Files
awesome-awesomeness/html/AIbooks.html
2024-04-20 19:22:54 +02:00

581 lines
28 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<h1 id="awesome-ai-books">Awesome AI books</h1>
<p>Some awesome AI related books and pdfs for downloading and
learning.</p>
<h2 id="preface">Preface</h2>
<p><strong>This repo only used for learning, do not use in
business.</strong></p>
<p>Welcome for providing great books in this repo or tell me which great
book you need and I will try to append it in this repo, any idea you can
create issue or PR here.</p>
<p>Due to github Large file storage limition, all books pdf stored in
<strong>Yandex.Disk</strong>.</p>
<p>Some often used <strong>Mathematic Symbols</strong> can refer this <a
href="https://github.com/zslucky/awesome-AI-books/blob/master/math-symbols.md">page</a></p>
<h2 id="content">Content</h2>
<ul>
<li><a
href="https://github.com/zslucky/awesome-AI-books#organization-with-papersresearchs">Organization
with papers/researchs</a></li>
<li><a
href="https://github.com/zslucky/awesome-AI-books#training-ground">Training
ground</a></li>
<li><a
href="https://github.com/zslucky/awesome-AI-books#books">Books</a>
<ul>
<li><a
href="https://github.com/zslucky/awesome-AI-books#introductory-theory-and-get-start">Introductory
theory and get start</a></li>
<li><a
href="https://github.com/zslucky/awesome-AI-books#mathematics">Mathematics</a></li>
<li><a
href="https://github.com/zslucky/awesome-AI-books#data-mining">Data
mining</a></li>
<li><a
href="https://github.com/zslucky/awesome-AI-books#deep-learning">Deep
Learning</a></li>
<li><a
href="https://github.com/zslucky/awesome-AI-books#philosophy">Philosophy</a></li>
</ul></li>
<li><a
href="https://github.com/zslucky/awesome-AI-books#quantum-with-ai">Quantum
with AI</a>
<ul>
<li><a
href="https://github.com/zslucky/awesome-AI-books#quantum-basic">Quantum
Basic</a></li>
<li><a
href="https://github.com/zslucky/awesome-AI-books#quantum-ai">Quantum
AI</a></li>
<li><a
href="https://github.com/zslucky/awesome-AI-books#quantum-related-framework">Quantum
Related Framework</a></li>
</ul></li>
<li><a
href="https://github.com/zslucky/awesome-AI-books#libs-with-online-books">Libs
With Online Books</a>
<ul>
<li><a
href="https://github.com/zslucky/awesome-AI-books#reinforcement-learning">Reinforcement
Learning</a></li>
<li><a
href="https://github.com/zslucky/awesome-AI-books#feature-selection">Feature
Selection</a></li>
<li><a
href="https://github.com/zslucky/awesome-AI-books#machine-learning-1">Machine
Learning</a></li>
<li><a
href="https://github.com/zslucky/awesome-AI-books#deep-learning-1">Deep
Learning</a></li>
<li><a
href="https://github.com/zslucky/awesome-AI-books#nlp">NLP</a></li>
<li><a href="https://github.com/zslucky/awesome-AI-books#cv">CV</a></li>
<li><a
href="https://github.com/zslucky/awesome-AI-books#meta-learning">Meta
Learning</a></li>
<li><a
href="https://github.com/zslucky/awesome-AI-books#transfer-learning">Transfer
Learning</a></li>
<li><a href="https://github.com/zslucky/awesome-AI-books#auto-ml">Auto
ML</a></li>
<li><a
href="https://github.com/zslucky/awesome-AI-books#dimensionality-reduction">Dimensionality
Reduction</a></li>
</ul></li>
<li><a
href="https://github.com/zslucky/awesome-AI-books#distributed-training">Distributed
training</a></li>
</ul>
<h2 id="organization-with-papersresearchs">Organization with
papers/researchs</h2>
<ul>
<li><a href="https://arxiv.org/">arxiv.org</a></li>
<li><a href="http://www.sciencemag.org/">Science</a></li>
<li><a href="https://www.nature.com/nature/">Nature</a></li>
<li><a href="https://deepmind.com/research/publications/">DeepMind
Publications</a></li>
<li><a href="https://openai.com/research/">OpenAI Research</a></li>
</ul>
<h2 id="training-ground">Training ground</h2>
<ul>
<li><a href="https://gym.openai.com/">OpenAI Gym</a>: A toolkit for
developing and comparing reinforcement learning algorithms. (Can play
with <a href="https://en.wikipedia.org/wiki/Atari">Atari</a>, Box2d,
MuJoCo etc…)</li>
<li><a href="https://github.com/Microsoft/malmo">malmo</a>: Project
Malmö is a platform for Artificial Intelligence experimentation and
research built on top of Minecraft.</li>
<li><a href="https://github.com/deepmind/pysc2">DeepMind Pysc2</a>:
StarCraft II Learning Environment.</li>
<li><a href="https://github.com/openai/procgen">Procgen</a>: Procgen
Benchmark: Procedurally-Generated Game-Like Gym-Environments.</li>
<li><a
href="https://torchcraft.github.io/TorchCraftAI/">TorchCraftAI</a>: A
bot platform for machine learning research on StarCraft®: Brood
War®</li>
<li><a
href="https://developer.valvesoftware.com/wiki/Dota_Bot_Scripting">Valve
Dota2</a>: Dota2 game acessing api. (<a
href="https://developer.valvesoftware.com/wiki/Dota_Bot_Scripting:zh-cn">CN
doc</a>)</li>
<li><a href="https://github.com/amidos2006/Mario-AI-Framework">Mario AI
Framework</a>: A Mario AI framework for using AI methods.</li>
<li><a href="https://github.com/google/dopamine">Google Dopamine</a>:
Dopamine is a research framework for fast prototyping of reinforcement
learning algorithms</li>
<li><a href="https://github.com/Microsoft/TextWorld">TextWorld</a>:
Microsoft - A learning environment sandbox for training and testing
reinforcement learning (RL) agents on text-based games.</li>
<li><a href="https://github.com/maximecb/gym-minigrid">Mini Grid</a>:
Minimalistic gridworld environment for OpenAI Gym</li>
<li><a href="https://github.com/geek-ai/MAgent">MAgent</a>: A Platform
for Many-agent Reinforcement Learning</li>
<li><a href="https://github.com/PaddlePaddle/XWorld">XWorld</a>: A
C++/Python simulator package for reinforcement learning</li>
<li><a href="https://github.com/openai/neural-mmo">Neural MMO</a>: A
Massively Multiagent Game Environment</li>
<li><a href="https://github.com/kenjyoung/MinAtar">MinAtar</a>: MinAtar
is a testbed for AI agents which implements miniaturized version of
several Atari 2600 games.</li>
<li><a href="https://github.com/Feryal/craft-env">craft-env</a>:
CraftEnv is a 2D crafting environment</li>
<li><a href="https://github.com/mpSchrader/gym-sokoban">gym-sokoban</a>:
Sokoban is Japanese for warehouse keeper and a traditional video
game</li>
<li><a
href="https://github.com/MultiAgentLearning/playground">Pommerman</a>
Playground hosts Pommerman, a clone of Bomberman built for AI
research.</li>
<li><a
href="https://github.com/maximecb/gym-miniworld#introduction">gym-miniworld</a>
MiniWorld is a minimalistic 3D interior environment simulator for
reinforcement learning &amp; robotics research</li>
<li><a href="https://github.com/shakenes/vizdoomgym">vizdoomgym</a>
OpenAI Gym wrapper for <a
href="https://github.com/mwydmuch/ViZDoom">ViZDoom</a> (A Doom-based AI
Research Platform for Reinforcement Learning from Raw Visual
Information) enviroments.</li>
<li><a href="https://github.com/freefuiiismyname/ddz-ai">ddz-ai</a>
以孤立语假设和宽度优先搜索为基础构建了一种多通道堆叠注意力Transformer结构的斗地主ai</li>
</ul>
<h2 id="books">Books</h2>
<h3 id="introductory-theory-and-get-start">Introductory theory and get
start</h3>
<ul>
<li><a href="https://yadi.sk/i/G6NlUUV8SAVimg">Artificial Intelligence-A
Modern Approach (3rd Edition)</a> - Stuart Russell &amp; peter
Norvig</li>
<li><strong>COMMERCIAL</strong> <a
href="https://www.manning.com/books/grokking-artificial-intelligence-algorithms">Grokking
Artificial Intelligence Algorithms</a> - Rishal Hurbans</li>
</ul>
<h3 id="mathematics">Mathematics</h3>
<ul>
<li><a href="https://yadi.sk/i/aDvGdqWlcXxbhQ">A First Course in
ProbabilityA First Course in Probability (8th)</a> - Sheldon M Ross</li>
<li><a href="https://yadi.sk/i/9KGVXuFJs3kakg">Convex Optimization</a> -
Stephen Boyd</li>
<li><a href="https://yadi.sk/i/2YWnNsAeBc9qcA">Elements of Information
Theory Elements</a> - Thomas Cover &amp; Jay A Thomas</li>
<li><a href="https://yadi.sk/i/-r3jD4gB-8jn1A">Discrete Mathematics and
Its Applications 7th</a> - Kenneth H. Rosen</li>
<li><a
href="http://www.mediafire.com/file/f31dl0ghup7e6gk/Introduction_to_Linear_Algebra_5th_-_Gilbert_Strang.pdf/file">Introduction
to Linear Algebra (5th)</a> - Gilbert Strang</li>
<li><a href="https://yadi.sk/i/uWEQVrCquqw1Ug">Linear Algebra and Its
Applications (5th)</a> - David C Lay</li>
<li><a href="https://yadi.sk/i/TKQYNPSKGNbdUw">Probability Theory The
Logic of Science</a> - Edwin Thompson Jaynes</li>
<li><a href="https://yadi.sk/i/38jrMmEXnJQZqg">Probability and
Statistics 4th</a> - Morris H. DeGroot</li>
<li><a href="https://yadi.sk/i/HWrbKYrYdpNMYw">Statistical Inference
(2nd)</a> - Roger Casella</li>
<li><a href="https://yadi.sk/i/HqGOyAkRCxCwIQ">信息论基础 (原书Elements
of Information Theory Elements第2版)</a> - Thomas Cover &amp; Jay A
Thomas</li>
<li><a href="https://yadi.sk/i/zUPPAi58v1gfkw">凸优化 (原书Convex
Optimization)</a> - Stephen Boyd</li>
<li><a href="https://yadi.sk/i/ikuXCrNgRCEVnw">数理统计学教程</a> -
陈希儒</li>
<li><a href="https://yadi.sk/i/QJPxzK4ZBuF8iQ">数学之美 2th</a> -
吴军</li>
<li><a href="https://yadi.sk/i/wQZQ80UFLFZ48w">概率论基础教程 (原书A
First Course in ProbabilityA First Course in Probability第9版)</a> -
Sheldon M Ross</li>
<li><a href="https://yadi.sk/i/cNNBS4eaLleR3g">线性代数及其应用
(原书Linear Algebra and Its Applications第3版)</a> - David C Lay</li>
<li><a href="https://yadi.sk/i/ksHAFRUSaoyk9g">统计推断 (原书Statistical
Inference第二版)</a> - Roger Casella</li>
<li><a href="https://yadi.sk/i/kJHMmMA4ot66bw">离散数学及其应用
(原书Discrete Mathematics and Its Applications第7版)</a> - Kenneth
H.Rosen</li>
</ul>
<h3 id="data-mining">Data mining</h3>
<ul>
<li><a href="https://yadi.sk/i/H7wc_FaMDl9QXQ">Introduction to Data
Mining</a> - Pang-Ning Tan</li>
<li><a href="https://yadi.sk/i/YTjrJWu7kXVrGQ">Programming Collective
Intelligence</a> - Toby Segaran</li>
<li><a href="https://yadi.sk/i/WiO7lageMIuIfg">Feature Engineering for
Machine Learning</a> - Amanda Casari, Alice Zheng</li>
<li><a href="https://yadi.sk/i/0DW5reTrXQ6peQ">集体智慧编程</a> - Toby
Segaran</li>
</ul>
<h3 id="machine-learning">Machine Learning</h3>
<ul>
<li><a href="https://yadi.sk/i/JXYto8yE6PJO8Q">Information Theory,
Inference and Learning Algorithms</a> - David J C MacKay</li>
<li><a href="https://yadi.sk/i/03Jg9WMzgD2YlA">Machine Learning</a> -
Tom M. Mitchell</li>
<li><a href="https://yadi.sk/i/8ffTCaMH0bM8uQ">Pattern Recognition and
Machine Learning</a> - Christopher Bishop</li>
<li><a href="https://yadi.sk/i/hfatiRyBCwfcWw">The Elements of
Statistical Learning</a> - Trevor Hastie</li>
<li><a href="https://yadi.sk/i/_UdlHqwuR-Wdxg">Machine Learning for
OpenCV</a> - Michael Beyeler (<a
href="https://github.com/zslucky/awesome-AI-books/tree/master/resources/Machine%20Learning%20for%20OpenCV">Source
code here</a>)</li>
<li><a href="https://yadi.sk/i/vfoPTRRfgtEQKA">机器学习</a> -
周志华</li>
<li><a href="https://yadi.sk/i/jTNv4kzG-lmlYQ">机器学习 (原书Machine
Learning)</a> - Tom M. Mitchell</li>
<li><a href="https://yadi.sk/i/R08dbDMOJb3KKw">统计学习方法</a> -
李航</li>
</ul>
<h3 id="deep-learning">Deep Learning</h3>
<ul>
<li>Online Quick learning
<ul>
<li><a href="https://d2l.ai/">Dive into Deep Learning</a> - (Using
MXNet)An interactive deep learning book with code, math, and
discussions.</li>
<li><a href="https://github.com/dsgiitr/d2l-pytorch">d2l-pytorch</a> -
(Dive into Deep Learning) pytorch version.</li>
<li><a href="https://zh.d2l.ai/">动手学深度学习</a> - (Dive into Deep
Learning) for chinese.</li>
</ul></li>
<li><a href="https://yadi.sk/i/2fOK_Xib-JlocQ">Deep Learning</a> - Ian
Goodfellow &amp; Yoshua Bengio &amp; Aaron Courville</li>
<li><a href="https://yadi.sk/i/uQAWfeKVmenmkg">Deep Learning Methods and
Applications</a> - Li Deng &amp; Dong Yu</li>
<li><a href="https://yadi.sk/i/AWpRq2hSB9RmoQ">Learning Deep
Architectures for AI</a> - Yoshua Bengio</li>
<li><a href="https://yadi.sk/i/1gOQ-Y5r4uP6Kw">Machine Learning An
Algorithmic Perspective (2nd)</a> - Stephen Marsland</li>
<li><a href="https://yadi.sk/i/5LLMPfNcuaPTvQ">Neural Network Design
(2nd)</a> - Martin Hagan</li>
<li><a href="https://yadi.sk/i/6s9AauRP1OGT2Q">Neural Networks and
Learning Machines (3rd)</a> - Simon Haykin</li>
<li><a href="https://yadi.sk/i/JK7aj5TsmoC1dA">Neural Networks for
Applied Sciences and Engineering</a> - Sandhya Samarasinghe</li>
<li><a href="https://yadi.sk/i/DzzZU_QPosSTBQ">深度学习 (原书Deep
Learning)</a> - Ian Goodfellow &amp; Yoshua Bengio &amp; Aaron
Courville</li>
<li><a href="https://yadi.sk/i/ogQff9JpLEdHMg">神经网络与机器学习
(原书Neural Networks and Learning Machines)</a> - Simon Haykin</li>
<li><a href="https://yadi.sk/i/uR2OAHHgnZHUuw">神经网络设计 (原书Neural
Network Design)</a> - Martin Hagan</li>
<li><strong>COMMERCIAL</strong> <a
href="https://www.manning.com/books/interpretable-ai">Interpretable
AI</a> - Ajay Thampi</li>
<li><strong>COMMERCIAL</strong> <a
href="https://www.manning.com/books/conversational-ai">Conversational
AI</a> - Andrew R. Freed</li>
</ul>
<h3 id="philosophy">Philosophy</h3>
<ul>
<li><strong>COMMERCIAL</strong> <a
href="https://www.amazon.com/Human-Compatible-Artificial-Intelligence-Problem-ebook/dp/B07N5J5FTS">Human
Compatible: Artificial Intelligence and the Problem of Control</a> -
Stuart Russell</li>
<li><strong>COMMERCIAL</strong> <a
href="https://www.amazon.com/Life-3-0-Being-Artificial-Intelligence/dp/1101946598">Life
3.0: Being Human in the Age of Artificial Intelligence</a> - Max
Tegmark</li>
<li><strong>COMMERCIAL</strong> <a
href="https://www.amazon.com/Superintelligence-Dangers-Strategies-Nick-Bostrom/dp/0198739834/ref=pd_sbs_14_t_0/146-0357100-6717505?_encoding=UTF8&amp;pd_rd_i=0198739834&amp;pd_rd_r=676ace91-552c-4865-a8d3-6273db5418bf&amp;pd_rd_w=zYEu2&amp;pd_rd_wg=hQdGQ&amp;pf_rd_p=5cfcfe89-300f-47d2-b1ad-a4e27203a02a&amp;pf_rd_r=DTH77KT4FSVRMJ47GBVQ&amp;psc=1&amp;refRID=DTH77KT4FSVRMJ47GBVQ">Superintelligence:
Paths, Dangers, Strategies</a> - Nick Bostrom</li>
</ul>
<h2 id="quantum-with-ai">Quantum with AI</h2>
<ul>
<li><h4 id="quantum-basic">Quantum Basic</h4>
<ul>
<li><a
href="https://www.dwavesys.com/tutorials/background-reading-series/quantum-computing-primer#h1-0">Quantum
Computing Primer</a> - D-Wave quantum computing primer</li>
<li><a
href="https://uwaterloo.ca/institute-for-quantum-computing/quantum-computing-101">Quantum
computing 101</a> - Quantum computing 101, from University of
Waterloo</li>
<li><a href="https://yadi.sk/i/0VCfWmb3HrrPuw">pdf</a> Quantum
Computation and Quantum Information - Nielsen</li>
<li><a href="https://yadi.sk/i/mHoyVef8RaG0aA">pdf</a>
量子计算和量子信息(量子计算部分)- Nielsen</li>
</ul></li>
<li><h4 id="quantum-ai">Quantum AI</h4>
<ul>
<li><a href="http://axon.cs.byu.edu/papers/ezhov.fdisis00.pdf">Quantum
neural networks</a></li>
<li><a href="https://arxiv.org/pdf/1811.02266.pdf">An Artificial Neuron
Implemented on an Actual Quantum Processor</a></li>
<li><a href="https://arxiv.org/pdf/1802.06002.pdf">Classification with
Quantum Neural Networks on Near Term Processors</a></li>
<li><a href="https://arxiv.org/pdf/1801.03918.pdf">Black Holes as
Brains: Neural Networks with Area Law Entropy</a></li>
</ul></li>
<li><h4 id="quantum-related-framework">Quantum Related Framework</h4>
<ul>
<li><a
href="https://github.com/ProjectQ-Framework/ProjectQ">ProjectQ</a> -
ProjectQ is an open source effort for quantum computing.</li>
</ul></li>
</ul>
<h2 id="libs-with-online-books">Libs With Online Books</h2>
<ul>
<li><h4 id="gc-generative-content">GC (Generative Content)</h4>
<ul>
<li><a href="https://github.com/CompVis/stable-diffusion">Stable
Diffusion</a> - [<a href="https://arxiv.org/abs/2112.10752">Paper</a>] A
latent text-to-image diffusion model</li>
<li><a href="https://github.com/Stability-AI/stablediffusion">Stable
Diffusion V2</a> - High-Resolution Image Synthesis with Latent Diffusion
Models</li>
<li><a href="https://github.com/TencentARC/GFPGAN">GFPGAN</a> - [<a
href="https://arxiv.org/abs/2101.04061">Paper</a>] GFPGAN aims at
developing Practical Algorithms for Real-world Face Restoration.</li>
<li><a href="https://github.com/xinntao/ESRGAN">ESRGAN</a> - [<a
href="https://arxiv.org/abs/2107.10833">Paper</a>] ECCV18 Workshops -
Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution.
The training codes are in BasicSR.</li>
<li><a href="https://github.com/sczhou/CodeFormer">CodeFormer</a> - [<a
href="https://arxiv.org/abs/2206.11253">Paper</a>] - [NeurIPS 2022]
Towards Robust Blind Face Restoration with Codebook Lookup
Transformer</li>
<li><a href="https://github.com/wl-zhao/UniPC">UniPC</a> - [<a
href="https://arxiv.org/abs/2302.04867">Paper</a>] UniPC: A Unified
Predictor-Corrector Framework for Fast Sampling of Diffusion Models</li>
</ul></li>
<li><h4 id="reinforcement-learning">Reinforcement Learning</h4>
<ul>
<li><a href="https://arxiv.org/pdf/1602.01783.pdf">A3C</a> - Google
DeepMind Asynchronous Advantage Actor-Critic algorithm</li>
<li><a
href="http://www.gatsby.ucl.ac.uk/~dayan/papers/cjch.pdf">Q-Learning</a>
SARSA <a
href="https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf">DQN</a>
<a href="https://arxiv.org/pdf/1509.06461.pdf">DDQN</a> - Q-Learning is
a value-based Reinforcement Learning algorithm</li>
<li><a href="https://arxiv.org/pdf/1509.02971.pdf">DDPG</a> - Deep
Deterministic Policy Gradient,</li>
<li><a href="https://arxiv.org/pdf/1808.04355.pdf">Large-Scale
Curiosity</a> - Large-Scale Study of Curiosity-Driven Learning</li>
<li><a href="https://arxiv.org/pdf/1707.06347.pdf">PPO</a> - OpenAI
Proximal Policy Optimization Algorithms</li>
<li><a href="https://arxiv.org/pdf/1810.12894.pdf">RND</a> - OpenAI
Random Network Distillation, an exploration bonus for deep reinforcement
learning method.</li>
<li><a href="https://arxiv.org/pdf/1605.09674.pdf">VIME</a> - OpenAI
Variational Information Maximizing Exploration</li>
<li><a href="https://arxiv.org/pdf/1810.00368.pdf">DQV</a> - Deep
Quality-Value (DQV) Learning</li>
<li><a href="https://arxiv.org/pdf/1805.07917.pdf">ERL</a> -
Evolution-Guided Policy Gradient in Reinforcement Learning</li>
<li><a href="https://arxiv.org/pdf/1802.05438.pdf">MF Multi-Agent RL</a>
- Mean Field Multi-Agent Reinforcement Learning. (this paper include
MF-Q and MF-AC)</li>
<li><a href="https://arxiv.org/pdf/1810.02912.pdf">MAAC</a> -
Actor-Attention-Critic for Multi-Agent Reinforcement Learning</li>
</ul></li>
<li><h4 id="feature-selection">Feature Selection</h4>
<ul>
<li><a
href="http://featureselection.asu.edu/algorithms.php">scikit-feature</a>
- A collection of feature selection algorithms, available on <a
href="https://github.com/jundongl/scikit-feature">Github</a></li>
</ul></li>
<li><h4 id="machine-learning-1">Machine Learning</h4>
<ul>
<li><a href="https://scikit-learn.org/stable/">Scikit learn</a>
(<strong>Python</strong>) - Machine Learning in Python.</li>
<li><a href="https://github.com/rust-ml/linfa">Linfa</a>
(<strong>Rust</strong>) - spirit of <code>scikit learn</code>, a rust ML
lib.</li>
<li><a
href="https://xgboost.readthedocs.io/en/latest/tutorials/model.html">Xgboost</a>
(<strong>Python, R, JVM, Julia, CLI</strong>) - Xgboost libs
document.</li>
<li><a
href="https://lightgbm.readthedocs.io/en/latest/Features.html#">LightGBM</a>
(<strong>Python, R, CLI</strong>) - Microsoft lightGBM libs features
document.</li>
<li><a href="https://arxiv.org/pdf/1706.09516.pdf">CatBoost</a>
(<strong>Python, R, CLI</strong>) - Yandex Catboost libs key algorithm
pdf papper.</li>
<li><a href="https://github.com/kaz-Anova/StackNet">StackNet</a>
(<strong>Java, CLI</strong>) - Some model stacking algorithms
implemented in this lib.</li>
<li><a href="https://arxiv.org/pdf/1109.0887.pdf">RGF</a> - Learning
Nonlinear Functions Using <code>Regularized Greedy Forest</code>
(multi-core implementation <a
href="https://github.com/RGF-team/rgf/tree/master/FastRGF">FastRGF</a>)</li>
<li><a
href="https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf">FM</a>,
<a href="https://arxiv.org/pdf/1505.00641.pdf">FastFM</a>, <a
href="https://arxiv.org/pdf/1701.04099.pdf">FFM</a>, <a
href="https://arxiv.org/pdf/1803.05170.pdf">XDeepFM</a> - Factorization
Machines and some extended Algorithms</li>
</ul></li>
<li><h4 id="deep-learning-1">Deep Learning</h4>
<ul>
<li><a href="https://github.com/thunlp/GNNPapers">GNN Papers</a> -
Must-read papers on graph neural networks (GNN)</li>
<li><a href="https://arxiv.org/pdf/1905.11946.pdf">EfficientNet</a> -
Rethinking Model Scaling for Convolutional Neural Networks</li>
<li><a href="https://arxiv.org/pdf/1608.06993.pdf">DenseNet</a> -
Densely Connected Convolutional Networks</li>
</ul></li>
<li><h4 id="nlp">NLP</h4>
<ul>
<li><a href="https://arxiv.org/pdf/1906.08237.pdf">XLNet</a> - <a
href="https://github.com/zihangdai/xlnet">repo</a> XLNet: Generalized
Autoregressive Pretraining for Language Understanding</li>
<li><a href="https://arxiv.org/pdf/1810.04805.pdf">BERT</a> -
Pre-training of Deep Bidirectional Transformers for Language
Understanding</li>
<li><a href="https://arxiv.org/pdf/2005.14165.pdf">GPT-3</a> - Language
Models are Few-Shot Learners</li>
</ul></li>
<li><h4 id="cv">CV</h4>
<ul>
<li><a href="https://arxiv.org/pdf/1504.08083.pdf">Fast R-CNN</a> - Fast
Region-based Convolutional Network method (Fast R-CNN) for object
detection</li>
<li><a href="https://arxiv.org/pdf/1703.06870.pdf">Mask R-CNN</a> - Mask
R-CNN, extends Faster R-CNN by adding a branch for predicting an object
mask in parallel with the existing branch for bounding box
recognition.</li>
<li><a
href="http://science.sciencemag.org/content/360/6394/1204/tab-pdf">GQN</a>
- DeepMind Generative Query Network, Neural scene representation and
rendering</li>
</ul></li>
<li><h4 id="meta-learning">Meta Learning</h4>
<ul>
<li><a href="https://arxiv.org/pdf/1703.03400.pdf">MAML</a> -
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks</li>
</ul></li>
<li><h4 id="transfer-learning">Transfer Learning</h4>
<ul>
<li><a href="https://arxiv.org/pdf/1803.08035.pdf">GCN</a> - Zero-shot
Recognition via Semantic Embeddings and Knowledge Graphs</li>
</ul></li>
<li><h4 id="auto-ml">Auto ML</h4>
<ul>
<li><a href="https://github.com/google/model_search">Model Search</a>
(<strong>Python</strong>) - Google Model search (MS) is a framework that
implements AutoML algorithms for model architecture search at
scale.</li>
<li><a href="https://github.com/EpistasisLab/tpot">TPOT</a>
(<strong>Python</strong>) - TPOT is a lib for AutoML.</li>
<li><a
href="https://automl.github.io/auto-sklearn/master/">Auto-sklearn</a>
(<strong>Python</strong>) - auto-sklearn is an automated machine
learning toolkit and a drop-in replacement for a scikit-learn
estimator</li>
<li><a href="https://autokeras.com/">Auto-Keras</a>
(<strong>Python</strong>) - Auto-Keras is an open source software
library for automated machine learning (AutoML). It is developed by DATA
Lab</li>
<li><a
href="https://docs.transmogrif.ai/en/stable/index.html">TransmogrifAI</a>
(<strong>JVM</strong>) - TransmogrifAI (pronounced trăns-mŏgˈrə-fī) is
an AutoML library written in Scala that runs on top of Spark</li>
<li><a
href="http://www.cs.ubc.ca/labs/beta/Projects/autoweka/">Auto-WEKAA</a>
- Provides automatic selection of models and hyperparameters for <a
href="https://www.cs.waikato.ac.nz/ml/weka/">WEKA</a>.</li>
<li><a href="https://github.com/AxeldeRomblay/MLBox">MLBox</a>
(<strong>Python</strong>) - MLBox is a powerful Automated Machine
Learning python library</li>
</ul></li>
<li><h4 id="pipeline-training">Pipeline Training</h4>
<ul>
<li><a href="https://github.com/maiot-io/zenml">ZenML</a>
(<strong>Python</strong>) - ZenML is built for ML practitioners who are
ramping up their ML workflows towards production</li>
</ul></li>
<li><h4 id="dimensionality-reduction">Dimensionality Reduction</h4>
<ul>
<li><a href="http://www.cs.toronto.edu/~hinton/absps/tsne.pdf">t-SNE</a>
(<strong>Non-linear/Non-params</strong>) - T-distributed Stochastic
Neighbor Embedding (t-SNE) is a machine learning algorithm for
visualization</li>
<li><a href="https://www.cs.cmu.edu/~elaw/papers/pca.pdf">PCA</a>
(<strong>Linear</strong>) - Principal component analysis</li>
<li><a
href="https://www.isip.piconepress.com/publications/reports/1998/isip/lda/lda_theory.pdf">LDA</a>
(<strong>Linear</strong>) - Linear Discriminant Analysis</li>
<li><a href="https://cs.nyu.edu/~roweis/lle/papers/lleintro.pdf">LLE</a>
(<strong>Non-linear</strong>) - Locally linear embedding</li>
<li><a
href="http://web.cse.ohio-state.edu/~belkin.8/papers/LEM_NC_03.pdf">Laplacian
Eigenmaps</a> - Laplacian Eigenmaps for Dimensionality Reduction and
Data Representation</li>
<li><a
href="http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0910/henderson.pdf">Sammon
Mapping</a> (<strong>Non-linear</strong>) - Sammon mapping is designed
to minimise the differences between corresponding inter-point distances
in the two spaces</li>
</ul></li>
<li><h4 id="data-processing">Data Processing</h4>
<ul>
<li><a href="https://github.com/pandas-dev/pandas">Pandas</a>
(<strong>Python</strong>) - Flexible and powerful data analysis /
manipulation library for Python.</li>
<li><a href="https://github.com/pola-rs/polars">Polars</a>
(<strong>Rust, Python</strong>) - Lightning-fast DataFrame library for
Rust and Python.</li>
</ul></li>
</ul>
<h2 id="distributed-training">Distributed training</h2>
<ul>
<li><a href="https://github.com/horovod/horovod#usage">Horovod</a> -
Horovod is a distributed training framework for TensorFlow, Keras,
PyTorch, and MXNet. The goal of Horovod is to make distributed Deep
Learning fast and easy to use.</li>
<li><a href="https://github.com/deepmind/acme">Acme</a> - A Research
Framework for (Distributed) Reinforcement Learning.</li>
<li><a href="https://github.com/BaguaSys/bagua">bagua</a> - Bagua is a
flexible and performant distributed training algorithm development
framework.</li>
</ul>
<h2 id="support-this-project">Support this project</h2>
<p><img
src="https://user-images.githubusercontent.com/15725589/152709449-f6b7174b-2990-43f6-ac69-c8549fe7310c.png"
alt="btc-clean-qrcode" /> <img
src="https://user-images.githubusercontent.com/15725589/152709451-6c2691f9-dec7-4b60-9d20-9fdded828c8c.png"
alt="eth-clean-qrcode" /></p>
<h2 id="contributors">Contributors</h2>
<h3 id="code-contributors">Code Contributors</h3>
<p>This project exists thanks to all the people who contribute. [<a
href="CONTRIBUTING.md">Contribute</a>].
<a href="https://github.com/zslucky/awesome-AI-books/graphs/contributors"><img src="https://opencollective.com/awesome-AI-books/contributors.svg?width=890&button=false" /></a></p>
<h3 id="financial-contributors">Financial Contributors</h3>
<p>Become a financial contributor and help us sustain our community. [<a
href="https://opencollective.com/awesome-AI-books/contribute">Contribute</a>]</p>
<h4 id="individuals">Individuals</h4>
<p><a href="https://opencollective.com/awesome-AI-books"><img src="https://opencollective.com/awesome-AI-books/individuals.svg?width=890"></a></p>
<h4 id="organizations">Organizations</h4>
<p>Support this project with your organization. Your logo will show up
here with a link to your website. [<a
href="https://opencollective.com/awesome-AI-books/contribute">Contribute</a>]</p>
<p><a href="https://opencollective.com/awesome-AI-books/organization/0/website"><img src="https://opencollective.com/awesome-AI-books/organization/0/avatar.svg"></a>
<a href="https://opencollective.com/awesome-AI-books/organization/1/website"><img src="https://opencollective.com/awesome-AI-books/organization/1/avatar.svg"></a>
<a href="https://opencollective.com/awesome-AI-books/organization/2/website"><img src="https://opencollective.com/awesome-AI-books/organization/2/avatar.svg"></a>
<a href="https://opencollective.com/awesome-AI-books/organization/3/website"><img src="https://opencollective.com/awesome-AI-books/organization/3/avatar.svg"></a>
<a href="https://opencollective.com/awesome-AI-books/organization/4/website"><img src="https://opencollective.com/awesome-AI-books/organization/4/avatar.svg"></a>
<a href="https://opencollective.com/awesome-AI-books/organization/5/website"><img src="https://opencollective.com/awesome-AI-books/organization/5/avatar.svg"></a>
<a href="https://opencollective.com/awesome-AI-books/organization/6/website"><img src="https://opencollective.com/awesome-AI-books/organization/6/avatar.svg"></a>
<a href="https://opencollective.com/awesome-AI-books/organization/7/website"><img src="https://opencollective.com/awesome-AI-books/organization/7/avatar.svg"></a>
<a href="https://opencollective.com/awesome-AI-books/organization/8/website"><img src="https://opencollective.com/awesome-AI-books/organization/8/avatar.svg"></a>
<a href="https://opencollective.com/awesome-AI-books/organization/9/website"><img src="https://opencollective.com/awesome-AI-books/organization/9/avatar.svg"></a></p>