3035 lines
128 KiB
HTML
3035 lines
128 KiB
HTML
<div data-align="center">
|
||
<img src="./assets/head.jpg">
|
||
</div>
|
||
<h1 id="awesome-data-science">AWESOME DATA SCIENCE</h1>
|
||
<p><a href="https://github.com/sindresorhus/awesome"><img
|
||
src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg"
|
||
alt="Awesome" /></a></p>
|
||
<p><strong>An open-source Data Science repository to learn and apply
|
||
towards solving real world problems.</strong></p>
|
||
<p>This is a shortcut path to start studying <strong>Data
|
||
Science</strong>. Just follow the steps to answer the questions, “What
|
||
is Data Science and what should I study to learn Data Science?”</p>
|
||
<h2 id="sponsors">Sponsors</h2>
|
||
<table>
|
||
<thead>
|
||
<tr class="header">
|
||
<th>Sponsor</th>
|
||
<th>Pitch</th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr class="odd">
|
||
<td>—</td>
|
||
<td>Be the first to sponsor! <code>github@academic.io</code></td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<p><br></p>
|
||
<h2 id="table-of-contents">Table of Contents</h2>
|
||
<ul>
|
||
<li><a href="#what-is-data-science">What is Data Science?</a></li>
|
||
<li><a href="#where-do-i-start">Where do I Start?</a></li>
|
||
<li><a href="#training-resources">Training Resources</a>
|
||
<ul>
|
||
<li><a href="#tutorials">Tutorials</a></li>
|
||
<li><a href="#free-courses">Free Courses</a></li>
|
||
<li><a href="#moocs">Massively Open Online Courses</a></li>
|
||
<li><a href="#intensive-programs">Intensive Programs</a></li>
|
||
<li><a href="#colleges">Colleges</a></li>
|
||
</ul></li>
|
||
<li><a href="#the-data-science-toolbox">The Data Science Toolbox</a>
|
||
<ul>
|
||
<li><a href="#algorithms">Algorithms</a>
|
||
<ul>
|
||
<li><a href="#supervised-learning">Supervised Learning</a></li>
|
||
<li><a href="#unsupervised-learning">Unsupervised Learning</a></li>
|
||
<li><a href="#semi-supervised-learning">Semi-Supervised
|
||
Learning</a></li>
|
||
<li><a href="#reinforcement-learning">Reinforcement Learning</a></li>
|
||
<li><a href="#data-mining-algorithms">Data Mining Algorithms</a></li>
|
||
<li><a href="#deep-learning-architectures">Deep Learning
|
||
Architectures</a></li>
|
||
</ul></li>
|
||
<li><a href="#general-machine-learning-packages">General Machine
|
||
Learning Packages</a></li>
|
||
<li><a href="#deep-learning-packages">Deep Learning Packages</a>
|
||
<ul>
|
||
<li><a href="#pytorch-ecosystem">PyTorch Ecosystem</a></li>
|
||
<li><a href="#tensorflow-ecosystem">TensorFlow Ecosystem</a></li>
|
||
<li><a href="#keras-ecosystem">Keras Ecosystem</a></li>
|
||
</ul></li>
|
||
<li><a href="#visualization-tools">Visualization Tools</a></li>
|
||
<li><a href="#miscellaneous-tools">Miscellaneous Tools</a></li>
|
||
</ul></li>
|
||
<li><a href="#literature-and-media">Literature and Media</a>
|
||
<ul>
|
||
<li><a href="#books">Books</a>
|
||
<ul>
|
||
<li><a href="#book-deals-affiliated">Book Deals (Affiliated)</a></li>
|
||
</ul></li>
|
||
<li><a href="#journals-publications-and-magazines">Journals,
|
||
Publications, and Magazines</a></li>
|
||
<li><a href="#newsletters">Newsletters</a></li>
|
||
<li><a href="#bloggers">Bloggers</a></li>
|
||
<li><a href="#presentations">Presentations</a></li>
|
||
<li><a href="#podcasts">Podcasts</a></li>
|
||
<li><a href="#youtube-videos--channels">YouTube Videos &
|
||
Channels</a></li>
|
||
</ul></li>
|
||
<li><a href="#socialize">Socialize</a>
|
||
<ul>
|
||
<li><a href="#facebook-accounts">Facebook Accounts</a></li>
|
||
<li><a href="#twitter-accounts">Twitter Accounts</a></li>
|
||
<li><a href="#telegram-channels">Telegram Channels</a></li>
|
||
<li><a href="#slack-communities">Slack Communities</a></li>
|
||
<li><a href="#github-groups">GitHub Groups</a></li>
|
||
<li><a href="#data-science-competitions">Data Science
|
||
Competitions</a></li>
|
||
</ul></li>
|
||
<li><a href="#fun">Fun</a>
|
||
<ul>
|
||
<li><a href="#infographics">Infographics</a></li>
|
||
<li><a href="#datasets">Datasets</a></li>
|
||
<li><a href="#comics">Comics</a></li>
|
||
</ul></li>
|
||
<li><a href="#other-awesome-lists">Other Awesome Lists</a>
|
||
<ul>
|
||
<li><a href="#hobby">Hobby</a></li>
|
||
</ul></li>
|
||
</ul>
|
||
<h2 id="what-is-data-science">What is Data Science?</h2>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<p>Data Science is one of the hottest topics on the Computer and
|
||
Internet farmland nowadays. People have gathered data from applications
|
||
and systems until today and now is the time to analyze them. The next
|
||
steps are producing suggestions from the data and creating predictions
|
||
about the future. <a
|
||
href="https://www.quora.com/Data-Science/What-is-data-science">Here</a>
|
||
you can find the biggest question for <strong>Data Science</strong> and
|
||
hundreds of answers from experts.</p>
|
||
<table>
|
||
<colgroup>
|
||
<col style="width: 50%" />
|
||
<col style="width: 50%" />
|
||
</colgroup>
|
||
<thead>
|
||
<tr class="header">
|
||
<th>Link</th>
|
||
<th>Preview</th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr class="odd">
|
||
<td><a href="https://www.oreilly.com/ideas/what-is-data-science">What is
|
||
Data Science @ O’reilly</a></td>
|
||
<td><em>Data scientists combine entrepreneurship with patience, the
|
||
willingness to build data products incrementally, the ability to
|
||
explore, and the ability to iterate over a solution. They are inherently
|
||
interdisciplinary. They can tackle all aspects of a problem, from
|
||
initial data collection and data conditioning to drawing conclusions.
|
||
They can think outside the box to come up with new ways to view the
|
||
problem, or to work with very broadly defined problems: “here’s a lot of
|
||
data, what can you make from it?”</em></td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a
|
||
href="https://www.quora.com/Data-Science/What-is-data-science">What is
|
||
Data Science @ Quora</a></td>
|
||
<td>Data Science is a combination of a number of aspects of Data such as
|
||
Technology, Algorithm development, and data interference to study the
|
||
data, analyse it, and find innovative solutions to difficult problems.
|
||
Basically Data Science is all about Analysing data and driving for
|
||
business growth by finding creative ways.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a
|
||
href="https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century">The
|
||
sexiest job of 21st century</a></td>
|
||
<td><em>Data scientists today are akin to Wall Street “quants” of the
|
||
1980s and 1990s. In those days people with backgrounds in physics and
|
||
math streamed to investment banks and hedge funds, where they could
|
||
devise entirely new algorithms and data strategies. Then a variety of
|
||
universities developed master’s programs in financial engineering, which
|
||
churned out a second generation of talent that was more accessible to
|
||
mainstream firms. The pattern was repeated later in the 1990s with
|
||
search engineers, whose rarefied skills soon came to be taught in
|
||
computer science programs.</em></td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a
|
||
href="https://en.wikipedia.org/wiki/Data_science">Wikipedia</a></td>
|
||
<td><em>Data science is an interdisciplinary field that uses scientific
|
||
methods, processes, algorithms and systems to extract knowledge and
|
||
insights from many structural and unstructured data. Data science is
|
||
related to data mining, machine learning and big data.</em></td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a
|
||
href="https://www.mastersindatascience.org/careers/data-scientist/">How
|
||
to Become a Data Scientist</a></td>
|
||
<td><em>Data scientists are big data wranglers, gathering and analyzing
|
||
large sets of structured and unstructured data. A data scientist’s role
|
||
combines computer science, statistics, and mathematics. They analyze,
|
||
process, and model data then interpret the results to create actionable
|
||
plans for companies and other organizations.</em></td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a
|
||
href="https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/">a
|
||
very short history of #datascience</a></td>
|
||
<td><em>The story of how data scientists became sexy is mostly the story
|
||
of the coupling of the mature discipline of statistics with a very young
|
||
one–computer science. The term “Data Science” has emerged only recently
|
||
to specifically designate a new profession that is expected to make
|
||
sense of the vast stores of big data. But making sense of data has a
|
||
long history and has been discussed by scientists, statisticians,
|
||
librarians, computer scientists and others for years. The following
|
||
timeline traces the evolution of the term “Data Science” and its use,
|
||
attempts to define it, and related terms.</em></td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a
|
||
href="https://www.rstudio.com/blog/software-development-resources-for-data-scientists/">Software
|
||
Development Resources for Data Scientists</a></td>
|
||
<td><em>Data scientists concentrate on making sense of data through
|
||
exploratory analysis, statistics, and models. Software developers apply
|
||
a separate set of knowledge with different tools. Although their focus
|
||
may seem unrelated, data science teams can benefit from adopting
|
||
software development best practices. Version control, automated testing,
|
||
and other dev skills help create reproducible, production-ready code and
|
||
tools.</em></td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a
|
||
href="https://www.scaler.com/blog/how-to-become-a-data-scientist/">Data
|
||
Scientist Roadmap</a></td>
|
||
<td><em>Data science is an excellent career choice in today’s
|
||
data-driven world where approx 328.77 million terabytes of data are
|
||
generated daily. And this number is only increasing day by day, which in
|
||
turn increases the demand for skilled data scientists who can utilize
|
||
this data to drive business growth.</em></td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a
|
||
href="https://www.appliedaicourse.com/blog/how-to-become-a-data-scientist/">Navigating
|
||
Your Path to Becoming a Data Scientist</a></td>
|
||
<td><em>Data science is one of the most in-demand careers today. With
|
||
businesses increasingly relying on data to make decisions, the need for
|
||
skilled data scientists has grown rapidly. Whether it’s tech companies,
|
||
healthcare organizations, or even government institutions, data
|
||
scientists play a crucial role in turning raw data into valuable
|
||
insights. But how do you become a data scientist, especially if you’re
|
||
just starting out? </em></td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<h2 id="where-do-i-start">Where do I Start?</h2>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<p>While not strictly necessary, having a programming language is a
|
||
crucial skill to be effective as a data scientist. Currently, the most
|
||
popular language is <em>Python</em>, closely followed by <em>R</em>.
|
||
Python is a general-purpose scripting language that sees applications in
|
||
a wide variety of fields. R is a domain-specific language for
|
||
statistics, which contains a lot of common statistics tools out of the
|
||
box.</p>
|
||
<p><a href="https://python.org/">Python</a> is by far the most popular
|
||
language in science, due in no small part to the ease at which it can be
|
||
used and the vibrant ecosystem of user-generated packages. To install
|
||
packages, there are two main methods: Pip (invoked as
|
||
<code>pip install</code>), the package manager that comes bundled with
|
||
Python, and <a href="https://www.anaconda.com">Anaconda</a> (invoked as
|
||
<code>conda install</code>), a powerful package manager that can install
|
||
packages for Python, R, and can download executables like Git.</p>
|
||
<p>Unlike R, Python was not built from the ground up with data science
|
||
in mind, but there are plenty of third party libraries to make up for
|
||
this. A much more exhaustive list of packages can be found later in this
|
||
document, but these four packages are a good set of choices to start
|
||
your data science journey with: <a
|
||
href="https://scikit-learn.org/stable/index.html">Scikit-Learn</a> is a
|
||
general-purpose data science package which implements the most popular
|
||
algorithms - it also includes rich documentation, tutorials, and
|
||
examples of the models it implements. Even if you prefer to write your
|
||
own implementations, Scikit-Learn is a valuable reference to the
|
||
nuts-and-bolts behind many of the common algorithms you’ll find. With <a
|
||
href="https://pandas.pydata.org/">Pandas</a>, one can collect and
|
||
analyze their data into a convenient table format. <a
|
||
href="https://numpy.org/">Numpy</a> provides very fast tooling for
|
||
mathematical operations, with a focus on vectors and matrices. <a
|
||
href="https://seaborn.pydata.org/">Seaborn</a>, itself based on the <a
|
||
href="https://matplotlib.org/">Matplotlib</a> package, is a quick way to
|
||
generate beautiful visualizations of your data, with many good defaults
|
||
available out of the box, as well as a gallery showing how to produce
|
||
many common visualizations of your data.</p>
|
||
<p>When embarking on your journey to becoming a data scientist, the
|
||
choice of language isn’t particularly important, and both Python and R
|
||
have their pros and cons. Pick a language you like, and check out one of
|
||
the <a href="#free-courses">Free courses</a> we’ve listed below!</p>
|
||
<h2 id="real-world">Real World</h2>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<p>Data science is a powerful tool that is utilized in various fields to
|
||
solve real-world problems by extracting insights and patterns from
|
||
complex data.</p>
|
||
<h3 id="disaster">Disaster</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a href="https://huggingface.co/deprem-ml">deprem-ml</a> <a
|
||
href="https://linktr.ee/acikyazilimagi">AYA: Açık Yazılım Ağı</a> (+25k
|
||
developers) is trying to help disaster response using artificial
|
||
intelligence. Everything is open-sourced <a
|
||
href="https://afet.org">afet.org</a>.</li>
|
||
</ul>
|
||
<h2 id="training-resources">Training Resources</h2>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<p>How do you learn data science? By doing data science, of course!
|
||
Okay, okay - that might not be particularly helpful when you’re first
|
||
starting out. In this section, we’ve listed some learning resources, in
|
||
rough order from least to greatest commitment - <a
|
||
href="#tutorials">Tutorials</a>, <a href="#moocs">Massively Open Online
|
||
Courses (MOOCs)</a>, <a href="#intensive-programs">Intensive
|
||
Programs</a>, and <a href="#colleges">Colleges</a>.</p>
|
||
<h3 id="tutorials">Tutorials</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a href="https://cloud.blobcity.com/#/ps/explore">1000 Data Science
|
||
Projects</a> you can run on the browser with IPython.</li>
|
||
<li><a
|
||
href="https://github.com/rfordatascience/tidytuesday">#tidytuesday</a> A
|
||
weekly data project aimed at the R ecosystem.</li>
|
||
<li><a href="https://github.com/jadianes/data-science-your-way">Data
|
||
science your way</a></li>
|
||
<li><a href="https://github.com/kevinschaich/pyspark-cheatsheet">PySpark
|
||
Cheatsheet</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/livevideo/machine-learning-data-science-and-deep-learning-with-python">Machine
|
||
Learning, Data Science and Deep Learning with Python</a></li>
|
||
<li><a
|
||
href="https://medium.com/@lettier/how-does-lda-work-ill-explain-using-emoji-108abf40fa7d">Your
|
||
Guide to Latent Dirichlet Allocation</a></li>
|
||
<li><a
|
||
href="https://github.com/handcraftsman/GeneticAlgorithmsWithPython">Tutorials
|
||
of source code from the book Genetic Algorithms with Python by Clinton
|
||
Sheppard</a></li>
|
||
<li><a
|
||
href="https://github.com/jinglescode/python-signal-processing">Tutorials
|
||
to get started on signal processing for machine learning</a></li>
|
||
<li><a href="https://www.microprediction.com/python-1">Realtime
|
||
deployment</a> Tutorial on Python time-series model deployment.</li>
|
||
<li><a
|
||
href="https://learntocodewith.me/posts/python-for-data-science/">Python
|
||
for Data Science: A Beginner’s Guide</a></li>
|
||
<li><a
|
||
href="https://github.com/khangich/machine-learning-interview">Minimum
|
||
Viable Study Plan for Machine Learning Interviews</a></li>
|
||
<li><a href="http://mlzoomcamp.com/">Understand and Know Machine
|
||
Learning Engineering by Building Solid Projects</a></li>
|
||
<li><a
|
||
href="https://www.datawars.io/articles/12-free-data-science-projects-to-practice-python-and-pandas">12
|
||
free Data Science projects to practice Python and Pandas</a></li>
|
||
<li><a href="https://enhancv.com/resume-examples/data-scientist/">Best
|
||
CV/Resume for Data Science Freshers</a></li>
|
||
<li><a
|
||
href="https://www.alter-solutions.com/articles/java-data-science">Understand
|
||
Data Science Course in Java</a></li>
|
||
<li><a
|
||
href="https://www.appliedaicourse.com/blog/data-analytics-interview-questions/">Data
|
||
Analytics Interview Questions (Beginner to Advanced)</a></li>
|
||
<li><a
|
||
href="https://www.appliedaicourse.com/blog/data-science-interview-questions/">Top
|
||
100+ Data Science Interview Questions and Answers</a></li>
|
||
</ul>
|
||
<h3 id="free-courses">Free Courses</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a href="https://www.datacamp.com/tracks/data-scientist-with-r">Data
|
||
Scientist with R</a></li>
|
||
<li><a
|
||
href="https://www.datacamp.com/tracks/data-scientist-with-python">Data
|
||
Scientist with Python</a></li>
|
||
<li><a
|
||
href="https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/lecture-1-introduction-and-scope/">Genetic
|
||
Algorithms OCW Course</a></li>
|
||
<li><a href="https://github.com/AMAI-GmbH/AI-Expert-Roadmap">AI Expert
|
||
Roadmap</a> - Roadmap to becoming an Artificial Intelligence Expert</li>
|
||
<li><a href="https://www.edx.org/course/convex-optimization">Convex
|
||
Optimization</a> - Convex Optimization (basics of convex analysis;
|
||
least-squares, linear and quadratic programs, semidefinite programming,
|
||
minimax, extremal volume, and other problems; optimality conditions,
|
||
duality theory…)</li>
|
||
<li><a href="https://home.work.caltech.edu/telecourse.html">Learning
|
||
from Data</a> - Introduction to machine learning covering basic theory,
|
||
algorithms and applications</li>
|
||
<li><a href="https://www.kaggle.com/learn">Kaggle</a> - Learn about Data
|
||
Science, Machine Learning, Python etc</li>
|
||
<li><a href="https://arize.com/ml-observability-fundamentals/">ML
|
||
Observability Fundamentals</a> - Learn how to monitor and root-cause
|
||
production ML issues.</li>
|
||
<li><a
|
||
href="https://www.wandb.courses/courses/effective-mlops-model-development">Weights
|
||
& Biases Effective MLOps: Model Development</a> - Free Course and
|
||
Certification for building an end-to-end machine using W&B</li>
|
||
<li><a
|
||
href="https://www.scaler.com/topics/course/python-for-data-science/">Python
|
||
for Data Science by Scaler</a> - This course is designed to empower
|
||
beginners with the essential skills to excel in today’s data-driven
|
||
world. The comprehensive curriculum will give you a solid foundation in
|
||
statistics, programming, data visualization, and machine learning.</li>
|
||
<li><a
|
||
href="https://github.com/jacopotagliabue/MLSys-NYU-2022/tree/main">MLSys-NYU-2022</a>
|
||
- Slides, scripts and materials for the Machine Learning in Finance
|
||
course at NYU Tandon, 2022.</li>
|
||
<li><a
|
||
href="https://github.com/Paulescu/hands-on-train-and-deploy-ml">Hands-on
|
||
Train and Deploy ML</a> - A hands-on course to train and deploy a
|
||
serverless API that predicts crypto prices.</li>
|
||
<li><a href="https://www.comet.com/site/llm-course/">LLMOps: Building
|
||
Real-World Applications With Large Language Models</a> - Learn to build
|
||
modern software with LLMs using the newest tools and techniques in the
|
||
field.</li>
|
||
<li><a
|
||
href="https://www.deeplearning.ai/short-courses/prompt-engineering-for-vision-models/">Prompt
|
||
Engineering for Vision Models</a> - Learn to prompt cutting-edge
|
||
computer vision models with natural language, coordinate points,
|
||
bounding boxes, segmentation masks, and even other images in this free
|
||
course from DeepLearning.AI.</li>
|
||
<li><a
|
||
href="https://skillsbuild.org/students/course-catalog/data-science">Data
|
||
Science Course By IBM</a> - Free resources and learn what data science
|
||
is and how it’s used in different industries.</li>
|
||
</ul>
|
||
<h3 id="moocs">MOOC’s</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a
|
||
href="https://www.coursera.org/specializations/data-science">Coursera
|
||
Introduction to Data Science</a></li>
|
||
<li><a
|
||
href="https://www.coursera.org/specializations/jhu-data-science">Data
|
||
Science - 9 Steps Courses, A Specialization on Coursera</a></li>
|
||
<li><a href="https://www.coursera.org/specializations/data-mining">Data
|
||
Mining - 5 Steps Courses, A Specialization on Coursera</a></li>
|
||
<li><a
|
||
href="https://www.coursera.org/specializations/machine-learning">Machine
|
||
Learning – 5 Steps Courses, A Specialization on Coursera</a></li>
|
||
<li><a href="https://cs109.github.io/2015/">CS 109 Data Science</a></li>
|
||
<li><a href="https://www.openintro.org/">OpenIntro</a></li>
|
||
<li><a href="https://www.cs171.org/#!index.md">CS 171
|
||
Visualization</a></li>
|
||
<li><a href="https://www.coursera.org/learn/process-mining">Process
|
||
Mining: Data science in Action</a></li>
|
||
<li><a href="https://www.cs.ox.ac.uk/projects/DeepLearn/">Oxford Deep
|
||
Learning</a></li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu">Oxford
|
||
Deep Learning - video</a></li>
|
||
<li><a href="https://www.cs.ox.ac.uk/research/ai_ml/index.html">Oxford
|
||
Machine Learning</a></li>
|
||
<li><a href="https://www.cs.ubc.ca/~nando/540-2013/lectures.html">UBC
|
||
Machine Learning - video</a></li>
|
||
<li><a href="https://github.com/DataScienceSpecialization/courses">Data
|
||
Science Specialization</a></li>
|
||
<li><a href="https://www.coursera.org/specializations/big-data">Coursera
|
||
Big Data Specialization</a></li>
|
||
<li><a
|
||
href="https://www.edx.org/course/statistical-thinking-for-data-science-and-analytic">Statistical
|
||
Thinking for Data Science and Analytics by Edx</a></li>
|
||
<li><a href="https://cognitiveclass.ai/">Cognitive Class AI by
|
||
IBM</a></li>
|
||
<li><a
|
||
href="https://www.udacity.com/course/intro-to-tensorflow-for-deep-learning--ud187">Udacity
|
||
- Deep Learning</a></li>
|
||
<li><a href="https://www.manning.com/livevideo/keras-in-motion">Keras in
|
||
Motion</a></li>
|
||
<li><a
|
||
href="https://academy.microsoft.com/en-us/professional-program/tracks/data-science/">Microsoft
|
||
Professional Program for Data Science</a></li>
|
||
<li><a href="https://tdgunes.com/COMP6246-2019Fall/">COMP3222/COMP6246 -
|
||
Machine Learning Technologies</a></li>
|
||
<li><a href="https://cs231n.github.io/">CS 231 - Convolutional Neural
|
||
Networks for Visual Recognition</a></li>
|
||
<li><a
|
||
href="https://www.coursera.org/professional-certificates/tensorflow-in-practice">Coursera
|
||
Tensorflow in practice</a></li>
|
||
<li><a
|
||
href="https://www.coursera.org/specializations/deep-learning">Coursera
|
||
Deep Learning Specialization</a></li>
|
||
<li><a href="https://365datascience.com/">365 Data Science
|
||
Course</a></li>
|
||
<li><a
|
||
href="https://www.coursera.org/specializations/natural-language-processing">Coursera
|
||
Natural Language Processing Specialization</a></li>
|
||
<li><a
|
||
href="https://www.coursera.org/specializations/generative-adversarial-networks-gans">Coursera
|
||
GAN Specialization</a></li>
|
||
<li><a
|
||
href="https://www.codecademy.com/learn/paths/data-science">Codecademy’s
|
||
Data Science</a></li>
|
||
<li><a
|
||
href="https://ocw.mit.edu/courses/18-06sc-linear-algebra-fall-2011/">Linear
|
||
Algebra</a> - Linear Algebra course by Gilbert Strang</li>
|
||
<li><a
|
||
href="https://ocw.mit.edu/resources/res-18-010-a-2020-vision-of-linear-algebra-spring-2020/">A
|
||
2020 Vision of Linear Algebra (G. Strang)</a></li>
|
||
<li><a
|
||
href="https://intellipaat.com/academy/course/python-for-data-science-free-training/">Python
|
||
for Data Science Foundation Course</a></li>
|
||
<li><a
|
||
href="https://www.coursera.org/specializations/data-science-statistics-machine-learning">Data
|
||
Science: Statistics & Machine Learning</a></li>
|
||
<li><a
|
||
href="https://www.coursera.org/specializations/machine-learning-engineering-for-production-mlops">Machine
|
||
Learning Engineering for Production (MLOps)</a></li>
|
||
<li><a
|
||
href="https://www.coursera.org/specializations/recommender-systems">Recommender
|
||
Systems Specialization from University of Minnesota</a> is an
|
||
intermediate/advanced level specialization focused on Recommender System
|
||
on the Coursera platform.</li>
|
||
<li><a
|
||
href="https://online.stanford.edu/programs/artificial-intelligence-professional-program">Stanford
|
||
Artificial Intelligence Professional Program</a></li>
|
||
<li><a
|
||
href="https://app.datacamp.com/learn/career-tracks/data-scientist-with-python">Data
|
||
Scientist with Python</a></li>
|
||
<li><a
|
||
href="https://www.udemy.com/course/programming-with-julia/">Programming
|
||
with Julia</a></li>
|
||
<li><a href="https://www.scaler.com/data-science-course/">Scaler Data
|
||
Science & Machine Learning Program</a></li>
|
||
<li><a href="https://labex.io/skilltrees/data-science">Data Science
|
||
Skill Tree</a></li>
|
||
<li><a href="https://codekidz.ai/lesson-intro/data-science-368dbf">Data
|
||
Science for Beginners - Learn with AI tutor</a></li>
|
||
<li><a
|
||
href="https://codekidz.ai/lesson-intro/machine-lear-36abfb">Machine
|
||
Learning for Beginners - Learn with AI tutor</a></li>
|
||
</ul>
|
||
<h3 id="intensive-programs">Intensive Programs</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a href="https://www.s2ds.org/">S2DS</a></li>
|
||
</ul>
|
||
<h3 id="colleges">Colleges</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/ryanswanstrom/awesome-datascience-colleges">A
|
||
list of colleges and universities offering degrees in data
|
||
science.</a></li>
|
||
<li><a href="https://ischoolonline.berkeley.edu/data-science/">Data
|
||
Science Degree @ Berkeley</a></li>
|
||
<li><a href="https://datascience.virginia.edu/">Data Science Degree @
|
||
UVA</a></li>
|
||
<li><a href="https://datasciencedegree.wisconsin.edu/">Data Science
|
||
Degree @ Wisconsin</a></li>
|
||
<li><a href="https://study.iitm.ac.in/ds/">BS in Data Science &
|
||
Applications</a></li>
|
||
<li><a
|
||
href="https://www.bu.edu/online/programs/graduate-programs/computer-information-systems-masters-degree/">MS
|
||
in Computer Information Systems @ Boston University</a></li>
|
||
<li><a
|
||
href="https://asuonline.asu.edu/online-degree-programs/graduate/master-science-business-analytics/">MS
|
||
in Business Analytics @ ASU Online</a></li>
|
||
<li><a
|
||
href="https://ischool.syr.edu/academics/applied-data-science-masters-degree/">MS
|
||
in Applied Data Science @ Syracuse</a></li>
|
||
<li><a
|
||
href="https://www.leuphana.de/en/graduate-school/masters-programmes/management-data-science.html">M.S.
|
||
Management & Data Science @ Leuphana</a></li>
|
||
<li><a
|
||
href="https://study.unimelb.edu.au/find/courses/graduate/master-of-data-science/#overview">Master
|
||
of Data Science @ Melbourne University</a></li>
|
||
<li><a
|
||
href="https://www.ed.ac.uk/studying/postgraduate/degrees/index.php?r=site/view&id=902">Msc
|
||
in Data Science @ The University of Edinburgh</a></li>
|
||
<li><a href="https://smith.queensu.ca/grad_studies/mma/index.php">Master
|
||
of Management Analytics @ Queen’s University</a></li>
|
||
<li><a
|
||
href="https://www.iit.edu/academics/programs/data-science-mas">Master of
|
||
Data Science @ Illinois Institute of Technology</a></li>
|
||
<li><a
|
||
href="https://www.si.umich.edu/programs/master-applied-data-science">Master
|
||
of Applied Data Science @ The University of Michigan</a></li>
|
||
<li><a
|
||
href="https://www.tue.nl/en/education/graduate-school/master-data-science-and-artificial-intelligence/">Master
|
||
Data Science and Artificial Intelligence @ Eindhoven University of
|
||
Technology</a></li>
|
||
<li><a href="https://masteres.ugr.es/datcom/">Master’s Degree in Data
|
||
Science and Computer Engineering @ University of Granada</a></li>
|
||
</ul>
|
||
<h2 id="the-data-science-toolbox">The Data Science Toolbox</h2>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<p>This section is a collection of packages, tools, algorithms, and
|
||
other useful items in the data science world.</p>
|
||
<h3 id="algorithms">Algorithms</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<p>These are some Machine Learning and Data Mining algorithms and models
|
||
help you to understand your data and derive meaning from it.</p>
|
||
<h4 id="three-kinds-of-machine-learning-systems">Three kinds of Machine
|
||
Learning Systems</h4>
|
||
<ul>
|
||
<li>Based on training with human supervision</li>
|
||
<li>Based on learning incrementally on fly</li>
|
||
<li>Based on data points comparison and pattern detection</li>
|
||
</ul>
|
||
<h3 id="comparison">Comparison</h3>
|
||
<ul>
|
||
<li><a href="https://github.com/capitalone/datacompy">datacompy</a> -
|
||
DataComPy is a package to compare two Pandas DataFrames.</li>
|
||
</ul>
|
||
<h4 id="supervised-learning">Supervised Learning</h4>
|
||
<ul>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Regression">Regression</a></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/Linear_regression">Linear
|
||
Regression</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Ordinary_least_squares">Ordinary
|
||
Least Squares</a></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/Logistic_regression">Logistic
|
||
Regression</a></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/Stepwise_regression">Stepwise
|
||
Regression</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Multivariate_adaptive_regression_spline">Multivariate
|
||
Adaptive Regression Splines</a></li>
|
||
<li><a
|
||
href="https://d2l.ai/chapter_linear-classification/softmax-regression.html">Softmax
|
||
Regression</a></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/Local_regression">Locally
|
||
Estimated Scatterplot Smoothing</a></li>
|
||
<li>Classification
|
||
<ul>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm">k-nearest
|
||
neighbor</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Support_vector_machine">Support
|
||
Vector Machines</a></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/Decision_tree">Decision
|
||
Trees</a></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/ID3_algorithm">ID3
|
||
algorithm</a></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/C4.5_algorithm">C4.5
|
||
algorithm</a></li>
|
||
</ul></li>
|
||
<li><a
|
||
href="https://scikit-learn.org/stable/modules/ensemble.html">Ensemble
|
||
Learning</a>
|
||
<ul>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Boosting_(machine_learning)">Boosting</a></li>
|
||
<li><a
|
||
href="https://machinelearningmastery.com/stacking-ensemble-machine-learning-with-python">Stacking</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Bootstrap_aggregating">Bagging</a></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/Random_forest">Random
|
||
Forest</a></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/AdaBoost">AdaBoost</a></li>
|
||
</ul></li>
|
||
</ul>
|
||
<h4 id="unsupervised-learning">Unsupervised Learning</h4>
|
||
<ul>
|
||
<li><a
|
||
href="https://scikit-learn.org/stable/modules/clustering.html#clustering">Clustering</a>
|
||
<ul>
|
||
<li><a
|
||
href="https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering">Hierchical
|
||
clustering</a></li>
|
||
<li><a
|
||
href="https://scikit-learn.org/stable/modules/clustering.html#k-means">k-means</a></li>
|
||
<li><a
|
||
href="https://scikit-learn.org/stable/modules/clustering.html#dbscan">Density-based
|
||
clustering</a></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/Fuzzy_clustering">Fuzzy
|
||
clustering</a></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/Mixture_model">Mixture
|
||
models</a></li>
|
||
</ul></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Dimensionality_reduction">Dimension
|
||
Reduction</a>
|
||
<ul>
|
||
<li><a
|
||
href="https://scikit-learn.org/stable/modules/decomposition.html#principal-component-analysis-pca">Principal
|
||
Component Analysis (PCA)</a></li>
|
||
<li><a
|
||
href="https://scikit-learn.org/stable/modules/decomposition.html#principal-component-analysis-pca">t-SNE;
|
||
t-distributed Stochastic Neighbor Embedding</a></li>
|
||
<li><a
|
||
href="https://scikit-learn.org/stable/modules/decomposition.html#factor-analysis">Factor
|
||
Analysis</a></li>
|
||
<li><a
|
||
href="https://scikit-learn.org/stable/modules/decomposition.html#latent-dirichlet-allocation-lda">Latent
|
||
Dirichlet Allocation (LDA)</a></li>
|
||
</ul></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/Neural_network">Neural
|
||
Networks</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Self-organizing_map">Self-organizing
|
||
map</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Adaptive_resonance_theory">Adaptive
|
||
resonance theory</a></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/Hidden_Markov_model">Hidden
|
||
Markov Models (HMM)</a></li>
|
||
</ul>
|
||
<h4 id="semi-supervised-learning">Semi-Supervised Learning</h4>
|
||
<ul>
|
||
<li>S3VM</li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Weak_supervision#Cluster_assumption">Clustering</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Weak_supervision#Generative_models">Generative
|
||
models</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Weak_supervision#Low-density_separation">Low-density
|
||
separation</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Weak_supervision#Laplacian_regularization">Laplacian
|
||
regularization</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Weak_supervision#Heuristic_approaches">Heuristic
|
||
approaches</a></li>
|
||
</ul>
|
||
<h4 id="reinforcement-learning">Reinforcement Learning</h4>
|
||
<ul>
|
||
<li><a href="https://en.wikipedia.org/wiki/Q-learning">Q
|
||
Learning</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/State%E2%80%93action%E2%80%93reward%E2%80%93state%E2%80%93action">SARSA
|
||
(State-Action-Reward-State-Action) algorithm</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Temporal_difference_learning#:~:text=Temporal%20difference%20(TD)%20learning%20refers,estimate%20of%20the%20value%20function.">Temporal
|
||
difference learning</a></li>
|
||
</ul>
|
||
<h4 id="data-mining-algorithms">Data Mining Algorithms</h4>
|
||
<ul>
|
||
<li><a href="https://en.wikipedia.org/wiki/C4.5_algorithm">C4.5</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/K-means_clustering">k-Means</a></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/Support_vector_machine">SVM
|
||
(Support Vector Machine)</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Apriori_algorithm">Apriori</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm">EM
|
||
(Expectation-Maximization)</a></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/PageRank">PageRank</a></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/AdaBoost">AdaBoost</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm">KNN
|
||
(K-Nearest Neighbors)</a></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/Naive_Bayes_classifier">Naive
|
||
Bayes</a></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/Decision_tree_learning">CART
|
||
(Classification and Regression Trees)</a></li>
|
||
</ul>
|
||
<h4 id="deep-learning-architectures">Deep Learning architectures</h4>
|
||
<ul>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Multilayer_perceptron">Multilayer
|
||
Perceptron</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Convolutional_neural_network">Convolutional
|
||
Neural Network (CNN)</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Recurrent_neural_network">Recurrent
|
||
Neural Network (RNN)</a></li>
|
||
<li><a href="https://en.wikipedia.org/wiki/Boltzmann_machine">Boltzmann
|
||
Machines</a></li>
|
||
<li><a
|
||
href="https://www.tensorflow.org/tutorials/generative/autoencoder">Autoencoder</a></li>
|
||
<li><a
|
||
href="https://developers.google.com/machine-learning/gan/gan_structure">Generative
|
||
Adversarial Network (GAN)</a></li>
|
||
<li><a
|
||
href="https://en.wikipedia.org/wiki/Self-organizing_map">Self-Organized
|
||
Maps</a></li>
|
||
<li><a
|
||
href="https://www.tensorflow.org/text/tutorials/transformer">Transformer</a></li>
|
||
<li><a
|
||
href="https://towardsdatascience.com/conditional-random-fields-explained-e5b8256da776">Conditional
|
||
Random Field (CRF)</a></li>
|
||
<li><a href="https://www.evidentlyai.com/ml-system-design">ML System
|
||
Designs)</a></li>
|
||
</ul>
|
||
<h3 id="general-machine-learning-packages">General Machine Learning
|
||
Packages</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a href="https://scikit-learn.org/">scikit-learn</a></li>
|
||
<li><a
|
||
href="https://github.com/scikit-multilearn/scikit-multilearn">scikit-multilearn</a></li>
|
||
<li><a
|
||
href="https://github.com/tmadl/sklearn-expertsys">sklearn-expertsys</a></li>
|
||
<li><a
|
||
href="https://github.com/jundongl/scikit-feature">scikit-feature</a></li>
|
||
<li><a
|
||
href="https://github.com/EpistasisLab/scikit-rebate">scikit-rebate</a></li>
|
||
<li><a href="https://github.com/larsmans/seqlearn">seqlearn</a></li>
|
||
<li><a
|
||
href="https://github.com/AmazaspShumik/sklearn-bayes">sklearn-bayes</a></li>
|
||
<li><a
|
||
href="https://github.com/TeamHG-Memex/sklearn-crfsuite">sklearn-crfsuite</a></li>
|
||
<li><a
|
||
href="https://github.com/rsteca/sklearn-deap">sklearn-deap</a></li>
|
||
<li><a
|
||
href="https://github.com/sigopt/sigopt-sklearn">sigopt_sklearn</a></li>
|
||
<li><a
|
||
href="https://github.com/edublancas/sklearn-evaluation">sklearn-evaluation</a></li>
|
||
<li><a
|
||
href="https://github.com/scikit-image/scikit-image">scikit-image</a></li>
|
||
<li><a
|
||
href="https://github.com/guofei9987/scikit-opt">scikit-opt</a></li>
|
||
<li><a
|
||
href="https://github.com/maximtrp/scikit-posthocs">scikit-posthocs</a></li>
|
||
<li><a
|
||
href="https://feature-engine.trainindata.com/">feature-engine</a></li>
|
||
<li><a href="https://github.com/pystruct/pystruct">pystruct</a></li>
|
||
<li><a href="https://www.shogun-toolbox.org/">Shogun</a></li>
|
||
<li><a href="https://github.com/aksnzhy/xlearn">xLearn</a></li>
|
||
<li><a href="https://github.com/rapidsai/cuml">cuML</a></li>
|
||
<li><a href="https://github.com/uber/causalml">causalml</a></li>
|
||
<li><a href="https://github.com/mlpack/mlpack">mlpack</a></li>
|
||
<li><a href="https://github.com/rasbt/mlxtend">MLxtend</a></li>
|
||
<li><a href="https://github.com/modAL-python/modAL">modAL</a></li>
|
||
<li><a
|
||
href="https://github.com/lensacom/sparkit-learn">Sparkit-learn</a></li>
|
||
<li><a
|
||
href="https://github.com/danielhanchen/hyperlearn">hyperlearn</a></li>
|
||
<li><a href="https://github.com/davisking/dlib">dlib</a></li>
|
||
<li><a href="https://github.com/csinva/imodels">imodels</a></li>
|
||
<li><a href="https://github.com/christophM/rulefit">RuleFit</a></li>
|
||
<li><a href="https://github.com/dswah/pyGAM">pyGAM</a></li>
|
||
<li><a
|
||
href="https://github.com/deepchecks/deepchecks">Deepchecks</a></li>
|
||
<li><a
|
||
href="https://scikit-survival.readthedocs.io/en/stable">scikit-survival</a></li>
|
||
<li><a
|
||
href="https://pypi.org/project/interpretable">interpretable</a></li>
|
||
<li><a href="https://github.com/dmlc/xgboost">XGBoost</a></li>
|
||
<li><a href="https://github.com/microsoft/LightGBM">LightGBM</a></li>
|
||
<li><a href="https://github.com/catboost/catboost">CatBoost</a></li>
|
||
<li><a
|
||
href="https://github.com/perpetual-ml/perpetual">PerpetualBooster</a></li>
|
||
<li><a href="https://github.com/google/jax">JAX</a></li>
|
||
</ul>
|
||
<h3 id="deep-learning-packages">Deep Learning Packages</h3>
|
||
<h4 id="pytorch-ecosystem">PyTorch Ecosystem</h4>
|
||
<ul>
|
||
<li><a href="https://github.com/pytorch/pytorch">PyTorch</a></li>
|
||
<li><a href="https://github.com/pytorch/vision">torchvision</a></li>
|
||
<li><a href="https://github.com/pytorch/text">torchtext</a></li>
|
||
<li><a href="https://github.com/pytorch/audio">torchaudio</a></li>
|
||
<li><a href="https://github.com/pytorch/ignite">ignite</a></li>
|
||
<li><a href="https://github.com/pytorch/tnt">PyTorchNet</a></li>
|
||
<li><a href="https://github.com/GRAAL-Research/poutyne">PyToune</a></li>
|
||
<li><a href="https://github.com/skorch-dev/skorch">skorch</a></li>
|
||
<li><a href="https://github.com/ctallec/pyvarinf">PyVarInf</a></li>
|
||
<li><a
|
||
href="https://github.com/pyg-team/pytorch_geometric">pytorch_geometric</a></li>
|
||
<li><a
|
||
href="https://github.com/cornellius-gp/gpytorch">GPyTorch</a></li>
|
||
<li><a href="https://github.com/pyro-ppl/pyro">pyro</a></li>
|
||
<li><a
|
||
href="https://github.com/catalyst-team/catalyst">Catalyst</a></li>
|
||
<li><a
|
||
href="https://github.com/manujosephv/pytorch_tabular">pytorch_tabular</a></li>
|
||
<li><a href="https://github.com/ultralytics/yolov3">Yolov3</a></li>
|
||
<li><a href="https://github.com/ultralytics/yolov5">Yolov5</a></li>
|
||
<li><a href="https://github.com/ultralytics/ultralytics">Yolov8</a></li>
|
||
</ul>
|
||
<h4 id="tensorflow-ecosystem">TensorFlow Ecosystem</h4>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/tensorflow/tensorflow">TensorFlow</a></li>
|
||
<li><a
|
||
href="https://github.com/tensorlayer/TensorLayer">TensorLayer</a></li>
|
||
<li><a href="https://github.com/tflearn/tflearn">TFLearn</a></li>
|
||
<li><a href="https://github.com/deepmind/sonnet">Sonnet</a></li>
|
||
<li><a
|
||
href="https://github.com/tensorpack/tensorpack">tensorpack</a></li>
|
||
<li><a href="https://github.com/deepmind/trfl">TRFL</a></li>
|
||
<li><a href="https://github.com/polyaxon/polyaxon">Polyaxon</a></li>
|
||
<li><a href="https://github.com/itdxer/neupy">NeuPy</a></li>
|
||
<li><a href="https://github.com/riga/tfdeploy">tfdeploy</a></li>
|
||
<li><a
|
||
href="https://github.com/ROCmSoftwarePlatform/tensorflow-upstream">tensorflow-upstream</a></li>
|
||
<li><a href="https://github.com/tensorflow/fold">TensorFlow
|
||
Fold</a></li>
|
||
<li><a href="https://github.com/batzner/tensorlm">tensorlm</a></li>
|
||
<li><a
|
||
href="https://github.com/bsautermeister/tensorlight">TensorLight</a></li>
|
||
<li><a href="https://github.com/tensorflow/mesh">Mesh
|
||
TensorFlow</a></li>
|
||
<li><a href="https://github.com/ludwig-ai/ludwig">Ludwig</a></li>
|
||
<li><a href="https://github.com/tensorflow/agents">TF-Agents</a></li>
|
||
<li><a
|
||
href="https://github.com/tensorforce/tensorforce">TensorForce</a></li>
|
||
</ul>
|
||
<h4 id="keras-ecosystem">Keras Ecosystem</h4>
|
||
<ul>
|
||
<li><a href="https://keras.io">Keras</a></li>
|
||
<li><a
|
||
href="https://github.com/keras-team/keras-contrib">keras-contrib</a></li>
|
||
<li><a href="https://github.com/maxpumperla/hyperas">Hyperas</a></li>
|
||
<li><a href="https://github.com/maxpumperla/elephas">Elephas</a></li>
|
||
<li><a href="https://github.com/keplr-io/hera">Hera</a></li>
|
||
<li><a
|
||
href="https://github.com/danielegrattarola/spektral">Spektral</a></li>
|
||
<li><a href="https://github.com/google/qkeras">qkeras</a></li>
|
||
<li><a href="https://github.com/keras-rl/keras-rl">keras-rl</a></li>
|
||
<li><a href="https://github.com/autonomio/talos">Talos</a></li>
|
||
</ul>
|
||
<h4 id="visualization-tools">Visualization Tools</h4>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a href="https://altair-viz.github.io/">altair</a></li>
|
||
<li><a href="https://www.amcharts.com/">amcharts</a></li>
|
||
<li><a href="https://www.anychart.com/">anychart</a></li>
|
||
<li><a href="https://bokeh.org/">bokeh</a></li>
|
||
<li><a
|
||
href="https://www.comet.com/site/products/ml-experiment-tracking/?utm_source=awesome-datascience">Comet</a></li>
|
||
<li><a href="https://slemma.com/">slemma</a></li>
|
||
<li><a href="https://cartodb.github.io/odyssey.js/">cartodb</a></li>
|
||
<li><a href="https://square.github.io/cube/">Cube</a></li>
|
||
<li><a href="https://d3plus.org/">d3plus</a></li>
|
||
<li><a href="https://d3js.org/">Data-Driven Documents(D3js)</a></li>
|
||
<li><a href="https://dygraphs.com/">dygraphs</a></li>
|
||
<li><a href="https://www.simile-widgets.org/exhibit/">exhibit</a></li>
|
||
<li><a href="https://gephi.org/">gephi</a></li>
|
||
<li><a href="https://ggplot2.tidyverse.org/">ggplot2</a></li>
|
||
<li><a href="http://docs.glueviz.org/en/latest/index.html">Glue</a></li>
|
||
<li><a
|
||
href="https://developers.google.com/chart/interactive/docs/gallery">Google
|
||
Chart Gallery</a></li>
|
||
<li><a href="https://www.highcharts.com/">highcarts</a></li>
|
||
<li><a href="https://www.import.io/">import.io</a></li>
|
||
<li><a href="https://matplotlib.org/">Matplotlib</a></li>
|
||
<li><a href="https://nvd3.org/">nvd3</a></li>
|
||
<li><a href="https://github.com/lutzroeder/netron">Netron</a></li>
|
||
<li><a href="https://openrefine.org/">Openrefine</a></li>
|
||
<li><a href="https://plot.ly/">plot.ly</a></li>
|
||
<li><a href="https://rawgraphs.io">raw</a></li>
|
||
<li><a href="https://github.com/abistarun/resseract-lite">Resseract
|
||
Lite</a></li>
|
||
<li><a href="https://seaborn.pydata.org/">Seaborn</a></li>
|
||
<li><a href="https://techanjs.org/">techanjs</a></li>
|
||
<li><a href="https://timeline.knightlab.com/">Timeline</a></li>
|
||
<li><a
|
||
href="https://variancecharts.com/index.html">variancecharts</a></li>
|
||
<li><a href="https://vida.io/">vida</a></li>
|
||
<li><a href="https://github.com/vizzuhq/vizzu-lib">vizzu</a></li>
|
||
<li><a href="http://vis.stanford.edu/wrangler/">Wrangler</a></li>
|
||
<li><a
|
||
href="http://www.r2d3.us/visual-intro-to-machine-learning-part-1/">r2d3</a></li>
|
||
<li><a href="https://networkx.org/">NetworkX</a></li>
|
||
<li><a href="https://redash.io/">Redash</a></li>
|
||
<li><a href="https://c3js.org/">C3</a></li>
|
||
<li><a
|
||
href="https://github.com/microsoft/tensorwatch">TensorWatch</a></li>
|
||
<li><a href="https://pypi.org/project/geomap/">geomap</a></li>
|
||
<li><a href="https://plotly.com/dash/">Dash</a></li>
|
||
</ul>
|
||
<h3 id="miscellaneous-tools">Miscellaneous Tools</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<table>
|
||
<colgroup>
|
||
<col style="width: 50%" />
|
||
<col style="width: 50%" />
|
||
</colgroup>
|
||
<thead>
|
||
<tr class="header">
|
||
<th>Link</th>
|
||
<th>Description</th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/dslp/dslp">The Data Science Lifecycle
|
||
Process</a></td>
|
||
<td>The Data Science Lifecycle Process is a process for taking data
|
||
science teams from Idea to Value repeatedly and sustainably. The process
|
||
is documented in this repo</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/dslp/dslp-repo-template">Data Science
|
||
Lifecycle Template Repo</a></td>
|
||
<td>Template repository for data science lifecycle project</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/AstraZeneca/rexmex">RexMex</a></td>
|
||
<td>A general purpose recommender metrics library for fair
|
||
evaluation.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a
|
||
href="https://github.com/AstraZeneca/chemicalx">ChemicalX</a></td>
|
||
<td>A PyTorch based deep learning library for drug pair scoring.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a
|
||
href="https://github.com/benedekrozemberczki/pytorch_geometric_temporal">PyTorch
|
||
Geometric Temporal</a></td>
|
||
<td>Representation learning on dynamic graphs.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a
|
||
href="https://github.com/benedekrozemberczki/littleballoffur">Little
|
||
Ball of Fur</a></td>
|
||
<td>A graph sampling library for NetworkX with a Scikit-Learn like
|
||
API.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/benedekrozemberczki/karateclub">Karate
|
||
Club</a></td>
|
||
<td>An unsupervised machine learning extension library for NetworkX with
|
||
a Scikit-Learn like API.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/ml-tooling/ml-workspace">ML
|
||
Workspace</a></td>
|
||
<td>All-in-one web-based IDE for machine learning and data science. The
|
||
workspace is deployed as a Docker container and is preloaded with a
|
||
variety of popular data science libraries (e.g., Tensorflow, PyTorch)
|
||
and dev tools (e.g., Jupyter, VS Code)</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://neptune.ai">Neptune.ai</a></td>
|
||
<td>Community-friendly platform supporting data scientists in creating
|
||
and sharing machine learning models. Neptune facilitates teamwork,
|
||
infrastructure management, models comparison and reproducibility.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/minerva-ml/steppy">steppy</a></td>
|
||
<td>Lightweight, Python library for fast and reproducible machine
|
||
learning experimentation. Introduces very simple interface that enables
|
||
clean machine learning pipeline design.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a
|
||
href="https://github.com/minerva-ml/steppy-toolkit">steppy-toolkit</a></td>
|
||
<td>Curated collection of the neural networks, transformers and models
|
||
that make your machine learning work faster and more effective.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://cloud.google.com/datalab/docs/">Datalab from
|
||
Google</a></td>
|
||
<td>easily explore, visualize, analyze, and transform data using
|
||
familiar languages, such as Python and SQL, interactively.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a
|
||
href="https://www.cloudera.com/downloads/hortonworks-sandbox.html">Hortonworks
|
||
Sandbox</a></td>
|
||
<td>is a personal, portable Hadoop environment that comes with a dozen
|
||
interactive Hadoop tutorials.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://www.r-project.org/">R</a></td>
|
||
<td>is a free software environment for statistical computing and
|
||
graphics.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://www.tidyverse.org/">Tidyverse</a></td>
|
||
<td>is an opinionated collection of R packages designed for data
|
||
science. All packages share an underlying design philosophy, grammar,
|
||
and data structures.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://www.rstudio.com">RStudio</a></td>
|
||
<td>IDE – powerful user interface for R. It’s free and open source, and
|
||
works on Windows, Mac, and Linux.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://www.anaconda.com">Python - Pandas -
|
||
Anaconda</a></td>
|
||
<td>Completely free enterprise-ready Python distribution for large-scale
|
||
data processing, predictive analytics, and scientific computing</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/adrotog/PandasGUI">Pandas GUI</a></td>
|
||
<td>Pandas GUI</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://scikit-learn.org/stable/">Scikit-Learn</a></td>
|
||
<td>Machine Learning in Python</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://numpy.org/">NumPy</a></td>
|
||
<td>NumPy is fundamental for scientific computing with Python. It
|
||
supports large, multi-dimensional arrays and matrices and includes an
|
||
assortment of high-level mathematical functions to operate on these
|
||
arrays.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://vaex.io/">Vaex</a></td>
|
||
<td>Vaex is a Python library that allows you to visualize large datasets
|
||
and calculate statistics at high speeds.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://scipy.org/">SciPy</a></td>
|
||
<td>SciPy works with NumPy arrays and provides efficient routines for
|
||
numerical integration and optimization.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://www.coursera.org/learn/data-scientists-tools">Data
|
||
Science Toolbox</a></td>
|
||
<td>Coursera Course</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://datasciencetoolbox.org/">Data Science
|
||
Toolbox</a></td>
|
||
<td>Blog</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://www.wolfram.com/data-science-platform/">Wolfram
|
||
Data Science Platform</a></td>
|
||
<td>Take numerical, textual, image, GIS or other data and give it the
|
||
Wolfram treatment, carrying out a full spectrum of data science analysis
|
||
and visualization and automatically generate rich interactive
|
||
reports—all powered by the revolutionary knowledge-based Wolfram
|
||
Language.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://www.datadoghq.com/">Datadog</a></td>
|
||
<td>Solutions, code, and devops for high-scale data science.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://variancecharts.com/">Variance</a></td>
|
||
<td>Build powerful data visualizations for the web without writing
|
||
JavaScript</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="http://kitesdk.org/docs/current/index.html">Kite
|
||
Development Kit</a></td>
|
||
<td>The Kite Software Development Kit (Apache License, Version 2.0), or
|
||
Kite for short, is a set of libraries, tools, examples, and
|
||
documentation focused on making it easier to build systems on top of the
|
||
Hadoop ecosystem.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://www.dominodatalab.com">Domino Data Labs</a></td>
|
||
<td>Run, scale, share, and deploy your models — without any
|
||
infrastructure or setup.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://flink.apache.org/">Apache Flink</a></td>
|
||
<td>A platform for efficient, distributed, general-purpose data
|
||
processing.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://hama.apache.org/">Apache Hama</a></td>
|
||
<td>Apache Hama is an Apache Top-Level open source project, allowing you
|
||
to do advanced analytics beyond MapReduce.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://ml.cms.waikato.ac.nz/weka/index.html">Weka</a></td>
|
||
<td>Weka is a collection of machine learning algorithms for data mining
|
||
tasks.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://www.gnu.org/software/octave/">Octave</a></td>
|
||
<td>GNU Octave is a high-level interpreted language, primarily intended
|
||
for numerical computations.(Free Matlab)</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://spark.apache.org/">Apache Spark</a></td>
|
||
<td>Lightning-fast cluster computing</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/Hydrospheredata/mist">Hydrosphere
|
||
Mist</a></td>
|
||
<td>a service for exposing Apache Spark analytics jobs and machine
|
||
learning models as realtime, batch or reactive web services.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://www.datamechanics.co">Data Mechanics</a></td>
|
||
<td>A data science and engineering platform making Apache Spark more
|
||
developer-friendly and cost-effective.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://caffe.berkeleyvision.org/">Caffe</a></td>
|
||
<td>Deep Learning Framework</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="http://torch.ch/">Torch</a></td>
|
||
<td>A SCIENTIFIC COMPUTING FRAMEWORK FOR LUAJIT</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/NervanaSystems/neon">Nervana’s python
|
||
based Deep Learning Framework</a></td>
|
||
<td>Intel® Nervana™ reference deep learning framework committed to best
|
||
performance on all hardware.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/skale-me/skale">Skale</a></td>
|
||
<td>High performance distributed data processing in NodeJS</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://airbnb.io/aerosolve/">Aerosolve</a></td>
|
||
<td>A machine learning package built for humans.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/intel/idlf">Intel framework</a></td>
|
||
<td>Intel® Deep Learning Framework</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://www.datawrapper.de/">Datawrapper</a></td>
|
||
<td>An open source data visualization platform helping everyone to
|
||
create simple, correct and embeddable charts. Also at <a
|
||
href="https://github.com/datawrapper/datawrapper">github.com</a></td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://www.tensorflow.org/">Tensor Flow</a></td>
|
||
<td>TensorFlow is an Open Source Software Library for Machine
|
||
Intelligence</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://www.nltk.org/">Natural Language Toolkit</a></td>
|
||
<td>An introductory yet powerful toolkit for natural language processing
|
||
and classification</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://www.johnsnowlabs.com/annotation-lab/">Annotation
|
||
Lab</a></td>
|
||
<td>Free End-to-End No-Code platform for text annotation and DL model
|
||
training/tuning. Out-of-the-box support for Named Entity Recognition,
|
||
Classification, Relation extraction and Assertion Status Spark NLP
|
||
models. Unlimited support for users, teams, projects, documents.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://www.npmjs.com/package/nlp-toolkit">nlp-toolkit for
|
||
node.js</a></td>
|
||
<td>This module covers some basic nlp principles and implementations.
|
||
The main focus is performance. When we deal with sample or training data
|
||
in nlp, we quickly run out of memory. Therefore every implementation in
|
||
this module is written as stream to only hold that data in memory that
|
||
is currently processed at any step.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://julialang.org">Julia</a></td>
|
||
<td>high-level, high-performance dynamic programming language for
|
||
technical computing</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/JuliaLang/IJulia.jl">IJulia</a></td>
|
||
<td>a Julia-language backend combined with the Jupyter interactive
|
||
environment</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://zeppelin.apache.org/">Apache Zeppelin</a></td>
|
||
<td>Web-based notebook that enables data-driven, interactive data
|
||
analytics and collaborative documents with SQL, Scala and more</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a
|
||
href="https://github.com/alteryx/featuretools">Featuretools</a></td>
|
||
<td>An open source framework for automated feature engineering written
|
||
in python</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/hi-primus/optimus">Optimus</a></td>
|
||
<td>Cleansing, pre-processing, feature engineering, exploratory data
|
||
analysis and easy ML with PySpark backend.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a
|
||
href="https://github.com/albumentations-team/albumentations">Albumentations</a></td>
|
||
<td>А fast and framework agnostic image augmentation library that
|
||
implements a diverse set of augmentation techniques. Supports
|
||
classification, segmentation, and detection out of the box. Was used to
|
||
win a number of Deep Learning competitions at Kaggle, Topcoder and those
|
||
that were a part of the CVPR workshops.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/iterative/dvc">DVC</a></td>
|
||
<td>An open-source data science version control system. It helps track,
|
||
organize and make data science projects reproducible. In its very basic
|
||
scenario it helps version control and share large data and model
|
||
files.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/asavinov/lambdo">Lambdo</a></td>
|
||
<td>is a workflow engine that significantly simplifies data analysis by
|
||
combining in one analysis pipeline (i) feature engineering and machine
|
||
learning (ii) model training and prediction (iii) table population and
|
||
column evaluation.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/feast-dev/feast">Feast</a></td>
|
||
<td>A feature store for the management, discovery, and access of machine
|
||
learning features. Feast provides a consistent view of feature data for
|
||
both model training and model serving.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/polyaxon/polyaxon">Polyaxon</a></td>
|
||
<td>A platform for reproducible and scalable machine learning and deep
|
||
learning.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://ubiai.tools">UBIAI</a></td>
|
||
<td>Easy-to-use text annotation tool for teams with most comprehensive
|
||
auto-annotation features. Supports NER, relations and document
|
||
classification as well as OCR annotation for invoice labeling</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/allegroai/clearml">Trains</a></td>
|
||
<td>Auto-Magical Experiment Manager, Version Control & DevOps for
|
||
AI</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a
|
||
href="https://github.com/logicalclocks/hopsworks">Hopsworks</a></td>
|
||
<td>Open-source data-intensive machine learning platform with a feature
|
||
store. Ingest and manage features for both online (MySQL Cluster) and
|
||
offline (Apache Hive) access, train and serve models at scale.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/mindsdb/mindsdb">MindsDB</a></td>
|
||
<td>MindsDB is an Explainable AutoML framework for developers. With
|
||
MindsDB you can build, train and use state of the art ML models in as
|
||
simple as one line of code.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/mindsdb/lightwood">Lightwood</a></td>
|
||
<td>A Pytorch based framework that breaks down machine learning problems
|
||
into smaller blocks that can be glued together seamlessly with an
|
||
objective to build predictive models with one line of code.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/awslabs/aws-data-wrangler">AWS Data
|
||
Wrangler</a></td>
|
||
<td>An open-source Python package that extends the power of Pandas
|
||
library to AWS connecting DataFrames and AWS data related services
|
||
(Amazon Redshift, AWS Glue, Amazon Athena, Amazon EMR, etc).</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://aws.amazon.com/rekognition/">Amazon
|
||
Rekognition</a></td>
|
||
<td>AWS Rekognition is a service that lets developers working with
|
||
Amazon Web Services add image analysis to their applications. Catalog
|
||
assets, automate workflows, and extract meaning from your media and
|
||
applications.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://aws.amazon.com/textract/">Amazon Textract</a></td>
|
||
<td>Automatically extract printed text, handwriting, and data from any
|
||
document.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://aws.amazon.com/lookout-for-vision/">Amazon Lookout
|
||
for Vision</a></td>
|
||
<td>Spot product defects using computer vision to automate quality
|
||
inspection. Identify missing product components, vehicle and structure
|
||
damage, and irregularities for comprehensive quality control.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://aws.amazon.com/codeguru/">Amazon CodeGuru</a></td>
|
||
<td>Automate code reviews and optimize application performance with
|
||
ML-powered recommendations.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/iterative/cml">CML</a></td>
|
||
<td>An open source toolkit for using continuous integration in data
|
||
science projects. Automatically train and test models in production-like
|
||
environments with GitHub Actions & GitLab CI, and autogenerate
|
||
visual reports on pull/merge requests.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://dask.org/">Dask</a></td>
|
||
<td>An open source Python library to painlessly transition your
|
||
analytics code to distributed computing systems (Big Data)</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a
|
||
href="https://www.statsmodels.org/stable/index.html">Statsmodels</a></td>
|
||
<td>A Python-based inferential statistics, hypothesis testing and
|
||
regression framework</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://radimrehurek.com/gensim/">Gensim</a></td>
|
||
<td>An open-source library for topic modeling of natural language
|
||
text</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://spacy.io/">spaCy</a></td>
|
||
<td>A performant natural language processing toolkit</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/ricklamers/gridstudio">Grid
|
||
Studio</a></td>
|
||
<td>Grid studio is a web-based spreadsheet application with full
|
||
integration of the Python programming language.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a
|
||
href="https://github.com/jakevdp/PythonDataScienceHandbook">Python Data
|
||
Science Handbook</a></td>
|
||
<td>Python Data Science Handbook: full text in Jupyter Notebooks</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a
|
||
href="https://github.com/benedekrozemberczki/shapley">Shapley</a></td>
|
||
<td>A data-driven framework to quantify the value of classifiers in a
|
||
machine learning ensemble.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://dagshub.com">DAGsHub</a></td>
|
||
<td>A platform built on open source tools for data, model and pipeline
|
||
management.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://deepnote.com">Deepnote</a></td>
|
||
<td>A new kind of data science notebook. Jupyter-compatible, with
|
||
real-time collaboration and running in the cloud.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://valohai.com">Valohai</a></td>
|
||
<td>An MLOps platform that handles machine orchestration, automatic
|
||
reproducibility and deployment.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://docs.pymc.io/">PyMC3</a></td>
|
||
<td>A Python Library for Probabalistic Programming (Bayesian Inference
|
||
and Machine Learning)</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://pypi.org/project/pystan/">PyStan</a></td>
|
||
<td>Python interface to Stan (Bayesian inference and modeling)</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://pypi.org/project/hmmlearn/">hmmlearn</a></td>
|
||
<td>Unsupervised learning and inference of Hidden Markov Models</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/chaos-genius/chaos_genius/">Chaos
|
||
Genius</a></td>
|
||
<td>ML powered analytics engine for outlier/anomaly detection and root
|
||
cause analysis</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://nimblebox.ai/">Nimblebox</a></td>
|
||
<td>A full-stack MLOps platform designed to help data scientists and
|
||
machine learning practitioners around the world discover, create, and
|
||
launch multi-cloud apps from their web browser.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/towhee-io/towhee">Towhee</a></td>
|
||
<td>A Python library that helps you encode your unstructured data into
|
||
embeddings.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/LineaLabs/lineapy">LineaPy</a></td>
|
||
<td>Ever been frustrated with cleaning up long, messy Jupyter notebooks?
|
||
With LineaPy, an open source Python library, it takes as little as two
|
||
lines of code to transform messy development code into production
|
||
pipelines.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/tensorchord/envd">envd</a></td>
|
||
<td>🏕️ machine learning development environment for data science and
|
||
AI/ML engineering teams</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://kandi.openweaver.com/explore/data-science">Explore
|
||
Data Science Libraries</a></td>
|
||
<td>A search engine 🔎 tool to discover & find a curated list of
|
||
popular & new libraries, top authors, trending project kits,
|
||
discussions, tutorials & learning resources</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/iterative/mlem">MLEM</a></td>
|
||
<td>🐶 Version and deploy your ML models following GitOps
|
||
principles</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://mlflow.org/">MLflow</a></td>
|
||
<td>MLOps framework for managing ML models across their full
|
||
lifecycle</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/cleanlab/cleanlab">cleanlab</a></td>
|
||
<td>Python library for data-centric AI and automatically detecting
|
||
various issues in ML datasets</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/awslabs/autogluon">AutoGluon</a></td>
|
||
<td>AutoML to easily produce accurate predictions for image, text,
|
||
tabular, time-series, and multi-modal data</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://arize.com/">Arize AI</a></td>
|
||
<td>Arize AI community tier observability tool for monitoring machine
|
||
learning models in production and root-causing issues such as data
|
||
quality and performance drift.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://aureo.io">Aureo.io</a></td>
|
||
<td>Aureo.io is a low-code platform that focuses on building artificial
|
||
intelligence. It provides users with the capability to create pipelines,
|
||
automations and integrate them with artificial intelligence models – all
|
||
with their basic data.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://www.erdlab.io/">ERD Lab</a></td>
|
||
<td>Free cloud based entity relationship diagram (ERD) tool made for
|
||
developers.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://docs.arize.com/phoenix">Arize-Phoenix</a></td>
|
||
<td>MLOps in a notebook - uncover insights, surface problems, monitor,
|
||
and fine tune your models.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/comet-ml/comet-examples">Comet</a></td>
|
||
<td>An MLOps platform with experiment tracking, model production
|
||
management, a model registry, and full data lineage to support your ML
|
||
workflow from training straight through to production.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/comet-ml/opik">Opik</a></td>
|
||
<td>Evaluate, test, and ship LLM applications across your dev and
|
||
production lifecycles.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://synthical.com">Synthical</a></td>
|
||
<td>AI-powered collaborative environment for research. Find relevant
|
||
papers, create collections to manage bibliography, and summarize content
|
||
— all in one place</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/mmore500/teeplot">teeplot</a></td>
|
||
<td>Workflow tool to automatically organize data visualization
|
||
output</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/streamlit/streamlit">Streamlit</a></td>
|
||
<td>App framework for Machine Learning and Data Science projects</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/gradio-app/gradio">Gradio</a></td>
|
||
<td>Create customizable UI components around machine learning
|
||
models</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/wandb/wandb">Weights &
|
||
Biases</a></td>
|
||
<td>Experiment tracking, dataset versioning, and model management</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/iterative/dvc">DVC</a></td>
|
||
<td>Open-source version control system for machine learning
|
||
projects</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/optuna/optuna">Optuna</a></td>
|
||
<td>Automatic hyperparameter optimization software framework</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/ray-project/ray">Ray Tune</a></td>
|
||
<td>Scalable hyperparameter tuning library</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/apache/airflow">Apache Airflow</a></td>
|
||
<td>Platform to programmatically author, schedule, and monitor
|
||
workflows</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/PrefectHQ/prefect">Prefect</a></td>
|
||
<td>Workflow management system for modern data stacks</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/kedro-org/kedro">Kedro</a></td>
|
||
<td>Open-source Python framework for creating reproducible, maintainable
|
||
data science code</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/dagworks-inc/hamilton">Hamilton</a></td>
|
||
<td>Lightweight library to author and manage reliable data
|
||
transformations</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/slundberg/shap">SHAP</a></td>
|
||
<td>Game theoretic approach to explain the output of any machine
|
||
learning model</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/marcotcr/lime">LIME</a></td>
|
||
<td>Explaining the predictions of any machine learning classifier</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/flyteorg/flyte">flyte</a></td>
|
||
<td>Workflow automation platform for machine learning</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/dbt-labs/dbt-core">dbt</a></td>
|
||
<td>Data build tool</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/slundberg/shap">SHAP</a></td>
|
||
<td>Game theoretic approach to explain the output of any machine
|
||
learning model</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/marcotcr/lime">LIME</a></td>
|
||
<td>Explaining the predictions of any machine learning classifier</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://github.com/zasper-io/zasper">zasper</a></td>
|
||
<td>Supercharged IDE for Data Science </td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://github.com/skrub-data/skrub/">skrub</a></td>
|
||
<td>A Python library to ease preprocessing and feature engineering for
|
||
tabular machine learning </td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<h2 id="literature-and-media">Literature and Media</h2>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<p>This section includes some additional reading material, channels to
|
||
watch, and talks to listen to.</p>
|
||
<h3 id="books">Books</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a
|
||
href="https://www.amazon.com/Data-Science-Scratch-Principles-Python-dp-1492041130/dp/1492041130/ref=dp_ob_title_bk">Data
|
||
Science From Scratch: First Principles with Python</a></li>
|
||
<li><a
|
||
href="https://www.tutorialspoint.com/artificial_intelligence_with_python/artificial_intelligence_with_python_tutorial.pdf">Artificial
|
||
Intelligence with Python - Tutorialspoint</a></li>
|
||
<li><a
|
||
href="https://dafriedman97.github.io/mlbook/content/introduction.html">Machine
|
||
Learning from Scratch</a></li>
|
||
<li><a href="https://probml.github.io/pml-book/book1.html">Probabilistic
|
||
Machine Learning: An Introduction</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/books/how-to-lead-in-data-science">How to
|
||
Lead in Data Science</a> - Early Access</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/fighting-churn-with-data">Fighting
|
||
Churn With Data</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/books/data-science-with-python-and-dask">Data
|
||
Science at Scale with Python and Dask</a></li>
|
||
<li><a
|
||
href="https://jakevdp.github.io/PythonDataScienceHandbook/">Python Data
|
||
Science Handbook</a></li>
|
||
<li><a href="https://www.thedatasciencehandbook.com/">The Data Science
|
||
Handbook: Advice and Insights from 25 Amazing Data Scientists</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/books/think-like-a-data-scientist">Think
|
||
Like a Data Scientist</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/books/introducing-data-science">Introducing
|
||
Data Science</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/books/practical-data-science-with-r">Practical
|
||
Data Science with R</a></li>
|
||
<li><a
|
||
href="https://www.amazon.com/dp/B08TZ1MT3W/ref=cm_sw_r_cp_apa_fabc_a0ceGbWECF9A8">Everyday
|
||
Data Science</a> & <a href="https://gum.co/everydaydata">(cheaper
|
||
PDF version)</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/books/exploring-data-science">Exploring
|
||
Data Science</a> - free eBook sampler</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/exploring-the-data-jungle">Exploring
|
||
the Data Jungle</a> - free eBook sampler</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/classic-computer-science-problems-in-python">Classic
|
||
Computer Science Problems in Python</a></li>
|
||
<li><a href="https://www.manning.com/books/math-for-programmers">Math
|
||
for Programmers</a> Early access</li>
|
||
<li><a href="https://www.manning.com/books/r-in-action-third-edition">R
|
||
in Action, Third Edition</a> Early Access</li>
|
||
<li><a href="https://www.manning.com/books/data-science-bookcamp">Data
|
||
Science Bookcamp</a> Early access</li>
|
||
<li><a href="https://www.springer.com/gp/book/9783319950914">Data
|
||
Science Thinking: The Next Scientific, Technological and Economic
|
||
Revolution</a></li>
|
||
<li><a href="https://www.springer.com/gp/book/9783030118204">Applied
|
||
Data Science: Lessons Learned for the Data-Driven Business</a></li>
|
||
<li><a
|
||
href="https://www.amazon.com/Data-Science-Handbook-Field-Cady/dp/1119092949">The
|
||
Data Science Handbook</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/books/getting-started-with-natural-language-processing">Essential
|
||
Natural Language Processing</a> - Early access</li>
|
||
<li><a href="http://www.mmds.org/">Mining Massive Datasets</a> - free
|
||
e-book comprehended by an online course</li>
|
||
<li><a href="https://www.manning.com/books/pandas-in-action">Pandas in
|
||
Action</a> - Early access</li>
|
||
<li><a href="https://www.taylorfrancis.com/books/9780429141973">Genetic
|
||
Algorithms and Genetic Programming</a></li>
|
||
<li><a
|
||
href="https://www.intechopen.com/books/advances_in_evolutionary_algorithms">Advances
|
||
in Evolutionary Algorithms</a> - Free Download</li>
|
||
<li><a
|
||
href="https://www.intechopen.com/books/genetic-programming-new-approaches-and-successful-applications">Genetic
|
||
Programming: New Approaches and Successful Applications</a> - Free
|
||
Download</li>
|
||
<li><a
|
||
href="https://www.intechopen.com/books/evolutionary-algorithms">Evolutionary
|
||
Algorithms</a> - Free Download</li>
|
||
<li><a href="http://www0.cs.ucl.ac.uk/staff/W.Langdon/aigp3/">Advances
|
||
in Genetic Programming, Vol. 3</a> - Free Download</li>
|
||
<li><a
|
||
href="https://www.talkorigins.org/faqs/genalg/genalg.html">Genetic
|
||
Algorithms and Evolutionary Computation</a> - Free Download</li>
|
||
<li><a
|
||
href="https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf">Convex
|
||
Optimization</a> - Convex Optimization book by Stephen Boyd - Free
|
||
Download</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/data-analysis-with-python-and-pyspark">Data
|
||
Analysis with Python and PySpark</a> - Early Access</li>
|
||
<li><a href="https://r4ds.had.co.nz/">R for Data Science</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/books/build-a-career-in-data-science">Build
|
||
a Career in Data Science</a></li>
|
||
<li><a href="https://mlbookcamp.com/">Machine Learning Bookcamp</a> -
|
||
Early access</li>
|
||
<li><a
|
||
href="https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/">Hands-On
|
||
Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd
|
||
Edition</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/books/effective-data-science-infrastructure">Effective
|
||
Data Science Infrastructure</a></li>
|
||
<li><a href="https://valohai.com/mlops-ebook/">Practical MLOps: How to
|
||
Get Ready for Production Models</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/books/data-analysis-with-python-and-pyspark">Data
|
||
Analysis with Python and PySpark</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/books/regression-a-friendly-guide">Regression,
|
||
a Friendly guide</a> - Early Access</li>
|
||
<li><a
|
||
href="https://www.oreilly.com/library/view/streaming-systems/9781491983867/">Streaming
|
||
Systems: The What, Where, When, and How of Large-Scale Data
|
||
Processing</a></li>
|
||
<li><a
|
||
href="https://www.oreilly.com/library/view/data-science-at/9781491947845/">Data
|
||
Science at the Command Line: Facing the Future with Time-Tested
|
||
Tools</a></li>
|
||
<li><a
|
||
href="https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_tutorial.pdf">Machine
|
||
Learning with Python - Tutorialspoint</a></li>
|
||
<li><a href="https://www.deeplearningbook.org/">Deep Learning</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/books/designing-cloud-data-platforms">Designing
|
||
Cloud Data Platforms</a> - Early Access</li>
|
||
<li><a href="https://www.statlearning.com/">An Introduction to
|
||
Statistical Learning with Applications in R</a></li>
|
||
<li><a href="https://hastie.su.domains/ElemStatLearn/">The Elements of
|
||
Statistical Learning: Data Mining, Inference, and Prediction</a></li>
|
||
<li><a
|
||
href="https://www.simonandschuster.com/books/Deep-Learning-with-PyTorch/Eli-Stevens/9781617295263">Deep
|
||
Learning with PyTorch</a></li>
|
||
<li><a href="http://neuralnetworksanddeeplearning.com">Neural Networks
|
||
and Deep Learning</a></li>
|
||
<li><a
|
||
href="https://www.oreilly.com/library/view/deep-learning-cookbook/9781491995839/">Deep
|
||
Learning Cookbook</a></li>
|
||
<li><a
|
||
href="https://www.oreilly.com/library/view/introduction-to-machine/9781449369880/">Introduction
|
||
to Machine Learning with Python</a></li>
|
||
<li><a href="https://artint.info/index.html">Artificial Intelligence:
|
||
Foundations of Computational Agents, 2nd Edition</a> - Free HTML
|
||
version</li>
|
||
<li><a href="https://ai.stanford.edu/~nilsson/QAI/qai.pdf">The Quest for
|
||
Artificial Intelligence: A History of Ideas and Achievements</a> - Free
|
||
Download</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/graph-algorithms-for-data-science">Graph
|
||
Algorithms for Data Science</a> - Early Access</li>
|
||
<li><a href="https://www.manning.com/books/data-mesh-in-action">Data
|
||
Mesh in Action</a> - Early Access</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/julia-for-data-analysis">Julia for
|
||
Data Analysis</a> - Early Access</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/julia-for-data-analysis">Casual
|
||
Inference for Data Science</a> - Early Access</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/regular-expression-puzzles-and-ai-coding-assistants">Regular
|
||
Expression Puzzles and AI Coding Assistants</a> by David Mertz</li>
|
||
<li><a href="https://d2l.ai/">Dive into Deep Learning</a></li>
|
||
<li><a href="https://www.manning.com/books/data-for-all">Data for
|
||
All</a></li>
|
||
<li><a
|
||
href="https://christophm.github.io/interpretable-ml-book/">Interpretable
|
||
Machine Learning: A Guide for Making Black Box Models Explainable</a> -
|
||
Free GitHub version</li>
|
||
<li><a href="https://www.cs.cornell.edu/jeh/book.pdf">Foundations of
|
||
Data Science</a> Free Download</li>
|
||
<li><a
|
||
href="https://www.amazon.com/Comet-Data-Science-Enhance-optimize/dp/1801814430">Comet
|
||
for DataScience: Enhance your ability to manage and optimize the life
|
||
cycle of your data science project</a></li>
|
||
<li><a
|
||
href="https://www.manning.com/books/software-engineering-for-data-scientists">Software
|
||
Engineering for Data Scientists</a> - Early Access</li>
|
||
<li><a href="https://www.manning.com/books/julia-for-data-science">Julia
|
||
for Data Science</a> - Early Access</li>
|
||
<li><a href="https://www.statlearning.com/">An Introduction to
|
||
Statistical Learning</a> - Download Page</li>
|
||
<li><a
|
||
href="https://www.amazon.in/Machine-Learning-Absolute-Beginners-Introduction-ebook/dp/B07335JNW1">Machine
|
||
Learning For Absolute Beginners</a></li>
|
||
<li><a
|
||
href="https://learning.oreilly.com/library/view/unifying-business-data/9781098144999/">Unifying
|
||
Business, Data, and Code: Designing Data Products with JSON
|
||
Schema</a></li>
|
||
</ul>
|
||
<h4 id="book-deals-affiliated">Book Deals (Affiliated)</h4>
|
||
<ul>
|
||
<li><p><a
|
||
href="https://www.manning.com/?utm_source=mikrobusiness&utm_medium=affiliate&utm_campaign=ebook_sale_8_8_22">eBook
|
||
sale - Save up to 45% on eBooks!</a></p></li>
|
||
<li><p><a
|
||
href="https://www.manning.com/books/causal-machine-learning?utm_source=mikrobusiness&utm_medium=affiliate&utm_campaign=book_ness_causal_7_26_22&a_aid=mikrobusiness&a_bid=43a2198b">Causal
|
||
Machine Learning</a></p></li>
|
||
<li><p><a
|
||
href="https://www.manning.com/books/managing-machine-learning-projects?utm_source=mikrobusiness&utm_medium=affiliate&utm_campaign=book_thompson_managing_6_14_22">Managing
|
||
ML Projects</a></p></li>
|
||
<li><p><a
|
||
href="https://www.manning.com/books/causal-inference-for-data-science?utm_source=mikrobusiness&utm_medium=affiliate&utm_campaign=book_ruizdevilla_causal_6_6_22">Causal
|
||
Inference for Data Science</a></p></li>
|
||
<li><p><a
|
||
href="https://www.manning.com/books/data-for-all?utm_source=mikrobusiness&utm_medium=affiliate">Data
|
||
for All</a></p></li>
|
||
</ul>
|
||
<h3 id="journals-publications-and-magazines">Journals, Publications and
|
||
Magazines</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a href="https://icml.cc/2015/">ICML</a> - International Conference
|
||
on Machine Learning</li>
|
||
<li><a
|
||
href="https://gecco-2019.sigevo.org/index.html/HomePage">GECCO</a> - The
|
||
Genetic and Evolutionary Computation Conference (GECCO)</li>
|
||
<li><a
|
||
href="https://epjdatascience.springeropen.com/">epjdatascience</a></li>
|
||
<li><a href="https://jds-online.org/journal/JDS">Journal of Data
|
||
Science</a> - an international journal devoted to applications of
|
||
statistical methods at large</li>
|
||
<li><a href="https://www.journals.elsevier.com/big-data-research">Big
|
||
Data Research</a></li>
|
||
<li><a href="https://journalofbigdata.springeropen.com/">Journal of Big
|
||
Data</a></li>
|
||
<li><a href="https://journals.sagepub.com/home/bds">Big Data &
|
||
Society</a></li>
|
||
<li><a href="https://www.jstage.jst.go.jp/browse/dsj">Data Science
|
||
Journal</a></li>
|
||
<li><a href="https://www.datatau.com/news">datatau.com/news</a> - Like
|
||
Hacker News, but for data</li>
|
||
<li><a href="https://trello.com/b/rbpEfMld/data-science">Data Science
|
||
Trello Board</a></li>
|
||
<li><a href="https://medium.com/tag/data-science">Medium Data Science
|
||
Topic</a> - Data Science related publications on medium</li>
|
||
<li><a
|
||
href="https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3#:~:text=A%20genetic%20algorithm%20is%20a,offspring%20of%20the%20next%20generation.">Towards
|
||
Data Science Genetic Algorithm Topic</a> -Genetic Algorithm related
|
||
Publications towards Data Science</li>
|
||
<li><a href="https://getmaxim.ai">Maxim AI</a>. Tool for AI Agent
|
||
Simulation, Evaluation & Observability.</li>
|
||
</ul>
|
||
<h3 id="newsletters">Newsletters</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a href="https://datatalks.club">DataTalks.Club</a>. A weekly
|
||
newsletter about data-related things. <a
|
||
href="https://us19.campaign-archive.com/home/?u=0d7822ab98152f5afc118c176&id=97178021aa">Archive</a>.</li>
|
||
<li><a href="https://roundup.getdbt.com/about">The Analytics Engineering
|
||
Roundup</a>. A newsletter about data science. <a
|
||
href="https://roundup.getdbt.com/archive">Archive</a>.</li>
|
||
</ul>
|
||
<h3 id="bloggers">Bloggers</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a href="https://wesmckinney.com/archives.html">Wes McKinney</a> -
|
||
Wes McKinney Archives.</li>
|
||
<li><a href="https://miningthesocialweb.com/">Matthew Russell</a> -
|
||
Mining The Social Web.</li>
|
||
<li><a href="http://www.gregreda.com/">Greg Reda</a> - Greg Reda
|
||
Personal Blog</li>
|
||
<li><a href="https://kldavenport.com/">Kevin Davenport</a> - Kevin
|
||
Davenport Personal Blog</li>
|
||
<li><a href="https://jvns.ca/">Julia Evans</a> - Recurse Center
|
||
alumna</li>
|
||
<li><a href="https://www.cse.unr.edu/~hkardes/">Hakan Kardas</a> -
|
||
Personal Web Page</li>
|
||
<li><a href="https://seanjtaylor.com/">Sean J. Taylor</a> - Personal Web
|
||
Page</li>
|
||
<li><a href="http://drewconway.com/">Drew Conway</a> - Personal Web
|
||
Page</li>
|
||
<li><a href="https://hilarymason.com/">Hilary Mason</a> - Personal Web
|
||
Page</li>
|
||
<li><a href="http://complexdiagrams.com/">Noah Iliinsky</a> - Personal
|
||
Blog</li>
|
||
<li><a href="https://hairysun.com/">Matt Harrison</a> - Personal
|
||
Blog</li>
|
||
<li><a href="https://allthingsds.wordpress.com/">Vamshi Ambati</a> -
|
||
AllThings Data Sciene</li>
|
||
<li><a href="https://www.mdmgeek.com/">Prash Chan</a> - Tech Blog on
|
||
Master Data Management And Every Buzz Surrounding It</li>
|
||
<li><a href="http://datasciencemasters.org/">Clare Corthell</a> - The
|
||
Open Source Data Science Masters</li>
|
||
<li><a href="http://www.datawrangling.org">Datawrangling</a> by Peter
|
||
Skomoroch. MACHINE LEARNING, DATA MINING, AND MORE</li>
|
||
<li><a href="https://www.quora.com/topic/Data-Science">Quora Data
|
||
Science</a> - Data Science Questions and Answers from experts</li>
|
||
<li><a href="https://openresearch.wordpress.com/">Siah</a> a PhD student
|
||
at Berkeley</li>
|
||
<li><a href="https://www.ownml.co/blog/">Louis Dorard</a> a technology
|
||
guy with a penchant for the web and for data, big and small</li>
|
||
<li><a href="https://machinelearningmastery.com/">Machine Learning
|
||
Mastery</a> about helping professional programmers confidently apply
|
||
machine learning algorithms to address complex problems.</li>
|
||
<li><a href="https://www.danielforsyth.me/">Daniel Forsyth</a> -
|
||
Personal Blog</li>
|
||
<li><a href="https://www.datascienceweekly.org/">Data Science Weekly</a>
|
||
- Weekly News Blog</li>
|
||
<li><a href="https://blog.revolutionanalytics.com/">Revolution
|
||
Analytics</a> - Data Science Blog</li>
|
||
<li><a href="https://www.r-bloggers.com/">R Bloggers</a> - R
|
||
Bloggers</li>
|
||
<li><a href="https://practicalquant.blogspot.com/">The Practical
|
||
Quant</a> Big data</li>
|
||
<li><a href="https://yet-another-data-blog.blogspot.com/">Yet Another
|
||
Data Blog</a> Yet Another Data Blog</li>
|
||
<li><a href="https://spenczar.com/">Spenczar</a> a data scientist at
|
||
<em>Twitch</em>. I handle the whole data pipeline, from tracking to
|
||
model-building to reporting.</li>
|
||
<li><a href="https://www.kdnuggets.com/">KD Nuggets</a> Data Mining,
|
||
Analytics, Big Data, Data, Science not a blog a portal</li>
|
||
<li><a href="https://www.metabrown.com/blog/">Meta Brown</a> - Personal
|
||
Blog</li>
|
||
<li><a href="https://datascientists.com/">Data Scientist</a> is building
|
||
the data scientist culture.</li>
|
||
<li><a href="https://whatsthebigdata.com/">WhatSTheBigData</a> is some
|
||
of, all of, or much more than the above and this blog explores its
|
||
impact on information technology, the business world, government
|
||
agencies, and our lives.</li>
|
||
<li><a href="https://magnus-notitia.blogspot.com/">Tevfik Kosar</a> -
|
||
Magnus Notitia</li>
|
||
<li><a href="https://newdatascientist.blogspot.com/">New Data
|
||
Scientist</a> How a Social Scientist Jumps into the World of Big
|
||
Data</li>
|
||
<li><a href="https://harvarddatascience.com/">Harvard Data Science</a> -
|
||
Thoughts on Statistical Computing and Visualization</li>
|
||
<li><a href="https://ryanswanstrom.com/datascience101/">Data Science
|
||
101</a> - Learning To Be A Data Scientist</li>
|
||
<li><a href="https://www.chioka.in/kaggle-competition-solutions/">Kaggle
|
||
Past Solutions</a></li>
|
||
<li><a
|
||
href="https://datascientistjourney.wordpress.com/category/data-science/">DataScientistJourney</a></li>
|
||
<li><a href="https://chriswhong.github.io/nyctaxi/">NYC Taxi
|
||
Visualization Blog</a></li>
|
||
<li><a href="https://www.data-mania.com/">Data-Mania</a></li>
|
||
<li><a href="https://data-magnum.com/">Data-Magnum</a></li>
|
||
<li><a
|
||
href="https://datascopeanalytics.com/blog/">datascopeanalytics</a></li>
|
||
<li><a href="https://tarrysingh.com/">Digital transformation</a></li>
|
||
<li><a
|
||
href="https://datascientistjourney.wordpress.com/category/data-science/">datascientistjourney</a></li>
|
||
<li><a href="https://www.data-mania.com/blog/">Data Mania Blog</a> - <a
|
||
href="https://chris-said.io/">The File Drawer</a> - Chris Said’s science
|
||
blog</li>
|
||
<li><a href="http://www.emilio.ferrara.name/">Emilio Ferrara’s web
|
||
page</a></li>
|
||
<li><a href="https://datanews.tumblr.com/">DataNews</a></li>
|
||
<li><a href="https://www.reddit.com/r/textdatamining/">Reddit
|
||
TextMining</a></li>
|
||
<li><a href="https://periscopic.com/#!/news">Periscopic</a></li>
|
||
<li><a href="https://hilaryparker.com/">Hilary Parker</a></li>
|
||
<li><a href="https://datastori.es/">Data Stories</a></li>
|
||
<li><a href="https://datasciencelab.wordpress.com/">Data Science
|
||
Lab</a></li>
|
||
<li><a href="https://www.kennybastani.com/">Meaning of</a></li>
|
||
<li><a href="https://blog.smola.org">Adventures in Data Land</a></li>
|
||
<li><a href="https://theblog.okcupid.com/">Dataclysm</a></li>
|
||
<li><a href="https://flowingdata.com/">FlowingData</a> - Visualization
|
||
and Statistics</li>
|
||
<li><a href="https://www.calculatedriskblog.com/">Calculated
|
||
Risk</a></li>
|
||
<li><a
|
||
href="https://www.oreilly.com/content/topics/oreilly-learning/">O’reilly
|
||
Learning Blog</a></li>
|
||
<li><a href="https://blog.dominodatalab.com/">Dominodatalab</a></li>
|
||
<li><a href="https://iamtrask.github.io/">i am trask</a> - A Machine
|
||
Learning Craftsmanship Blog</li>
|
||
<li><a href="https://datasciencevademecum.wordpress.com/">Vademecum of
|
||
Practical Data Science</a> - Handbook and recipes for data-driven
|
||
solutions of real-world problems</li>
|
||
<li><a href="https://dataconomy.com/">Dataconomy</a> - A blog on the
|
||
newly emerging data economy</li>
|
||
<li><a href="https://www.springboard.com/blog/">Springboard</a> - A blog
|
||
with resources for data science learners</li>
|
||
<li><a href="https://www.analyticsvidhya.com/">Analytics Vidhya</a> - A
|
||
full-fledged website about data science and analytics study
|
||
material.</li>
|
||
<li><a href="https://www.kaushik.net/avinash/">Occam’s Razor</a> -
|
||
Focused on Web Analytics.</li>
|
||
<li><a href="https://www.dataschool.io/">Data School</a> - Data science
|
||
tutorials for beginners!</li>
|
||
<li><a href="https://colah.github.io">Colah’s Blog</a> - Blog for
|
||
understanding Neural Networks!</li>
|
||
<li><a href="https://ruder.io/#open">Sebastian’s Blog</a> - Blog for NLP
|
||
and transfer learning!</li>
|
||
<li><a href="https://distill.pub">Distill</a> - Dedicated to clear
|
||
explanations of machine learning!</li>
|
||
<li><a href="https://chrisalbon.com/">Chris Albon’s Website</a> - Data
|
||
Science and AI notes</li>
|
||
<li><a href="https://andrewnc.github.io/blog/blog.html">Andrew Carr</a>
|
||
- Data Science with Esoteric programming languages</li>
|
||
<li><a
|
||
href="https://blog.floydhub.com/introduction-to-genetic-algorithms/">floydhub</a>
|
||
- Blog for Evolutionary Algorithms</li>
|
||
<li><a href="https://jinglescode.github.io/">Jingles</a> - Review and
|
||
extract key concepts from academic papers</li>
|
||
<li><a href="https://www.nbshare.io/notebooks/data-science/">nbshare</a>
|
||
- Data Science notebooks</li>
|
||
<li><a href="https://ltetrel.github.io/">Loic Tetrel</a> - Data science
|
||
blog</li>
|
||
<li><a href="https://huyenchip.com/blog/">Chip Huyen’s Blog</a> - ML
|
||
Engineering, MLOps, and the use of ML in startups</li>
|
||
<li><a href="https://www.mariakhalusova.com/">Maria Khalusova</a> - Data
|
||
science blog</li>
|
||
<li><a href="https://medium.com/@aditi2507rastogi">Aditi Rastogi</a> -
|
||
ML,DL,Data Science blog</li>
|
||
<li><a href="https://medium.com/@santiagobasulto">Santiago Basulto</a> -
|
||
Data Science with Python</li>
|
||
<li><a href="https://medium.com/@akhil0435">Akhil Soni</a> - ML, DL and
|
||
Data Science</li>
|
||
<li><a href="https://akhilworld.hashnode.dev/">Akhil Soni</a> - ML, DL
|
||
and Data Science</li>
|
||
<li><a href="https://www.appliedaicourse.com/blog/">Applied AI Blogs</a>
|
||
- In-depth articles on AI, machine learning, and data science concepts
|
||
with practical applications.</li>
|
||
<li><a href="https://www.scaler.com/blog/">Scaler Blogs</a> -
|
||
Educational content on software development, AI, and career growth in
|
||
tech.</li>
|
||
</ul>
|
||
<h3 id="presentations">Presentations</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a
|
||
href="https://www.slideshare.net/ryanorban/how-to-become-a-data-scientist">How
|
||
to Become a Data Scientist</a></li>
|
||
<li><a
|
||
href="https://www.slideshare.net/NikoVuokko/introduction-to-data-science-25391618">Introduction
|
||
to Data Science</a></li>
|
||
<li><a
|
||
href="https://www.slideshare.net/pacoid/intro-to-data-science-for-enterprise-big-data">Intro
|
||
to Data Science for Enterprise Big Data</a></li>
|
||
<li><a
|
||
href="https://www.slideshare.net/dtunkelang/how-to-interview-a-data-scientist">How
|
||
to Interview a Data Scientist</a></li>
|
||
<li><a href="https://github.com/jtleek/datasharing">How to Share Data
|
||
with a Statistician</a></li>
|
||
<li><a
|
||
href="https://www.slideshare.net/katemats/the-science-of-a-great-career-in-data-science">The
|
||
Science of a Great Career in Data Science</a></li>
|
||
<li><a
|
||
href="https://www.slideshare.net/datasciencelondon/big-data-sorry-data-science-what-does-a-data-scientist-do">What
|
||
Does a Data Scientist Do?</a></li>
|
||
<li><a
|
||
href="https://www.slideshare.net/medriscoll/driscoll-strata-buildingdatastartups25may2011clean">Building
|
||
Data Start-Ups: Fast, Big, and Focused</a></li>
|
||
<li><a
|
||
href="https://www.slideshare.net/0xdata/how-to-win-data-science-competitions-with-deep-learning">How
|
||
to win data science competitions with Deep Learning</a></li>
|
||
<li><a
|
||
href="https://www.slideshare.net/AlexeyGrigorev/fullstack-data-scientist">Full-Stack
|
||
Data Scientist</a></li>
|
||
</ul>
|
||
<h3 id="podcasts">Podcasts</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a
|
||
href="https://podcasts.apple.com/us/podcast/data-science-at-home/id1069871378">AI
|
||
at Home</a></li>
|
||
<li><a href="https://www.cognilytica.com/aitoday/">AI Today</a></li>
|
||
<li><a href="https://adversariallearning.com/">Adversarial
|
||
Learning</a></li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PLLvvXm0q8zUbiNdoIazGzlENMXvZ9bd3x">Chai
|
||
time Data Science</a></li>
|
||
<li><a href="https://www.dataengineeringpodcast.com/">Data Engineering
|
||
Podcast</a></li>
|
||
<li><a href="https://datascienceathome.com/">Data Science at
|
||
Home</a></li>
|
||
<li><a
|
||
href="https://community.alteryx.com/t5/Data-Science-Mixer/bg-p/mixer">Data
|
||
Science Mixer</a></li>
|
||
<li><a href="https://dataskeptic.com/">Data Skeptic</a></li>
|
||
<li><a href="https://datastori.es/">Data Stories</a></li>
|
||
<li><a
|
||
href="https://jameskle.com/writes/category/Datacast">Datacast</a></li>
|
||
<li><a
|
||
href="https://www.datacamp.com/community/podcast">DataFramed</a></li>
|
||
<li><a href="https://anchor.fm/datatalksclub">DataTalks.Club</a></li>
|
||
<li><a href="https://wandb.ai/fully-connected/gradient-descent">Gradient
|
||
Descent</a></li>
|
||
<li><a href="https://www.learningmachines101.com/">Learning Machines
|
||
101</a></li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PLn_z5E4dh_Lj5eogejMxfOiNX3nOhmhmM">Let’s
|
||
Data (Brazil)</a></li>
|
||
<li><a href="https://lineardigressions.com/">Linear Digressions</a></li>
|
||
<li><a href="https://nssdeviations.com/">Not So Standard
|
||
Deviations</a></li>
|
||
<li><a
|
||
href="https://www.oreilly.com/radar/topics/oreilly-data-show-podcast/">O’Reilly
|
||
Data Show Podcast</a></li>
|
||
<li><a href="http://partiallyderivative.com/">Partially
|
||
Derivative</a></li>
|
||
<li><a
|
||
href="https://www.superdatascience.com/podcast/">Superdatascience</a></li>
|
||
<li><a href="https://www.dataengineeringshow.com/">The Data Engineering
|
||
Show</a></li>
|
||
<li><a href="https://www.radicalai.org/">The Radical AI Podcast</a></li>
|
||
<li><a href="https://fivethirtyeight.com/tag/whats-the-point/">What’s
|
||
The Point</a></li>
|
||
<li><a
|
||
href="https://roundup.getdbt.com/s/the-analytics-engineering-podcast">The
|
||
Analytics Engineering Podcast</a></li>
|
||
</ul>
|
||
<h3 id="youtube-videos-channels">YouTube Videos & Channels</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a href="https://www.youtube.com/watch?v=WXHM_i-fgGo">What is
|
||
machine learning?</a></li>
|
||
<li><a href="https://www.youtube.com/watch?v=n1ViNeWhC24">Andrew Ng:
|
||
Deep Learning, Self-Taught Learning and Unsupervised Feature
|
||
Learning</a></li>
|
||
<li><a
|
||
href="https://www.youtube.com/c/TomiMesterData36comDataScienceForBeginners">Data36
|
||
- Data Science for Beginners by Tomi Mester</a></li>
|
||
<li><a href="https://www.youtube.com/watch?v=czLI3oLDe8M">Deep Learning:
|
||
Intelligence from Big Data</a></li>
|
||
<li><a href="https://www.youtube.com/watch?v=1Wp3IIpssEc">Interview with
|
||
Google’s AI and Deep Learning ‘Godfather’ Geoffrey Hinton</a></li>
|
||
<li><a href="https://www.youtube.com/watch?v=S75EdAcXHKk">Introduction
|
||
to Deep Learning with Python</a></li>
|
||
<li><a href="https://www.youtube.com/watch?v=elojMnjn4kk">What is
|
||
machine learning, and how does it work?</a></li>
|
||
<li><a
|
||
href="https://www.youtube.com/channel/UCnVzApLJE2ljPZSeQylSEyg">Data
|
||
School</a> - Data Science Education</li>
|
||
<li><a href="https://www.youtube.com/watch?v=Cu6A96TUy_o">Neural Nets
|
||
for Newbies by Melanie Warrick (May 2015)</a></li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH">Neural
|
||
Networks video series by Hugo Larochelle</a></li>
|
||
<li><a href="https://www.youtube.com/watch?v=evNCyRL3DOU">Google
|
||
DeepMind co-founder Shane Legg - Machine Super Intelligence</a></li>
|
||
<li><a
|
||
href="https://www.youtube.com/watch?v=cHzvYxBN9Ls&list=PLPqVjP3T4RIRsjaW07zoGzH-Z4dBACpxY">Data
|
||
Science Primer</a></li>
|
||
<li><a href="https://www.youtube.com/watch?v=lpD38NxTOnk">Data Science
|
||
with Genetic Algorithms</a></li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PL2zq7klxX5ATMsmyRazei7ZXkP1GHt-vs">Data
|
||
Science for Beginners</a></li>
|
||
<li><a
|
||
href="https://www.youtube.com/channel/UCDvErgK0j5ur3aLgn6U-LqQ">DataTalks.Club</a></li>
|
||
<li><a
|
||
href="https://www.youtube.com/channel/UCYBSjwkGTK06NnDnFsOcR7g">Mildlyoverfitted
|
||
- Tutorials on intermediate ML/DL topics</a></li>
|
||
<li><a
|
||
href="https://www.youtube.com/channel/UCYBSjwkGTK06NnDnFsOcR7g">mlops.community
|
||
- Interviews of industry experts about production ML</a></li>
|
||
<li><a href="https://www.youtube.com/c/machinelearningstreettalk">ML
|
||
Street Talk - Unabashedly technical and non-commercial, so you will hear
|
||
no annoying pitches.</a></li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi">Neural
|
||
networks by 3Blue1Brown</a></li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3">Neural
|
||
networks from scratch by Sentdex</a></li>
|
||
<li><a
|
||
href="https://www.youtube.com/c/ManningPublications/featured">Manning
|
||
Publications YouTube channel</a></li>
|
||
<li><a href="https://youtu.be/JYuQZii5o58">Ask Dr Chong: How to Lead in
|
||
Data Science - Part 1</a></li>
|
||
<li><a href="https://youtu.be/SzqIXV-O-ko">Ask Dr Chong: How to Lead in
|
||
Data Science - Part 2</a></li>
|
||
<li><a href="https://youtu.be/Ogwm7k_smTA">Ask Dr Chong: How to Lead in
|
||
Data Science - Part 3</a></li>
|
||
<li><a href="https://youtu.be/a9usjdzTxTU">Ask Dr Chong: How to Lead in
|
||
Data Science - Part 4</a></li>
|
||
<li><a href="https://youtu.be/MYdQq-F3Ws0">Ask Dr Chong: How to Lead in
|
||
Data Science - Part 5</a></li>
|
||
<li><a href="https://youtu.be/LOOt4OVC3hY">Ask Dr Chong: How to Lead in
|
||
Data Science - Part 6</a></li>
|
||
<li><a href="https://www.youtube.com/watch?v=9Hk8K8jhiOo">Regression
|
||
Models: Applying simple Poisson regression</a></li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PLv8Cp2NvcY8DpVcsmOT71kymgMmcr59Mf">Deep
|
||
Learning Architectures</a></li>
|
||
<li><a
|
||
href="https://www.youtube.com/playlist?list=PL3N9eeOlCrP5cK0QRQxeJd6GrQvhAtpBK">Time
|
||
Series Modelling and Analysis</a></li>
|
||
</ul>
|
||
<h2 id="socialize">Socialize</h2>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<p>Below are some Social Media links. Connect with other data
|
||
scientists!</p>
|
||
<ul>
|
||
<li><a href="#facebook-accounts">Facebook Accounts</a></li>
|
||
<li><a href="#twitter-accounts">Twitter Accounts</a></li>
|
||
<li><a href="#telegram-channels">Telegram Channels</a></li>
|
||
<li><a href="#slack-communities">Slack Communities</a></li>
|
||
<li><a href="#github-groups">GitHub Groups</a></li>
|
||
<li><a href="#data-science-competitions">Data Science
|
||
Competitions</a></li>
|
||
</ul>
|
||
<h3 id="facebook-accounts">Facebook Accounts</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a href="https://www.facebook.com/data">Data</a></li>
|
||
<li><a href="https://www.facebook.com/Bigdatascientist">Big Data
|
||
Scientist</a></li>
|
||
<li><a href="https://www.facebook.com/datascienceday/">Data Science
|
||
Day</a></li>
|
||
<li><a href="https://www.facebook.com/nycdatascience">Data Science
|
||
Academy</a></li>
|
||
<li><a
|
||
href="https://www.facebook.com/pages/Data-science/431299473579193?ref=br_rs">Facebook
|
||
Data Science Page</a></li>
|
||
<li><a
|
||
href="https://www.facebook.com/pages/Data-Science-London/226174337471513">Data
|
||
Science London</a></li>
|
||
<li><a
|
||
href="https://www.facebook.com/DataScienceTechnologyCorporation?ref=br_rs">Data
|
||
Science Technology and Corporation</a></li>
|
||
<li><a
|
||
href="https://www.facebook.com/groups/1394010454157077/?ref=br_rs">Data
|
||
Science - Closed Group</a></li>
|
||
<li><a
|
||
href="https://www.facebook.com/centerdatasciences?ref=br_rs">Center for
|
||
Data Science</a></li>
|
||
<li><a href="https://www.facebook.com/groups/bigdatahadoop/">Big data
|
||
hadoop NOSQL Hive Hbase</a></li>
|
||
<li><a href="https://www.facebook.com/groups/data.analytics/">Analytics,
|
||
Data Mining, Predictive Modeling, Artificial Intelligence</a></li>
|
||
<li><a href="https://www.facebook.com/groups/434352233255448/">Big Data
|
||
Analytics using R</a></li>
|
||
<li><a href="https://www.facebook.com/groups/rhadoop/">Big Data
|
||
Analytics with R and Hadoop</a></li>
|
||
<li><a href="https://www.facebook.com/groups/bigdatalearnings/">Big Data
|
||
Learnings</a></li>
|
||
<li><a href="https://www.facebook.com/groups/bigdatastatistics/">Big
|
||
Data, Data Science, Data Mining & Statistics</a></li>
|
||
<li><a
|
||
href="https://www.facebook.com/groups/BigDataExpert/">BigData/Hadoop
|
||
Expert</a></li>
|
||
<li><a href="https://www.facebook.com/groups/machinelearningforum/">Data
|
||
Mining / Machine Learning / AI</a></li>
|
||
<li><a
|
||
href="https://www.facebook.com/groups/dataminingsocialnetworks/">Data
|
||
Mining/Big Data - Social Network Ana</a></li>
|
||
<li><a href="https://www.facebook.com/datasciencevademecum">Vademecum of
|
||
Practical Data Science</a></li>
|
||
<li><a href="https://www.facebook.com/groups/veribilimiistanbul/">Veri
|
||
Bilimi Istanbul</a></li>
|
||
<li><a href="https://www.facebook.com/theDataScienceBlog/">The Data
|
||
Science Blog</a></li>
|
||
</ul>
|
||
<h3 id="twitter-accounts">Twitter Accounts</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<table>
|
||
<colgroup>
|
||
<col style="width: 50%" />
|
||
<col style="width: 50%" />
|
||
</colgroup>
|
||
<thead>
|
||
<tr class="header">
|
||
<th>Twitter</th>
|
||
<th>Description</th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/BigDataCombine">Big Data
|
||
Combine</a></td>
|
||
<td>Rapid-fire, live tryouts for data scientists seeking to monetize
|
||
their models as trading strategies</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td>Big Data Mania</td>
|
||
<td>Data Viz Wiz, Data Journalist, Growth Hacker, Author of Data Science
|
||
for Dummies (2015)</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/analyticbridge">Big Data
|
||
Science</a></td>
|
||
<td>Big Data, Data Science, Predictive Modeling, Business Analytics,
|
||
Hadoop, Decision and Operations Research.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td>Charlie Greenbacker</td>
|
||
<td>Director of Data Science at <span class="citation"
|
||
data-cites="ExploreAltamira">@ExploreAltamira</span></td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/Chris_Said">Chris Said</a></td>
|
||
<td>Data scientist at Twitter</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/clarecorthell">Clare Corthell</a></td>
|
||
<td>Dev, Design, Data Science <span class="citation"
|
||
data-cites="mattermark">@mattermark</span> #hackerei</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/DadiCharles">DADI
|
||
Charles-Abner</a></td>
|
||
<td>#datascientist <span class="citation"
|
||
data-cites="Ekimetrics">@Ekimetrics</span>. , #machinelearning #dataviz
|
||
#DynamicCharts #Hadoop #R #Python #NLP #Bitcoin #dataenthousiast</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/DataScienceCtrl">Data Science
|
||
Central</a></td>
|
||
<td>Data Science Central is the industry’s single resource for Big Data
|
||
practitioners.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/ds_ldn">Data Science London</a></td>
|
||
<td>Data Science. Big Data. Data Hacks. Data Junkies. Data Startups.
|
||
Open Data</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/BecomingDataSci">Data Science
|
||
Renee</a></td>
|
||
<td>Documenting my path from SQL Data Analyst pursuing an Engineering
|
||
Master’s Degree to Data Scientist</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/TedOBrien93">Data Science
|
||
Report</a></td>
|
||
<td>Mission is to help guide & advance careers in Data Science &
|
||
Analytics</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/datasciencetips">Data Science
|
||
Tips</a></td>
|
||
<td>Tips and Tricks for Data Scientists around the world! #datascience
|
||
#bigdata</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/DataVisualizati">Data Vizzard</a></td>
|
||
<td>DataViz, Security, Military</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/DataScienceX">DataScienceX</a></td>
|
||
<td></td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td>deeplearning4j</td>
|
||
<td></td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/dpatil">DJ Patil</a></td>
|
||
<td>White House Data Chief, VP @ RelateIQ.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/DominoDataLab">Domino Data Lab</a></td>
|
||
<td></td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/drewconway">Drew Conway</a></td>
|
||
<td>Data nerd, hacker, student of conflict.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td>Emilio Ferrara</td>
|
||
<td>#Networks, #MachineLearning and #DataScience. I work on #Social
|
||
Media. Postdoc at <span class="citation"
|
||
data-cites="IndianaUniv">@IndianaUniv</span></td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/erinbartolo">Erin Bartolo</a></td>
|
||
<td>Running with #BigData–enjoying a love/hate relationship with its
|
||
hype. <span class="citation" data-cites="iSchoolSU">@iSchoolSU</span>
|
||
#DataScience Program Mgr.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/gjreda">Greg Reda</a></td>
|
||
<td>Working @ <em>GrubHub</em> about data and pandas</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/kdnuggets">Gregory Piatetsky</a></td>
|
||
<td>KDnuggets President, Analytics/Big Data/Data Mining/Data Science
|
||
expert, KDD & SIGKDD co-founder, was Chief Scientist at 2 startups,
|
||
part-time philosopher.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/hadleywickham">Hadley Wickham</a></td>
|
||
<td>Chief Scientist at RStudio, and an Adjunct Professor of Statistics
|
||
at the University of Auckland, Stanford University, and Rice
|
||
University.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/hakan_kardes">Hakan Kardas</a></td>
|
||
<td>Data Scientist</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/hmason">Hilary Mason</a></td>
|
||
<td>Data Scientist in Residence at <span class="citation"
|
||
data-cites="accel">@accel</span>.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/hackingdata">Jeff Hammerbacher</a></td>
|
||
<td>ReTweeting about data science</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/johnmyleswhite">John Myles
|
||
White</a></td>
|
||
<td>Scientist at Facebook and Julia developer. Author of Machine
|
||
Learning for Hackers and Bandit Algorithms for Website Optimization.
|
||
Tweets reflect my views only.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/BDataScientist">Juan Miguel
|
||
Lavista</a></td>
|
||
<td>Principal Data Scientist @ Microsoft Data Science Team</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/b0rk">Julia Evans</a></td>
|
||
<td>Hacker - Pandas - Data Analyze</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/kncukier">Kenneth Cukier</a></td>
|
||
<td>The Economist’s Data Editor and co-author of Big Data
|
||
(http://www.big-data-book.com/).</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td>Kevin Davenport</td>
|
||
<td>Organizer of
|
||
https://www.meetup.com/San-Diego-Data-Science-R-Users-Group/</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/justmarkham">Kevin Markham</a></td>
|
||
<td>Data science instructor, and founder of <a
|
||
href="https://www.dataschool.io/">Data School</a></td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/krees">Kim Rees</a></td>
|
||
<td>Interactive data visualization and tools. Data flaneur.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/KirkDBorne">Kirk Borne</a></td>
|
||
<td>DataScientist, PhD Astrophysicist, Top #BigData Influencer.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td>Linda Regber</td>
|
||
<td>Data storyteller, visualizations.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/lmrei">Luis Rei</a></td>
|
||
<td>PhD Student. Programming, Mobile, Web. Artificial Intelligence,
|
||
Intelligent Robotics Machine Learning, Data Mining, Natural Language
|
||
Processing, Data Science.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td>Mark Stevenson</td>
|
||
<td>Data Analytics Recruitment Specialist at Salt (<span
|
||
class="citation" data-cites="SaltJobs">@SaltJobs</span>) Analytics -
|
||
Insight - Big Data - Data science</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/__mharrison__">Matt Harrison</a></td>
|
||
<td>Opinions of full-stack Python guy, author, instructor, currently
|
||
playing Data Scientist. Occasional fathering, husbanding, organic
|
||
gardening.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/ptwobrussell">Matthew Russell</a></td>
|
||
<td>Mining the Social Web.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/mertnuhoglu">Mert Nuhoğlu</a></td>
|
||
<td>Data Scientist at BizQualify, Developer</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/mrogati">Monica Rogati</a></td>
|
||
<td>Data @ Jawbone. Turned data into stories & products at LinkedIn.
|
||
Text mining, applied machine learning, recommender systems. Ex-gamer,
|
||
ex-machine coder; namer.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/noahi">Noah Iliinsky</a></td>
|
||
<td>Visualization & interaction designer. Practical cyclist. Author
|
||
of vis books: https://www.oreilly.com/pub/au/4419</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/PaulMiller">Paul Miller</a></td>
|
||
<td>Cloud Computing/ Big Data/ Open Data Analyst & Consultant.
|
||
Writer, Speaker & Moderator. Gigaom Research Analyst.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/peteskomoroch">Peter Skomoroch</a></td>
|
||
<td>Creating intelligent systems to automate tasks & improve
|
||
decisions. Entrepreneur, ex-Principal Data Scientist <span
|
||
class="citation" data-cites="LinkedIn">@LinkedIn</span>. Machine
|
||
Learning, ProductRei, Networks</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/MDMGeek">Prash Chan</a></td>
|
||
<td>Solution Architect @ IBM, Master Data Management, Data Quality &
|
||
Data Governance Blogger. Data Science, Hadoop, Big Data &
|
||
Cloud.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/q_datascience">Quora Data
|
||
Science</a></td>
|
||
<td>Quora’s data science topic</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/Rbloggers">R-Bloggers</a></td>
|
||
<td>Tweet blog posts from the R blogosphere, data science conferences,
|
||
and (!) open jobs for data scientists.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/randhindi">Rand Hindi</a></td>
|
||
<td></td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/randal_olson">Randy Olson</a></td>
|
||
<td>Computer scientist researching artificial intelligence. Data
|
||
tinkerer. Community leader for <span class="citation"
|
||
data-cites="DataIsBeautiful">@DataIsBeautiful</span>. #OpenScience
|
||
advocate.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/EROLRecep">Recep Erol</a></td>
|
||
<td>Data Science geek @ UALR</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/ryanorban">Ryan Orban</a></td>
|
||
<td>Data scientist, genetic origamist, hardware aficionado</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/seanjtaylor">Sean J. Taylor</a></td>
|
||
<td>Social Scientist. Hacker. Facebook Data Science Team. Keywords:
|
||
Experiments, Causal Inference, Statistics, Machine Learning,
|
||
Economics.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/silviakspiva">Silvia K. Spiva</a></td>
|
||
<td>#DataScience at Cisco</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/harshbg">Harsh B. Gupta</a></td>
|
||
<td>Data Scientist at BBVA Compass</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/spenczar_n">Spencer Nelson</a></td>
|
||
<td>Data nerd</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/tozCSS">Talha Oz</a></td>
|
||
<td>Enjoys ABM, SNA, DM, ML, NLP, HI, Python, Java. Top percentile
|
||
Kaggler/data scientist</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/anskarl">Tasos Skarlatidis</a></td>
|
||
<td>Complex Event Processing, Big Data, Artificial Intelligence and
|
||
Machine Learning. Passionate about programming and open-source.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/Terry_Timko">Terry Timko</a></td>
|
||
<td>InfoGov; Bigdata; Data as a Service; Data Science; Open, Social
|
||
& Business Data Convergence</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/TonyBaer">Tony Baer</a></td>
|
||
<td>IT analyst with Ovum covering Big Data & data management with
|
||
some systems engineering thrown in.</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/tonyojeda3">Tony Ojeda</a></td>
|
||
<td>Data Scientist , Author , Entrepreneur. Co-founder <span
|
||
class="citation" data-cites="DataCommunityDC">@DataCommunityDC</span>.
|
||
Founder <span class="citation"
|
||
data-cites="DistrictDataLab">@DistrictDataLab</span>. #DataScience
|
||
#BigData #DataDC</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/vambati">Vamshi Ambati</a></td>
|
||
<td>Data Science @ PayPal. #NLP, #machinelearning; PhD, Carnegie Mellon
|
||
alumni (Blog: https://allthingsds.wordpress.com )</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/wesmckinn">Wes McKinney</a></td>
|
||
<td>Pandas (Python Data Analysis library).</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/WileyEd">WileyEd</a></td>
|
||
<td>Senior Manager - <span class="citation"
|
||
data-cites="Seagate">@Seagate</span> Big Data Analytics <span
|
||
class="citation" data-cites="McKinsey">@McKinsey</span> Alum #BigData +
|
||
#Analytics Evangelist #Hadoop, #Cloud, #Digital, & #R
|
||
Enthusiast</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/datanews">WNYC Data News Team</a></td>
|
||
<td>The data news crew at <span class="citation"
|
||
data-cites="WNYC">@WNYC</span>. Practicing data-driven journalism,
|
||
making it visual, and showing our work.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/Al_Grigor">Alexey Grigorev</a></td>
|
||
<td>Data science author</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a href="https://twitter.com/ilkerarslan_35">İlker Arslan</a></td>
|
||
<td>Data science author. Shares mostly about Julia programming</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a href="https://twitter.com/WeAreInevitable">INEVITABLE</a></td>
|
||
<td>AI & Data Science Start-up Company based in England, UK</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<h3 id="telegram-channels">Telegram Channels</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a href="https://t.me/opendatascience">Open Data Science</a> – First
|
||
Telegram Data Science channel. Covering all technical and popular staff
|
||
about anything related to Data Science: AI, Big Data, Machine Learning,
|
||
Statistics, general Math and the applications of former.</li>
|
||
<li><a href="https://t.me/loss_function_porn">Loss function porn</a> —
|
||
Beautiful posts on DS/ML theme with video or graphic visualization.</li>
|
||
<li><a
|
||
href="https://t.me/ai_machinelearning_big_data">Machinelearning</a> –
|
||
Daily ML news.</li>
|
||
</ul>
|
||
<h3 id="slack-communities">Slack Communities</h3>
|
||
<p><a href="#awesome-data-science">top</a></p>
|
||
<ul>
|
||
<li><a href="https://datatalks.club">DataTalks.Club</a></li>
|
||
</ul>
|
||
<h3 id="github-groups">GitHub Groups</h3>
|
||
<ul>
|
||
<li><a href="https://github.com/BIDS">Berkeley Institute for Data
|
||
Science</a></li>
|
||
</ul>
|
||
<h3 id="data-science-competitions">Data Science Competitions</h3>
|
||
<p>Some data mining competition platforms</p>
|
||
<ul>
|
||
<li><a href="https://www.kaggle.com/">Kaggle</a></li>
|
||
<li><a href="https://www.drivendata.org/">DrivenData</a></li>
|
||
<li><a href="https://datahack.analyticsvidhya.com/">Analytics
|
||
Vidhya</a></li>
|
||
<li><a href="https://www.innocentive.com/">InnoCentive</a></li>
|
||
<li><a
|
||
href="https://www.microprediction.com/python-1">Microprediction</a></li>
|
||
</ul>
|
||
<h2 id="fun">Fun</h2>
|
||
<ul>
|
||
<li><a href="#infographics">Infographic</a></li>
|
||
<li><a href="#datasets">Datasets</a></li>
|
||
<li><a href="#comics">Comics</a></li>
|
||
</ul>
|
||
<h3 id="infographics">Infographics</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<table>
|
||
<colgroup>
|
||
<col style="width: 48%" />
|
||
<col style="width: 51%" />
|
||
</colgroup>
|
||
<thead>
|
||
<tr class="header">
|
||
<th>Preview</th>
|
||
<th>Description</th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr class="odd">
|
||
<td><a
|
||
href="https://i.imgur.com/0OoLaa5.png"><img src="https://i.imgur.com/0OoLaa5.png" width="150" /></a></td>
|
||
<td><a
|
||
href="https://searchbusinessanalytics.techtarget.com/feature/Key-differences-of-a-data-scientist-vs-data-engineer">Key
|
||
differences of a data scientist vs. data engineer</a></td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a
|
||
href="https://s3.amazonaws.com/assets.datacamp.com/blog_assets/DataScienceEightSteps_Full.png"><img src="https://cloud.githubusercontent.com/assets/182906/19517857/604f88d8-960c-11e6-97d6-16c9738cb824.png" width="150" /></a></td>
|
||
<td>A visual guide to Becoming a Data Scientist in 8 Steps by <a
|
||
href="https://www.datacamp.com">DataCamp</a> <a
|
||
href="https://s3.amazonaws.com/assets.datacamp.com/blog_assets/DataScienceEightSteps_Full.png">(img)</a></td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a
|
||
href="https://i.imgur.com/FxsL3b8.png"><img src="https://i.imgur.com/W2t2Roz.png" width="150" /></a></td>
|
||
<td>Mindmap on required skills (<a
|
||
href="https://i.imgur.com/FxsL3b8.png">img</a>)</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a
|
||
href="https://nirvacana.com/thoughts/wp-content/uploads/2013/07/RoadToDataScientist1.png"><img src="https://i.imgur.com/rb9ruaa.png" width="150" /></a></td>
|
||
<td>Swami Chandrasekaran made a <a
|
||
href="http://nirvacana.com/thoughts/2013/07/08/becoming-a-data-scientist/">Curriculum
|
||
via Metro map</a>.</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a
|
||
href="https://i.imgur.com/4ZBBvb0.png"><img src="https://i.imgur.com/XBgKF2l.png" width="150" /></a></td>
|
||
<td>by <a href="https://twitter.com/kzawadz"><span class="citation"
|
||
data-cites="kzawadz">@kzawadz</span></a> via <a
|
||
href="https://twitter.com/MktngDistillery/status/538671811991715840">twitter</a></td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a
|
||
href="https://i.imgur.com/xLY3XZn.jpg"><img src="https://i.imgur.com/l9ZGtal.jpg" width="150" /></a></td>
|
||
<td>By <a href="https://www.datasciencecentral.com/">Data Science
|
||
Central</a></td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a
|
||
href="https://i.imgur.com/0TydZ4M.png"><img src="https://i.imgur.com/TWkB4X6.png" width="150" /></a></td>
|
||
<td>Data Science Wars: R vs Python</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a
|
||
href="https://i.imgur.com/HnRwlce.png"><img src="https://i.imgur.com/gtTlW5I.png" width="150" /></a></td>
|
||
<td>How to select statistical or machine learning techniques</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a
|
||
href="https://scikit-learn.org/1.5/_downloads/b82bf6cd7438a351f19fac60fbc0d927/ml_map.svg"><img src="https://scikit-learn.org/1.5/_downloads/b82bf6cd7438a351f19fac60fbc0d927/ml_map.svg" width="150" /></a></td>
|
||
<td><a
|
||
href="https://scikit-learn.org/1.5/machine_learning_map.html#choosing-the-right-estimator">Choosing
|
||
the Right Estimator</a></td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a
|
||
href="https://i.imgur.com/uEqMwZa.png"><img src="https://i.imgur.com/3JSyUq1.png" width="150" /></a></td>
|
||
<td>The Data Science Industry: Who Does What</td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a
|
||
href="https://i.imgur.com/RsHqY84.png"><img src="https://i.imgur.com/DQqFwwy.png" width="150" /></a></td>
|
||
<td>Data Science <del>Venn</del> Euler Diagram</td>
|
||
</tr>
|
||
<tr class="even">
|
||
<td><a
|
||
href="https://www.springboard.com/blog/wp-content/uploads/2016/03/20160324_springboard_vennDiagram.png"><img src="https://www.springboard.com/blog/wp-content/uploads/2016/03/20160324_springboard_vennDiagram.png" width="150" height="150" /></a></td>
|
||
<td>Different Data Science Skills and Roles from <a
|
||
href="https://www.springboard.com">Springboard</a></td>
|
||
</tr>
|
||
<tr class="odd">
|
||
<td><a
|
||
href="https://data-literacy.geckoboard.com/poster/"><img src="https://data-literacy.geckoboard.com/assets/img/data-fallacies-to-avoid-preview.jpg" width="150" alt="Data Fallacies To Avoid" /></a></td>
|
||
<td>A simple and friendly way of teaching your non-data
|
||
scientist/non-statistician colleagues <a
|
||
href="https://data-literacy.geckoboard.com/poster/">how to avoid
|
||
mistakes with data</a>. From Geckoboard’s <a
|
||
href="https://data-literacy.geckoboard.com/">Data Literacy
|
||
Lessons</a>.</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<h3 id="datasets">Datasets</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a href="https://academictorrents.com/">Academic Torrents</a></li>
|
||
<li><a href="https://www.adsbexchange.com/data-samples/">ADS-B
|
||
Exchange</a> - Specific datasets for aircraft and Automatic Dependent
|
||
Surveillance-Broadcast (ADS-B) sources.</li>
|
||
<li><a
|
||
href="https://hadoopilluminated.com/hadoop_illuminated/Public_Bigdata_Sets.html">hadoopilluminated.com</a></li>
|
||
<li><a href="https://catalog.data.gov/dataset">data.gov</a> - The home
|
||
of the U.S. Government’s open data</li>
|
||
<li><a href="https://www.census.gov/">United States Census
|
||
Bureau</a></li>
|
||
<li><a href="https://usgovxml.com/">usgovxml.com</a></li>
|
||
<li><a href="https://enigma.com/">enigma.com</a> - Navigate the world of
|
||
public data - Quickly search and analyze billions of public records
|
||
published by governments, companies and organizations.</li>
|
||
<li><a href="https://datahub.io/">datahub.io</a></li>
|
||
<li><a
|
||
href="https://aws.amazon.com/datasets/">aws.amazon.com/datasets</a></li>
|
||
<li><a href="https://datacite.org/">datacite.org</a></li>
|
||
<li><a href="https://data.europa.eu/en">The official portal for European
|
||
data</a></li>
|
||
<li><a href="https://data.nasdaq.com/">NASDAQ:DATA</a> - Nasdaq Data
|
||
Link A premier source for financial, economic and alternative
|
||
datasets.</li>
|
||
<li><a href="https://figshare.com/">figshare.com</a></li>
|
||
<li><a href="https://dev.maxmind.com/geoip">GeoLite Legacy Downloadable
|
||
Databases</a></li>
|
||
<li><a
|
||
href="https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public">Quora’s
|
||
Big Datasets Answer</a></li>
|
||
<li><a
|
||
href="https://hadoopilluminated.com/hadoop_illuminated/Public_Bigdata_Sets.html">Public
|
||
Big Data Sets</a></li>
|
||
<li><a href="https://www.kaggle.com/datasets">Kaggle Datasets</a></li>
|
||
<li><a href="https://www.internationalgenome.org/data">A Deep Catalog of
|
||
Human Genetic Variation</a></li>
|
||
<li><a href="https://developers.google.com/freebase/">A
|
||
community-curated database of well-known people, places, and
|
||
things</a></li>
|
||
<li><a href="https://www.google.com/publicdata/directory">Google Public
|
||
Data</a></li>
|
||
<li><a href="https://data.worldbank.org/">World Bank Data</a></li>
|
||
<li><a href="https://chriswhong.github.io/nyctaxi/">NYC Taxi
|
||
data</a></li>
|
||
<li><a href="https://www.opendataphilly.org/">Open Data Philly</a>
|
||
Connecting people with data for Philadelphia</li>
|
||
<li><a href="https://grouplens.org/datasets/">grouplens.org</a> Sample
|
||
movie (with ratings), book and wiki datasets</li>
|
||
<li><a href="https://archive.ics.uci.edu/ml/">UC Irvine Machine Learning
|
||
Repository</a> - contains data sets good for machine learning</li>
|
||
<li><a
|
||
href="https://web.archive.org/web/20150320022752/https://bitly.com/bundles/hmason/1">research-quality
|
||
data sets</a> by <a
|
||
href="https://web.archive.org/web/20150501033715/https://bitly.com/u/hmason/bundles">Hilary
|
||
Mason</a></li>
|
||
<li><a href="https://www.ncei.noaa.gov/">National Centers for
|
||
Environmental Information</a></li>
|
||
<li><a href="https://www.climatedata.us/">ClimateData.us</a> (related:
|
||
<a href="https://toolkit.climate.gov/">U.S. Climate Resilience
|
||
Toolkit</a>)</li>
|
||
<li><a href="https://www.reddit.com/r/datasets/">r/datasets</a></li>
|
||
<li><a href="https://www.maplight.org/data-series">MapLight</a> -
|
||
provides a variety of data free of charge for uses that are freely
|
||
available to the general public. Click on a data set below to learn
|
||
more</li>
|
||
<li><a href="https://ghdx.healthdata.org/">GHDx</a> - Institute for
|
||
Health Metrics and Evaluation - a catalog of health and demographic
|
||
datasets from around the world and including IHME results</li>
|
||
<li><a href="https://fred.stlouisfed.org/">St. Louis Federal Reserve
|
||
Economic Data - FRED</a></li>
|
||
<li><a href="https://data1850.nz/">New Zealand Institute of Economic
|
||
Research – Data1850</a></li>
|
||
<li><a href="https://github.com/datasciencemasters/data">Open Data
|
||
Sources</a></li>
|
||
<li><a href="https://data.unicef.org/">UNICEF Data</a></li>
|
||
<li><a href="https://data.un.org/">undata</a></li>
|
||
<li><a href="https://earthdata.nasa.gov/centers/sedac-daac">NASA
|
||
SocioEconomic Data and Applications Center - SEDAC</a></li>
|
||
<li><a href="https://www.gdeltproject.org/">The GDELT Project</a></li>
|
||
<li><a href="https://www.scb.se/en/">Sweden, Statistics</a></li>
|
||
<li><a href="https://data.stackexchange.com">StackExchange Data
|
||
Explorer</a> - an open source tool for running arbitrary queries against
|
||
public data from the Stack Exchange network.</li>
|
||
<li><a href="https://datasf.org/opendata/">San Fransisco Government Open
|
||
Data</a></li>
|
||
<li><a href="https://developer.ibm.com/exchanges/data/">IBM Asset
|
||
Dataset</a></li>
|
||
<li><a href="http://index.okfn.org/">Open data Index</a></li>
|
||
<li><a
|
||
href="https://github.com/src-d/datasets/tree/master/PublicGitArchive">Public
|
||
Git Archive</a></li>
|
||
<li><a href="https://ghtorrent.org/">GHTorrent</a></li>
|
||
<li><a href="https://msropendata.com/">Microsoft Research Open
|
||
Data</a></li>
|
||
<li><a href="https://data.gov.in/">Open Government Data Platform
|
||
India</a></li>
|
||
<li><a href="https://datasetsearch.research.google.com/">Google Dataset
|
||
Search (beta)</a></li>
|
||
<li><a href="https://github.com/naynco/nayn.data">NAYN.CO Turkish News
|
||
with categories</a></li>
|
||
<li><a href="https://github.com/datasets/covid-19">Covid-19</a></li>
|
||
<li><a
|
||
href="https://github.com/google-research/open-covid-19-data">Covid-19
|
||
Google</a></li>
|
||
<li><a href="https://www.cs.cmu.edu/~./enron/">Enron Email
|
||
Dataset</a></li>
|
||
<li><a href="https://github.com/alexeygrigorev/clothing-dataset">5000
|
||
Images of Clothes</a></li>
|
||
<li><a href="https://data.ibb.gov.tr/en/">IBB Open Portal</a></li>
|
||
<li><a href="https://data.humdata.org/">The Humanitarian Data
|
||
Exchange</a></li>
|
||
<li><a
|
||
href="https://aws.amazon.com/marketplace/pp/prodview-p2554p3tczbes">250k+
|
||
Job Postings</a> - An expanding dataset of historical job postings from
|
||
Luxembourg from 2020 to today. Free with 250k+ job postings hosted on
|
||
AWS Data Exchange.</li>
|
||
</ul>
|
||
<h3 id="comics">Comics</h3>
|
||
<p><strong><a
|
||
href="#awesome-data-science"><code>^ back to top ^</code></a></strong></p>
|
||
<ul>
|
||
<li><a
|
||
href="https://medium.com/@nikhil_garg/a-compilation-of-comics-explaining-statistics-data-science-and-machine-learning-eeefbae91277">Comic
|
||
compilation</a></li>
|
||
<li><a
|
||
href="https://www.kdnuggets.com/websites/cartoons.html">Cartoons</a></li>
|
||
<li><a
|
||
href="https://www.cartoonstock.com/directory/d/data_science.asp">Data
|
||
Science Cartoons</a></li>
|
||
<li><a
|
||
href="https://davidlindelof.com/data-science-the-xkcd-edition/">Data
|
||
Science: The XKCD Edition</a></li>
|
||
</ul>
|
||
<h2 id="other-awesome-lists">Other Awesome Lists</h2>
|
||
<ul>
|
||
<li>Other amazingly awesome lists can be found in the <a
|
||
href="https://github.com/bayandin/awesome-awesomeness">awesome-awesomeness</a></li>
|
||
<li><a
|
||
href="https://github.com/josephmisiti/awesome-machine-learning">Awesome
|
||
Machine Learning</a></li>
|
||
<li><a href="https://github.com/jnv/lists">lists</a></li>
|
||
<li><a
|
||
href="https://github.com/javierluraschi/awesome-dataviz">awesome-dataviz</a></li>
|
||
<li><a
|
||
href="https://github.com/vinta/awesome-python">awesome-python</a></li>
|
||
<li><a
|
||
href="https://github.com/donnemartin/data-science-ipython-notebooks">Data
|
||
Science IPython Notebooks.</a></li>
|
||
<li><a href="https://github.com/qinwf/awesome-R">awesome-r</a></li>
|
||
<li><a
|
||
href="https://github.com/awesomedata/awesome-public-datasets">awesome-datasets</a></li>
|
||
<li><a
|
||
href="https://github.com/ujjwalkarn/Machine-Learning-Tutorials/blob/master/README.md">awesome-Machine
|
||
Learning & Deep Learning Tutorials</a></li>
|
||
<li><a href="https://github.com/JosPolfliet/awesome-ai-usecases">Awesome
|
||
Data Science Ideas</a></li>
|
||
<li><a
|
||
href="https://github.com/ZuzooVn/machine-learning-for-software-engineers">Machine
|
||
Learning for Software Engineers</a></li>
|
||
<li><a href="https://hackr.io/tutorials/learn-data-science">Community
|
||
Curated Data Science Resources</a></li>
|
||
<li><a
|
||
href="https://github.com/src-d/awesome-machine-learning-on-source-code">Awesome
|
||
Machine Learning On Source Code</a></li>
|
||
<li><a
|
||
href="https://github.com/benedekrozemberczki/awesome-community-detection">Awesome
|
||
Community Detection</a></li>
|
||
<li><a
|
||
href="https://github.com/benedekrozemberczki/awesome-graph-classification">Awesome
|
||
Graph Classification</a></li>
|
||
<li><a
|
||
href="https://github.com/benedekrozemberczki/awesome-decision-tree-papers">Awesome
|
||
Decision Tree Papers</a></li>
|
||
<li><a
|
||
href="https://github.com/benedekrozemberczki/awesome-fraud-detection-papers">Awesome
|
||
Fraud Detection Papers</a></li>
|
||
<li><a
|
||
href="https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers">Awesome
|
||
Gradient Boosting Papers</a></li>
|
||
<li><a
|
||
href="https://github.com/nerox8664/awesome-computer-vision-models">Awesome
|
||
Computer Vision Models</a></li>
|
||
<li><a
|
||
href="https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers">Awesome
|
||
Monte Carlo Tree Search</a></li>
|
||
<li><a
|
||
href="https://www.analyticsvidhya.com/glossary-of-common-statistics-and-machine-learning-terms/">Glossary
|
||
of common statistics and ML terms</a></li>
|
||
<li><a href="https://github.com/mhagiwara/100-nlp-papers">100 NLP
|
||
Papers</a></li>
|
||
<li><a
|
||
href="https://github.com/leomaurodesenv/game-datasets#readme">Awesome
|
||
Game Datasets</a></li>
|
||
<li><a
|
||
href="https://github.com/alexeygrigorev/data-science-interviews">Data
|
||
Science Interviews Questions</a></li>
|
||
<li><a
|
||
href="https://github.com/AstraZeneca/awesome-explainable-graph-reasoning">Awesome
|
||
Explainable Graph Reasoning</a></li>
|
||
<li><a
|
||
href="https://www.interviewbit.com/data-science-interview-questions/">Top
|
||
Data Science Interview Questions</a></li>
|
||
<li><a
|
||
href="https://github.com/AstraZeneca/awesome-drug-pair-scoring">Awesome
|
||
Drug Synergy, Interaction and Polypharmacy Prediction</a></li>
|
||
<li><a
|
||
href="https://www.adaface.com/blog/deep-learning-interview-questions/">Deep
|
||
Learning Interview Questions</a></li>
|
||
<li><a
|
||
href="https://medium.com/the-modern-scientist/top-future-trends-in-data-science-in-2023-3e616c8998b8">Top
|
||
Future Trends in Data Science in 2023</a></li>
|
||
<li><a
|
||
href="https://hbr.org/2022/11/how-generative-ai-is-changing-creative-work">How
|
||
Generative AI Is Changing Creative Work</a></li>
|
||
<li><a
|
||
href="https://www.techtarget.com/searchenterpriseai/definition/generative-AI">What
|
||
is generative AI?</a></li>
|
||
<li><a
|
||
href="https://www.appliedaicourse.com/blog/machine-learning-interview-questions/">Top
|
||
100+ Machine Learning Interview Questions (Beginner to
|
||
Advanced)</a></li>
|
||
<li><a href="https://github.com/veb-101/Data-Science-Projects">Data
|
||
Science Projects</a></li>
|
||
<li><a
|
||
href="https://www.scaler.com/blog/is-data-science-a-good-career/">Is
|
||
Data Science a Good Career?</a></li>
|
||
<li><a
|
||
href="https://www.appliedaicourse.com/blog/future-of-data-science/">The
|
||
Future of Data Science: Predictions and Trends</a></li>
|
||
<li><a
|
||
href="https://www.appliedaicourse.com/blog/data-science-and-machine-learning-whats-the-difference/">Data
|
||
Science and Machine Learning: What’s The Difference?</a></li>
|
||
<li><a href="https://www.scaler.com/blog/ai-in-data-science/">AI in Data
|
||
Science: Uses, Roles, and Tools</a></li>
|
||
<li><a
|
||
href="https://www.appliedaicourse.com/blog/data-science-programming-languages/">Top
|
||
13 Data Science Programming Languages</a></li>
|
||
<li><a
|
||
href="https://www.appliedaicourse.com/blog/data-analytics-projects-ideas/">40+
|
||
Data Analytics Projects Ideas</a></li>
|
||
<li><a
|
||
href="https://www.appliedaicourse.com/blog/best-data-science-courses/">Best
|
||
Data Science Courses with Certificates</a></li>
|
||
<li><a
|
||
href="https://www.appliedaicourse.com/blog/generative-ai-models/">Generative
|
||
AI Models</a></li>
|
||
</ul>
|
||
<h3 id="hobby">Hobby</h3>
|
||
<ul>
|
||
<li><a href="https://github.com/ad-si/awesome-music-production">Awesome
|
||
Music Production</a></li>
|
||
</ul>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-YL0RV0E5XZ"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
|
||
gtag('config', 'G-YL0RV0E5XZ');
|
||
</script>
|
||
<p><a
|
||
href="https://github.com/academic/awesome-datascience">datascience.md
|
||
Github</a></p>
|