TransNet</strong>
<ul>
<li>TransNet: Translation-Based Network Representation Learning for
Social Relation Extraction, IJCAI17</li>
<li><a href="https://github.com/thunlp/TransNet">[Python
Tensorflow]</a></li>
</ul></li>
<li><strong>cnn_graph</strong>
<ul>
<li>Convolutional Neural Networks on Graphs with Fast Localized Spectral
Filtering, NIPS16</li>
<li><a href="https://github.com/mdeff/cnn_graph">[Python]</a></li>
</ul></li>
<li><strong>ConvE</strong>
<ul>
<li><a href="https://arxiv.org/pdf/1707.01476v2.pdf">Convolutional 2D
Knowledge Graph Embeddings</a>, arxiv</li>
<li><a href="https://github.com/TimDettmers/ConvE">[source]</a></li>
</ul></li>
<li><strong>node2vec</strong>
<ul>
<li><a
href="http://dl.acm.org/citation.cfm?id=2939672.2939754">node2vec:
Scalable Feature Learning for Networks</a>, KDD16</li>
<li><a href="https://arxiv.org/abs/1607.00653">[arxiv]</a> <a
href="https://github.com/aditya-grover/node2vec">[Python]</a> <a
href="https://github.com/apple2373/node2vec">[Python-2]</a> <a
href="https://github.com/eliorc/node2vec">[Python-3]</a> <a
href="https://github.com/xgfs/node2vec-c">[C++]</a><br />
</li>
</ul></li>
<li><strong>DNGR</strong>
<ul>
<li><a
href="http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12423">Deep
Neural Networks for Learning Graph Representations</a>, AAAI16</li>
<li><a href="https://github.com/ShelsonCao/DNGR">[Matlab]</a> <a
href="https://github.com/MdAsifKhan/DNGR-Keras">[Python Keras]</a></li>
</ul></li>
<li><strong>HolE</strong>
<ul>
<li><a href="http://dl.acm.org/citation.cfm?id=3016172">Holographic
Embeddings of Knowledge Graphs</a>, AAAI16</li>
<li><a
href="https://github.com/mnick/holographic-embeddings">[Python-sklearn]</a>
<a href="https://github.com/mnick/scikit-kge">[Python-sklearn2]</a></li>
</ul></li>
<li><strong>ComplEx</strong>
<ul>
<li><a href="http://dl.acm.org/citation.cfm?id=3045609">Complex
Embeddings for Simple Link Prediction</a>, ICML16</li>
<li><a href="https://arxiv.org/abs/1606.06357">[arxiv]</a> <a
href="https://github.com/ttrouill/complex">[Python]</a></li>
</ul></li>
<li><strong>MMDW</strong>
<ul>
<li>Max-Margin DeepWalk: Discriminative Learning of Network
Representation, IJCAI16</li>
<li><a
href="http://nlp.csai.tsinghua.edu.cn/~lzy/publications/ijcai2016_mmdw.pdf">[paper]</a>
<a href="https://github.com/thunlp/MMDW">[Java]</a></li>
</ul></li>
<li><strong>planetoid</strong>
<ul>
<li>Revisiting Semi-supervised Learning with Graph Embeddings,
ICML16</li>
<li><a href="https://arxiv.org/abs/1603.08861">[arxiv]</a> <a
href="https://github.com/kimiyoung/planetoid">[Python]</a></li>
</ul></li>
<li><strong>graph2vec</strong>
<ul>
<li>graph2vec: Learning Distributed Representations of Graphs, KDD17
MLGWorkshop</li>
<li><a href="https://arxiv.org/abs/1707.05005">[arxiv]</a></li>
<li><a href="https://github.com/benedekrozemberczki/graph2vec">[Python
gensim]</a> <a
href="https://github.com/benedekrozemberczki/karateclub">[Python
KarateClub]</a></li>
</ul></li>
<li><strong>PowerWalk</strong>
<ul>
<li><a href="http://dl.acm.org/citation.cfm?id=2983713">PowerWalk:
Scalable Personalized PageRank via Random Walks with Vertex-Centric
Decomposition</a>, CIKM16</li>
<li><a href="https://github.com/lqhl/PowerWalk">[code]</a></li>
</ul></li>
<li><strong>LINE</strong>
<ul>
<li><a href="http://dl.acm.org/citation.cfm?id=2741093">LINE:
Large-scale information network embedding</a>, WWW15</li>
<li><a href="https://arxiv.org/abs/1503.03578">[arxiv]</a> <a
href="https://github.com/tangjianpku/LINE">[C++]</a> <a
href="https://github.com/snowkylin/line">[Python TF]</a> <a
href="https://github.com/VahidooX/LINE">[Python Theano/Keras]</a></li>
</ul></li>
<li><strong>PTE</strong>
<ul>
<li><a href="http://dl.acm.org/citation.cfm?id=2783307">PTE: Predictive
Text Embedding through Large-scale Heterogeneous Text Networks</a>,
KDD15</li>
<li><a href="https://github.com/mnqu/PTE">[C++]</a></li>
</ul></li>
<li><strong>GraRep</strong>
<ul>
<li><a href="http://dl.acm.org/citation.cfm?id=2806512">Grarep: Learning
graph representations with global structural information</a>,
CIKM15</li>
<li><a href="https://github.com/ShelsonCao/GraRep">[Matlab]</a></li>
<li><a href="https://github.com/xgfs/GraRep.jl">[Julia]</a></li>
<li><a
href="https://github.com/benedekrozemberczki/GraRep">[Python]</a></li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">[Python
KarateClub]</a></li>
</ul></li>
<li><strong>KB2E</strong>
<ul>
<li><a href="http://dl.acm.org/citation.cfm?id=2886624">Learning Entity
and Relation Embeddings for Knowledge Graph Completion</a>, AAAI15</li>
<li><a
href="http://nlp.csai.tsinghua.edu.cn/~lzy/publications/aaai2015_transr.pdf">[paper]</a>
<a href="https://github.com/thunlp/KB2E">[C++]</a> <a
href="https://github.com/thunlp/Fast-TransX">[faster version]</a></li>
</ul></li>
<li><strong>TADW</strong>
<ul>
<li><a href="http://dl.acm.org/citation.cfm?id=2832542">Network
Representation Learning with Rich Text Information</a>, IJCAI15</li>
<li><a
href="https://www.ijcai.org/Proceedings/15/Papers/299.pdf">[paper]</a>
<a href="https://github.com/thunlp/tadw">[Matlab]</a> <a
href="https://github.com/benedekrozemberczki/TADW">[Python]</a></li>
</ul></li>
<li><strong>DeepWalk</strong>
<ul>
<li><a href="http://dl.acm.org/citation.cfm?id=2623732">DeepWalk: Online
Learning of Social Representations</a>, KDD14</li>
<li><a href="https://arxiv.org/abs/1403.6652">[arxiv]</a> <a
href="https://github.com/phanein/deepwalk">[Python]</a> <a
href="https://github.com/xgfs/deepwalk-c">[C++]</a></li>
</ul></li>
<li><strong>GEM</strong>
<ul>
<li>Graph Embedding Techniques, Applications, and Performance: A
Survey</li>
<li><a href="https://arxiv.org/abs/1705.02801">[arxiv]</a> <a
href="https://github.com/palash1992/GEM">[Python]</a></li>
</ul></li>
<li><strong>DNE-SBP</strong>
<ul>
<li>Deep Network Embedding for Graph Representation Learning in Signed
Networks</li>
<li><a href="https://ieeexplore.ieee.org/document/8486671">[paper]</a>
<a
href="https://github.com/shenxiaocam/Deep-network-embedding-for-graph-representation-learning-in-signed-networks">[Code]</a></li>
</ul></li>
</ul>
<h1 id="paper-references">Paper References</h1>
<p><a href="https://arxiv.org/abs/1901.00596">A Comprehensive Survey on
Graph Neural Networks</a>, arxiv19</p>
<p><a href="https://arxiv.org/pdf/1806.08804.pdf">Hierarchical Graph
Representation Learning with Differentiable Pooling</a>, NIPS18</p>
<p><strong>SEMAC</strong>, <a
href="https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16442">Link
Prediction via Subgraph Embedding-Based Convex Matrix Completion</a>,
AAAI 2018, <a
href="https://www.slideshare.net/gdm3003/semac-graph-node-embeddings-for-link-prediction">Slides</a></p>
<p><strong>MILE</strong>, <a
href="https://arxiv.org/pdf/1802.09612.pdf">MILE: A Multi-Level
Framework for Scalable Graph Embedding</a>, arxiv18</p>
<p><strong>MetaGraph2Vec</strong>, <a
href="https://arxiv.org/abs/1803.02533">MetaGraph2Vec: Complex Semantic
Path Augmented Heterogeneous Network Embedding</a></p>
<p><strong>PinSAGE</strong>, <a
href="https://arxiv.org/abs/1806.01973">Graph Convolutional Neural
Networks for Web-Scale Recommender Systems</a></p>
<p><a href="https://dl.acm.org/citation.cfm?id=3159711">Curriculum
Learning for Heterogeneous Star Network Embedding via Deep Reinforcement
Learning</a>, WSDM 18</p>
<p><a href="https://arxiv.org/abs/1711.07838">Adversarial Network
Embedding</a>, arxiv</p>
<p><strong>Role2Vec</strong>, <a
href="https://arxiv.org/abs/1802.02896">Learning Role-based Graph
Embeddings</a></p>
<p><strong>edge2vec</strong>, <a
href="https://arxiv.org/abs/1804.06111">Feature Propagation on Graph: A
New Perspective to Graph Representation Learning</a></p>
<p><strong>MINES</strong>, <a
href="http://cse.msu.edu/~mayao4/downloads/Multidimensional_Network_Embedding_with_Hierarchical_Structure.pdf">Multi-Dimensional
Network Embedding with Hierarchical Structure</a></p>
<p><a href="https://arxiv.org/abs/1804.05837">Walk-Steered Convolution
for Graph Classification</a></p>
<p><a href="https://arxiv.org/abs/1704.08829">Deep Feature Learning for
Graphs</a>, arxiv17</p>
<p><a href="https://arxiv.org/abs/1710.10881">Fast Linear Model for
Knowledge Graph Embeddings</a>, arxiv17</p>
<p><a href="https://arxiv.org/abs/1710.02971">Network Embedding as
Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec</a>,
arxiv17</p>
<p><a href="https://arxiv.org/abs/1709.07604">A Comprehensive Survey of
Graph Embedding: Problems, Techniques and Applications</a>, arxiv17</p>
<p><a href="https://arxiv.org/pdf/1709.05584.pdf">Representation
Learning on Graphs: Methods and Applications</a>, IEEE DEB17</p>
<p><strong>CONE</strong>, <a
href="https://arxiv.org/abs/1709.01554">CONE: Community Oriented Network
Embedding</a>, arxiv17</p>
<p><strong>LANE</strong>, <a
href="http://dl.acm.org/citation.cfm?id=3018667">Label Informed
Attributed Network Embedding</a>, WSDM17</p>
<p><strong>Graph2Gauss</strong>, <a
href="https://arxiv.org/abs/1707.03815">Deep Gaussian Embedding of
Attributed Graphs: Unsupervised Inductive Learning via Ranking</a>,
arxiv <a
href="https://twitter.com/abojchevski/status/885502050133585925">[Bonus
Animation]</a></p>
<p><a
href="https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14696">Scalable
Graph Embedding for Asymmetric Proximity</a>, AAAI17</p>
<p><a href="http://dl.acm.org/citation.cfm?id=2959169">Query-based Music
Recommendations via Preference Embedding</a>, RecSys16</p>
<p><a href="http://dl.acm.org/citation.cfm?id=3060886">Tri-party deep
network representation</a>, IJCAI16</p>
<p><a href="http://dl.acm.org/citation.cfm?id=2783296">Heterogeneous
Network Embedding via Deep Architectures</a>, KDD15</p>
<p><a href="http://dl.acm.org/citation.cfm?id=2969070">Neural Word
Embedding As Implicit Matrix Factorization</a>, NIPS14</p>
<p><a href="http://dl.acm.org/citation.cfm?id=2488393">Distributed
large-scale natural graph factorization</a>, WWW13</p>
<p><a href="https://arxiv.org/abs/1610.09950">From Node Embedding To
Community Embedding</a>, arxiv</p>
<p><a href="https://arxiv.org/abs/1605.02115">Walklets: Multiscale Graph
Embeddings for Interpretable Network Classification</a>, arxiv</p>
<p><a href="https://arxiv.org/abs/1501.00358">Comprehend DeepWalk as
Matrix Factorization</a>, arxiv</p>
<h1 id="conference-workshop">Conference &amp; Workshop</h1>
<p><a href="https://github.com/svjan5/GNNs-for-NLP">Graph Neural
Networks for Natural Language Processing</a>,
<strong>EMNLP19</strong></p>
<p><a href="https://github.com/cnclabs/smore">SMORe : Modularize Graph
Embedding for Recommendation</a>, <strong>RecSys19</strong></p>
<p><a href="http://www.mlgworkshop.org/2017/">13th International
Workshop on Mining and Learning with Graphs</a>,
<strong>MLG17</strong></p>
<p><a href="http://snap.stanford.edu/proj/embeddings-www/">WWW-18
Tutorial Representation Learning on Networks</a>,
<strong>WWW18</strong></p>
<h1 id="related-list">Related List</h1>
<p><a
href="https://github.com/benedekrozemberczki/awesome-graph-classification">awesome-graph-classification</a></p>
<p><a
href="https://github.com/benedekrozemberczki/awesome-community-detection">awesome-community-detection</a></p>
<p><a
href="https://github.com/Hironsan/awesome-embedding-models">awesome-embedding-models</a></p>
<p><a href="https://github.com/thunlp/NRLPapers">Must-read papers on
network representation learning (NRL) / network embedding (NE)</a></p>
<p><a href="https://github.com/thunlp/KRLPapers">Must-read papers on
knowledge representation learning (KRL) / knowledge embedding
(KE)</a></p>
<p><a
href="https://github.com/nate-russell/Network-Embedding-Resources">Network
Embedding Resources</a></p>
<p><a
href="https://github.com/Hironsan/awesome-embedding-models">awesome-embedding-models</a></p>
<p><a href="https://github.com/MaxwellRebo/awesome-2vec">2vec-type
embedding models</a></p>
<p><a href="https://github.com/thunlp/GNNPapers">Must-read papers on
GNN</a></p>
<p><a
href="https://github.com/DeepGraphLearning/LiteratureDL4Graph">LiteratureDL4Graph</a></p>
<p><a
href="https://github.com/benedekrozemberczki/awesome-graph-classification">awesome-graph-classification</a></p>
<h1 id="related-project">Related Project</h1>
<p><strong>Stanford Network Analysis Project</strong> <a
href="http://snap.stanford.edu/">website</a></p>
<p><strong>StellarGraph Machine Learning Library</strong> <a
href="https://www.stellargraph.io">website</a> <a
href="https://github.com/stellargraph/stellargraph">GitHub</a></p>
<p><a
href="https://github.com/chihming/awesome-network-embedding">networkembedding.md
Github</a></p>