Files
awesome-awesomeness/html/frauddetectionpapers.html
2025-07-18 23:13:11 +02:00

1345 lines
50 KiB
HTML
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<h1 id="awesome-fraud-detection-research-papers.">Awesome Fraud
Detection Research Papers.</h1>
<a href="https://github.com/sindresorhus/awesome"><img
src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg"
alt="Awesome" /></a> <a href="http://makeapullrequest.com"><img
src="https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square"
alt="PRs Welcome" /></a> <a
href="https://github.com/benedekrozemberczki/awesome-fraud-detection-papers/archive/master.zip"><img
src="https://img.shields.io/github/repo-size/benedekrozemberczki/awesome-fraud-detection-papers.svg"
alt="repo size" /></a> <img
src="https://img.shields.io/github/license/benedekrozemberczki/awesome-fraud-detection-papers.svg?color=blue"
alt="License" /> <a
href="https://twitter.com/intent/follow?screen_name=benrozemberczki"><img
src="https://img.shields.io/twitter/follow/benrozemberczki?style=social&amp;logo=twitter"
alt="benedekrozemberczki" /></a>
<p align="center">
<img width="450" src="fraud.png">
</p>
<p>A curated list of fraud detection papers from the following
conferences:</p>
<ul>
<li>Network Science
<ul>
<li><a href="http://asonam.cpsc.ucalgary.ca/2019/">ASONAM</a></li>
<li><a href="https://www.complexnetworks.org/">COMPLEX NETWORKS</a></li>
</ul></li>
<li>Data Science
<ul>
<li><a href="http://dsaa2019.dsaa.co/">DSAA</a></li>
</ul></li>
<li>Natural Language Processing
<ul>
<li><a href="http://www.acl2019.org/EN/index.xhtml">ACL</a></li>
</ul></li>
<li>Data Mining
<ul>
<li><a href="https://www.kdd.org/">KDD</a></li>
<li><a href="http://icdm2019.bigke.org/">ICDM</a></li>
<li><a href="https://sigir.org/">SIGIR</a></li>
<li><a
href="https://www.siam.org/conferences/cm/conference/sdm20">SDM</a></li>
<li><a href="https://www2019.thewebconf.org/">WWW</a></li>
<li><a href="http://www.cikmconference.org/">CIKM</a></li>
</ul></li>
<li>Artificial Intelligence
<ul>
<li><a href="https://www.aaai.org/">AAAI</a></li>
<li><a href="http://www.auai.org/">AISTATS</a></li>
<li><a href="https://www.ijcai.org/">IJCAI</a></li>
<li><a href="http://www.auai.org/">UAI</a></li>
</ul></li>
<li>Databases
<ul>
<li><a href="http://www.vldb.org/">VLDB</a></li>
</ul></li>
</ul>
<p>Similar collections about <a
href="https://github.com/benedekrozemberczki/awesome-graph-classification">graph
classification</a>, <a
href="https://github.com/benedekrozemberczki/awesome-decision-tree-papers">classification/regression
tree</a>, <a
href="https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers">gradient
boosting</a>, <a
href="https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers">Monte
Carlo tree search</a>, and <a
href="https://github.com/benedekrozemberczki/awesome-community-detection">community
detection</a> papers with implementations.</p>
<h2 id="section">2023</h2>
<ul>
<li><strong>Anti-Money Laundering by Group-Aware Deep Graph Learning
(TKDE 2023)</strong>
<ul>
<li>Dawei Cheng, Yujia Ye, Sheng Xiang, Zhenwei Ma, Ying Zhang, Changjun
Jiang</li>
<li><a href="https://doi.org/10.1109/TKDE.2023.3272396">[Paper]</a></li>
</ul></li>
<li><strong>Semi-supervised Credit Card Fraud Detection via
Attribute-driven Graph Representation (AAAI 2023)</strong>
<ul>
<li>Sheng Xiang, Mingzhi Zhu, Dawei Cheng, Enxia Li, Ruihui Zhao, Yi
Ouyang, Ling Chen, Yefeng Zheng</li>
<li><a
href="https://www.xiangshengcloud.top/publication/semi-supervised-credit-card-fraud-detection-via-attribute-driven-graph-representation/Sheng-AAAI2023.pdf">[Paper]</a></li>
<li><a href="https://github.com/finint/antifraud">[Code]</a></li>
</ul></li>
<li><strong>A Framework for Detecting Frauds from Extremely Few Labels
(WSDM 2023)</strong>
<ul>
<li>Ya-Lin Zhang, Yi-Xuan Sun, Fangfang Fan, Meng Li, Yeyu Zhao, Wei
Wang, Longfei Li, Jun Zhou, Jinghua Feng</li>
<li><a
href="https://dl.acm.org/doi/10.1145/3539597.3573022">[Paper]</a></li>
</ul></li>
<li><strong>Label Information Enhanced Fraud Detection against Low
Homophily in Graphs (WWW 2023)</strong>
<ul>
<li>Yuchen Wang, Jinghui Zhang, Zhengjie Huang, Weibin Li, Shikun Feng,
Ziheng Ma, Yu Sun, Dianhai Yu, Fang Dong, Jiahui Jin, Beilun Wang,
Junzhou Luo (WWW 2023)</li>
<li><a href="https://arxiv.org/abs/2302.10407">[Paper]</a></li>
</ul></li>
<li><strong>BERT4ETH: A Pre-trained Transformer for Ethereum Fraud
Detection (WWW 2023)</strong>
<ul>
<li>Sihao Hu, Zhen Zhang, Bingqiao Luo, Shengliang Lu, Bingsheng He,
Ling Liu</li>
<li><a href="https://arxiv.org/abs/2303.18138">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-1">2022</h2>
<ul>
<li><strong>The Importance of Future Information in Credit Card Fraud
Detection (AISTATS 2022)</strong>
<ul>
<li>Van Bach Nguyen, Kanishka Ghosh Dastidar, Michael Granitzer, Wissam
Siblini</li>
<li><a href="https://arxiv.org/abs/2204.05265">[Paper]</a></li>
</ul></li>
<li><strong>BRIGHT - Graph Neural Networks in Real-time Fraud Detection
(CIKM 2022)</strong>
<ul>
<li>Mingxuan Lu, Zhichao Han, Susie Xi Rao, Zitao Zhang, Yang Zhao,
Yinan Shan, Ramesh Raghunathan, Ce Zhang, Jiawei Jiang</li>
<li><a href="https://arxiv.org/abs/2205.13084">[Paper]</a></li>
</ul></li>
<li><strong>Dual-Augment Graph Neural Network for Fraud Detection (CIKM
2022)</strong>
<ul>
<li>Qiutong Li, Yanshen He, Cong Xu, Feng Wu, Jianliang Gao, Zhao
Li</li>
<li><a
href="https://dl.acm.org/doi/10.1145/3511808.3557586">[Paper]</a></li>
</ul></li>
<li><strong>Explainable Graph-based Fraud Detection via Neural
Meta-graph Search (CIKM 2022)</strong>
<ul>
<li>Zidi Qin, Yang Liu, Qing He, Xiang Ao</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3511808.3557598">[Paper]</a></li>
</ul></li>
<li><strong>MetaRule: A Meta-path Guided Ensemble Rule Set Learning for
Explainable Fraud Detection (CIKM 2022)</strong>
<ul>
<li>Lu Yu, Meng Li, Xiaoguang Huang, Wei Zhu, Yanming Fang, Jun Zhou,
Longfei Li</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3511808.3557641">[Paper]</a></li>
</ul></li>
<li><strong>User Behavior Pre-training for Online Fraud Detection (KDD
2022)</strong>
<ul>
<li>Can Liu, Yuncong Gao, Li Sun, Jinghua Feng, Hao Yang, Xiang Ao</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3534678.3539126">[Paper]</a></li>
</ul></li>
<li><strong>Accelerated GNN Training with DGL and RAPIDS cuGraph in a
Fraud Detection Workflow (KDD 2022)</strong>
<ul>
<li>Brad Rees, Xiaoyun Wang, Joe Eaton, Onur Yilmaz, Rick Ratzel,
Dominque LaSalle</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3534678.3542603">[Paper]</a></li>
</ul></li>
<li><strong>A View into YouTube View Fraud (WWW 2022)</strong>
<ul>
<li>Dhruv Kuchhal, Frank Li</li>
<li><a
href="https://dl.acm.org/doi/10.1145/3485447.3512216">[Paper]</a></li>
</ul></li>
<li><strong>Beyond Bot Detection: Combating Fraudulent Online Survey
Takers (WWW 2022)</strong>
<ul>
<li>Ziyi Zhang, Shuofei Zhu, Jaron Mink, Aiping Xiong, Linhai Song, Gang
Wang</li>
<li><a
href="https://gangw.cs.illinois.edu/www22-bot.pdf">[Paper]</a></li>
</ul></li>
<li><strong>AUC-oriented Graph Neural Network for Fraud Detection (WWW
2022)</strong>
<ul>
<li>Mengda Huang, Yang Liu, Xiang Ao, Kuan Li, Jianfeng Chi, Jinghua
Feng, Hao Yang, Qing He</li>
<li><a
href="https://ponderly.github.io/pub/AOGNN_WWW2022.pdf">[Paper]</a></li>
</ul></li>
<li><strong>H2-FDetector: A GNN-based Fraud Detector with Homophilic and
Heterophilic Connections (WWW 2022)</strong>
<ul>
<li>Fengzhao Shi, Yanan Cao, Yanmin Shang, Yuchen Zhou, Chuan Zhou, Jia
Wu</li>
<li><a
href="https://dl.acm.org/doi/10.1145/3485447.3512195">[Paper]</a></li>
</ul></li>
<li><strong>Active Learning for Human-in-the-loop Customs Inspection
(TKDE 2022)</strong>
<ul>
<li>Sundong Kim, Tung-Duong Mai, Thi Nguyen Duc Khanh, Sungwon Han,
Sungwon Park, Karandeep Singh, Meeyoung Cha</li>
<li><a
href="https://ieeexplore.ieee.org/document/9695316/">[Paper]</a></li>
<li><a
href="https://github.com/Seondong/Customs-Fraud-Detection">[Code]</a></li>
</ul></li>
<li><strong>Knowledge Sharing via Domain Adaptation in Customs Fraud
Detection (AAAI 2022)</strong>
<ul>
<li>Sungwon Park, Sundong Kim, Meeyoung Cha</li>
<li><a href="https://arxiv.org/abs/2201.06759">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-2">2021</h2>
<ul>
<li><strong>Towards Consumer Loan Fraud Detection: Graph Neural Networks
with Role-Constrained Conditional Random Field (AAAI 2021)</strong>
<ul>
<li>Bingbing Xu, Huawei Shen, Bing-Jie Sun, Rong An, Qi Cao, Xueqi
Cheng</li>
<li><a
href="https://ojs.aaai.org/index.php/AAAI/article/view/16582">[Paper]</a></li>
</ul></li>
<li><strong>Modeling the Field Value Variations and Field Interactions
Simultaneously for Fraud Detection (AAAI 2021)</strong>
<ul>
<li>Dongbo Xi, Bowen Song, Fuzhen Zhuang, Yongchun Zhu, Shuai Chen,
Tianyi Zhang, Yuan Qi, Qing He</li>
<li><a href="https://arxiv.org/abs/2008.05600">[Paper]</a></li>
</ul></li>
<li><strong>IFDDS: An Anti-fraud Outbound Robot (AAAI 2021)</strong>
<ul>
<li>Zihao Wang, Minghui Yang, Chunxiang Jin, Jia Liu, Zujie Wen,
Saishuai Liu, Zhe Zhang</li>
<li><a
href="https://ojs.aaai.org/index.php/AAAI/article/view/18030">[Paper]</a></li>
</ul></li>
<li><strong>Modeling Heterogeneous Graph Network on Fraud Detection: A
Community-based Framework with Attention Mechanism (CIKM 2021)</strong>
<ul>
<li>Li Wang, Peipei Li, Kai Xiong, Jiashu Zhao, Rui Lin</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3459637.3482277">[Paper]</a></li>
</ul></li>
<li><strong>Fraud Detection under Multi-Sourced Extremely Noisy
Annotations (CIKM 2021)</strong>
<ul>
<li>Chuang Zhang, Qizhou Wang, Tengfei Liu, Xun Lu, Jin Hong, Bo Han,
Chen Gong</li>
<li><a
href="https://gcatnjust.github.io/ChenGong/paper/zhang_cikm21.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Adversarial Reprogramming of Pretrained Neural Networks for
Fraud Detection (CIKM 2021)</strong>
<ul>
<li>Lingwei Chen, Yujie Fan, Yanfang Ye</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3459637.3482053">[Paper]</a></li>
</ul></li>
<li><strong>Fine-Grained Element Identification in Complaint Text of
Internet Fraud (CIKM 2021)</strong>
<ul>
<li>Tong Liu, Siyuan Wang, Jingchao Fu, Lei Chen, Zhongyu Wei, Yaqi Liu,
Heng Ye, Liaosa Xu, Weiqiang Wang, Xuanjing Huang</li>
<li><a href="https://arxiv.org/abs/2108.08676">[Paper]</a></li>
</ul></li>
<li><strong>Could You Describe the Reason for the Transfer: A
Reinforcement Learning Based Voice-Enabled Bot Protecting Customers from
Financial Frauds (CIKM 2021)</strong>
<ul>
<li>Zihao Wang, Fudong Wang, Haipeng Zhang, Minghui Yang, Shaosheng Cao,
Zujie Wen, Zhe Zhang</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3459637.3481906">[Paper]</a></li>
</ul></li>
<li><strong>Online Credit Payment Fraud Detection via Structure-Aware
Hierarchical Recurrent Neural Network (IJCAI 2021)</strong>
<ul>
<li>Wangli Lin, Li Sun, Qiwei Zhong, Can Liu, Jinghua Feng, Xiang Ao,
Hao Yang</li>
<li><a
href="https://www.ijcai.org/proceedings/2021/505">[Paper]</a></li>
</ul></li>
<li><strong>Intention-aware Heterogeneous Graph Attention Networks for
Fraud Transactions Detection (KDD 2021)</strong>
<ul>
<li>Can Liu, Li Sun, Xiang Ao, Jinghua Feng, Qing He, Hao Yang</li>
<li><a
href="https://dl.acm.org/doi/10.1145/3447548.3467142">[Paper]</a></li>
</ul></li>
<li><strong>Live-Streaming Fraud Detection: A Heterogeneous Graph Neural
Network Approach (KDD 2021)</strong>
<ul>
<li>Haishuai Wang, Zhao Li, Peng Zhang, Jiaming Huang, Pengrui Hui, Jian
Liao, Ji Zhang, Jiajun Bu</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3447548.3467065">[Paper]</a></li>
</ul></li>
<li><strong>Customs Fraud Detection in the Presence of Concept Drift
(IncrLearn@ICDM 2021)</strong>
<ul>
<li>Tung-Duong Mai, Kien Hoang, Aitolkyn Baigutanova, Gaukhartas Alina,
Sundong Kim</li>
<li><a href="https://arxiv.org/abs/2109.14155">[Paper]</a></li>
</ul></li>
<li><strong>Pick and Choose: A GNN-based Imbalanced Learning Approach
for Fraud Detection (WWW 2021)</strong>
<ul>
<li>Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang,
Qing He</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3442381.3449989">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-3">2020</h2>
<ul>
<li><strong>Spatio-Temporal Attention-Based Neural Network for Credit
Card Fraud Detection (AAAI 2020)</strong>
<ul>
<li>Dawei Cheng, Sheng Xiang, Chencheng Shang, Yiyi Zhang, Fangzhou
Yang, Liqing Zhang</li>
<li><a
href="https://aaai.org/Papers/AAAI/2020GB/AISI-ChengD.87.pdf">[Paper]</a></li>
</ul></li>
<li><strong>FlowScope: Spotting Money Laundering Based on Graphs (AAAI
2020)</strong>
<ul>
<li>Xiangfeng Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi,
Bryan Hooi, He Huang, Xueqi Cheng</li>
<li><a
href="https://shenghua-liu.github.io/papers/aaai2020cr-flowscope.pdf">[Paper]</a></li>
<li><a href="https://github.com/aplaceof/FlowScope">[Code]</a></li>
</ul></li>
<li><strong>Enhancing Graph Neural Network-based Fraud Detectors against
Camouflaged Fraudsters (CIKM 2020)</strong>
<ul>
<li>Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, Philip S.
Yu</li>
<li><a href="https://arxiv.org/abs/2008.08692">[Paper]</a></li>
<li><a href="https://github.com/YingtongDou/CARE-GNN">[Code]</a></li>
</ul></li>
<li><strong>Loan Default Analysis with Multiplex Graph Learning (CIKM
2020)</strong>
<ul>
<li>Binbin Hu, Zhiqiang Zhang, Jun Zhou, Jingli Fang, Quanhui Jia,
Yanming Fang, Quan Yu, Yuan Qi</li>
<li><a
href="https://www.researchgate.net/publication/343626706_Loan_Default_Analysis_with_Multiplex_Graph_Learning">[Paper]</a></li>
</ul></li>
<li><strong>Error-Bounded Graph Anomaly Loss for GNNs (CIKM
2020)</strong>
<ul>
<li>Tong Zhao, Chuchen Deng, Kaifeng Yu, Tianwen Jiang, Daheng Wang,
Meng Jiang</li>
<li><a
href="http://www.meng-jiang.com/pubs/gal-cikm20/gal-cikm20-paper.pdf">[Paper]</a></li>
<li><a
href="https://github.com/zhao-tong/Graph-Anomaly-Loss">[Code]</a></li>
</ul></li>
<li><strong>BotSpot: A Hybrid Learning Framework to Uncover Bot Install
Fraud in Mobile Advertising (CIKM 2020)</strong>
<ul>
<li>Tianjun Yao, Qing Li, Shangsong Liang, Yadong Zhu</li>
<li><a
href="https://dl.acm.org/doi/pdf/10.1145/3340531.3412690">[Paper]</a></li>
<li><a
href="https://github.com/akakeigo2020/CIKM-Applied_Research-2150">[Code]</a></li>
</ul></li>
<li><strong>Early Fraud Detection with Augmented Graph Learning (DLG@KDD
2020)</strong>
<ul>
<li>Tong Zhao, Bo Ni, Wenhao Yu, Meng Jiang</li>
<li><a
href="http://www.meng-jiang.com/pubs/earlyfraud-dlg20/earlyfraud-dlg20-paper.pdf">[Paper]</a></li>
</ul></li>
<li><strong>NAG: Neural Feature Aggregation Framework for Credit Card
Fraud Detection (ICDM 2020)</strong>
<ul>
<li>Kanishka Ghosh Dastidar, Johannes Jurgovsky, Wissam Siblini, Liyun
He-Guelton, Michael Granitzer</li>
<li><a
href="https://www.computer.org/csdl/proceedings-article/icdm/2020/831600a092/1r54A3Sb2yk">[Paper]</a></li>
</ul></li>
<li><strong>Heterogeneous Mini-Graph Neural Network and Its Application
to Fraud Invitation Detection (ICDM 2020)</strong>
<ul>
<li>Yong-Nan Zhu, Xiaotian Luo, Yu-Feng Li, Bin Bu, Kaibo Zhou, Wenbin
Zhang, Mingfan Lu</li>
<li><a
href="https://cs.nju.edu.cn/liyf/paper/icdm20-hmgnn.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Collaboration Based Multi-Label Propagation for Fraud
Detection (IJCAI 2020)</strong>
<ul>
<li>Haobo Wang, Zhao Li, Jiaming Huang, Pengrui Hui, Weiwei Liu, Tianlei
Hu, Gang Chen</li>
<li><a
href="https://www.ijcai.org/Proceedings/2020/343">[Paper]</a></li>
</ul></li>
<li><strong>The Behavioral Sign of Account Theft: Realizing Online
Payment Fraud Alert (IJCAI 2020)</strong>
<ul>
<li>Cheng Wang</li>
<li><a
href="https://www.ijcai.org/Proceedings/2020/0636.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Federated Meta-Learning for Fraudulent Credit Card Detection
(IJCAI 2020)</strong>
<ul>
<li>Wenbo Zheng, Lan Yan, Chao Gou, Fei-Yue Wang</li>
<li><a
href="https://www.ijcai.org/Proceedings/2020/642">[Paper]</a></li>
</ul></li>
<li><strong>Robust Spammer Detection by Nash Reinforcement Learning (KDD
2020)</strong>
<ul>
<li>Yingtong Dou, Guixiang Ma, Philip S. Yu, Sihong Xie</li>
<li><a href="https://arxiv.org/abs/2006.06069">[Paper]</a></li>
<li><a href="https://github.com/YingtongDou/Nash-Detect">[Code]</a></li>
</ul></li>
<li><strong>DATE: Dual Attentive Tree-aware Embedding for Customs Fraud
Detection (KDD 2020)</strong>
<ul>
<li>Sundong Kim, Yu-Che Tsai, Karandeep Singh, Yeonsoo Choi, Etim Ibok,
Cheng-Te Li, Meeyoung Cha</li>
<li><a
href="https://seondong.github.io/assets/papers/2020_KDD_DATE.pdf">[Paper]</a></li>
<li><a
href="https://github.com/Roytsai27/Dual-Attentive-Tree-aware-Embedding">[Code]</a></li>
</ul></li>
<li><strong>Fraud Transactions Detection via Behavior Tree with Local
Intention Calibration (KDD 2020)</strong>
<ul>
<li>Can Liu, Qiwei Zhong, Xiang Ao, Li Sun, Wangli Lin, Jinghua Feng,
Qing He, Jiayu Tang</li>
<li><a
href="https://dl.acm.org/doi/pdf/10.1145/3394486.3403354">[Paper]</a></li>
</ul></li>
<li><strong>Interleaved Sequence RNNs for Fraud Detection (KDD
2020)</strong>
<ul>
<li>Bernardo Branco, Pedro Abreu, Ana Sofia Gomes, Mariana S. C.
Almeida, João Tiago Ascensão, Pedro Bizarro</li>
<li><a href="https://arxiv.org/abs/2002.05988">[Paper]</a></li>
</ul></li>
<li><strong>GCN-Based User Representation Learning for Unifying Robust
Recommendation and Fraudster Detection (SIGIR 2020)</strong>
<ul>
<li>Shijie Zhang, Hongzhi Yin, Tong Chen, Quoc Viet Nguyen Hung, Zi
Huang, Lizhen Cui</li>
<li><a href="https://arxiv.org/abs/2005.10150">[Paper]</a></li>
</ul></li>
<li><strong>Alleviating the Inconsistency Problem of Applying Graph
Neural Network to Fraud Detection (SIGIR 2020)</strong>
<ul>
<li>Zhiwei Liu, Yingtong Dou, Philip S. Yu, Yutong Deng, Hao Peng</li>
<li><a href="https://arxiv.org/abs/2005.00625">[Paper]</a></li>
<li><a href="https://github.com/safe-graph/DGFraud">[Code]</a></li>
</ul></li>
<li><strong>Friend or Faux: Graph-Based Early Detection of Fake Accounts
on Social Networks (WWW 2020)</strong>
<ul>
<li>Adam Breuer, Roee Eilat, Udi Weinsberg</li>
<li><a href="https://arxiv.org/abs/2004.04834">[Paper]</a></li>
</ul></li>
<li><strong>Financial Defaulter Detection on Online Credit Payment via
Multi-view Attributed Heterogeneous Information Network (WWW
2020)</strong>
<ul>
<li>Qiwei Zhong, Yang Liu, Xiang Ao, Binbin Hu, Jinghua Feng, Jiayu
Tang, Qing He</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3366423.3380159">[Paper]</a></li>
</ul></li>
<li><strong>ASA: Adversary Situation Awareness via Heterogeneous Graph
Convolutional Networks (WWW 2020)</strong>
<ul>
<li>Rui Wen, Jianyu Wang, Chunming Wu, Jian Xiong</li>
<li><a
href="https://dl.acm.org/doi/10.1145/3366424.3391266">[Paper]</a></li>
</ul></li>
<li><strong>Modeling Users Behavior Sequences with Hierarchical
Explainable Network for Cross-domain Fraud Detection (WWW 2020)</strong>
<ul>
<li>Yongchun Zhu, Dongbo Xi, Bowen Song, Fuzhen Zhuang, Shuai Chen, Xi
Gu, Qing He</li>
<li><a
href="https://dl.acm.org/doi/fullHtml/10.1145/3366423.3380172">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-4">2019</h2>
<ul>
<li><strong>SliceNDice: Mining Suspicious Multi-attribute Entity Groups
with Multi-view Graphs (DSAA 2019)</strong>
<ul>
<li>Hamed Nilforoshan, Neil Shah</li>
<li><a href="https://arxiv.org/abs/1908.07087">[Paper]</a></li>
<li><a href="https://github.com/hamedn/SliceNDice">[Code]</a></li>
</ul></li>
<li><strong>FARE: Schema-Agnostic Anomaly Detection in Social Event Logs
(DSAA 2019)</strong>
<ul>
<li>Neil Shah</li>
<li><a
href="http://nshah.net/publications/FARE.DSAA.19.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Cash-Out User Detection Based on Attributed Heterogeneous
Information Network with a Hierarchical Attention Mechanism (AAAI
2019)</strong>
<ul>
<li>Binbin Hu, Zhiqiang Zhang, Chuan Shi, Jun Zhou, Xiaolong Li, Yuan
Qi</li>
<li><a
href="https://aaai.org/ojs/index.php/AAAI/article/view/3884">[Paper]</a></li>
<li><a href="https://github.com/safe-graph/DGFraud">[Code]</a></li>
</ul></li>
<li><strong>GeniePath: Graph Neural Networks with Adaptive Receptive
Paths (AAAI 2019)</strong>
<ul>
<li>Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song,
Yuan Qi</li>
<li><a href="https://arxiv.org/abs/1802.00910">[Paper]</a></li>
<li><a href="https://github.com/safe-graph/DGFraud">[Code]</a></li>
</ul></li>
<li><strong>SAFE: A Neural Survival Analysis Model for Fraud Early
Detection (AAAI 2019)</strong>
<ul>
<li>Panpan Zheng, Shuhan Yuan, Xintao Wu</li>
<li><a href="https://arxiv.org/abs/1809.04683v2">[Paper]</a></li>
<li><a href="https://github.com/PanpanZheng/SAFE">[Code]</a></li>
</ul></li>
<li><strong>One-Class Adversarial Nets for Fraud Detection (AAAI
2019)</strong>
<ul>
<li>Panpan Zheng, Shuhan Yuan, Xintao Wu, Jun Li, Aidong Lu</li>
<li><a href="https://arxiv.org/abs/1803.01798">[Paper]</a></li>
<li><a href="https://github.com/ILoveAI2019/OCAN">[Code]</a></li>
</ul></li>
<li><strong>Uncovering Download Fraud Activities in Mobile App Markets
(ASONAM 2019)</strong>
<ul>
<li>Yingtong Dou, Weijian Li, Zhirong Liu, Zhenhua Dong, Jiebo Luo,
Philip S. Yu</li>
<li><a href="https://arxiv.org/pdf/1907.03048.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Spam Review Detection with Graph Convolutional Networks
(CIKM 2019)</strong>
<ul>
<li>Ao Li, Zhou Qin, Runshi Liu, Yiqun Yang, Dong Li</li>
<li><a href="https://arxiv.org/abs/1908.10679">[Paper]</a></li>
<li><a href="https://github.com/safe-graph/DGFraud">[Code]</a></li>
</ul></li>
<li><strong>Key Player Identification in Underground Forums Over
Attributed Heterogeneous Information Network Embedding Framework (CIKM
2019)</strong>
<ul>
<li>Yiming Zhang, Yujie Fan, Yanfang Ye, Liang Zhao, Chuan Shi</li>
<li><a
href="http://mason.gmu.edu/~lzhao9/materials/papers/lp0110-zhangA.pdf">[Paper]</a></li>
<li><a href="https://github.com/safe-graph/DGFraud">[Code]</a></li>
</ul></li>
<li><strong>CatchCore: Catching Hierarchical Dense Subtensor (ECML-PKDD
2019)</strong>
<ul>
<li>Wenjie Feng, Shenghua Liu, Huawei Shen, and Xueqi Cheng</li>
<li><a
href="https://shenghua-liu.github.io/papers/pkdd2019-catchcore.pdf">[Paper]</a></li>
<li><a href="https://github.com/wenchieh/catchcore">[Code]</a></li>
</ul></li>
<li><strong>Spotting Collective Behaviour of Online Frauds in Customer
Reviews (IJCAI 2019)</strong>
<ul>
<li>Sarthika Dhawan, Siva Charan Reddy Gangireddy, Shiv Kumar, Tanmoy
Chakraborty</li>
<li><a href="https://arxiv.org/abs/1905.13649">[Paper]</a></li>
<li><a href="https://github.com/LCS2-IIITD/DeFrauder">[Code]</a></li>
</ul></li>
<li><strong>A Semi-Supervised Graph Attentive Network for Fraud
Detection (ICDM 2019)</strong>
<ul>
<li>Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming
Fang, Quan Yu, Jun Zhou, Shuang Yang, and Qi Yuan</li>
<li><a href="https://arxiv.org/abs/2003.01171">[Paper]</a></li>
<li><a href="https://github.com/safe-graph/DGFraud">[Code]</a></li>
</ul></li>
<li><strong>EigenPulse: Detecting Surges in Large Streaming Graphs with
Row Augmentation (PAKDD 2019)</strong>
<ul>
<li>Jiabao Zhang, Shenghua Liu, Wenjian Yu, Wenjie Feng, Xueqi
Cheng</li>
<li><a
href="https://shenghua-liu.github.io/papers/pakdd2019-eigenpulse.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Uncovering Insurance Fraud Conspiracy with Network Learning
(SIGIR 2019)</strong>
<ul>
<li>Chen Liang, Ziqi Liu, Bin Liu, Jun Zhou, Xiaolong Li, Shuang Yang,
Yuan Qi</li>
<li><a
href="https://dl.acm.org/citation.cfm?id=3331372">[Paper]</a></li>
</ul></li>
<li><strong>A Contrast Metric for Fraud Detection in Rich Graphs (TKDE
2019)</strong>
<ul>
<li>Shenghua Liu, Bryan Hooi, Christos Faloutsos</li>
<li><a
href="https://shenghua-liu.github.io/papers/tkde2019-constrastsusp_holoscope.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Think Outside the Dataset: Finding Fraudulent Reviews using
Cross-Dataset Analysis (WWW 2019)</strong>
<ul>
<li>Shirin Nilizadeh, Hojjat Aghakhani, Eric Gustafson, Christopher
Kruegel, Giovanni Vigna</li>
<li><a
href="https://www.researchgate.net/publication/333060486_Think_Outside_the_Dataset_Finding_Fraudulent_Reviews_using_Cross-Dataset_Analysis">[Paper]</a></li>
</ul></li>
<li><strong>Securing the Deep Fraud Detector in Large-Scale E-Commerce
Platform via Adversarial Machine Learning Approach (WWW 2019)</strong>
<ul>
<li>Qingyu Guo, Zhao Li, Bo An, Pengrui Hui, Jiaming Huang, Long Zhang,
Mengchen Zhao</li>
<li><a
href="https://www.ntu.edu.sg/home/boan/papers/WWW19.pdf">[Paper]</a></li>
</ul></li>
<li><strong>No Place to Hide: Catching Fraudulent Entities in Tensors
(WWW 2019)</strong>
<ul>
<li>Yikun Ban, Xin Liu, Ling Huang, Yitao Duan, Xue Liu, Wei Xu</li>
<li><a href="https://arxiv.org/pdf/1810.06230.pdf">[Paper]</a></li>
</ul></li>
<li><strong>FdGars: Fraudster Detection via Graph Convolutional Networks
in Online App Review System (WWW 2019)</strong>
<ul>
<li>Rui Wen, Jianyu Wang and Yu Huang</li>
<li><a
href="https://dl.acm.org/citation.cfm?id=3316586">[Paper]</a></li>
<li><a href="https://github.com/safe-graph/DGFraud">[Code]</a></li>
</ul></li>
</ul>
<h2 id="section-5">2018</h2>
<ul>
<li><strong>Heterogeneous Graph Neural Networks for Malicious Account
Detection (CIKM 2018)</strong>
<ul>
<li>Ziqi Liu, Chaochao Chen, Xinxing Yang, Jun Zhou, Xiaolong Li, and Le
Song</li>
<li><a
href="https://dl.acm.org/doi/10.1145/3269206.3272010">[Paper]</a></li>
<li><a href="https://github.com/safe-graph/DGFraud">[Code]</a></li>
</ul></li>
<li><strong>Reinforcement Mechanism Design for Fraudulent Behaviour in
e-Commerce (AAAI 2018)</strong>
<ul>
<li>Qingpeng Cai, Aris Filos-Ratsikas, Pingzhong Tang, Yiwei Zhang</li>
<li><a
href="https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16650">[Paper]</a></li>
</ul></li>
<li><strong>Adapting to Concept Drift in Credit Card Transaction Data
Streams Using Contextual Bandits and Decision Trees (AAAI 2018)</strong>
<ul>
<li>Dennis J. N. J. Soemers, Tim Brys, Kurt Driessens, Mark H. M.
Winands, Ann Nowé</li>
<li><a
href="https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16183/16394">[Paper]</a></li>
</ul></li>
<li><strong>Nextgen AML: Distributed Deep Learning Based Language
Technologies to Augment Anti Money Laundering Investigation(ACL
2018)</strong>
<ul>
<li>Jingguang Han, Utsab Barman, Jeremiah Hayes, Jinhua Du, Edward
Burgin, Dadong Wan</li>
<li><a href="https://www.aclweb.org/anthology/P18-4007">[Paper]</a></li>
</ul></li>
<li><strong>Preserving Privacy of Fraud Detection Rule Sharing Using
Intels SGX (CIKM 2018)</strong>
<ul>
<li>Daniel Deutch, Yehonatan Ginzberg, Tova Milo</li>
<li><a
href="https://www.researchgate.net/publication/328439345_Preserving_Privacy_of_Fraud_Detection_Rule_Sharing_Using_Intel%27s_SGX">[Paper]</a></li>
</ul></li>
<li><strong>Deep Structure Learning for Fraud Detection (ICDM
2018)</strong>
<ul>
<li>Haibo Wang, Chuan Zhou, Jia Wu, Weizhen Dang, Xingquan Zhu, Jilong
Wang</li>
<li><a
href="https://www.researchgate.net/publication/330030140_Deep_Structure_Learning_for_Fraud_Detection">[Paper]</a></li>
</ul></li>
<li><strong>Learning Sequential Behavior Representations for Fraud
Detection (ICDM 2018)</strong>
<ul>
<li>Jia Guo, Guannan Liu, Yuan Zuo, Junjie Wu</li>
<li><a
href="https://www.researchgate.net/publication/330028902_Learning_Sequential_Behavior_Representations_for_Fraud_Detection">[Paper]</a></li>
</ul></li>
<li><strong>Impression Allocation for Combating Fraud in E-commerce Via
Deep Reinforcement Learning with Action Norm Penalty (IJCAI
2018)</strong>
<ul>
<li>Mengchen Zhao, Zhao Li, Bo An, Haifeng Lu, Yifan Yang, Chen Chu</li>
<li><a
href="https://www.ijcai.org/proceedings/2018/0548.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Tax Fraud Detection for Under-Reporting Declarations Using
an Unsupervised Machine Learning Approach (KDD 2018)</strong>
<ul>
<li>Daniel de Roux, Boris Perez, Andrés Moreno, María-Del-Pilar
Villamil, César Figueroa</li>
<li><a
href="https://www.kdd.org/kdd2018/accepted-papers/view/tax-fraud-detection-for-under-reporting-declarations-using-an-unsupervised-">[Paper]</a></li>
</ul></li>
<li><strong>Collective Fraud Detection Capturing Inter-Transaction
Dependency (KDD 2018)</strong>
<ul>
<li>Bokai Cao, Mia Mao, Siim Viidu, Philip Yu</li>
<li><a
href="http://proceedings.mlr.press/v71/cao18a.html">[Paper]</a></li>
</ul></li>
<li><strong>Fraud Detection with Density Estimation Trees (KDD
2018)</strong>
<ul>
<li>Fraud Detection with Density Estimation Trees</li>
<li><a
href="http://proceedings.mlr.press/v71/ram18a/ram18a.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Real-time Constrained Cycle Detection in Large Dynamic
Graphs (VLDB 2018)</strong>
<ul>
<li>Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin
Lin, Jingren Zhou</li>
<li><a
href="http://www.vldb.org/pvldb/vol11/p1876-qiu.pdf">[Paper]</a></li>
</ul></li>
<li><strong>REV2: Fraudulent User Prediction in Rating Platforms (WSDM
2018)</strong>
<ul>
<li>Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos
Faloutsos, V. S. Subrahmanian</li>
<li><a
href="https://cs.stanford.edu/~srijan/pubs/rev2-wsdm18.pdf">[Paper]</a></li>
<li><a href="https://cs.stanford.edu/~srijan/rev2/">[Code]</a></li>
</ul></li>
<li><strong>Exposing Search and Advertisement Abuse Tactics and
Infrastructure of Technical Support Scammers (WWW 2018)</strong>
<ul>
<li>Bharat Srinivasan, Athanasios Kountouras, Najmeh Miramirkhani,
Monjur Alam, Nick Nikiforakis, Manos Antonakakis, Mustaque Ahamad</li>
<li><a
href="https://www.securitee.org/files/tss_www2018.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-6">2017</h2>
<ul>
<li><strong>ZooBP: Belief Propagation for Heterogeneous Networks (VLDB
2017)</strong>
<ul>
<li>Dhivya Eswaran, Stephan Gunnemann, Christos Faloutsos, Disha
Makhija, Mohit Kumar</li>
<li><a
href="http://www.vldb.org/pvldb/vol10/p625-eswaran.pdf">[Paper]</a></li>
<li><a href="https://github.com/safe-graph/UGFraud">[Code]</a></li>
</ul></li>
<li><strong>Behavioral Analysis of Review Fraud: Linking Malicious
Crowdsourcing to Amazon and Beyond (AAAI 2017)</strong>
<ul>
<li>Parisa Kaghazgaran, James Caverlee, Majid Alfifi</li>
<li><a
href="https://aaai.org/ocs/index.php/ICWSM/ICWSM17/paper/view/15659">[Paper]</a></li>
</ul></li>
<li><strong>Detection of Money Laundering Groups: Supervised Learning on
Small Networks (AAAI 2017)</strong>
<ul>
<li>David Savage, Qingmai Wang, Xiuzhen Zhang, Pauline Chou, Xinghuo
Yu</li>
<li><a href="https://arxiv.org/pdf/1608.00708.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Spectrum-based Deep Neural Networks for Fraud Detection
(CIKM 2017)</strong>
<ul>
<li>Shuhan Yuan, Xintao Wu, Jun Li, Aidong Lu</li>
<li><a href="https://arxiv.org/abs/1706.00891">[Paper]</a></li>
</ul></li>
<li><strong>HoloScope: Topology-and-Spike Aware Fraud Detection (CIKM
2017)</strong>
<ul>
<li>Shenghua Liu, Bryan Hooi, Christos Faloutsos</li>
<li><a href="https://arxiv.org/abs/1705.02505">[Paper]</a></li>
</ul></li>
<li><strong>The Many Faces of Link Fraud (ICDM 2017)</strong>
<ul>
<li>Neil Shah, Hemank Lamba, Alex Beutel, Christos Faloutsos</li>
<li><a href="https://arxiv.org/abs/1704.01420">[Paper]</a></li>
</ul></li>
<li><strong>HitFraud: A Broad Learning Approach for Collective Fraud
Detection in Heterogeneous Information Networks (ICDM 2017)</strong>
<ul>
<li>Bokai Cao, Mia Mao, Siim Viidu, Philip S. Yu</li>
<li><a href="https://arxiv.org/abs/1709.04129">[Paper]</a></li>
</ul></li>
<li><strong>GANG: Detecting Fraudulent Users in Online Social Networks
via Guilt-by-Association on Directed Graphs (ICDM 2017)</strong>
<ul>
<li>Binghui Wang, Neil Zhenqiang Gong, Hao Fu</li>
<li><a
href="https://ieeexplore.ieee.org/document/8215519">[Paper]</a></li>
<li><a href="https://github.com/safe-graph/UGFraud">[Code]</a></li>
</ul></li>
<li><strong>Improving Card Fraud Detection Through Suspicious Pattern
Discovery (IEA/AIE 2017)</strong>
<ul>
<li>Fabian Braun, Olivier Caelen, Evgueni N. Smirnov, Steven Kelk,
Bertrand Lebichot:</li>
<li><a
href="http://www.oliviercaelen.be/doc/GBSSCCFDS.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Online Reputation Fraud Campaign Detection in User Ratings
(IJCAI 2017)</strong>
<ul>
<li>Chang Xu, Jie Zhang, Zhu Sun</li>
<li><a
href="https://www.ijcai.org/proceedings/2017/0541.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Uncovering Unknown Unknowns in Financial Services Big Data
by Unsupervised Methodologies: Present and Future trends (KDD
2017)</strong>
<ul>
<li>Gil Shabat, David Segev, Amir Averbuch</li>
<li><a
href="http://proceedings.mlr.press/v71/shabat18a.html">[Paper]</a></li>
</ul></li>
<li><strong>PD-FDS: Purchase Density based Online Credit Card Fraud
Detection System (KDD 2017)</strong>
<ul>
<li>Youngjoon Ki, Ji Won Yoon</li>
<li><a
href="http://proceedings.mlr.press/v71/ki18a/ki18a.pdf">[Paper]</a></li>
</ul></li>
<li><strong>HiDDen: Hierarchical Dense Subgraph Detection with
Application to Financial Fraud Detection (SDM 2017)</strong>
<ul>
<li>Si Zhang, Dawei Zhou, Mehmet Yigit Yildirim, Scott Alcorn, Jingrui
He, Hasan Davulcu, Hanghang Tong</li>
<li><a
href="http://www.public.asu.edu/~hdavulcu/SDM17.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-7">2016</h2>
<ul>
<li><strong>A Fraud Resilient Medical Insurance Claim System (AAAI
2016)</strong>
<ul>
<li>Yuliang Shi, Chenfei Sun, Qingzhong Li, Lizhen Cui, Han Yu, Chunyan
Miao</li>
<li><a
href="https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11813">[Paper]</a></li>
</ul></li>
<li><strong>A Graph-Based, Semi-Supervised, Credit Card Fraud Detection
System (COMPLEX NETWORKS 2016)</strong>
<ul>
<li>Bertrand Lebichot, Fabian Braun, Olivier Caelen, Marco Saerens</li>
<li><a
href="http://www.oliviercaelen.be/doc/IEAAIE_2017_Finalversion-PDF_39.pdf">[Paper]</a></li>
</ul></li>
<li><strong>FRAUDAR: Bounding Graph Fraud in the Face of Camouflage (KDD
2016)</strong>
<ul>
<li>Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin,
Christos Faloutsos</li>
<li><a
href="https://www.andrew.cmu.edu/user/bhooi/papers/fraudar_kdd16.pdf">[Paper]</a></li>
<li><a href="https://github.com/safe-graph/UGFraud">[Code]</a></li>
</ul></li>
<li><strong>Identifying Anomalies in Graph Streams Using Change
Detection (KDD 2016)</strong>
<ul>
<li>William Eberle and Lawrence Holde</li>
<li><a
href="http://www.mlgworkshop.org/2016/paper/MLG2016_paper_12.pdf">[Paper]</a></li>
</ul></li>
<li><strong>FairPlay: Fraud and Malware Detection in Google Play (SDM
2016)</strong>
<ul>
<li>Mahmudur Rahman, Mizanur Rahman, Bogdan Carbunar, Duen Horng
Chau</li>
<li><a href="https://arxiv.org/abs/1703.02002">[Paper]</a></li>
</ul></li>
<li><strong>BIRDNEST: Bayesian Inference for Ratings-Fraud Detection
(SDM 2016)</strong>
<ul>
<li>Bryan Hooi, Neil Shah, Alex Beutel, Stephan Günnemann, Leman Akoglu,
Mohit Kumar, Disha Makhija, Christos Faloutsos</li>
<li><a
href="https://www.andrew.cmu.edu/user/bhooi/papers/birdnest_sdm16.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Understanding the Detection of View Fraud in Video Content
Portals (WWW 2016)</strong>
<ul>
<li>Miriam Marciel, Rubén Cuevas, Albert Banchs, Roberto Gonzalez,
Stefano Traverso, Mohamed Ahmed, Arturo Azcorra</li>
<li><a
href="https://dl.acm.org/citation.cfm?id=2882980">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-8">2015</h2>
<ul>
<li><strong>Toward An Intelligent Agent for Fraud Detection — The CFE
Agent (AAAI 2015)</strong>
<ul>
<li>Joe Johnson</li>
<li><a
href="https://www.aaai.org/ocs/index.php/FSS/FSS15/paper/download/11664/11485">[Paper]</a></li>
</ul></li>
<li><strong>Graph Analysis for Detecting Fraud, Waste, and Abuse in
Healthcare Data (AAAI 2015)</strong>
<ul>
<li>Juan Liu, Eric Bier, Aaron Wilson, Tomonori Honda, Kumar Sricharan,
Leilani Gilpin, John Alexis Guerra Gómez, Daniel Davies</li>
<li><a
href="https://pdfs.semanticscholar.org/1ea7/125b789ef938bffe10c7588e6b071c4ff73c.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Robust System for Identifying Procurement Fraud (AAAI
2015)</strong>
<ul>
<li>Amit Dhurandhar, Rajesh Kumar Ravi, Bruce Graves, Gopikrishnan
Maniachari, Markus Ettl</li>
<li><a
href="https://pdfs.semanticscholar.org/27af/c9ec453ae0cf9e55f4032ff688cb70c2a61e.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Fraud Transaction Recognition: A Money Flow Network Approach
(CIKM 2015)</strong>
<ul>
<li>Renxin Mao, Zhao Li, Jinhua Fu</li>
<li><a
href="https://dl.acm.org/citation.cfm?id=2806647">[Paper]</a></li>
</ul></li>
<li><strong>Towards Collusive Fraud Detection in Online Reviews (ICDM
2015)</strong>
<ul>
<li>Chang Xu, Jie Zhang</li>
<li><a
href="https://ieeexplore.ieee.org/document/7373434">[Paper]</a></li>
</ul></li>
<li><strong>Catch the Black Sheep: Unified Framework for Shilling Attack
Detection Based on Fraudulent Action Propagation (IJCAI 2015)</strong>
<ul>
<li>Yongfeng Zhang, Yunzhi Tan, Min Zhang, Yiqun Liu, Tat-Seng Chua,
Shaoping Ma</li>
<li><a
href="https://www.ijcai.org/Proceedings/15/Papers/341.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Collective Opinion Spam Detection: Bridging Review Networks
and Metadata (KDD 2015)</strong>
<ul>
<li>Shebuti Rayana, Leman Akoglu</li>
<li><a
href="https://www.andrew.cmu.edu/user/lakoglu/pubs/15-kdd-collectiveopinionspam.pdf">[Paper]</a></li>
<li><a href="https://github.com/safe-graph/UGFraud">[Code]</a></li>
</ul></li>
<li><strong>Graph-Based User Behavior Modeling: From Prediction to Fraud
Detection (KDD 2015)</strong>
<ul>
<li>Alex Beutel, Leman Akoglu, Christos Faloutsos</li>
<li><a
href="https://www.cs.cmu.edu/~abeutel/kdd2015_tutorial/tutorial.pdf">[Paper]</a></li>
</ul></li>
<li><strong>FrauDetector: A Graph-Mining-based Framework for Fraudulent
Phone Call Detection (KDD 2015)</strong>
<ul>
<li>Vincent S. Tseng, Jia-Ching Ying, Che-Wei Huang, Yimin Kao, Kuan-Ta
Chen</li>
<li><a
href="http://repository.ncku.edu.tw/bitstream/987654321/166322/1/4010204000-000004_1.pdf">[Paper]</a></li>
</ul></li>
<li><strong>A Framework for Intrusion Detection Based on Frequent
Subgraph Mining (SDM 2015)</strong>
<ul>
<li>Vitali Herrera-Semenets, Niusvel Acosta-Mendoza, Andres
Gago-Alonso</li>
<li><a
href="https://www.researchgate.net/publication/271839253_A_Framework_for_Intrusion_Detection_based_on_Frequent_Subgraph_Mining">[Paper]</a></li>
</ul></li>
<li><strong>Crowd Fraud Detection in Internet Advertising (WWW
2015)</strong>
<ul>
<li>Tian Tian, Jun Zhu, Fen Xia, Xin Zhuang, Tong Zhang</li>
<li><a
href="http://www.www2015.it/documents/proceedings/proceedings/p1100.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-9">2014</h2>
<ul>
<li><strong>Spotting Suspicious Link Behavior with fBox: An Adversarial
Perspective (ICDM 2014)</strong>
<ul>
<li>Neil Shah, Alex Beutel, Brian Gallagher, Christos Faloutsos</li>
<li><a href="https://arxiv.org/pdf/1410.3915.pdf">[Paper]</a></li>
<li><a href="https://github.com/safe-graph/UGFraud">[Code]</a></li>
</ul></li>
<li><strong>Fraudulent Support Telephone Number Identification Based on
Co-Occurrence Information on the Web (AAAI 2014)</strong>
<ul>
<li>Xin Li, Yiqun Liu, Min Zhang, Shaoping Ma</li>
<li><a
href="https://pdfs.semanticscholar.org/2733/1f48c87736ea12b9edec062e384d3bd58f88.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Corporate Residence Fraud Detection (KDD 2014)</strong>
<ul>
<li>Enric Junqué de Fortuny, Marija Stankova, Julie Moeyersoms, Bart
Minnaert, Foster J. Provost, David Martens</li>
<li><a
href="http://delivery.acm.org/10.1145/2630000/2623333/p1650-fortuny.pdf?ip=129.215.164.203&amp;id=2623333&amp;acc=ACTIVE%20SERVICE&amp;key=C2D842D97AC95F7A%2EEB9E991028F4E1F1%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&amp;__acm__=1559048806_f1a6f763ef7088a4fb4b1a4ff94856f8">[Paper]</a></li>
</ul></li>
<li><strong>Graphical Models for Identifying Fraud and Waste in
Healthcare Claims (SDM 2014)</strong>
<ul>
<li>Peder A. Olsen, Ramesh Natarajan, Sholom M. Weiss</li>
<li><a
href="https://epubs.siam.org/doi/abs/10.1137/1.9781611973440.66">[Paper]</a></li>
</ul></li>
<li><strong>Improving Credit Card Fraud Detection with Calibrated
Probabilities (SDM 2014)</strong>
<ul>
<li>Alejandro Correa Bahnsen, Aleksandar Stojanovic, Djamila Aouada,
Björn E. Ottersten</li>
<li><a
href="https://pdfs.semanticscholar.org/9241/ef2a2f6638eafeffd0056736c0f46f9aa083.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Large Graph Mining: Patterns, Cascades, Fraud Detection, and
Algorithms (WWW 2014)</strong>
<ul>
<li>Christos Faloutsos</li>
<li><a
href="http://wwwconference.org/proceedings/www2014/proceedings/p1.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-10">2013</h2>
<ul>
<li><strong>Opinion Fraud Detection in Online Reviews by Network Effects
(AAAI 2013)</strong>
<ul>
<li>Leman Akoglu, Rishi Chandy, Christos Faloutsos</li>
<li><a
href="https://www.researchgate.net/publication/279905898_Opinion_fraud_detection_in_online_reviews_by_network_effects">[Paper]</a></li>
</ul></li>
<li><strong>Using Social Network Knowledge for Detecting Spider
Constructions in Social Security Fraud (ASONAM 2013)</strong>
<ul>
<li>Véronique Van Vlasselaer, Jan Meskens, Dries Van Dromme, Bart
Baesens</li>
<li><a
href="https://ieeexplore.ieee.org/document/6785796">[Paper]</a></li>
</ul></li>
<li><strong>Ranking Fraud Detection for Mobile Apps: a Holistic View
(CIKM 2013)</strong>
<ul>
<li>Hengshu Zhu, Hui Xiong, Yong Ge, Enhong Chen</li>
<li><a href="http://dm.ustc.edu.cn/zhu-cikm13.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Using Co-Visitation Networks for Detecting Large Scale
Online Display Advertising Exchange Fraud (KDD 2013)</strong>
<ul>
<li>Ori Stitelman, Claudia Perlich, Brian Dalessandro, Rod Hook, Troy
Raeder, Foster J. Provost</li>
<li><a
href="http://chbrown.github.io/kdd-2013-usb/kdd/p1240.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Adaptive Adversaries: Building Systems to Fight Fraud and
Cyber Intruders (KDD 2013)</strong>
<ul>
<li>Ari Gesher</li>
<li><a
href="https://dl.acm.org/citation.cfm?id=2491134">[Paper]</a></li>
</ul></li>
<li><strong>Anomaly, Event, and Fraud Detection in Large Network
Datasets (WSDM 2013)</strong>
<ul>
<li>Leman Akoglu, Christos Faloutsos</li>
<li><a
href="https://www.andrew.cmu.edu/user/lakoglu/wsdm13/13-wsdm-tutorial.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-11">2012</h2>
<ul>
<li><strong>Fraud Detection: Methods of Analysis for Hypergraph Data
(ASONAM 2012)</strong>
<ul>
<li>Anna Leontjeva, Konstantin Tretyakov, Jaak Vilo, and Taavi
Tamkivi</li>
<li><a
href="https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6425618">[Paper]</a></li>
</ul></li>
<li><strong>Online Modeling of Proactive Moderation System for Auction
Fraud Detection (WWW 2012)</strong>
<ul>
<li>Liang Zhang, Jie Yang, Belle L. Tseng</li>
<li><a
href="http://www.chennaisunday.com/Java%202012%20Base%20Paper/Online%20Modeling%20of%20Proactive%20Moderation%20System%20for%20Auction%20Fraud%20Detection.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-12">2011</h2>
<ul>
<li><strong>A Machine-Learned Proactive Moderation System for Auction
Fraud Detection (CIKM 2011)</strong>
<ul>
<li>Liang Zhang, Jie Yang, Wei Chu, Belle L. Tseng</li>
<li><a
href="http://www.gatsby.ucl.ac.uk/~chuwei/paper/p2501-zhang.pdf">[Paper]</a></li>
</ul></li>
<li><strong>A Taxi Driving Fraud Detection System (ICDM 2011)</strong>
<ul>
<li>Yong Ge, Hui Xiong, Chuanren Liu, Zhi-Hua Zhou</li>
<li><a
href="https://ieeexplore.ieee.org/document/6137222">[Paper]</a></li>
</ul></li>
<li><strong>Utility-Based Fraud Detection (IJCAI 2011)</strong>
<ul>
<li>Luís Torgo, Elsa Lopes</li>
<li><a
href="https://www.ijcai.org/Proceedings/11/Papers/255.pdf">[Paper]</a></li>
</ul></li>
<li><strong>A Pattern Discovery Approach to Retail Fraud Detection (KDD
2011)</strong>
<ul>
<li>Prasad Gabbur, Sharath Pankanti, Quanfu Fan, Hoang Trinh</li>
<li><a
href="http://www2.engr.arizona.edu/~pgsangam/gabbur_kdd_11.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-13">2010</h2>
<ul>
<li><strong>Hunting for the Black Swan: Risk Mining from Text (ACL
2010)</strong>
<ul>
<li>JL Leidner, F Schilder</li>
<li><a href="https://www.aclweb.org/anthology/P10-4010">[Paper]</a></li>
</ul></li>
<li><strong>Fraud Detection by Generating Positive Samples for
Classification from Unlabeled Data (ACL 2010)</strong>
<ul>
<li>Levente Kocsis, Andras George</li>
<li><a
href="http://www.szit.bme.hu/~gya/publications/KocsisGyorgy.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-14">2009</h2>
<ul>
<li><strong>SVM-based Credit Card Fraud Detection with Reject Cost and
Class-Dependent Error Cost (PAKDD 2009)</strong>
<ul>
<li>En-hui Zheng,Chao Zou,Jian Sun, Le Chen</li>
<li><a
href="https://www.semanticscholar.org/paper/SVM-Based-Cost-sensitive-Classification-Algorithm-Zheng-Zou/bcae06626ccd453925ef040a1edb5cbb10b862ef">[Paper]</a></li>
</ul></li>
<li><strong>An Approach for Automatic Fraud Detection in the Insurance
Domain (AAAI 2009)</strong>
<ul>
<li>Alexander Widder, Rainer v. Ammon, Gerit Hagemann, Dirk
Schönfeld</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.325.3231&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-15">2007</h2>
<ul>
<li><strong>Relational Data Pre-Processing Techniques for Improved
Securities Fraud Detection (KDD 2007)</strong>
<ul>
<li>Andrew S. Fast, Lisa Friedland, Marc E. Maier, Brian J. Taylor,
David D. Jensen, Henry G. Goldberg, John Komoroske</li>
<li><a
href="https://dl.acm.org/citation.cfm?id=1281192.1281293">[Paper]</a></li>
</ul></li>
<li><strong>Uncovering Fraud in Direct Marketing Data with a Fraud
Auditing Case Builder (PKDD 2007)</strong>
<ul>
<li>Fletcher Lu</li>
<li><a
href="https://link.springer.com/chapter/10.1007/978-3-540-74976-9_56">[Paper]</a></li>
</ul></li>
<li><strong>Netprobe: A Fast and Scalable System for Fraud Detection in
Online Auction Networks (WWW 2007)</strong>
<ul>
<li>Shashank Pandit, Duen Horng Chau, Samuel Wang, Christos
Faloutsos</li>
<li><a
href="http://www.cs.cmu.edu/~christos/PUBLICATIONS/netprobe-www07.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-16">2006</h2>
<ul>
<li><strong>Data Mining Approaches to Criminal Career Analysis (ICDM
2006)</strong>
<ul>
<li>Jeroen S. De Bruin, Tim K. Cocx, Walter A. Kosters, Jeroen F. J.
Laros, Joost N. Kok</li>
<li><a
href="https://ieeexplore.ieee.org/document/4053045">[Paper]</a></li>
</ul></li>
<li><strong>Large Scale Detection of Irregularities in Accounting Data
(ICDM 2006)</strong>
<ul>
<li>Stephen Bay, Krishna Kumaraswamy, Markus G. Anderle, Rohit Kumar,
David M. Steier</li>
<li><a
href="https://ieeexplore.ieee.org/document/4053036">[Paper]</a></li>
</ul></li>
<li><strong>Camouflaged Fraud Detection in Domains with Complex
Relationships (KDD 2006)</strong>
<ul>
<li>Sankar Virdhagriswaran, Gordon Dakin</li>
<li><a
href="https://dl.acm.org/citation.cfm?id=1150532">[Paper]</a></li>
</ul></li>
<li><strong>Detecting Fraudulent Personalities in Networks of Online
Auctioneers (PKDD 2006)</strong>
<ul>
<li>Duen Horng Chau, Shashank Pandit, Christos Faloutsos</li>
<li><a
href="http://www.cs.cmu.edu/~dchau/papers/auction_fraud_pkdd06.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-17">2005</h2>
<ul>
<li><strong>Technologies to Defeat Fraudulent Schemes Related to Email
Requests (AAAI 2005)</strong>
<ul>
<li>Edoardo Airoldi, Bradley Malin, and Latanya Sweeney</li>
<li><a
href="http://www.aaai.org/Library/Symposia/Spring/2005/ss05-01-023.php">[Paper]</a></li>
</ul></li>
<li><strong>AI Technologies to Defeat Identity Theft Vulnerabilities
(AAAI 2005)</strong>
<ul>
<li>Latanya Sweeney</li>
<li><a
href="https://dataprivacylab.org/dataprivacy/projects/idangel/paper1.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Detecting Fraud in Health Insurance Data: Learning to Model
Incomplete Benfords Law Distributions (ECML 2005)</strong>
<ul>
<li>Fletcher Lu, J. Efrim Boritz</li>
<li><a
href="https://faculty.uoit.ca/fletcherlu/LuECML05.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Using Relational Knowledge Discovery to Prevent Securities
Fraud (KDD 2005)</strong>
<ul>
<li>Jennifer Neville, Özgür Simsek, David D. Jensen, John Komoroske,
Kelly Palmer, Henry G. Goldberg</li>
<li><a
href="https://www.cs.purdue.edu/homes/neville/papers/neville-et-al-kdd2005.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-18">2003</h2>
<ul>
<li><strong>Applying Data Mining in Investigating Money Laundering
Crimes (KDD 2003)</strong>
<ul>
<li>Zhongfei (Mark) Zhang, John J. Salerno, Philip S. Yu</li>
<li><a
href="https://pdfs.semanticscholar.org/9124/b61d48b7e52008c7fd5fac1b7eac38474581.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-19">2000</h2>
<ul>
<li><strong>Document Classification and Visualisation to Support the
Investigation of Suspected Fraud (PKDD 2000)</strong>
<ul>
<li>Johan Hagman, Domenico Perrotta, Ralf Steinberger, and Aristi de
Varfis</li>
<li><a
href="https://pdfs.semanticscholar.org/9124/b61d48b7e52008c7fd5fac1b7eac38474581.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-20">1999</h2>
<ul>
<li><strong>Statistical Challenges to Inductive Inference in Linked
Data. (AISTATS 1999)</strong>
<ul>
<li>David Jensen</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.589.1445&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-21">1998</h2>
<ul>
<li><strong>Toward Scalable Learning with Non-Uniform Class and Cost
Distributions: A Case Study in Credit Card Fraud Detection (KDD
1998)</strong>
<ul>
<li>Phillip K Chan, Salvatore J Stolfo</li>
<li><a
href="https://pdfs.semanticscholar.org/6e19/3366945bf3bd72d5ba906e3982ac4d8ae874.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Call-Based Fraud Detection in Mobile Communication Networks
Using a Hierarchical Regime-Switching Model (NIPS 1998)</strong>
<ul>
<li>Jaakko Hollmén, Volker Tresp</li>
<li><a
href="https://papers.nips.cc/paper/1505-call-based-fraud-detection-in-mobile-communication-networks-using-a-hierarchical-regime-switching-model.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-22">1997</h2>
<ul>
<li><strong>Detection of Mobile Phone Fraud Using Supervised Neural
Networks: A First Prototype (ICANN 1997)</strong>
<ul>
<li>Yves Moreau, Herman Verrelst, Joos Vandewalle</li>
<li><a
href="https://link.springer.com/content/pdf/10.1007%2FBFb0020294.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Prospective Assessment of AI Technologies for Fraud
Detection: A Case Study (AAAI 1997)</strong>
<ul>
<li>David Jensen</li>
<li><a
href="https://pdfs.semanticscholar.org/0efe/8a145cc4d52e8769bb1d13142326a154624f.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Credit Card Fraud Detection Using Meta-Learning: Issues and
Initial Results (AAAI 1997)</strong>
<ul>
<li>Salvatore J. Stolfo, David W. Fan, Wenke Lee and Andreas L.
Prodromidis</li>
<li><a
href="https://pdfs.semanticscholar.org/29b3/e330e0045e5da71cc1d333bed24b7a4670f8.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-23">1995</h2>
<ul>
<li><strong>Fraud: Uncollectible Debt Detection Using a Bayesian Network
Based Learning System: A Rare Binary Outcome with Mixed Data Structures
(UAI 1995)</strong>
<ul>
<li>Kazuo J. Ezawa, Til Schuermann</li>
<li><a href="https://arxiv.org/abs/1302.4945">[Paper]</a></li>
</ul></li>
</ul>
<hr />
<p><strong>License</strong></p>
<ul>
<li><a
href="https://github.com/benedekrozemberczki/awesome-fraud-detection-papers/blob/master/LICENSE">CC0
Universal</a></li>
</ul>
<p><a
href="https://github.com/benedekrozemberczki/awesome-fraud-detection-papers">frauddetectionpapers.md
Github</a></p>