1611 lines
81 KiB
HTML
1611 lines
81 KiB
HTML
<h1 id="awesome-deep-learning-awesome">Awesome Deep Learning <a
|
||
href="https://github.com/sindresorhus/awesome"><img
|
||
src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg"
|
||
alt="Awesome" /></a></h1>
|
||
<h2 id="table-of-contents">Table of Contents</h2>
|
||
<ul>
|
||
<li><p><strong><a href="#books">Books</a></strong></p></li>
|
||
<li><p><strong><a href="#courses">Courses</a></strong></p></li>
|
||
<li><p><strong><a href="#videos-and-lectures">Videos and
|
||
Lectures</a></strong></p></li>
|
||
<li><p><strong><a href="#papers">Papers</a></strong></p></li>
|
||
<li><p><strong><a href="#tutorials">Tutorials</a></strong></p></li>
|
||
<li><p><strong><a href="#researchers">Researchers</a></strong></p></li>
|
||
<li><p><strong><a href="#websites">Websites</a></strong></p></li>
|
||
<li><p><strong><a href="#datasets">Datasets</a></strong></p></li>
|
||
<li><p><strong><a href="#Conferences">Conferences</a></strong></p></li>
|
||
<li><p><strong><a href="#frameworks">Frameworks</a></strong></p></li>
|
||
<li><p><strong><a href="#tools">Tools</a></strong></p></li>
|
||
<li><p><strong><a
|
||
href="#miscellaneous">Miscellaneous</a></strong></p></li>
|
||
<li><p><strong><a
|
||
href="#contributing">Contributing</a></strong></p></li>
|
||
</ul>
|
||
<h3 id="books">Books</h3>
|
||
<ol type="1">
|
||
<li><a href="http://www.deeplearningbook.org/">Deep Learning</a> by
|
||
Yoshua Bengio, Ian Goodfellow and Aaron Courville (05/07/2015)</li>
|
||
<li><a href="http://neuralnetworksanddeeplearning.com/">Neural Networks
|
||
and Deep Learning</a> by Michael Nielsen (Dec 2014)</li>
|
||
<li><a
|
||
href="http://research.microsoft.com/pubs/209355/DeepLearning-NowPublishing-Vol7-SIG-039.pdf">Deep
|
||
Learning</a> by Microsoft Research (2013)</li>
|
||
<li><a href="http://deeplearning.net/tutorial/deeplearning.pdf">Deep
|
||
Learning Tutorial</a> by LISA lab, University of Montreal (Jan 6
|
||
2015)</li>
|
||
<li><a href="https://github.com/karpathy/neuraltalk">neuraltalk</a> by
|
||
Andrej Karpathy : numpy-based RNN/LSTM implementation</li>
|
||
<li><a href="http://www.boente.eti.br/fuzzy/ebook-fuzzy-mitchell.pdf">An
|
||
introduction to genetic algorithms</a></li>
|
||
<li><a href="http://aima.cs.berkeley.edu/">Artificial Intelligence: A
|
||
Modern Approach</a></li>
|
||
<li><a href="http://arxiv.org/pdf/1404.7828v4.pdf">Deep Learning in
|
||
Neural Networks: An Overview</a></li>
|
||
<li><a
|
||
href="https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/">Artificial
|
||
intelligence and machine learning: Topic wise explanation</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/books/grokking-deep-learning-for-computer-vision">Grokking
|
||
Deep Learning for Computer Vision</a></li>
|
||
<li><a href="https://d2l.ai/">Dive into Deep Learning</a> - numpy based
|
||
interactive Deep Learning book</li>
|
||
<li><a
|
||
href="https://www.oreilly.com/library/view/practical-deep-learning/9781492034858/">Practical
|
||
Deep Learning for Cloud, Mobile, and Edge</a> - A book for optimization
|
||
techniques during production.</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/math-and-architectures-of-deep-learning">Math
|
||
and Architectures of Deep Learning</a> - by Krishnendu Chaudhury</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/tensorflow-in-action">TensorFlow 2.0
|
||
in Action</a> - by Thushan Ganegedara</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/deep-learning-for-natural-language-processing">Deep
|
||
Learning for Natural Language Processing</a> - by Stephan
|
||
Raaijmakers</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/deep-learning-patterns-and-practices">Deep
|
||
Learning Patterns and Practices</a> - by Andrew Ferlitsch</li>
|
||
<li><a href="https://www.manning.com/books/inside-deep-learning">Inside
|
||
Deep Learning</a> - by Edward Raff</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/deep-learning-with-python-second-edition">Deep
|
||
Learning with Python, Second Edition</a> - by François Chollet</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/evolutionary-deep-learning">Evolutionary
|
||
Deep Learning</a> - by Micheal Lanham</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/engineering-deep-learning-platforms">Engineering
|
||
Deep Learning Platforms</a> - by Chi Wang and Donald Szeto</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/deep-learning-with-r-second-edition">Deep
|
||
Learning with R, Second Edition</a> - by François Chollet with Tomasz
|
||
Kalinowski and J. J. Allaire</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/regularization-in-deep-learning">Regularization
|
||
in Deep Learning</a> - by Liu Peng</li>
|
||
<li><a href="https://www.manning.com/books/jax-in-action">Jax in
|
||
Action</a> - by Grigory Sapunov</li>
|
||
<li><a
|
||
href="https://www.knowledgeisle.com/wp-content/uploads/2019/12/2-Aur%C3%A9lien-G%C3%A9ron-Hands-On-Machine-Learning-with-Scikit-Learn-Keras-and-Tensorflow_-Concepts-Tools-and-Techniques-to-Build-Intelligent-Systems-O%E2%80%99Reilly-Media-2019.pdf">Hands-On
|
||
Machine Learning with Scikit-Learn, Keras, and TensorFlow</a> by
|
||
Aurélien Géron | Oct 15, 2019</li>
|
||
</ol>
|
||
<h3 id="courses">Courses</h3>
|
||
<ol type="1">
|
||
<li><a href="https://class.coursera.org/ml-005">Machine Learning -
|
||
Stanford</a> by Andrew Ng in Coursera (2010-2014)</li>
|
||
<li><a href="http://work.caltech.edu/lectures.html">Machine Learning -
|
||
Caltech</a> by Yaser Abu-Mostafa (2012-2014)</li>
|
||
<li><a
|
||
href="http://www.cs.cmu.edu/~tom/10701_sp11/lectures.shtml">Machine
|
||
Learning - Carnegie Mellon</a> by Tom Mitchell (Spring 2011)</li>
|
||
<li><a href="https://class.coursera.org/neuralnets-2012-001">Neural
|
||
Networks for Machine Learning</a> by Geoffrey Hinton in Coursera
|
||
(2012)</li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH">Neural
|
||
networks class</a> by Hugo Larochelle from Université de Sherbrooke
|
||
(2013)</li>
|
||
<li><a
|
||
href="http://cilvr.cs.nyu.edu/doku.php?id=deeplearning:slides:start">Deep
|
||
Learning Course</a> by CILVR lab @ NYU (2014)</li>
|
||
<li><a
|
||
href="https://courses.edx.org/courses/BerkeleyX/CS188x_1/1T2013/courseware/">A.I
|
||
- Berkeley</a> by Dan Klein and Pieter Abbeel (2013)</li>
|
||
<li><a
|
||
href="http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/">A.I
|
||
- MIT</a> by Patrick Henry Winston (2010)</li>
|
||
<li><a
|
||
href="http://web.mit.edu/course/other/i2course/www/vision_and_learning_fall_2013.html">Vision
|
||
and learning - computers and brains</a> by Shimon Ullman, Tomaso Poggio,
|
||
Ethan Meyers @ MIT (2013)</li>
|
||
<li><a
|
||
href="http://vision.stanford.edu/teaching/cs231n/syllabus.html">Convolutional
|
||
Neural Networks for Visual Recognition - Stanford</a> by Fei-Fei Li,
|
||
Andrej Karpathy (2017)</li>
|
||
<li><a href="http://cs224d.stanford.edu/">Deep Learning for Natural
|
||
Language Processing - Stanford</a></li>
|
||
<li><a
|
||
href="http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html">Neural
|
||
Networks - usherbrooke</a></li>
|
||
<li><a
|
||
href="https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/">Machine
|
||
Learning - Oxford</a> (2014-2015)</li>
|
||
<li><a href="https://developer.nvidia.com/deep-learning-courses">Deep
|
||
Learning - Nvidia</a> (2015)</li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PLHyI3Fbmv0SdzMHAy0aN59oYnLy5vyyTA">Graduate
|
||
Summer School: Deep Learning, Feature Learning</a> by Geoffrey Hinton,
|
||
Yoshua Bengio, Yann LeCun, Andrew Ng, Nando de Freitas and several
|
||
others @ IPAM, UCLA (2012)</li>
|
||
<li><a href="https://www.udacity.com/course/deep-learning--ud730">Deep
|
||
Learning - Udacity/Google</a> by Vincent Vanhoucke and Arpan Chakraborty
|
||
(2016)</li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PLehuLRPyt1Hyi78UOkMPWCGRxGcA9NVOE">Deep
|
||
Learning - UWaterloo</a> by Prof. Ali Ghodsi at University of Waterloo
|
||
(2015)</li>
|
||
<li><a
|
||
href="https://www.youtube.com/watch?v=azaLcvuql_g&list=PLjbUi5mgii6BWEUZf7He6nowWvGne_Y8r">Statistical
|
||
Machine Learning - CMU</a> by Prof. Larry Wasserman</li>
|
||
<li><a
|
||
href="https://www.college-de-france.fr/site/en-yann-lecun/course-2015-2016.htm">Deep
|
||
Learning Course</a> by Yann LeCun (2016)</li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PLkFD6_40KJIxopmdJF_CLNqG3QuDFHQUm">Designing,
|
||
Visualizing and Understanding Deep Neural Networks-UC Berkeley</a></li>
|
||
<li><a href="http://uvadlc.github.io">UVA Deep Learning Course</a> MSc
|
||
in Artificial Intelligence for the University of Amsterdam.</li>
|
||
<li><a href="http://selfdrivingcars.mit.edu/">MIT 6.S094: Deep Learning
|
||
for Self-Driving Cars</a></li>
|
||
<li><a href="http://introtodeeplearning.com/">MIT 6.S191: Introduction
|
||
to Deep Learning</a></li>
|
||
<li><a href="http://rll.berkeley.edu/deeprlcourse/">Berkeley CS 294:
|
||
Deep Reinforcement Learning</a></li>
|
||
<li><a href="https://www.manning.com/livevideo/keras-in-motion">Keras in
|
||
Motion video course</a></li>
|
||
<li><a href="http://course.fast.ai/">Practical Deep Learning For
|
||
Coders</a> by Jeremy Howard - Fast.ai</li>
|
||
<li><a href="http://deeplearning.cs.cmu.edu/">Introduction to Deep
|
||
Learning</a> by Prof. Bhiksha Raj (2017)</li>
|
||
<li><a href="https://www.deeplearning.ai/ai-for-everyone/">AI for
|
||
Everyone</a> by Andrew Ng (2019)</li>
|
||
<li><a href="https://introtodeeplearning.com">MIT Intro to Deep Learning
|
||
7 day bootcamp</a> - A seven day bootcamp designed in MIT to introduce
|
||
deep learning methods and applications (2019)</li>
|
||
<li><a href="https://mithi.github.io/deep-blueberry">Deep Blueberry:
|
||
Deep Learning</a> - A free five-weekend plan to self-learners to learn
|
||
the basics of deep-learning architectures like CNNs, LSTMs, RNNs, VAEs,
|
||
GANs, DQN, A3C and more (2019)</li>
|
||
<li><a href="https://spinningup.openai.com/">Spinning Up in Deep
|
||
Reinforcement Learning</a> - A free deep reinforcement learning course
|
||
by OpenAI (2019)</li>
|
||
<li><a
|
||
href="https://www.coursera.org/specializations/deep-learning">Deep
|
||
Learning Specialization - Coursera</a> - Breaking into AI with the best
|
||
course from Andrew NG.</li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PLZSO_6-bSqHQHBCoGaObUljoXAyyqhpFW">Deep
|
||
Learning - UC Berkeley | STAT-157</a> by Alex Smola and Mu Li
|
||
(2019)</li>
|
||
<li><a
|
||
href="https://www.manning.com/livevideo/machine-learning-for-mere-mortals">Machine
|
||
Learning for Mere Mortals video course</a> by Nick Chase</li>
|
||
<li><a
|
||
href="https://developers.google.com/machine-learning/crash-course/">Machine
|
||
Learning Crash Course with TensorFlow APIs</a> -Google AI</li>
|
||
<li><a href="https://course.fast.ai/part2">Deep Learning from the
|
||
Foundations</a> Jeremy Howard - Fast.ai</li>
|
||
<li><a
|
||
href="https://www.udacity.com/course/deep-reinforcement-learning-nanodegree--nd893">Deep
|
||
Reinforcement Learning (nanodegree) - Udacity</a> a 3-6 month Udacity
|
||
nanodegree, spanning multiple courses (2018)</li>
|
||
<li><a
|
||
href="https://www.manning.com/livevideo/grokking-deep-learning-in-motion">Grokking
|
||
Deep Learning in Motion</a> by Beau Carnes (2018)</li>
|
||
<li><a href="https://www.udemy.com/share/1000gAA0QdcV9aQng=/">Face
|
||
Detection with Computer Vision and Deep Learning</a> by Hakan
|
||
Cebeci</li>
|
||
<li><a href="https://classpert.com/deep-learning">Deep Learning Online
|
||
Course list at Classpert</a> List of Deep Learning online courses (some
|
||
are free) from Classpert Online Course Search</li>
|
||
<li><a href="https://aws.training/machinelearning">AWS Machine
|
||
Learning</a> Machine Learning and Deep Learning Courses from Amazon’s
|
||
Machine Learning university</li>
|
||
<li><a
|
||
href="https://www.udacity.com/course/deep-learning-pytorch--ud188">Intro
|
||
to Deep Learning with PyTorch</a> - A great introductory course on Deep
|
||
Learning by Udacity and Facebook AI</li>
|
||
<li><a href="https://www.kaggle.com/learn/deep-learning">Deep Learning
|
||
by Kaggle</a> - Kaggle’s free course on Deep Learning</li>
|
||
<li><a href="https://cds.nyu.edu/deep-learning/">Yann LeCun’s Deep
|
||
Learning Course at CDS</a> - DS-GA 1008 · SPRING 2021</li>
|
||
<li><a href="https://webcms3.cse.unsw.edu.au/COMP9444/19T3/">Neural
|
||
Networks and Deep Learning</a> - COMP9444 19T3</li>
|
||
<li><a href="http://aishelf.org/category/ia/deep-learning/">Deep
|
||
Learning A.I.Shelf</a></li>
|
||
</ol>
|
||
<h3 id="videos-and-lectures">Videos and Lectures</h3>
|
||
<ol type="1">
|
||
<li><a href="https://www.youtube.com/watch?v=RIkxVci-R4k">How To Create
|
||
A Mind</a> By Ray Kurzweil</li>
|
||
<li><a href="https://www.youtube.com/watch?v=n1ViNeWhC24">Deep Learning,
|
||
Self-Taught Learning and Unsupervised Feature Learning</a> By Andrew
|
||
Ng</li>
|
||
<li><a
|
||
href="https://www.youtube.com/watch?v=vShMxxqtDDs&index=3&list=PL78U8qQHXgrhP9aZraxTT5-X1RccTcUYT">Recent
|
||
Developments in Deep Learning</a> By Geoff Hinton</li>
|
||
<li><a href="https://www.youtube.com/watch?v=sc-KbuZqGkI">The
|
||
Unreasonable Effectiveness of Deep Learning</a> by Yann LeCun</li>
|
||
<li><a href="https://www.youtube.com/watch?v=4xsVFLnHC_0">Deep Learning
|
||
of Representations</a> by Yoshua bengio</li>
|
||
<li><a href="https://www.youtube.com/watch?v=6ufPpZDmPKA">Principles of
|
||
Hierarchical Temporal Memory</a> by Jeff Hawkins</li>
|
||
<li><a
|
||
href="https://www.youtube.com/watch?v=2QJi0ArLq7s&list=PL78U8qQHXgrhP9aZraxTT5-X1RccTcUYT">Machine
|
||
Learning Discussion Group - Deep Learning w/ Stanford AI Lab</a> by Adam
|
||
Coates</li>
|
||
<li><a href="http://vimeo.com/80821560">Making Sense of the World with
|
||
Deep Learning</a> By Adam Coates</li>
|
||
<li><a href="https://www.youtube.com/watch?v=wZfVBwOO0-k">Demystifying
|
||
Unsupervised Feature Learning</a> By Adam Coates</li>
|
||
<li><a href="https://www.youtube.com/watch?v=3boKlkPBckA">Visual
|
||
Perception with Deep Learning</a> By Yann LeCun</li>
|
||
<li><a href="https://www.youtube.com/watch?v=AyzOUbkUf3M">The Next
|
||
Generation of Neural Networks</a> By Geoffrey Hinton at
|
||
GoogleTechTalks</li>
|
||
<li><a
|
||
href="http://www.ted.com/talks/jeremy_howard_the_wonderful_and_terrifying_implications_of_computers_that_can_learn">The
|
||
wonderful and terrifying implications of computers that can learn</a> By
|
||
Jeremy Howard at TEDxBrussels</li>
|
||
<li><a
|
||
href="http://web.stanford.edu/class/cs294a/handouts.html">Unsupervised
|
||
Deep Learning - Stanford</a> by Andrew Ng in Stanford (2011)</li>
|
||
<li><a href="http://web.stanford.edu/class/cs224n/handouts/">Natural
|
||
Language Processing</a> By Chris Manning in Stanford</li>
|
||
<li><a
|
||
href="http://googleresearch.blogspot.com/2015/09/a-beginners-guide-to-deep-neural.html">A
|
||
beginners Guide to Deep Neural Networks</a> By Natalie Hammel and
|
||
Lorraine Yurshansky</li>
|
||
<li><a href="https://www.youtube.com/watch?v=czLI3oLDe8M">Deep Learning:
|
||
Intelligence from Big Data</a> by Steve Jurvetson (and panel) at VLAB in
|
||
Stanford.</li>
|
||
<li><a href="https://www.youtube.com/watch?v=FoO8qDB8gUU">Introduction
|
||
to Artificial Neural Networks and Deep Learning</a> by Leo Isikdogan at
|
||
Motorola Mobility HQ</li>
|
||
<li><a href="https://nips.cc/Conferences/2016/Schedule">NIPS 2016
|
||
lecture and workshop videos</a> - NIPS 2016</li>
|
||
<li><a
|
||
href="https://www.youtube.com/watch?v=oS5fz_mHVz0&list=PLWKotBjTDoLj3rXBL-nEIPRN9V3a9Cx07">Deep
|
||
Learning Crash Course</a>: a series of mini-lectures by Leo Isikdogan on
|
||
YouTube (2018)</li>
|
||
<li><a
|
||
href="https://www.manning.com/livevideo/deep-learning-crash-course">Deep
|
||
Learning Crash Course</a> By Oliver Zeigermann</li>
|
||
<li><a
|
||
href="https://www.manning.com/livevideo/deep-learning-with-r-in-motion">Deep
|
||
Learning with R in Motion</a>: a live video course that teaches how to
|
||
apply deep learning to text and images using the powerful Keras library
|
||
and its R language interface.</li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PLheiZMDg_8ufxEx9cNVcOYXsT3BppJP4b">Medical
|
||
Imaging with Deep Learning Tutorial</a>: This tutorial is styled as a
|
||
graduate lecture about medical imaging with deep learning. This will
|
||
cover the background of popular medical image domains (chest X-ray and
|
||
histology) as well as methods to tackle multi-modality/view,
|
||
segmentation, and counting tasks.</li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PLqYmG7hTraZCDxZ44o4p3N5Anz3lLRVZF">Deepmind
|
||
x UCL Deeplearning</a>: 2020 version</li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PLqYmG7hTraZBKeNJ-JE_eyJHZ7XgBoAyb">Deepmind
|
||
x UCL Reinforcement Learning</a>: Deep Reinforcement Learning</li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PLp-0K3kfddPzCnS4CqKphh-zT3aDwybDe">CMU
|
||
11-785 Intro to Deep learning Spring 2020</a> Course: 11-785, Intro to
|
||
Deep Learning by Bhiksha Raj</li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU">Machine
|
||
Learning CS 229</a> : End part focuses on deep learning By Andrew
|
||
Ng</li>
|
||
<li><a href="https://youtu.be/LXWSE_9gHd0">What is Neural Structured
|
||
Learning by Andrew Ferlitsch</a></li>
|
||
<li><a href="https://youtu.be/_DaviS6K0Vc">Deep Learning Design Patterns
|
||
by Andrew Ferlitsch</a></li>
|
||
<li><a href="https://youtu.be/QCGSS3kyGo0">Architecture of a Modern CNN:
|
||
the design pattern approach by Andrew Ferlitsch</a></li>
|
||
<li><a href="https://youtu.be/K1PLeggQ33I">Metaparameters in a CNN by
|
||
Andrew Ferlitsch</a></li>
|
||
<li><a href="https://youtu.be/dH2nuI-1-qM">Multi-task CNN: a real-world
|
||
example by Andrew Ferlitsch</a></li>
|
||
<li><a href="https://youtu.be/1FyAh07jh0o">A friendly introduction to
|
||
deep reinforcement learning by Luis Serrano</a></li>
|
||
<li><a href="https://youtu.be/f6ivp84qFUc">What are GANs and how do they
|
||
work? by Edward Raff</a></li>
|
||
<li><a href="https://youtu.be/7VRdaqMDalQ">Coding a basic WGAN in
|
||
PyTorch by Edward Raff</a></li>
|
||
<li><a href="https://youtu.be/8TMT-gHlj_Q">Training a Reinforcement
|
||
Learning Agent by Miguel Morales</a></li>
|
||
<li><a
|
||
href="https://www.scaler.com/topics/what-is-deep-learning/">Understand
|
||
what is Deep Learning</a></li>
|
||
</ol>
|
||
<h3 id="papers">Papers</h3>
|
||
<p><em>You can also find the most cited deep learning papers from <a
|
||
href="https://github.com/terryum/awesome-deep-learning-papers">here</a></em></p>
|
||
<ol type="1">
|
||
<li><a
|
||
href="http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf">ImageNet
|
||
Classification with Deep Convolutional Neural Networks</a></li>
|
||
<li><a
|
||
href="http://www.cs.toronto.edu/~hinton/absps/esann-deep-final.pdf">Using
|
||
Very Deep Autoencoders for Content Based Image Retrieval</a></li>
|
||
<li><a
|
||
href="http://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf">Learning
|
||
Deep Architectures for AI</a></li>
|
||
<li><a href="http://deeplearning.cs.cmu.edu/">CMU’s list of
|
||
papers</a></li>
|
||
<li><a href="http://nlp.stanford.edu/~socherr/pa4_ner.pdf">Neural
|
||
Networks for Named Entity Recognition</a> <a
|
||
href="http://nlp.stanford.edu/~socherr/pa4-ner.zip">zip</a></li>
|
||
<li><a
|
||
href="http://www.iro.umontreal.ca/~bengioy/papers/YB-tricks.pdf">Training
|
||
tricks by YB</a></li>
|
||
<li><a href="http://www.cs.toronto.edu/~hinton/deeprefs.html">Geoff
|
||
Hinton’s reading list (all papers)</a></li>
|
||
<li><a href="http://www.cs.toronto.edu/~graves/preprint.pdf">Supervised
|
||
Sequence Labelling with Recurrent Neural Networks</a></li>
|
||
<li><a
|
||
href="http://www.fit.vutbr.cz/~imikolov/rnnlm/thesis.pdf">Statistical
|
||
Language Models based on Neural Networks</a></li>
|
||
<li><a
|
||
href="http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf">Training
|
||
Recurrent Neural Networks</a></li>
|
||
<li><a href="http://nlp.stanford.edu/~socherr/thesis.pdf">Recursive Deep
|
||
Learning for Natural Language Processing and Computer Vision</a></li>
|
||
<li><a
|
||
href="http://www.di.ufpe.br/~fnj/RNA/bibliografia/BRNN.pdf">Bi-directional
|
||
RNN</a></li>
|
||
<li><a
|
||
href="http://web.eecs.utk.edu/~itamar/courses/ECE-692/Bobby_paper1.pdf">LSTM</a></li>
|
||
<li><a href="http://arxiv.org/pdf/1406.1078v3.pdf">GRU - Gated Recurrent
|
||
Unit</a></li>
|
||
<li><a href="http://arxiv.org/pdf/1502.02367v3.pdf">GFRNN</a> <a
|
||
href="http://jmlr.org/proceedings/papers/v37/chung15.pdf">.</a> <a
|
||
href="http://jmlr.org/proceedings/papers/v37/chung15-supp.pdf">.</a></li>
|
||
<li><a href="http://arxiv.org/pdf/1503.04069v1.pdf">LSTM: A Search Space
|
||
Odyssey</a></li>
|
||
<li><a href="http://arxiv.org/pdf/1506.00019v1.pdf">A Critical Review of
|
||
Recurrent Neural Networks for Sequence Learning</a></li>
|
||
<li><a href="http://arxiv.org/pdf/1506.02078v1.pdf">Visualizing and
|
||
Understanding Recurrent Networks</a></li>
|
||
<li><a
|
||
href="http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf">Wojciech
|
||
Zaremba, Ilya Sutskever, An Empirical Exploration of Recurrent Network
|
||
Architectures</a></li>
|
||
<li><a
|
||
href="http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf">Recurrent
|
||
Neural Network based Language Model</a></li>
|
||
<li><a
|
||
href="http://www.fit.vutbr.cz/research/groups/speech/publi/2011/mikolov_icassp2011_5528.pdf">Extensions
|
||
of Recurrent Neural Network Language Model</a></li>
|
||
<li><a
|
||
href="http://www.fit.vutbr.cz/~imikolov/rnnlm/ApplicationOfRNNinMeetingRecognition_IS2011.pdf">Recurrent
|
||
Neural Network based Language Modeling in Meeting Recognition</a></li>
|
||
<li><a href="http://cs224d.stanford.edu/papers/maas_paper.pdf">Deep
|
||
Neural Networks for Acoustic Modeling in Speech Recognition</a></li>
|
||
<li><a href="http://www.cs.toronto.edu/~fritz/absps/RNN13.pdf">Speech
|
||
Recognition with Deep Recurrent Neural Networks</a></li>
|
||
<li><a href="http://arxiv.org/pdf/1505.00521v1">Reinforcement Learning
|
||
Neural Turing Machines</a></li>
|
||
<li><a href="http://arxiv.org/pdf/1406.1078v3.pdf">Learning Phrase
|
||
Representations using RNN Encoder-Decoder for Statistical Machine
|
||
Translation</a></li>
|
||
<li><a
|
||
href="http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf">Google
|
||
- Sequence to Sequence Learning with Neural Networks</a></li>
|
||
<li><a href="http://arxiv.org/pdf/1410.3916v10">Memory Networks</a></li>
|
||
<li><a href="http://arxiv.org/pdf/1507.01273v1">Policy Learning with
|
||
Continuous Memory States for Partially Observed Robotic Control</a></li>
|
||
<li><a href="http://arxiv.org/pdf/1505.01861v1.pdf">Microsoft - Jointly
|
||
Modeling Embedding and Translation to Bridge Video and Language</a></li>
|
||
<li><a href="http://arxiv.org/pdf/1410.5401v2.pdf">Neural Turing
|
||
Machines</a></li>
|
||
<li><a href="http://arxiv.org/pdf/1506.07285v1.pdf">Ask Me Anything:
|
||
Dynamic Memory Networks for Natural Language Processing</a></li>
|
||
<li><a
|
||
href="http://www.nature.com/nature/journal/v529/n7587/pdf/nature16961.pdf">Mastering
|
||
the Game of Go with Deep Neural Networks and Tree Search</a></li>
|
||
<li><a href="https://arxiv.org/abs/1502.03167">Batch
|
||
Normalization</a></li>
|
||
<li><a href="https://arxiv.org/pdf/1512.03385v1.pdf">Residual
|
||
Learning</a></li>
|
||
<li><a href="https://arxiv.org/pdf/1611.07004v1.pdf">Image-to-Image
|
||
Translation with Conditional Adversarial Networks</a></li>
|
||
<li><a href="https://arxiv.org/pdf/1611.07004v1.pdf">Berkeley AI
|
||
Research (BAIR) Laboratory</a></li>
|
||
<li><a href="https://arxiv.org/abs/1704.04861">MobileNets by
|
||
Google</a></li>
|
||
<li><a href="https://arxiv.org/abs/1706.05739">Cross Audio-Visual
|
||
Recognition in the Wild Using Deep Learning</a></li>
|
||
<li><a href="https://arxiv.org/abs/1710.09829">Dynamic Routing Between
|
||
Capsules</a></li>
|
||
<li><a href="https://openreview.net/pdf?id=HJWLfGWRb">Matrix Capsules
|
||
With Em Routing</a></li>
|
||
<li><a
|
||
href="http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf">Efficient
|
||
BackProp</a></li>
|
||
<li><a href="https://arxiv.org/pdf/1406.2661v1.pdf">Generative
|
||
Adversarial Nets</a></li>
|
||
<li><a href="https://arxiv.org/pdf/1504.08083.pdf">Fast R-CNN</a></li>
|
||
<li><a href="https://arxiv.org/pdf/1503.03832.pdf">FaceNet: A Unified
|
||
Embedding for Face Recognition and Clustering</a></li>
|
||
<li><a
|
||
href="https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf">Siamese
|
||
Neural Networks for One-shot Image Recognition</a></li>
|
||
<li><a href="https://arxiv.org/pdf/2006.03511.pdf">Unsupervised
|
||
Translation of Programming Languages</a></li>
|
||
<li><a
|
||
href="http://papers.nips.cc/paper/6385-matching-networks-for-one-shot-learning.pdf">Matching
|
||
Networks for One Shot Learning</a></li>
|
||
<li><a href="https://arxiv.org/pdf/2106.13112.pdf">VOLO: Vision
|
||
Outlooker for Visual Recognition</a></li>
|
||
<li><a href="https://arxiv.org/pdf/2010.11929.pdf">ViT: An Image is
|
||
Worth 16x16 Words: Transformers for Image Recognition at Scale</a></li>
|
||
<li><a href="http://proceedings.mlr.press/v37/ioffe15.pdf">Batch
|
||
Normalization: Accelerating Deep Network Training by Reducing Internal
|
||
Covariate Shift</a></li>
|
||
<li><a
|
||
href="http://geometrylearning.com/paper/DeepFaceDrawing.pdf?fbclid=IwAR0colWFHPGBCB1APZq9JVsWeWtmeZd9oCTNQvR52T5PRUJP_dLOwB8pt0I">DeepFaceDrawing:
|
||
Deep Generation of Face Images from Sketches</a></li>
|
||
</ol>
|
||
<h3 id="tutorials">Tutorials</h3>
|
||
<ol type="1">
|
||
<li><a
|
||
href="http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial">UFLDL
|
||
Tutorial 1</a></li>
|
||
<li><a
|
||
href="http://ufldl.stanford.edu/tutorial/supervised/LinearRegression/">UFLDL
|
||
Tutorial 2</a></li>
|
||
<li><a
|
||
href="http://www.socher.org/index.php/DeepLearningTutorial/DeepLearningTutorial">Deep
|
||
Learning for NLP (without Magic)</a></li>
|
||
<li><a
|
||
href="http://www.toptal.com/machine-learning/an-introduction-to-deep-learning-from-perceptrons-to-deep-networks">A
|
||
Deep Learning Tutorial: From Perceptrons to Deep Networks</a></li>
|
||
<li><a
|
||
href="http://www.metacademy.org/roadmaps/rgrosse/deep_learning">Deep
|
||
Learning from the Bottom up</a></li>
|
||
<li><a href="http://deeplearning.net/tutorial/deeplearning.pdf">Theano
|
||
Tutorial</a></li>
|
||
<li><a
|
||
href="http://uk.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf">Neural
|
||
Networks for Matlab</a></li>
|
||
<li><a
|
||
href="http://danielnouri.org/notes/2014/12/17/using-convolutional-neural-nets-to-detect-facial-keypoints-tutorial/">Using
|
||
convolutional neural nets to detect facial keypoints tutorial</a></li>
|
||
<li><a
|
||
href="https://github.com/clementfarabet/ipam-tutorials/tree/master/th_tutorials">Torch7
|
||
Tutorials</a></li>
|
||
<li><a
|
||
href="https://github.com/josephmisiti/machine-learning-module">The Best
|
||
Machine Learning Tutorials On The Web</a></li>
|
||
<li><a
|
||
href="http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html">VGG
|
||
Convolutional Neural Networks Practical</a></li>
|
||
<li><a href="https://github.com/nlintz/TensorFlow-Tutorials">TensorFlow
|
||
tutorials</a></li>
|
||
<li><a href="https://github.com/pkmital/tensorflow_tutorials">More
|
||
TensorFlow tutorials</a></li>
|
||
<li><a
|
||
href="https://github.com/aymericdamien/TensorFlow-Examples">TensorFlow
|
||
Python Notebooks</a></li>
|
||
<li><a href="https://github.com/Vict0rSch/deep_learning">Keras and
|
||
Lasagne Deep Learning Tutorials</a></li>
|
||
<li><a
|
||
href="https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition">Classification
|
||
on raw time series in TensorFlow with a LSTM RNN</a></li>
|
||
<li><a
|
||
href="http://danielnouri.org/notes/2014/12/17/using-convolutional-neural-nets-to-detect-facial-keypoints-tutorial/">Using
|
||
convolutional neural nets to detect facial keypoints tutorial</a></li>
|
||
<li><a
|
||
href="https://github.com/astorfi/TensorFlow-World">TensorFlow-World</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/books/deep-learning-with-python">Deep
|
||
Learning with Python</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/books/grokking-deep-learning">Grokking
|
||
Deep Learning</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/books/deep-learning-for-search">Deep
|
||
Learning for Search</a></li>
|
||
<li><a
|
||
href="https://medium.com/sicara/keras-tutorial-content-based-image-retrieval-convolutional-denoising-autoencoder-dc91450cc511">Keras
|
||
Tutorial: Content Based Image Retrieval Using a Convolutional Denoising
|
||
Autoencoder</a></li>
|
||
<li><a href="https://github.com/yunjey/pytorch-tutorial">Pytorch
|
||
Tutorial by Yunjey Choi</a></li>
|
||
<li><a
|
||
href="https://ahmedbesbes.com/understanding-deep-convolutional-neural-networks-with-a-practical-use-case-in-tensorflow-and-keras.html">Understanding
|
||
deep Convolutional Neural Networks with a practical use-case in
|
||
Tensorflow and Keras</a></li>
|
||
<li><a
|
||
href="https://ahmedbesbes.com/overview-and-benchmark-of-traditional-and-deep-learning-models-in-text-classification.html">Overview
|
||
and benchmark of traditional and deep learning models in text
|
||
classification</a></li>
|
||
<li><a href="https://github.com/MelAbgrall/HardwareforAI">Hardware for
|
||
AI: Understanding computer hardware & build your own
|
||
computer</a></li>
|
||
<li><a
|
||
href="https://hackr.io/tutorials/learn-artificial-intelligence-ai">Programming
|
||
Community Curated Resources</a></li>
|
||
<li><a
|
||
href="https://amitness.com/2020/02/illustrated-self-supervised-learning/">The
|
||
Illustrated Self-Supervised Learning</a></li>
|
||
<li><a href="https://amitness.com/2020/02/albert-visual-summary/">Visual
|
||
Paper Summary: ALBERT (A Lite BERT)</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/liveproject/semi-supervised-deep-learning-with-gans-for-melanoma-detection/">Semi-Supervised
|
||
Deep Learning with GANs for Melanoma Detection</a></li>
|
||
<li><a
|
||
href="https://github.com/SauravMaheshkar/Trax-Examples/blob/main/NLP/NER%20using%20Reformer.ipynb">Named
|
||
Entity Recognition using Reformers</a></li>
|
||
<li><a
|
||
href="https://github.com/SauravMaheshkar/Trax-Examples/blob/main/NLP/Deep%20N-Gram.ipynb">Deep
|
||
N-Gram Models on Shakespeare’s works</a></li>
|
||
<li><a
|
||
href="https://github.com/SauravMaheshkar/Trax-Examples/blob/main/vision/illustrated-wideresnet.ipynb">Wide
|
||
Residual Networks</a></li>
|
||
<li><a href="https://github.com/SauravMaheshkar/Flax-Examples">Fashion
|
||
MNIST using Flax</a></li>
|
||
<li><a
|
||
href="https://github.com/SauravMaheshkar/Fake-News-Classification">Fake
|
||
News Classification (with streamlit deployment)</a></li>
|
||
<li><a
|
||
href="https://github.com/SauravMaheshkar/CoxPH-Model-for-Primary-Biliary-Cirrhosis">Regression
|
||
Analysis for Primary Biliary Cirrhosis</a></li>
|
||
<li><a
|
||
href="https://github.com/SauravMaheshkar/Cross-Matching-Methods-for-Astronomical-Catalogs">Cross
|
||
Matching Methods for Astronomical Catalogs</a></li>
|
||
<li><a
|
||
href="https://github.com/SauravMaheshkar/Named-Entity-Recognition-">Named
|
||
Entity Recognition using BiDirectional LSTMs</a></li>
|
||
<li><a
|
||
href="https://github.com/SauravMaheshkar/Flutter_Image-Recognition">Image
|
||
Recognition App using Tflite and Flutter</a></li>
|
||
</ol>
|
||
<h2 id="researchers">Researchers</h2>
|
||
<ol type="1">
|
||
<li><a href="http://aaroncourville.wordpress.com">Aaron
|
||
Courville</a></li>
|
||
<li><a href="http://www.cs.toronto.edu/~asamir/">Abdel-rahman
|
||
Mohamed</a></li>
|
||
<li><a href="http://cs.stanford.edu/~acoates/">Adam Coates</a></li>
|
||
<li><a href="http://research.microsoft.com/en-us/people/alexac/">Alex
|
||
Acero</a></li>
|
||
<li><a href="http://www.cs.utoronto.ca/~kriz/index.html">Alex
|
||
Krizhevsky</a></li>
|
||
<li><a href="http://users.ics.aalto.fi/alexilin/">Alexander
|
||
Ilin</a></li>
|
||
<li><a href="http://homepages.inf.ed.ac.uk/amos/">Amos Storkey</a></li>
|
||
<li><a href="https://karpathy.ai/">Andrej Karpathy</a></li>
|
||
<li><a href="http://www.stanford.edu/~asaxe/">Andrew M. Saxe</a></li>
|
||
<li><a href="http://www.cs.stanford.edu/people/ang/">Andrew Ng</a></li>
|
||
<li><a href="http://research.google.com/pubs/author37792.html">Andrew W.
|
||
Senior</a></li>
|
||
<li><a href="http://www.gatsby.ucl.ac.uk/~amnih/">Andriy Mnih</a></li>
|
||
<li><a href="http://www.cs.nyu.edu/~naz/">Ayse Naz Erkan</a></li>
|
||
<li><a href="http://reslab.elis.ugent.be/benjamin">Benjamin
|
||
Schrauwen</a></li>
|
||
<li><a href="https://www.cisuc.uc.pt/people/show/2020">Bernardete
|
||
Ribeiro</a></li>
|
||
<li><a
|
||
href="http://vision.caltech.edu/~bchen3/Site/Bo_David_Chen.html">Bo
|
||
David Chen</a></li>
|
||
<li><a href="http://cs.nyu.edu/~ylan/">Boureau Y-Lan</a></li>
|
||
<li><a
|
||
href="http://researcher.watson.ibm.com/researcher/view.php?person=us-bedk">Brian
|
||
Kingsbury</a></li>
|
||
<li><a href="http://nlp.stanford.edu/~manning/">Christopher
|
||
Manning</a></li>
|
||
<li><a href="http://www.clement.farabet.net/">Clement Farabet</a></li>
|
||
<li><a href="http://www.idsia.ch/~ciresan/">Dan Claudiu Cireșan</a></li>
|
||
<li><a
|
||
href="http://serre-lab.clps.brown.edu/person/david-reichert/">David
|
||
Reichert</a></li>
|
||
<li><a href="http://mil.engr.utk.edu/nmil/member/5.html">Derek
|
||
Rose</a></li>
|
||
<li><a
|
||
href="http://research.microsoft.com/en-us/people/dongyu/default.aspx">Dong
|
||
Yu</a></li>
|
||
<li><a href="http://www.seas.upenn.edu/~wulsin/">Drausin Wulsin</a></li>
|
||
<li><a href="http://music.ece.drexel.edu/people/eschmidt">Erik M.
|
||
Schmidt</a></li>
|
||
<li><a
|
||
href="https://engineering.purdue.edu/BME/People/viewPersonById?resource_id=71333">Eugenio
|
||
Culurciello</a></li>
|
||
<li><a href="http://research.microsoft.com/en-us/people/fseide/">Frank
|
||
Seide</a></li>
|
||
<li><a href="http://homes.cs.washington.edu/~galen/">Galen
|
||
Andrew</a></li>
|
||
<li><a href="http://www.cs.toronto.edu/~hinton/">Geoffrey
|
||
Hinton</a></li>
|
||
<li><a href="http://www.cs.toronto.edu/~gdahl/">George Dahl</a></li>
|
||
<li><a href="http://www.uoguelph.ca/~gwtaylor/">Graham Taylor</a></li>
|
||
<li><a href="http://gregoire.montavon.name/">Grégoire Montavon</a></li>
|
||
<li><a href="http://personal-homepages.mis.mpg.de/montufar/">Guido
|
||
Francisco Montúfar</a></li>
|
||
<li><a href="http://brainlogging.wordpress.com/">Guillaume
|
||
Desjardins</a></li>
|
||
<li><a href="http://www.ais.uni-bonn.de/~schulz/">Hannes Schulz</a></li>
|
||
<li><a href="http://www.lri.fr/~hpaugam/">Hélène Paugam-Moisy</a></li>
|
||
<li><a href="http://web.eecs.umich.edu/~honglak/">Honglak Lee</a></li>
|
||
<li><a href="http://www.dmi.usherb.ca/~larocheh/index_en.html">Hugo
|
||
Larochelle</a></li>
|
||
<li><a href="http://www.cs.toronto.edu/~ilya/">Ilya Sutskever</a></li>
|
||
<li><a href="http://mil.engr.utk.edu/nmil/member/2.html">Itamar
|
||
Arel</a></li>
|
||
<li><a href="http://www.cs.toronto.edu/~jmartens/">James
|
||
Martens</a></li>
|
||
<li><a href="http://www.jasonmorton.com/">Jason Morton</a></li>
|
||
<li><a href="http://www.thespermwhale.com/jaseweston/">Jason
|
||
Weston</a></li>
|
||
<li><a href="http://research.google.com/pubs/jeff.html">Jeff
|
||
Dean</a></li>
|
||
<li><a href="http://cs.stanford.edu/~jngiam/">Jiquan Mgiam</a></li>
|
||
<li><a href="http://www-etud.iro.umontreal.ca/~turian/">Joseph
|
||
Turian</a></li>
|
||
<li><a href="http://aclab.ca/users/josh/index.html">Joshua Matthew
|
||
Susskind</a></li>
|
||
<li><a href="http://www.idsia.ch/~juergen/">Jürgen Schmidhuber</a></li>
|
||
<li><a href="https://sites.google.com/site/blancousna/">Justin A.
|
||
Blanco</a></li>
|
||
<li><a href="http://koray.kavukcuoglu.org/">Koray Kavukcuoglu</a></li>
|
||
<li><a href="http://users.ics.aalto.fi/kcho/">KyungHyun Cho</a></li>
|
||
<li><a href="http://research.microsoft.com/en-us/people/deng/">Li
|
||
Deng</a></li>
|
||
<li><a
|
||
href="http://www.kyb.tuebingen.mpg.de/nc/employee/details/lucas.html">Lucas
|
||
Theis</a></li>
|
||
<li><a href="http://ludovicarnold.altervista.org/home/">Ludovic
|
||
Arnold</a></li>
|
||
<li><a href="http://www.cs.nyu.edu/~ranzato/">Marc’Aurelio
|
||
Ranzato</a></li>
|
||
<li><a href="http://aass.oru.se/~mlt/">Martin Längkvist</a></li>
|
||
<li><a href="http://mdenil.com/">Misha Denil</a></li>
|
||
<li><a href="http://www.cs.toronto.edu/~norouzi/">Mohammad
|
||
Norouzi</a></li>
|
||
<li><a href="http://www.cs.ubc.ca/~nando/">Nando de Freitas</a></li>
|
||
<li><a href="http://www.cs.utoronto.ca/~ndjaitly/">Navdeep
|
||
Jaitly</a></li>
|
||
<li><a href="http://nicolas.le-roux.name/">Nicolas Le Roux</a></li>
|
||
<li><a href="http://www.cs.toronto.edu/~nitish/">Nitish
|
||
Srivastava</a></li>
|
||
<li><a href="https://www.cisuc.uc.pt/people/show/2028">Noel
|
||
Lopes</a></li>
|
||
<li><a href="http://www.cs.berkeley.edu/~vinyals/">Oriol
|
||
Vinyals</a></li>
|
||
<li><a href="http://www.iro.umontreal.ca/~vincentp">Pascal
|
||
Vincent</a></li>
|
||
<li><a href="https://sites.google.com/site/drpngx/">Patrick
|
||
Nguyen</a></li>
|
||
<li><a href="http://homes.cs.washington.edu/~pedrod/">Pedro
|
||
Domingos</a></li>
|
||
<li><a href="http://homepages.inf.ed.ac.uk/pseries/">Peggy
|
||
Series</a></li>
|
||
<li><a href="http://cs.nyu.edu/~sermanet">Pierre Sermanet</a></li>
|
||
<li><a href="http://www.cs.nyu.edu/~mirowski/">Piotr Mirowski</a></li>
|
||
<li><a href="http://ai.stanford.edu/~quocle/">Quoc V. Le</a></li>
|
||
<li><a href="http://bci.tugraz.at/scherer/">Reinhold Scherer</a></li>
|
||
<li><a href="http://www.socher.org/">Richard Socher</a></li>
|
||
<li><a href="http://cs.nyu.edu/~fergus/pmwiki/pmwiki.php">Rob
|
||
Fergus</a></li>
|
||
<li><a href="http://mil.engr.utk.edu/nmil/member/19.html">Robert
|
||
Coop</a></li>
|
||
<li><a href="http://homes.cs.washington.edu/~rcg/">Robert Gens</a></li>
|
||
<li><a href="http://people.csail.mit.edu/rgrosse/">Roger Grosse</a></li>
|
||
<li><a href="http://ronan.collobert.com/">Ronan Collobert</a></li>
|
||
<li><a href="http://www.utstat.toronto.edu/~rsalakhu/">Ruslan
|
||
Salakhutdinov</a></li>
|
||
<li><a
|
||
href="http://www.kyb.tuebingen.mpg.de/nc/employee/details/sgerwinn.html">Sebastian
|
||
Gerwinn</a></li>
|
||
<li><a href="http://www.cmap.polytechnique.fr/~mallat/">Stéphane
|
||
Mallat</a></li>
|
||
<li><a href="http://www.ais.uni-bonn.de/behnke/">Sven Behnke</a></li>
|
||
<li><a href="http://users.ics.aalto.fi/praiko/">Tapani Raiko</a></li>
|
||
<li><a href="https://sites.google.com/site/tsainath/">Tara
|
||
Sainath</a></li>
|
||
<li><a href="http://www.cs.toronto.edu/~tijmen/">Tijmen
|
||
Tieleman</a></li>
|
||
<li><a href="http://mil.engr.utk.edu/nmil/member/36.html">Tom
|
||
Karnowski</a></li>
|
||
<li><a href="https://research.facebook.com/tomas-mikolov">Tomáš
|
||
Mikolov</a></li>
|
||
<li><a href="http://www.idsia.ch/~meier/">Ueli Meier</a></li>
|
||
<li><a href="http://vincent.vanhoucke.com">Vincent Vanhoucke</a></li>
|
||
<li><a href="http://www.cs.toronto.edu/~vmnih/">Volodymyr Mnih</a></li>
|
||
<li><a href="http://yann.lecun.com/">Yann LeCun</a></li>
|
||
<li><a href="http://www.cs.toronto.edu/~tang/">Yichuan Tang</a></li>
|
||
<li><a
|
||
href="http://www.iro.umontreal.ca/~bengioy/yoshua_en/index.html">Yoshua
|
||
Bengio</a></li>
|
||
<li><a href="http://yota.ro/">Yotaro Kubo</a></li>
|
||
<li><a href="http://ai.stanford.edu/~wzou">Youzhi (Will) Zou</a></li>
|
||
<li><a href="http://vision.stanford.edu/feifeili">Fei-Fei Li</a></li>
|
||
<li><a href="https://research.google.com/pubs/105214.html">Ian
|
||
Goodfellow</a></li>
|
||
<li><a href="http://www.site.uottawa.ca/~laganier/">Robert
|
||
Laganière</a></li>
|
||
<li><a href="http://www.ayyucekizrak.com/">Merve Ayyüce Kızrak</a></li>
|
||
</ol>
|
||
<h3 id="websites">Websites</h3>
|
||
<ol type="1">
|
||
<li><a href="http://deeplearning.net/">deeplearning.net</a></li>
|
||
<li><a
|
||
href="http://deeplearning.stanford.edu/">deeplearning.stanford.edu</a></li>
|
||
<li><a href="http://nlp.stanford.edu/">nlp.stanford.edu</a></li>
|
||
<li><a
|
||
href="http://www.ai-junkie.com/ann/evolved/nnt1.html">ai-junkie.com</a></li>
|
||
<li><a
|
||
href="http://cs.brown.edu/research/ai/">cs.brown.edu/research/ai</a></li>
|
||
<li><a href="http://www.eecs.umich.edu/ai/">eecs.umich.edu/ai</a></li>
|
||
<li><a
|
||
href="http://www.cs.utexas.edu/users/ai-lab/">cs.utexas.edu/users/ai-lab</a></li>
|
||
<li><a
|
||
href="http://www.cs.washington.edu/research/ai/">cs.washington.edu/research/ai</a></li>
|
||
<li><a href="http://www.aiai.ed.ac.uk/">aiai.ed.ac.uk</a></li>
|
||
<li><a href="http://www-aig.jpl.nasa.gov/">www-aig.jpl.nasa.gov</a></li>
|
||
<li><a href="http://www.csail.mit.edu/">csail.mit.edu</a></li>
|
||
<li><a
|
||
href="http://cgi.cse.unsw.edu.au/~aishare/">cgi.cse.unsw.edu.au/~aishare</a></li>
|
||
<li><a
|
||
href="http://www.cs.rochester.edu/research/ai/">cs.rochester.edu/research/ai</a></li>
|
||
<li><a href="http://www.ai.sri.com/">ai.sri.com</a></li>
|
||
<li><a href="http://www.isi.edu/AI/isd.htm">isi.edu/AI/isd.htm</a></li>
|
||
<li><a
|
||
href="http://www.nrl.navy.mil/itd/aic/">nrl.navy.mil/itd/aic</a></li>
|
||
<li><a
|
||
href="http://hips.seas.harvard.edu/">hips.seas.harvard.edu</a></li>
|
||
<li><a href="http://aiweekly.co">AI Weekly</a></li>
|
||
<li><a href="http://statistics.ucla.edu/">stat.ucla.edu</a></li>
|
||
<li><a
|
||
href="http://deeplearning.cs.toronto.edu/i2t">deeplearning.cs.toronto.edu</a></li>
|
||
<li><a
|
||
href="http://jeffdonahue.com/lrcn/">jeffdonahue.com/lrcn/</a></li>
|
||
<li><a href="http://www.visualqa.org/">visualqa.org</a></li>
|
||
<li><a
|
||
href="https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/">www.mpi-inf.mpg.de/departments/computer-vision…</a></li>
|
||
<li><a href="http://news.startup.ml/">Deep Learning News</a></li>
|
||
<li><a href="https://medium.com/@ageitgey/">Machine Learning is Fun!
|
||
Adam Geitgey’s Blog</a></li>
|
||
<li><a href="http://yerevann.com/a-guide-to-deep-learning/">Guide to
|
||
Machine Learning</a></li>
|
||
<li><a href="https://spandan-madan.github.io/DeepLearningProject/">Deep
|
||
Learning for Beginners</a></li>
|
||
<li><a href="https://machinelearningmastery.com/blog/">Machine Learning
|
||
Mastery blog</a></li>
|
||
<li><a href="https://ml-compiled.readthedocs.io/en/latest/">ML
|
||
Compiled</a></li>
|
||
<li><a
|
||
href="https://hackr.io/tutorials/learn-artificial-intelligence-ai">Programming
|
||
Community Curated Resources</a></li>
|
||
<li><a
|
||
href="https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/">A
|
||
Beginner’s Guide To Understanding Convolutional Neural Networks</a></li>
|
||
<li><a href="http://ahmedbesbes.com">ahmedbesbes.com</a></li>
|
||
<li><a href="https://amitness.com/">amitness.com</a></li>
|
||
<li><a href="https://theaisummer.com/">AI Summer</a></li>
|
||
<li><a href="https://aihub.org/">AI Hub - supported by AAAI,
|
||
NeurIPS</a></li>
|
||
<li><a href="https://www.catalyzeX.com">CatalyzeX: Machine Learning Hub
|
||
for Builders and Makers</a></li>
|
||
<li><a href="https://theepiccode.com/">The Epic Code</a></li>
|
||
<li><a href="https://allainews.com/">all AI news</a></li>
|
||
</ol>
|
||
<h3 id="datasets">Datasets</h3>
|
||
<ol type="1">
|
||
<li><a href="http://yann.lecun.com/exdb/mnist/">MNIST</a> Handwritten
|
||
digits</li>
|
||
<li><a href="http://ufldl.stanford.edu/housenumbers/">Google House
|
||
Numbers</a> from street view</li>
|
||
<li><a href="http://www.cs.toronto.edu/~kriz/cifar.html">CIFAR-10 and
|
||
CIFAR-100</a></li>
|
||
<li><a href="http://www.image-net.org/">IMAGENET</a></li>
|
||
<li><a href="http://groups.csail.mit.edu/vision/TinyImages/">Tiny
|
||
Images</a> 80 Million tiny images6.<br />
|
||
</li>
|
||
<li><a
|
||
href="https://yahooresearch.tumblr.com/post/89783581601/one-hundred-million-creative-commons-flickr-images">Flickr
|
||
Data</a> 100 Million Yahoo dataset</li>
|
||
<li><a
|
||
href="http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/">Berkeley
|
||
Segmentation Dataset 500</a></li>
|
||
<li><a href="http://archive.ics.uci.edu/ml/">UC Irvine Machine Learning
|
||
Repository</a></li>
|
||
<li><a
|
||
href="http://nlp.cs.illinois.edu/HockenmaierGroup/Framing_Image_Description/KCCA.html">Flickr
|
||
8k</a></li>
|
||
<li><a href="http://shannon.cs.illinois.edu/DenotationGraph/">Flickr
|
||
30k</a></li>
|
||
<li><a href="http://mscoco.org/home/">Microsoft COCO</a></li>
|
||
<li><a href="http://www.visualqa.org/">VQA</a></li>
|
||
<li><a href="http://www.cs.toronto.edu/~mren/imageqa/data/cocoqa/">Image
|
||
QA</a></li>
|
||
<li><a href="http://www.uk.research.att.com/facedatabase.html">AT&T
|
||
Laboratories Cambridge face database</a></li>
|
||
<li><a href="http://xtreme.gsfc.nasa.gov">AVHRR Pathfinder</a></li>
|
||
<li><a href="http://www.anc.ed.ac.uk/~amos/afreightdata.html">Air
|
||
Freight</a> - The Air Freight data set is a ray-traced image sequence
|
||
along with ground truth segmentation based on textural characteristics.
|
||
(455 images + GT, each 160x120 pixels). (Formats: PNG)<br />
|
||
</li>
|
||
<li><a href="http://www.science.uva.nl/~aloi/">Amsterdam Library of
|
||
Object Images</a> - ALOI is a color image collection of one-thousand
|
||
small objects, recorded for scientific purposes. In order to capture the
|
||
sensory variation in object recordings, we systematically varied viewing
|
||
angle, illumination angle, and illumination color for each object, and
|
||
additionally captured wide-baseline stereo images. We recorded over a
|
||
hundred images of each object, yielding a total of 110,250 images for
|
||
the collection. (Formats: png)</li>
|
||
<li><a href="http://www.imm.dtu.dk/~aam/">Annotated face, hand, cardiac
|
||
& meat images</a> - Most images & annotations are supplemented
|
||
by various ASM/AAM analyses using the AAM-API. (Formats: bmp,asf)</li>
|
||
<li><a href="http://www.imm.dtu.dk/image/">Image Analysis and Computer
|
||
Graphics</a><br />
|
||
</li>
|
||
<li><a href="http://www.cog.brown.edu/~tarr/stimuli.html">Brown
|
||
University Stimuli</a> - A variety of datasets including geons, objects,
|
||
and “greebles”. Good for testing recognition algorithms. (Formats:
|
||
pict)</li>
|
||
<li><a href="http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/">CAVIAR
|
||
video sequences of mall and public space behavior</a> - 90K video frames
|
||
in 90 sequences of various human activities, with XML ground truth of
|
||
detection and behavior classification (Formats: MPEG2 & JPEG)</li>
|
||
<li><a href="http://www.ipab.inf.ed.ac.uk/mvu/">Machine Vision
|
||
Unit</a></li>
|
||
<li><a href="http://www.cs.waikato.ac.nz/~singlis/ccitt.html">CCITT Fax
|
||
standard images</a> - 8 images (Formats: gif)</li>
|
||
<li><a href="cil-ster.html">CMU CIL’s Stereo Data with Ground Truth</a>
|
||
- 3 sets of 11 images, including color tiff images with
|
||
spectroradiometry (Formats: gif, tiff)</li>
|
||
<li><a href="http://www.ri.cmu.edu/projects/project_418.html">CMU PIE
|
||
Database</a> - A database of 41,368 face images of 68 people captured
|
||
under 13 poses, 43 illuminations conditions, and with 4 different
|
||
expressions.</li>
|
||
<li><a href="http://www.ius.cs.cmu.edu/idb/">CMU VASC Image Database</a>
|
||
- Images, sequences, stereo pairs (thousands of images) (Formats: Sun
|
||
Rasterimage)</li>
|
||
<li><a
|
||
href="http://www.vision.caltech.edu/html-files/archive.html">Caltech
|
||
Image Database</a> - about 20 images - mostly top-down views of small
|
||
objects and toys. (Formats: GIF)</li>
|
||
<li><a href="http://www.cs.columbia.edu/CAVE/curet/">Columbia-Utrecht
|
||
Reflectance and Texture Database</a> - Texture and reflectance
|
||
measurements for over 60 samples of 3D texture, observed with over 200
|
||
different combinations of viewing and illumination directions. (Formats:
|
||
bmp)</li>
|
||
<li><a href="http://www.cs.sfu.ca/~colour/data/index.html">Computational
|
||
Colour Constancy Data</a> - A dataset oriented towards computational
|
||
color constancy, but useful for computer vision in general. It includes
|
||
synthetic data, camera sensor data, and over 700 images. (Formats:
|
||
tiff)</li>
|
||
<li><a href="http://www.cs.sfu.ca/~colour/">Computational Vision
|
||
Lab</a></li>
|
||
<li><a
|
||
href="http://www.cs.washington.edu/research/imagedatabase/groundtruth/">Content-based
|
||
image retrieval database</a> - 11 sets of color images for testing
|
||
algorithms for content-based retrieval. Most sets have a description
|
||
file with names of objects in each image. (Formats: jpg)</li>
|
||
<li><a
|
||
href="http://www.cs.washington.edu/research/imagedatabase/">Efficient
|
||
Content-based Retrieval Group</a></li>
|
||
<li><a
|
||
href="http://ls7-www.cs.uni-dortmund.de/~peters/pages/research/modeladaptsys/modeladaptsys_vba_rov.html">Densely
|
||
Sampled View Spheres</a> - Densely sampled view spheres - upper half of
|
||
the view sphere of two toy objects with 2500 images each. (Formats:
|
||
tiff)</li>
|
||
<li><a href="http://ls7-www.cs.uni-dortmund.de/">Computer Science VII
|
||
(Graphical Systems)</a></li>
|
||
<li><a
|
||
href="https://web-beta.archive.org/web/20011216051535/vision.psych.umn.edu/www/kersten-lab/demos/digitalembryo.html">Digital
|
||
Embryos</a> - Digital embryos are novel objects which may be used to
|
||
develop and test object recognition systems. They have an organic
|
||
appearance. (Formats: various formats are available on request)</li>
|
||
<li><a
|
||
href="http://vision.psych.umn.edu/users/kersten//kersten-lab/kersten-lab.html">Univerity
|
||
of Minnesota Vision Lab</a></li>
|
||
<li><a href="http://www.gastrointestinalatlas.com">El Salvador Atlas of
|
||
Gastrointestinal VideoEndoscopy</a> - Images and Videos of his-res of
|
||
studies taken from Gastrointestinal Video endoscopy. (Formats: jpg, mpg,
|
||
gif)</li>
|
||
<li><a
|
||
href="http://sting.cycollege.ac.cy/~alanitis/fgnetaging/index.htm">FG-NET
|
||
Facial Aging Database</a> - Database contains 1002 face images showing
|
||
subjects at different ages. (Formats: jpg)</li>
|
||
<li><a href="http://bias.csr.unibo.it/fvc2000/">FVC2000 Fingerprint
|
||
Databases</a> - FVC2000 is the First International Competition for
|
||
Fingerprint Verification Algorithms. Four fingerprint databases
|
||
constitute the FVC2000 benchmark (3520 fingerprints in all).</li>
|
||
<li><a href="http://biolab.csr.unibo.it/home.asp">Biometric Systems
|
||
Lab</a> - University of Bologna</li>
|
||
<li><a href="http://www.fg-net.org">Face and Gesture images and image
|
||
sequences</a> - Several image datasets of faces and gestures that are
|
||
ground truth annotated for benchmarking</li>
|
||
<li><a
|
||
href="http://www-i6.informatik.rwth-aachen.de/~dreuw/database.html">German
|
||
Fingerspelling Database</a> - The database contains 35 gestures and
|
||
consists of 1400 image sequences that contain gestures of 20 different
|
||
persons recorded under non-uniform daylight lighting conditions.
|
||
(Formats: mpg,jpg)<br />
|
||
</li>
|
||
<li><a href="http://www-i6.informatik.rwth-aachen.de/">Language
|
||
Processing and Pattern Recognition</a></li>
|
||
<li><a href="http://hlab.phys.rug.nl/archive.html">Groningen Natural
|
||
Image Database</a> - 4000+ 1536x1024 (16 bit) calibrated outdoor images
|
||
(Formats: homebrew)</li>
|
||
<li><a href="http://www.icg.tu-graz.ac.at/~schindler/Data">ICG Testhouse
|
||
sequence</a> - 2 turntable sequences from different viewing heights, 36
|
||
images each, resolution 1000x750, color (Formats: PPM)</li>
|
||
<li><a href="http://www.icg.tu-graz.ac.at">Institute of Computer
|
||
Graphics and Vision</a></li>
|
||
<li><a href="http://www.ien.it/is/vislib/">IEN Image Library</a> - 1000+
|
||
images, mostly outdoor sequences (Formats: raw, ppm)<br />
|
||
</li>
|
||
<li><a href="http://www-rocq.inria.fr/~tarel/syntim/images.html">INRIA’s
|
||
Syntim images database</a> - 15 color image of simple objects (Formats:
|
||
gif)</li>
|
||
<li><a href="http://www.inria.fr/">INRIA</a></li>
|
||
<li><a href="http://www-rocq.inria.fr/~tarel/syntim/paires.html">INRIA’s
|
||
Syntim stereo databases</a> - 34 calibrated color stereo pairs (Formats:
|
||
gif)</li>
|
||
<li><a
|
||
href="http://www.ece.ncsu.edu/imaging/Archives/ImageDataBase/index.html">Image
|
||
Analysis Laboratory</a> - Images obtained from a variety of imaging
|
||
modalities – raw CFA images, range images and a host of “medical
|
||
images”. (Formats: homebrew)</li>
|
||
<li><a href="http://www.ece.ncsu.edu/imaging">Image Analysis
|
||
Laboratory</a></li>
|
||
<li><a href="http://www.prip.tuwien.ac.at/prip/image.html">Image
|
||
Database</a> - An image database including some textures<br />
|
||
</li>
|
||
<li><a href="http://www.mis.atr.co.jp/~mlyons/jaffe.html">JAFFE Facial
|
||
Expression Image Database</a> - The JAFFE database consists of 213
|
||
images of Japanese female subjects posing 6 basic facial expressions as
|
||
well as a neutral pose. Ratings on emotion adjectives are also
|
||
available, free of charge, for research purposes. (Formats: TIFF
|
||
Grayscale images.)</li>
|
||
<li><a href="http://www.mic.atr.co.jp/">ATR Research, Kyoto,
|
||
Japan</a></li>
|
||
<li><a href="ftp://ftp.vislist.com/IMAGERY/JISCT/">JISCT Stereo
|
||
Evaluation</a> - 44 image pairs. These data have been used in an
|
||
evaluation of stereo analysis, as described in the April 1993 ARPA Image
|
||
Understanding Workshop paper ``The JISCT Stereo Evaluation’’ by
|
||
R.C.Bolles, H.H.Baker, and M.J.Hannah, 263–274 (Formats: SSI)</li>
|
||
<li><a
|
||
href="https://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html">MIT
|
||
Vision Texture</a> - Image archive (100+ images) (Formats: ppm)</li>
|
||
<li><a href="ftp://whitechapel.media.mit.edu/pub/images">MIT face images
|
||
and more</a> - hundreds of images (Formats: homebrew)</li>
|
||
<li><a href="http://vision.cse.psu.edu/book/testbed/images/">Machine
|
||
Vision</a> - Images from the textbook by Jain, Kasturi, Schunck (20+
|
||
images) (Formats: GIF TIFF)</li>
|
||
<li><a
|
||
href="http://marathon.csee.usf.edu/Mammography/Database.html">Mammography
|
||
Image Databases</a> - 100 or more images of mammograms with ground
|
||
truth. Additional images available by request, and links to several
|
||
other mammography databases are provided. (Formats: homebrew)</li>
|
||
<li><a
|
||
href="ftp://ftp.cps.msu.edu/pub/prip">ftp://ftp.cps.msu.edu/pub/prip</a>
|
||
- many images (Formats: unknown)</li>
|
||
<li><a href="http://www.middlebury.edu/stereo/data.html">Middlebury
|
||
Stereo Data Sets with Ground Truth</a> - Six multi-frame stereo data
|
||
sets of scenes containing planar regions. Each data set contains 9 color
|
||
images and subpixel-accuracy ground-truth data. (Formats: ppm)</li>
|
||
<li><a href="http://www.middlebury.edu/stereo">Middlebury Stereo Vision
|
||
Research Page</a> - Middlebury College</li>
|
||
<li><a href="http://ltpwww.gsfc.nasa.gov/MODIS/MAS/">Modis Airborne
|
||
simulator, Gallery and data set</a> - High Altitude Imagery from around
|
||
the world for environmental modeling in support of NASA EOS program
|
||
(Formats: JPG and HDF)</li>
|
||
<li><a href="ftp://sequoyah.ncsl.nist.gov/pub/databases/data">NIST
|
||
Fingerprint and handwriting</a> - datasets - thousands of images
|
||
(Formats: unknown)</li>
|
||
<li><a href="ftp://ftp.cs.columbia.edu/jpeg/other/uuencoded">NIST
|
||
Fingerprint data</a> - compressed multipart uuencoded tar file</li>
|
||
<li><a
|
||
href="http://www.nlm.nih.gov/research/visible/visible_human.html">NLM
|
||
HyperDoc Visible Human Project</a> - Color, CAT and MRI image samples -
|
||
over 30 images (Formats: jpeg)</li>
|
||
<li><a href="http://www.designrepository.org">National Design
|
||
Repository</a> - Over 55,000 3D CAD and solid models of (mostly)
|
||
mechanical/machined engineering designs. (Formats:
|
||
gif,vrml,wrl,stp,sat)</li>
|
||
<li><a href="http://gicl.mcs.drexel.edu">Geometric & Intelligent
|
||
Computing Laboratory</a></li>
|
||
<li><a href="http://eewww.eng.ohio-state.edu/~flynn/3DDB/Models/">OSU
|
||
(MSU) 3D Object Model Database</a> - several sets of 3D object models
|
||
collected over several years to use in object recognition research
|
||
(Formats: homebrew, vrml)</li>
|
||
<li><a href="http://eewww.eng.ohio-state.edu/~flynn/3DDB/RID/">OSU
|
||
(MSU/WSU) Range Image Database</a> - Hundreds of real and synthetic
|
||
images (Formats: gif, homebrew)</li>
|
||
<li><a
|
||
href="http://sampl.eng.ohio-state.edu/~sampl/database.htm">OSU/SAMPL
|
||
Database: Range Images, 3D Models, Stills, Motion Sequences</a> - Over
|
||
1000 range images, 3D object models, still images and motion sequences
|
||
(Formats: gif, ppm, vrml, homebrew)</li>
|
||
<li><a href="http://sampl.eng.ohio-state.edu">Signal Analysis and
|
||
Machine Perception Laboratory</a></li>
|
||
<li><a
|
||
href="http://www.cs.otago.ac.nz/research/vision/Research/OpticalFlow/opticalflow.html">Otago
|
||
Optical Flow Evaluation Sequences</a> - Synthetic and real sequences
|
||
with machine-readable ground truth optical flow fields, plus tools to
|
||
generate ground truth for new sequences. (Formats:
|
||
ppm,tif,homebrew)</li>
|
||
<li><a
|
||
href="http://www.cs.otago.ac.nz/research/vision/index.html">Vision
|
||
Research Group</a></li>
|
||
<li><a
|
||
href="ftp://ftp.limsi.fr/pub/quenot/opflow/testdata/piv/">ftp://ftp.limsi.fr/pub/quenot/opflow/testdata/piv/</a>
|
||
- Real and synthetic image sequences used for testing a Particle Image
|
||
Velocimetry application. These images may be used for the test of
|
||
optical flow and image matching algorithms. (Formats: pgm (raw))</li>
|
||
<li><a
|
||
href="http://www.limsi.fr/Recherche/IMM/PageIMM.html">LIMSI-CNRS/CHM/IMM/vision</a></li>
|
||
<li><a href="http://www.limsi.fr/">LIMSI-CNRS</a></li>
|
||
<li><a
|
||
href="http://www.taurusstudio.net/research/pmtexdb/index.htm">Photometric
|
||
3D Surface Texture Database</a> - This is the first 3D texture database
|
||
which provides both full real surface rotations and registered
|
||
photometric stereo data (30 textures, 1680 images). (Formats: TIFF)</li>
|
||
<li><a href="http://www.cee.hw.ac.uk/~mtc/sofa">SEQUENCES FOR OPTICAL
|
||
FLOW ANALYSIS (SOFA)</a> - 9 synthetic sequences designed for testing
|
||
motion analysis applications, including full ground truth of motion and
|
||
camera parameters. (Formats: gif)</li>
|
||
<li><a href="http://www.cee.hw.ac.uk/~mtc/research.html">Computer Vision
|
||
Group</a></li>
|
||
<li><a
|
||
href="http://www.nada.kth.se/~zucch/CAMERA/PUB/seq.html">Sequences for
|
||
Flow Based Reconstruction</a> - synthetic sequence for testing structure
|
||
from motion algorithms (Formats: pgm)</li>
|
||
<li><a href="http://www-dbv.cs.uni-bonn.de/stereo_data/">Stereo Images
|
||
with Ground Truth Disparity and Occlusion</a> - a small set of synthetic
|
||
images of a hallway with varying amounts of noise added. Use these
|
||
images to benchmark your stereo algorithm. (Formats: raw, viff (khoros),
|
||
or tiff)</li>
|
||
<li><a href="http://range.informatik.uni-stuttgart.de">Stuttgart Range
|
||
Image Database</a> - A collection of synthetic range images taken from
|
||
high-resolution polygonal models available on the web (Formats:
|
||
homebrew)</li>
|
||
<li><a
|
||
href="http://www.informatik.uni-stuttgart.de/ipvr/bv/bv_home_engl.html">Department
|
||
Image Understanding</a></li>
|
||
<li><a href="http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html">The
|
||
AR Face Database</a> - Contains over 4,000 color images corresponding to
|
||
126 people’s faces (70 men and 56 women). Frontal views with variations
|
||
in facial expressions, illumination, and occlusions. (Formats: RAW (RGB
|
||
24-bit))</li>
|
||
<li><a href="http://rvl.www.ecn.purdue.edu/RVL/">Purdue Robot Vision
|
||
Lab</a></li>
|
||
<li><a href="http://web.mit.edu/torralba/www/database.html">The
|
||
MIT-CSAIL Database of Objects and Scenes</a> - Database for testing
|
||
multiclass object detection and scene recognition algorithms. Over
|
||
72,000 images with 2873 annotated frames. More than 50 annotated object
|
||
classes. (Formats: jpg)</li>
|
||
<li><a href="http://rvl1.ecn.purdue.edu/RVL/specularity_database/">The
|
||
RVL SPEC-DB (SPECularity DataBase)</a> - A collection of over 300 real
|
||
images of 100 objects taken under three different illuminaiton
|
||
conditions (Diffuse/Ambient/Directed). – Use these images to test
|
||
algorithms for detecting and compensating specular highlights in color
|
||
images. (Formats: TIFF )</li>
|
||
<li><a href="http://rvl1.ecn.purdue.edu/RVL/">Robot Vision
|
||
Laboratory</a></li>
|
||
<li><a href="http://xm2vtsdb.ee.surrey.ac.uk">The Xm2vts database</a> -
|
||
The XM2VTSDB contains four digital recordings of 295 people taken over a
|
||
period of four months. This database contains both image and video data
|
||
of faces.</li>
|
||
<li><a href="http://www.ee.surrey.ac.uk/Research/CVSSP">Centre for
|
||
Vision, Speech and Signal Processing</a></li>
|
||
<li><a href="http://i21www.ira.uka.de/image_sequences">Traffic Image
|
||
Sequences and ‘Marbled Block’ Sequence</a> - thousands of frames of
|
||
digitized traffic image sequences as well as the ‘Marbled Block’
|
||
sequence (grayscale images) (Formats: GIF)</li>
|
||
<li><a href="http://i21www.ira.uka.de">IAKS/KOGS</a></li>
|
||
<li><a href="ftp://ftp.iam.unibe.ch/pub/Images/FaceImages">U Bern Face
|
||
images</a> - hundreds of images (Formats: Sun rasterfile)</li>
|
||
<li><a href="ftp://freebie.engin.umich.edu/pub/misc/textures">U Michigan
|
||
textures</a> (Formats: compressed raw)</li>
|
||
<li><a href="http://www.ee.oulu.fi/~olli/Projects/Lumber.Grading.html">U
|
||
Oulu wood and knots database</a> - Includes classifications - 1000+
|
||
color images (Formats: ppm)</li>
|
||
<li><a href="http://vision.doc.ntu.ac.uk/datasets/UCID/ucid.html">UCID -
|
||
an Uncompressed Colour Image Database</a> - a benchmark database for
|
||
image retrieval with predefined ground truth. (Formats: tiff)</li>
|
||
<li><a href="http://vis-www.cs.umass.edu/~vislib/">UMass Vision Image
|
||
Archive</a> - Large image database with aerial, space, stereo, medical
|
||
images and more. (Formats: homebrew)</li>
|
||
<li><a
|
||
href="ftp://sunsite.unc.edu/pub/academic/computer-science/virtual-reality/3d">UNC’s
|
||
3D image database</a> - many images (Formats: GIF)</li>
|
||
<li><a
|
||
href="http://marathon.csee.usf.edu/range/seg-comp/SegComp.html">USF
|
||
Range Image Data with Segmentation Ground Truth</a> - 80 image sets
|
||
(Formats: Sun rasterimage)</li>
|
||
<li><a
|
||
href="http://www.ee.oulu.fi/research/imag/color/pbfd.html">University of
|
||
Oulu Physics-based Face Database</a> - contains color images of faces
|
||
under different illuminants and camera calibration conditions as well as
|
||
skin spectral reflectance measurements of each person.</li>
|
||
<li><a href="http://www.ee.oulu.fi/mvmp/">Machine Vision and Media
|
||
Processing Unit</a></li>
|
||
<li><a href="http://www.outex.oulu.fi">University of Oulu Texture
|
||
Database</a> - Database of 320 surface textures, each captured under
|
||
three illuminants, six spatial resolutions and nine rotation angles. A
|
||
set of test suites is also provided so that texture segmentation,
|
||
classification, and retrieval algorithms can be tested in a standard
|
||
manner. (Formats: bmp, ras, xv)</li>
|
||
<li><a href="http://www.ee.oulu.fi/mvg">Machine Vision Group</a></li>
|
||
<li><a href="ftp://ftp.uu.net/published/usenix/faces">Usenix face
|
||
database</a> - Thousands of face images from many different sites (circa
|
||
994)</li>
|
||
<li><a
|
||
href="http://www-prima.inrialpes.fr/Prima/hall/view_sphere.html">View
|
||
Sphere Database</a> - Images of 8 objects seen from many different view
|
||
points. The view sphere is sampled using a geodesic with 172
|
||
images/sphere. Two sets for training and testing are available.
|
||
(Formats: ppm)</li>
|
||
<li><a href="http://www-prima.inrialpes.fr/Prima/">PRIMA,
|
||
GRAVIR</a></li>
|
||
<li><a href="ftp://ftp.vislist.com/IMAGERY/">Vision-list Imagery
|
||
Archive</a> - Many images, many formats</li>
|
||
<li><a href="http://www.cs.cmu.edu/~owenc/word.htm">Wiry Object
|
||
Recognition Database</a> - Thousands of images of a cart, ladder, stool,
|
||
bicycle, chairs, and cluttered scenes with ground truth labelings of
|
||
edges and regions. (Formats: jpg)</li>
|
||
<li><a href="http://www.cs.cmu.edu/0.000000E+003dvision/">3D Vision
|
||
Group</a></li>
|
||
<li><a href="http://cvc.yale.edu/projects/yalefaces/yalefaces.html">Yale
|
||
Face Database</a> - 165 images (15 individuals) with different lighting,
|
||
expression, and occlusion configurations.</li>
|
||
<li><a
|
||
href="http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html">Yale Face
|
||
Database B</a> - 5760 single light source images of 10 subjects each
|
||
seen under 576 viewing conditions (9 poses x 64 illumination
|
||
conditions). (Formats: PGM)</li>
|
||
<li><a href="http://cvc.yale.edu/">Center for Computational Vision and
|
||
Control</a></li>
|
||
<li><a href="https://github.com/deepmind/rc-data">DeepMind QA Corpus</a>
|
||
- Textual QA corpus from CNN and DailyMail. More than 300K documents in
|
||
total. <a href="http://arxiv.org/abs/1506.03340">Paper</a> for
|
||
reference.</li>
|
||
<li><a href="https://research.google.com/youtube8m/">YouTube-8M
|
||
Dataset</a> - YouTube-8M is a large-scale labeled video dataset that
|
||
consists of 8 million YouTube video IDs and associated labels from a
|
||
diverse vocabulary of 4800 visual entities.</li>
|
||
<li><a href="https://github.com/openimages/dataset">Open Images
|
||
dataset</a> - Open Images is a dataset of ~9 million URLs to images that
|
||
have been annotated with labels spanning over 6000 categories.</li>
|
||
<li><a
|
||
href="http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#devkit">Visual
|
||
Object Classes Challenge 2012 (VOC2012)</a> - VOC2012 dataset containing
|
||
12k images with 20 annotated classes for object detection and
|
||
segmentation.</li>
|
||
<li><a
|
||
href="https://github.com/zalandoresearch/fashion-mnist">Fashion-MNIST</a>
|
||
- MNIST like fashion product dataset consisting of a training set of
|
||
60,000 examples and a test set of 10,000 examples. Each example is a
|
||
28x28 grayscale image, associated with a label from 10 classes.</li>
|
||
<li><a
|
||
href="http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html">Large-scale
|
||
Fashion (DeepFashion) Database</a> - Contains over 800,000 diverse
|
||
fashion images. Each image in this dataset is labeled with 50
|
||
categories, 1,000 descriptive attributes, bounding box and clothing
|
||
landmarks</li>
|
||
<li><a
|
||
href="https://github.com/several27/FakeNewsCorpus">FakeNewsCorpus</a> -
|
||
Contains about 10 million news articles classified using <a
|
||
href="http://opensources.co">opensources.co</a> types</li>
|
||
<li><a href="https://github.com/bupt-ai-cz/LLVIP">LLVIP</a> - 15488
|
||
visible-infrared paired images (30976 images) for low-light vision
|
||
research, <a
|
||
href="https://bupt-ai-cz.github.io/LLVIP/">Project_Page</a></li>
|
||
<li><a href="https://github.com/bupt-ai-cz/Meta-SelfLearning">MSDA</a> -
|
||
Over over 5 million images from 5 different domains for multi-source
|
||
ocr/text recognition DA research, <a
|
||
href="https://bupt-ai-cz.github.io/Meta-SelfLearning/">Project_Page</a></li>
|
||
<li><a href="https://data.mendeley.com/datasets/57zpx667y9/2">SANAD:
|
||
Single-Label Arabic News Articles Dataset for Automatic Text
|
||
Categorization</a> - SANAD Dataset is a large collection of Arabic news
|
||
articles that can be used in different Arabic NLP tasks such as Text
|
||
Classification and Word Embedding. The articles were collected using
|
||
Python scripts written specifically for three popular news websites:
|
||
AlKhaleej, AlArabiya and Akhbarona.</li>
|
||
<li><a href="https://referit3d.github.io">Referit3D</a> - Two
|
||
large-scale and complementary visio-linguistic datasets (aka Nr3D and
|
||
Sr3D) for identifying fine-grained 3D objects in ScanNet scenes. Nr3D
|
||
contains 41.5K natural, free-form utterances, and Sr3d contains 83.5K
|
||
template-based utterances.</li>
|
||
<li><a href="https://rajpurkar.github.io/SQuAD-explorer/">SQuAD</a> -
|
||
Stanford released ~100,000 English QA pairs and ~50,000 unanswerable
|
||
questions</li>
|
||
<li><a href="https://fquad.illuin.tech/">FQuAD</a> - ~25,000 French QA
|
||
pairs released by Illuin Technology</li>
|
||
<li><a href="https://www.deepset.ai/germanquad">GermanQuAD and
|
||
GermanDPR</a> - deepset released ~14,000 German QA pairs</li>
|
||
<li><a href="https://github.com/annnyway/QA-for-Russian">SberQuAD</a> -
|
||
Sberbank released ~90,000 Russian QA pairs</li>
|
||
<li><a href="http://artemisdataset.org/">ArtEmis</a> - Contains 450K
|
||
affective annotations of emotional responses and linguistic explanations
|
||
for 80,000 artworks of WikiArt.</li>
|
||
</ol>
|
||
<h3 id="conferences">Conferences</h3>
|
||
<ol type="1">
|
||
<li><a href="http://cvpr2018.thecvf.com">CVPR - IEEE Conference on
|
||
Computer Vision and Pattern Recognition</a></li>
|
||
<li><a href="http://celweb.vuse.vanderbilt.edu/aamas18/">AAMAS -
|
||
International Joint Conference on Autonomous Agents and Multiagent
|
||
Systems</a></li>
|
||
<li><a href="https://www.ijcai-18.org/">IJCAI - International Joint
|
||
Conference on Artificial Intelligence</a></li>
|
||
<li><a href="https://icml.cc">ICML - International Conference on Machine
|
||
Learning</a></li>
|
||
<li><a href="http://www.ecmlpkdd2018.org">ECML - European Conference on
|
||
Machine Learning</a></li>
|
||
<li><a href="http://www.kdd.org/kdd2018/">KDD - Knowledge Discovery and
|
||
Data Mining</a></li>
|
||
<li><a href="https://nips.cc/Conferences/2018">NIPS - Neural Information
|
||
Processing Systems</a></li>
|
||
<li><a
|
||
href="https://conferences.oreilly.com/artificial-intelligence/ai-ny">O’Reilly
|
||
AI Conference - O’Reilly Artificial Intelligence Conference</a></li>
|
||
<li><a
|
||
href="https://www.waset.org/conference/2018/07/istanbul/ICDM">ICDM -
|
||
International Conference on Data Mining</a></li>
|
||
<li><a href="http://iccv2017.thecvf.com">ICCV - International Conference
|
||
on Computer Vision</a></li>
|
||
<li><a href="https://www.aaai.org">AAAI - Association for the
|
||
Advancement of Artificial Intelligence</a></li>
|
||
<li><a href="https://montrealaisymposium.wordpress.com/">MAIS - Montreal
|
||
AI Symposium</a></li>
|
||
</ol>
|
||
<h3 id="frameworks">Frameworks</h3>
|
||
<ol type="1">
|
||
<li><a href="http://caffe.berkeleyvision.org/">Caffe</a><br />
|
||
</li>
|
||
<li><a href="http://torch.ch/">Torch7</a></li>
|
||
<li><a href="http://deeplearning.net/software/theano/">Theano</a></li>
|
||
<li><a
|
||
href="https://code.google.com/p/cuda-convnet2/">cuda-convnet</a></li>
|
||
<li><a href="https://github.com/karpathy/convnetjs">convetjs</a></li>
|
||
<li><a href="http://libccv.org/doc/doc-convnet/">Ccv</a></li>
|
||
<li><a href="http://numenta.org/nupic.html">NuPIC</a></li>
|
||
<li><a href="http://deeplearning4j.org/">DeepLearning4J</a></li>
|
||
<li><a href="https://github.com/harthur/brain">Brain</a></li>
|
||
<li><a
|
||
href="https://github.com/rasmusbergpalm/DeepLearnToolbox">DeepLearnToolbox</a></li>
|
||
<li><a
|
||
href="https://github.com/nitishsrivastava/deepnet">Deepnet</a></li>
|
||
<li><a href="https://github.com/andersbll/deeppy">Deeppy</a></li>
|
||
<li><a
|
||
href="https://github.com/ivan-vasilev/neuralnetworks">JavaNN</a></li>
|
||
<li><a href="https://github.com/hannes-brt/hebel">hebel</a></li>
|
||
<li><a href="https://github.com/pluskid/Mocha.jl">Mocha.jl</a></li>
|
||
<li><a href="https://github.com/guoding83128/OpenDL">OpenDL</a></li>
|
||
<li><a href="https://developer.nvidia.com/cuDNN">cuDNN</a></li>
|
||
<li><a
|
||
href="http://melisgl.github.io/mgl-pax-world/mgl-manual.html">MGL</a></li>
|
||
<li><a href="https://github.com/denizyuret/Knet.jl">Knet.jl</a></li>
|
||
<li><a href="https://github.com/NVIDIA/DIGITS">Nvidia DIGITS - a web app
|
||
based on Caffe</a></li>
|
||
<li><a href="https://github.com/NervanaSystems/neon">Neon - Python based
|
||
Deep Learning Framework</a></li>
|
||
<li><a href="http://keras.io">Keras - Theano based Deep Learning
|
||
Library</a></li>
|
||
<li><a href="http://chainer.org/">Chainer - A flexible framework of
|
||
neural networks for deep learning</a></li>
|
||
<li><a href="http://rnnlm.org/">RNNLM Toolkit</a></li>
|
||
<li><a href="http://sourceforge.net/p/rnnl/wiki/Home/">RNNLIB - A
|
||
recurrent neural network library</a></li>
|
||
<li><a href="https://github.com/karpathy/char-rnn">char-rnn</a></li>
|
||
<li><a href="https://github.com/vlfeat/matconvnet">MatConvNet: CNNs for
|
||
MATLAB</a></li>
|
||
<li><a href="https://github.com/dmlc/minerva">Minerva - a fast and
|
||
flexible tool for deep learning on multi-GPU</a></li>
|
||
<li><a href="https://github.com/IDSIA/brainstorm">Brainstorm - Fast,
|
||
flexible and fun neural networks.</a></li>
|
||
<li><a href="https://github.com/tensorflow/tensorflow">Tensorflow - Open
|
||
source software library for numerical computation using data flow
|
||
graphs</a></li>
|
||
<li><a href="https://github.com/Microsoft/DMTK">DMTK - Microsoft
|
||
Distributed Machine Learning Tookit</a></li>
|
||
<li><a href="https://github.com/google/skflow">Scikit Flow - Simplified
|
||
interface for TensorFlow (mimicking Scikit Learn)</a></li>
|
||
<li><a href="https://github.com/apache/incubator-mxnet">MXnet -
|
||
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning
|
||
framework</a></li>
|
||
<li><a href="https://github.com/Samsung/veles">Veles - Samsung
|
||
Distributed machine learning platform</a></li>
|
||
<li><a href="https://github.com/PrincetonVision/marvin">Marvin - A
|
||
Minimalist GPU-only N-Dimensional ConvNets Framework</a></li>
|
||
<li><a href="http://singa.incubator.apache.org/">Apache SINGA - A
|
||
General Distributed Deep Learning Platform</a></li>
|
||
<li><a href="https://github.com/amznlabs/amazon-dsstne">DSSTNE -
|
||
Amazon’s library for building Deep Learning models</a></li>
|
||
<li><a
|
||
href="https://github.com/tensorflow/models/tree/master/syntaxnet">SyntaxNet
|
||
- Google’s syntactic parser - A TensorFlow dependency library</a></li>
|
||
<li><a href="http://mlpack.org/">mlpack - A scalable Machine Learning
|
||
library</a></li>
|
||
<li><a href="https://github.com/torchnet/torchnet">Torchnet - Torch
|
||
based Deep Learning Library</a></li>
|
||
<li><a href="https://github.com/baidu/paddle">Paddle - PArallel
|
||
Distributed Deep LEarning by Baidu</a></li>
|
||
<li><a href="http://neupy.com">NeuPy - Theano based Python library for
|
||
ANN and Deep Learning</a></li>
|
||
<li><a href="https://github.com/Lasagne/Lasagne">Lasagne - a lightweight
|
||
library to build and train neural networks in Theano</a></li>
|
||
<li><a href="https://github.com/dnouri/nolearn">nolearn - wrappers and
|
||
abstractions around existing neural network libraries, most notably
|
||
Lasagne</a></li>
|
||
<li><a href="https://github.com/deepmind/sonnet">Sonnet - a library for
|
||
constructing neural networks by Google’s DeepMind</a></li>
|
||
<li><a href="https://github.com/pytorch/pytorch">PyTorch - Tensors and
|
||
Dynamic neural networks in Python with strong GPU acceleration</a></li>
|
||
<li><a href="https://github.com/Microsoft/CNTK">CNTK - Microsoft
|
||
Cognitive Toolkit</a></li>
|
||
<li><a href="https://github.com/SerpentAI/SerpentAI">Serpent.AI - Game
|
||
agent framework: Use any video game as a deep learning sandbox</a></li>
|
||
<li><a href="https://github.com/caffe2/caffe2">Caffe2 - A New
|
||
Lightweight, Modular, and Scalable Deep Learning Framework</a></li>
|
||
<li><a href="https://github.com/PAIR-code/deeplearnjs">deeplearn.js -
|
||
Hardware-accelerated deep learning and linear algebra (NumPy) library
|
||
for the web</a></li>
|
||
<li><a href="https://tvm.ai/">TVM - End to End Deep Learning Compiler
|
||
Stack for CPUs, GPUs and specialized accelerators</a></li>
|
||
<li><a href="https://github.com/NervanaSystems/coach">Coach -
|
||
Reinforcement Learning Coach by Intel® AI Lab</a></li>
|
||
<li><a href="https://github.com/albu/albumentations">albumentations - A
|
||
fast and framework agnostic image augmentation library</a></li>
|
||
<li><a href="https://github.com/Neuraxio/Neuraxle">Neuraxle - A
|
||
general-purpose ML pipelining framework</a></li>
|
||
<li><a href="https://github.com/catalyst-team/catalyst">Catalyst:
|
||
High-level utils for PyTorch DL & RL research. It was developed with
|
||
a focus on reproducibility, fast experimentation and code/ideas
|
||
reusing</a></li>
|
||
<li><a href="https://github.com/rlworkgroup/garage">garage - A toolkit
|
||
for reproducible reinforcement learning research</a></li>
|
||
<li><a href="https://github.com/alankbi/detecto">Detecto - Train and run
|
||
object detection models with 5-10 lines of code</a></li>
|
||
<li><a href="https://github.com/benedekrozemberczki/karateclub">Karate
|
||
Club - An unsupervised machine learning library for graph structured
|
||
data</a></li>
|
||
<li><a href="https://github.com/mrdimosthenis/Synapses">Synapses - A
|
||
lightweight library for neural networks that runs anywhere</a></li>
|
||
<li><a href="https://github.com/reinforceio/tensorforce">TensorForce - A
|
||
TensorFlow library for applied reinforcement learning</a></li>
|
||
<li><a href="https://github.com/logicalclocks/hopsworks">Hopsworks - A
|
||
Feature Store for ML and Data-Intensive AI</a></li>
|
||
<li><a href="https://github.com/gojek/feast">Feast - A Feature Store for
|
||
ML for GCP by Gojek/Google</a></li>
|
||
<li><a href="https://github.com/gojek/feast">PyTorch Geometric Temporal
|
||
- Representation learning on dynamic graphs</a></li>
|
||
<li><a href="https://github.com/lightly-ai/lightly">lightly - A computer
|
||
vision framework for self-supervised learning</a></li>
|
||
<li><a href="https://github.com/google/trax">Trax — Deep Learning with
|
||
Clear Code and Speed</a></li>
|
||
<li><a href="https://github.com/google/flax">Flax - a neural network
|
||
ecosystem for JAX that is designed for flexibility</a></li>
|
||
<li><a
|
||
href="https://github.com/Quick-AI/quickvision">QuickVision</a></li>
|
||
<li><a href="https://github.com/hpcaitech/ColossalAI">Colossal-AI - An
|
||
Integrated Large-scale Model Training System with Efficient
|
||
Parallelization Techniques</a></li>
|
||
<li><a href="https://haystack.deepset.ai/docs/intromd">haystack: an
|
||
open-source neural search framework</a></li>
|
||
<li><a href="https://github.com/enlite-ai/maze">Maze</a> -
|
||
Application-oriented deep reinforcement learning framework addressing
|
||
real-world decision problems.</li>
|
||
<li><a href="https://github.com/chncwang/InsNet">InsNet - A neural
|
||
network library for building instance-dependent NLP models with
|
||
padding-free dynamic batching</a></li>
|
||
</ol>
|
||
<h3 id="tools">Tools</h3>
|
||
<ol type="1">
|
||
<li><a href="https://github.com/nebuly-ai/nebullvm">Nebullvm</a> -
|
||
Easy-to-use library to boost deep learning inference leveraging multiple
|
||
deep learning compilers.</li>
|
||
<li><a href="https://github.com/lutzroeder/netron">Netron</a> -
|
||
Visualizer for deep learning and machine learning models</li>
|
||
<li><a href="http://jupyter.org">Jupyter Notebook</a> - Web-based
|
||
notebook environment for interactive computing</li>
|
||
<li><a href="https://github.com/tensorflow/tensorboard">TensorBoard</a>
|
||
- TensorFlow’s Visualization Toolkit</li>
|
||
<li><a
|
||
href="https://www.microsoft.com/en-us/research/project/visual-studio-code-tools-ai/">Visual
|
||
Studio Tools for AI</a> - Develop, debug and deploy deep learning and AI
|
||
solutions</li>
|
||
<li><a href="https://github.com/microsoft/tensorwatch">TensorWatch</a> -
|
||
Debugging and visualization for deep learning</li>
|
||
<li><a href="https://github.com/ml-tooling/ml-workspace">ML
|
||
Workspace</a> - All-in-one web-based IDE for machine learning and data
|
||
science.</li>
|
||
<li><a href="https://github.com/rlworkgroup/dowel">dowel</a> - A little
|
||
logger for machine learning research. Log any object to the console,
|
||
CSVs, TensorBoard, text log files, and more with just one call to
|
||
<code>logger.log()</code></li>
|
||
<li><a href="https://neptune.ai/">Neptune</a> - Lightweight tool for
|
||
experiment tracking and results visualization.</li>
|
||
<li><a
|
||
href="https://chrome.google.com/webstore/detail/code-finder-for-research/aikkeehnlfpamidigaffhfmgbkdeheil">CatalyzeX</a>
|
||
- Browser extension (<a
|
||
href="https://chrome.google.com/webstore/detail/code-finder-for-research/aikkeehnlfpamidigaffhfmgbkdeheil">Chrome</a>
|
||
and <a
|
||
href="https://addons.mozilla.org/en-US/firefox/addon/code-finder-catalyzex/">Firefox</a>)
|
||
that automatically finds and links to code implementations for ML papers
|
||
anywhere online: Google, Twitter, Arxiv, Scholar, etc.</li>
|
||
<li><a href="https://github.com/determined-ai/determined">Determined</a>
|
||
- Deep learning training platform with integrated support for
|
||
distributed training, hyperparameter tuning, smart GPU scheduling,
|
||
experiment tracking, and a model registry.</li>
|
||
<li><a href="https://dagshub.com/">DAGsHub</a> - Community platform for
|
||
Open Source ML – Manage experiments, data & models and create
|
||
collaborative ML projects easily.</li>
|
||
<li><a href="https://github.com/activeloopai/Hub">hub</a> - Fastest
|
||
unstructured dataset management for TensorFlow/PyTorch by activeloop.ai.
|
||
Stream & version-control data. Converts large data into single
|
||
numpy-like array on the cloud, accessible on any machine.</li>
|
||
<li><a href="https://dvc.org/">DVC</a> - DVC is built to make ML models
|
||
shareable and reproducible. It is designed to handle large files, data
|
||
sets, machine learning models, and metrics as well as code.</li>
|
||
<li><a href="https://cml.dev/">CML</a> - CML helps you bring your
|
||
favorite DevOps tools to machine learning.</li>
|
||
<li><a href="https://mlem.ai/">MLEM</a> - MLEM is a tool to easily
|
||
package, deploy and serve Machine Learning models. It seamlessly
|
||
supports a variety of scenarios like real-time serving and batch
|
||
processing.</li>
|
||
<li><a href="https://getmaxim.ai">Maxim AI</a> - Tool for AI Agent
|
||
Simulation, Evaluation & Observability.</li>
|
||
</ol>
|
||
<h3 id="miscellaneous">Miscellaneous</h3>
|
||
<ol type="1">
|
||
<li><a
|
||
href="http://on-demand-gtc.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=shelhamer&searchItems=&sessionTopic=&sessionEvent=4&sessionYear=2014&sessionFormat=&submit=&select=+">Caffe
|
||
Webinar</a></li>
|
||
<li><a
|
||
href="http://meta-guide.com/software-meta-guide/100-best-github-deep-learning/">100
|
||
Best Github Resources in Github for DL</a></li>
|
||
<li><a href="https://code.google.com/p/word2vec/">Word2Vec</a></li>
|
||
<li><a href="https://github.com/tleyden/docker/tree/master/caffe">Caffe
|
||
DockerFile</a></li>
|
||
<li><a
|
||
href="https://github.com/TorontoDeepLearning/convnet">TorontoDeepLEarning
|
||
convnet</a></li>
|
||
<li><a href="https://github.com/clementfarabet/gfx.js">gfx.js</a></li>
|
||
<li><a href="https://github.com/torch/torch7/wiki/Cheatsheet">Torch7
|
||
Cheat sheet</a></li>
|
||
<li><a
|
||
href="http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-864-advanced-natural-language-processing-fall-2005/">Misc
|
||
from MIT’s ‘Advanced Natural Language Processing’ course</a></li>
|
||
<li><a
|
||
href="http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/lecture-notes/">Misc
|
||
from MIT’s ‘Machine Learning’ course</a></li>
|
||
<li><a
|
||
href="http://ocw.mit.edu/courses/brain-and-cognitive-sciences/9-520-a-networks-for-learning-regression-and-classification-spring-2001/">Misc
|
||
from MIT’s ‘Networks for Learning: Regression and Classification’
|
||
course</a></li>
|
||
<li><a
|
||
href="http://ocw.mit.edu/courses/health-sciences-and-technology/hst-723j-neural-coding-and-perception-of-sound-spring-2005/index.htm">Misc
|
||
from MIT’s ‘Neural Coding and Perception of Sound’ course</a></li>
|
||
<li><a
|
||
href="http://www.datasciencecentral.com/profiles/blogs/implementing-a-distributed-deep-learning-network-over-spark">Implementing
|
||
a Distributed Deep Learning Network over Spark</a></li>
|
||
<li><a href="https://github.com/erikbern/deep-pink">A chess AI that
|
||
learns to play chess using deep learning.</a></li>
|
||
<li><a
|
||
href="https://github.com/kristjankorjus/Replicating-DeepMind">Reproducing
|
||
the results of “Playing Atari with Deep Reinforcement Learning” by
|
||
DeepMind</a></li>
|
||
<li><a href="https://github.com/idio/wiki2vec">Wiki2Vec. Getting
|
||
Word2vec vectors for entities and word from Wikipedia Dumps</a></li>
|
||
<li><a href="https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner">The
|
||
original code from the DeepMind article + tweaks</a></li>
|
||
<li><a href="https://github.com/google/deepdream">Google deepdream -
|
||
Neural Network art</a></li>
|
||
<li><a href="https://gist.github.com/karpathy/587454dc0146a6ae21fc">An
|
||
efficient, batched LSTM.</a></li>
|
||
<li><a
|
||
href="https://github.com/hexahedria/biaxial-rnn-music-composition">A
|
||
recurrent neural network designed to generate classical music.</a></li>
|
||
<li><a href="https://github.com/facebook/MemNN">Memory Networks
|
||
Implementations - Facebook</a></li>
|
||
<li><a href="https://github.com/cmusatyalab/openface">Face recognition
|
||
with Google’s FaceNet deep neural network.</a></li>
|
||
<li><a href="https://github.com/joeledenberg/DigitRecognition">Basic
|
||
digit recognition neural network</a></li>
|
||
<li><a
|
||
href="https://www.projectoxford.ai/demo/emotion#detection">Emotion
|
||
Recognition API Demo - Microsoft</a></li>
|
||
<li><a href="https://github.com/ethereon/caffe-tensorflow">Proof of
|
||
concept for loading Caffe models in TensorFlow</a></li>
|
||
<li><a href="http://pjreddie.com/darknet/yolo/#webcam">YOLO: Real-Time
|
||
Object Detection</a></li>
|
||
<li><a
|
||
href="https://www.analyticsvidhya.com/blog/2018/12/practical-guide-object-detection-yolo-framewor-python/">YOLO:
|
||
Practical Implementation using Python</a></li>
|
||
<li><a href="https://github.com/Rochester-NRT/AlphaGo">AlphaGo - A
|
||
replication of DeepMind’s 2016 Nature publication, “Mastering the game
|
||
of Go with deep neural networks and tree search”</a></li>
|
||
<li><a
|
||
href="https://github.com/ZuzooVn/machine-learning-for-software-engineers">Machine
|
||
Learning for Software Engineers</a></li>
|
||
<li><a
|
||
href="https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471#.oa4rzez3g">Machine
|
||
Learning is Fun!</a></li>
|
||
<li><a
|
||
href="https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A">Siraj
|
||
Raval’s Deep Learning tutorials</a></li>
|
||
<li><a href="https://github.com/natanielruiz/dockerface">Dockerface</a>
|
||
- Easy to install and use deep learning Faster R-CNN face detection for
|
||
images and video in a docker container.</li>
|
||
<li><a
|
||
href="https://github.com/ybayle/awesome-deep-learning-music">Awesome
|
||
Deep Learning Music</a> - Curated list of articles related to deep
|
||
learning scientific research applied to music</li>
|
||
<li><a
|
||
href="https://github.com/benedekrozemberczki/awesome-graph-embedding">Awesome
|
||
Graph Embedding</a> - Curated list of articles related to deep learning
|
||
scientific research on graph structured data at the graph level.</li>
|
||
<li><a
|
||
href="https://github.com/chihming/awesome-network-embedding">Awesome
|
||
Network Embedding</a> - Curated list of articles related to deep
|
||
learning scientific research on graph structured data at the node
|
||
level.</li>
|
||
<li><a href="https://github.com/Microsoft/Recommenders">Microsoft
|
||
Recommenders</a> contains examples, utilities and best practices for
|
||
building recommendation systems. Implementations of several
|
||
state-of-the-art algorithms are provided for self-study and
|
||
customization in your own applications.</li>
|
||
<li><a
|
||
href="http://karpathy.github.io/2015/05/21/rnn-effectiveness/">The
|
||
Unreasonable Effectiveness of Recurrent Neural Networks</a> - Andrej
|
||
Karpathy blog post about using RNN for generating text.</li>
|
||
<li><a href="https://github.com/divamgupta/ladder_network_keras">Ladder
|
||
Network</a> - Keras Implementation of Ladder Network for Semi-Supervised
|
||
Learning</li>
|
||
<li><a href="https://github.com/amitness/toolbox">toolbox: Curated list
|
||
of ML libraries</a></li>
|
||
<li><a href="https://poloclub.github.io/cnn-explainer/">CNN
|
||
Explainer</a></li>
|
||
<li><a href="https://github.com/AMAI-GmbH/AI-Expert-Roadmap">AI Expert
|
||
Roadmap</a> - Roadmap to becoming an Artificial Intelligence Expert</li>
|
||
<li><a
|
||
href="https://github.com/AstraZeneca/awesome-polipharmacy-side-effect-prediction/">Awesome
|
||
Drug Interactions, Synergy, and Polypharmacy Prediction</a></li>
|
||
</ol>
|
||
<table style="width:8%;">
|
||
<colgroup>
|
||
<col style="width: 8%" />
|
||
</colgroup>
|
||
<tbody>
|
||
<tr class="odd">
|
||
<td>### Contributing Have anything in mind that you think is awesome and
|
||
would fit in this list? Feel free to send a <a
|
||
href="https://github.com/ashara12/awesome-deeplearning/pulls">pull
|
||
request</a>.</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<h2 id="license">License</h2>
|
||
<p><a href="http://creativecommons.org/publicdomain/zero/1.0/"><img
|
||
src="http://i.creativecommons.org/p/zero/1.0/88x31.png"
|
||
alt="CC0" /></a></p>
|
||
<p>To the extent possible under law, <a
|
||
href="https://linkedin.com/in/Christofidis">Christos Christofidis</a>
|
||
has waived all copyright and related or neighboring rights to this
|
||
work.</p>
|
||
<p><a
|
||
href="https://github.com/ChristosChristofidis/awesome-deep-learning">deeplearning.md
|
||
Github</a></p>
|