Files
awesome-awesomeness/readmes/R.md2
2025-07-18 23:13:11 +02:00

731 lines
74 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Awesome R
[![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome)
A curated list of awesome R packages and tools. Inspired by [awesome-machine-learning](https://github.com/josephmisiti/awesome-machine-learning).
<p><img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">
for <a target="_blank" href="https://github.com/rstudio/RStartHere/blob/master/top_downloads_2016/top_packages">Top 50</a> CRAN downloaded packages or repos with 400+
<img class="emoji" alt="star" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/star.png" height="20" align="absmiddle" width="20"></p>
- [Awesome R](#awesome-)
- [2023](#2023)
- [2020](#2020)
- [2019](#2019)
- [2018](#2018)
- [Integrated Development Environments](#integrated-development-environments)
- [Syntax](#syntax)
- [Data Manipulation](#data-manipulation)
- [Graphic Displays](#graphic-displays)
- [Html Widgets](#html-widgets)
- [Reproducible Research](#reproducible-research)
- [Web Technologies and Services](#web-technologies-and-services)
- [Parallel Computing](#parallel-computing)
- [High Performance](#high-performance)
- [Language API](#language-api)
- [Database Management](#database-management)
- [Machine Learning](#machine-learning)
- [Natural Language Processing](#natural-language-processing)
- [Bayesian](#bayesian)
- [Optimization](#optimization)
- [Finance](#finance)
- [Bioinformatics and Biostatistics](#bioinformatics-and-biostatistics)
- [Network Analysis](#network-analysis)
- [Spatial](#spatial)
- [R Development](#r-development)
- [Logging](#logging)
- [Data Packages](#data-packages)
- [Other Tools](#other-tools)
- [Other Interpreters](#other-interpreters)
- [Learning R](#learning-r)
- [Resources](#resources)
- [Websites](#websites)
- [Books](#books)
- [Podcasts](#podcasts)
- [Reference Cards](#reference-cards)
- [MOOCs](#moocs)
- [Lists](#lists)
- [Other Awesome Lists](#other-awesome-lists)
- [Contributing](#contributing)
## 2023
* [Cookbook Polars for R](https://ddotta.github.io/cookbook-rpolars/)
## 2020
* [VSCode](https://code.visualstudio.com/) - [vscode-R](https://marketplace.visualstudio.com/items?itemName=Ikuyadeu.r) + [vscode-r-lsp](https://marketplace.visualstudio.com/items?itemName=REditorSupport.r-lsp) VSCode R Langauage Support
* [gt](https://github.com/rstudio/gt) - Easily generate information-rich, publication-quality tables from R
* [lightgbm <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://cran.r-project.org/web/packages/lightgbm/index.html) - Light Gradient Boosting Machine.
* [torch](https://cran.r-project.org/web/packages/torch/index.html) - Tensors and Neural Networks with 'GPU' Acceleration.
## 2019
* [ggforce](https://github.com/thomasp85/ggforce) - ggplot2 extension framework ![ggforce](https://cranlogs.r-pkg.org/badges/ggforce)
* [rayshader](https://github.com/tylermorganwall/rayshader) - 2D and 3D data visualizations via rgl ![rayshader](https://cranlogs.r-pkg.org/badges/rayshader)
* [vroom](https://github.com/r-lib/vroom) - Fast reading of delimited files ![vroom](https://cranlogs.r-pkg.org/badges/vroom)
## Integrated Development Environments
*Integrated Development Environment*
* [VSCode <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://code.visualstudio.com/) - [vscode-R](https://marketplace.visualstudio.com/items?itemName=Ikuyadeu.r) + [vscode-r-lsp](https://marketplace.visualstudio.com/items?itemName=REditorSupport.r-lsp) VSCode R Langauage Support
* [RStudio <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](http://www.rstudio.org/) - A powerful and productive user interface for R. Works great on Windows, Mac, and Linux.
* [Emacs + ESS](http://ess.r-project.org/) - Emacs Speaks Statistics is an add-on package for emacs text editors.
* [Sublime Text + R-IDE](https://github.com/REditorSupport/sublime-ide-r) - Add-on package for Sublime Text 2/3.
* [TextMate + r.tmblundle](https://github.com/textmate/r.tmbundle) - Add-on package for TextMate 1/2.
* [StatET](http://www.walware.de/goto/statet) - An Eclipse based IDE for R.
* [R Commander](http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/) - A package that provides a basic graphical user interface.
* [IRkernel <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/IRkernel/IRkernel) - R kernel for Jupyter.
* [Deducer](http://www.deducer.org/pmwiki/pmwiki.php?n=Main.DeducerManual?from=Main.HomePage) - A Menu driven data analysis GUI with a spreadsheet like data editor.
* [Radiant](https://radiant-rstats.github.io/docs) - A platform-independent browser-based interface for business analytics in R, based on the Shiny.
* [Nvim-R <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/jalvesaq/Nvim-R) - Neovim plugin for R.
* [Jamovi](https://www.jamovi.org/) and [JASP](https://jasp-stats.org/) - Desktop software for both Bayesian and Frequentist methods, using a UI familiar to SPSS users.
* [Bio7](http://www.bio7.org/) - An IDE contains tools for model creation, scientific image analysis and statistical analysis for ecological modelling.
* [RTVS](http://microsoft.github.io/RTVS-docs/) - R Tools for Visual Studio.
* [radian <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/randy3k/radian) (formerly rtichoke) - A modern R console with syntax highlighting.
* [RKWard](https://rkward.kde.org/) - An extensible IDE/GUI for R.
## Syntax
*Packages change the way you use R.*
* [magrittr <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/smbache/magrittr) - Let's pipe it.
* [pipeR](https://github.com/renkun-ken/pipeR) - Multi-paradigm Pipeline Implementation.
* [lambda.r](https://github.com/zatonovo/lambda.r) - Functional programming and simple pattern matching in R.
* [purrr](https://github.com/hadley/purrr) - A FP package for R in the spirit of underscore.js.
## Data Manipulation
*Packages for cooking data.*
* [dplyr <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/hadley/dplyr) - Fast data frames manipulation and database query.
* [data.table <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/Rdatatable/data.table) - Fast data manipulation in a short and flexible syntax.
* [reshape2 <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/hadley/reshape) - Flexible rearrange, reshape and aggregate data.
* [tidyr](https://github.com/hadley/tidyr) - Easily tidy data with spread and gather functions.
* [broom <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/dgrtwo/broom) - Convert statistical analysis objects into tidy data frames.
* [rlist](https://github.com/renkun-ken/rlist) - A toolbox for non-tabular data manipulation with lists.
* [ff](http://ff.r-forge.r-project.org/) - Data structures designed to store large datasets.
* [lubridate](https://github.com/tidyverse/lubridate) - A set of functions to work with dates and times.
* [stringi <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/gagolews/stringi) - ICU based string processing package.
* [stringr <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/hadley/stringr) - Consistent API for string processing, built on top of stringi.
* [bigmemory](https://github.com/kaneplusplus/bigmemory) - Shared memory and memory-mapped matrices. The big\* packages provide additional tools including linear models ([biglm](http://cran.r-project.org/web/packages/biglm/index.html)) and Random Forests ([bigrf](https://github.com/aloysius-lim/bigrf)).
* [fuzzyjoin](https://github.com/dgrtwo/fuzzyjoin) - Join tables together on inexact matching.
* [tidyverse](https://github.com/hadley/tidyverse) - Easily install and load packages from the tidyverse.
* [snakecase](https://github.com/Tazinho/snakecase) - Automatically parse and convert strings into cases like snake or camel among others.
* [DataExplorer](https://github.com/boxuancui/DataExplorer) - Fast exploratory data analysis with minimum code.
## Data Formats
*Packages for reading and writing data of different formats.*
* [arrow <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://arrow.apache.org/docs/r/) - An interface to the Arrow C++ library.
* [feather <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/wesm/feather) - Fast, interoperable binary data frame storage for Python, R, and more powered by Apache Arrow.
* [fst <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](www.fstpackage.org/fst/) - Lightning Fast Serialization of Data Frames for R.
* [haven](https://github.com/hadley/haven) - Improved methods to import SPSS, Stata and SAS files in R.
* [jsonlite](https://github.com/jeroenooms/jsonlite) - A robust and quick way to parse JSON files in R.
* [qs](https://github.com/traversc/qs) - Quick serialization of R objects.
* [readxl <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://readxl.tidyverse.org/) - Read excel files (.xls and .xlsx) into R.
* [readr <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/hadley/readr) - A fast and friendly way to read tabular data into R.
* [rio](https://github.com/leeper/rio) - A Swiss-Army Knife for Data I/O.
* [readODS](https://github.com/chainsawriot/readODS/) - Read OpenDocument Spreadsheets into R as data.frames.
* [RcppTOML](https://github.com/eddelbuettel/rcpptoml) - Rcpp Bindings to C++ parser for TOML files.
* [vroom](https://github.com/r-lib/vroom) - Fast reading of delimited files.
* [writexl](https://docs.ropensci.org/writexl/) - Portable, light-weight data frame to xlsx exporter for R.
* [yaml](https://github.com/viking/r-yaml) - R package for converting objects to and from YAML.
## Graphic Displays
*Packages for showing data.*
* [ggplot2 <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/hadley/ggplot2) - An implementation of the Grammar of Graphics.
* [ggfortify](https://github.com/sinhrks/ggfortify) - A unified interface to ggplot2 popular statistical packages using one line of code.
* [ggrepel](https://github.com/slowkow/ggrepel) - Repel overlapping text labels away from each other.
* [ggalt](https://github.com/hrbrmstr/ggalt) - Extra Coordinate Systems, Geoms and Statistical Transformations for ggplot2.
* [ggstatsplot](https://github.com/IndrajeetPatil/ggstatsplot) - ggplot2 Based Plots with Statistical Details
* [ggtree](https://github.com/GuangchuangYu/ggtree) - Visualization and annotation of phylogenetic tree.
* [ggtech](https://github.com/ricardo-bion/ggtech) - ggplot2 tech themes and scales
* [ggplot2 Extensions](https://ggplot2-exts.github.io/ggiraph.html) - Showcases of ggplot2 extensions.
* [lattice](https://github.com/deepayan/lattice) - A powerful and elegant high-level data visualization system.
* [corrplot](https://github.com/taiyun/corrplot) - A graphical display of a correlation matrix or general matrix. It also contains some algorithms to do matrix reordering.
* [rgl](http://cran.r-project.org/web/packages/rgl/index.html) - 3D visualization device system for R.
* [Cairo](http://cran.r-project.org/web/packages/Cairo/index.html) - R graphics device using cairo graphics library for creating high-quality display output.
* [extrafont](https://github.com/wch/extrafont) - Tools for using fonts in R graphics.
* [showtext](https://github.com/yixuan/showtext) - Enable R graphics device to show text using system fonts.
* [animation](https://github.com/yihui/animation) - A simple way to produce animated graphics in R, using [ImageMagick](http://imagemagick.org/).
* [gganimate](https://github.com/dgrtwo/gganimate) - Create easy animations with ggplot2.
* [misc3d](https://cran.r-project.org/web/packages/misc3d/index.html) - Powerful functions to deal with 3d plots, isosurfaces, etc.
* [xkcd](https://cran.r-project.org/web/packages/xkcd/index.html) - Use xkcd style in graphs.
* [imager](http://dahtah.github.io/imager/) - An image processing package based on CImg library to work with images and display them.
* [hrbrthemes](https://github.com/hrbrmstr/hrbrthemes) - 🔏 Opinionated, typographic-centric ggplot2 themes and theme components.
* [waffle](https://github.com/hrbrmstr/waffle) - 🍁 Make waffle (square pie) charts in R.
* [dendextend](https://github.com/talgalili/dendextend) - visualizing, adjusting and comparing trees of hierarchical clustering.
* [idendro](https://github.com/tsieger/idendro) - interactive exploration of dendrograms (trees of hierarchical clustering).
* [r2d3](https://rstudio.github.io/r2d3/) - R Interface to D3 Visualizations
* [Patchwork](https://github.com/thomasp85/patchwork) - Combine separate ggplots into the same graphic.
* [plot3D](http://www.rforscience.com/rpackages/visualisation/plot3d/) - Plotting Multi-Dimensional Data
* [plot3Drgl](https://cran.r-project.org/web/packages/plot3Drgl/index.html) - Plotting Multi-Dimensional Data - Using 'rgl'
* [httpgd](https://github.com/nx10/httpgd) - Asynchronous http server graphics device for R.
## HTML Widgets
*Packages for interactive visualizations.*
* [heatmaply](https://github.com/talgalili/heatmaply) - Interactive heatmaps with D3.
* [d3heatmap](https://github.com/rstudio/d3heatmap) - Interactive heatmaps with D3 (no longer maintained).
* [DataTables](http://rstudio.github.io/DT/) - Displays R matrices or data frames as interactive HTML tables.
* [DiagrammeR <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/rich-iannone/DiagrammeR) - Create JS graph diagrams and flowcharts in R.
* [dygraphs](https://github.com/rstudio/dygraphs) - Charting time-series data in R.
* [formattable <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/renkun-ken/formattable) - Formattable Data Structures.
* [ggvis <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/rstudio/ggvis) - Interactive grammar of graphics for R.
* [Leaflet](http://rstudio.github.io/leaflet/) - One of the most popular JavaScript libraries interactive maps.
* [MetricsGraphics](http://hrbrmstr.github.io/metricsgraphics/) - Enables easy creation of D3 scatterplots, line charts, and histograms.
* [networkD3](http://christophergandrud.github.io/networkD3/) - D3 JavaScript Network Graphs from R.
* [scatterD3](https://github.com/juba/scatterD3) - Interactive scatterplots with D3.
* [plotly <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/ropensci/plotly) - Interactive ggplot2 and Shiny plotting with [plot.ly](https://plot.ly).
* [rCharts <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/ramnathv/rCharts) - Interactive JS Charts from R.
* [rbokeh](http://hafen.github.io/rbokeh/) - R Interface to [Bokeh](http://bokeh.pydata.org/en/latest/).
* [threejs](https://github.com/bwlewis/rthreejs) - Interactive 3D scatter plots and globes.
* [timevis](https://github.com/daattali/timevis) - Create fully interactive timeline visualizations.
* [visNetwork](https://github.com/datastorm-open/visNetwork) - Using vis.js library for network visualization.
* [wordcloud2](https://github.com/Lchiffon/wordcloud2) - R interface to wordcloud2.js.
* [highcharter](https://github.com/jbkunst/highcharter) - R wrapper for highcharts based on htmlwidgets
* [echarts4r](https://github.com/JohnCoene/echarts4r) - R wrapper to Echarts version 4
## Reproducible Research
*Packages for literate programming and reproducible workflows.*
* [knitr <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/yihui/knitr) - Easy dynamic report generation in R.
* [redoc](https://github.com/noamross/redoc) - Reversible Reproducible Documents
* [tinytex](https://github.com/yihui/tinytex) - A lightweight and easy-to-maintain LaTeX distribution
* [xtable](http://cran.r-project.org/web/packages/xtable/index.html) - Export tables to LaTeX or HTML.
* [rapport](http://rapport-package.info/#intro) - An R templating system.
* [rmarkdown <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](http://rmarkdown.rstudio.com/) - Dynamic documents for R.
* [slidify <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/ramnathv/slidify) - Generate reproducible html5 slides from R markdown.
* [Sweave](https://www.statistik.lmu.de/~leisch/Sweave/) - A package designed to write LaTeX reports using R.
* [texreg](https://github.com/leifeld/texreg) - Formatting statistical models in LaTex and HTML.
* [checkpoint](https://github.com/RevolutionAnalytics/checkpoint) - Install packages from snapshots on the checkpoint server.
* [brew](https://cran.r-project.org/web/packages/brew/index.html) - Pre-compute data to enhance your report templates. Can be combined with knitr.
* [officer](https://davidgohel.github.io/officer/index.html) - An R package to generate Microsoft Word, Microsoft PowerPoint and HTML reports.
* [flextable](https://davidgohel.github.io/flextable/index.html) - An R package to embed complex tables (merged cells, multi-level headers and footers, conditional formatting) in Microsoft Word, Microsoft PowerPoint and HTML reports. It cooperates with the [officer] package and integrates with [rmarkdown] reports.
* [bookdown](https://bookdown.org/) - Authoring Books with R Markdown.
* [ezknitr](https://github.com/daattali/ezknitr) - Avoid the typical working directory pain when using 'knitr'
* [targets](https://docs.ropensci.org/targets/) - Make-like pipeline tool for organizing and running data science workflows, automatically skipping steps that have already been done. Supported by [rOpenSci](https://ropensci.org/).
* [R Suite](http://rsuite.io) - A package to design flexible and reproducible deployment workflows for R.
* [kable](https://cran.r-project.org/web/packages/kableExtra/vignettes/awesome_table_in_html.html) - Build fancy HTML or 'LaTeX' tables using 'kable()' from 'knitr'.
## Web Technologies and Services
*Packages to surf the web.*
* [Web Technologies List](https://github.com/ropensci/webservices) - Information about how to use R and the world wide web together.
* [shiny <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/rstudio/shiny) - Easy interactive web applications with R. See also [awesome-rshiny](https://github.com/grabear/awesome-rshiny)
* [shinyjs](https://github.com/daattali/shinyjs) - Easily improve the user interaction and user experience in your Shiny apps in seconds.
* [RCurl](http://cran.r-project.org/web/packages/RCurl/index.html) - General network (HTTP/FTP/...) client interface for R.
* [curl](https://github.com/jeroen/curl) - A Modern and Flexible Web Client for R.
* [httr <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/hadley/httr) - User-friendly RCurl wrapper.
* [httpuv](https://github.com/rstudio/httpuv) - HTTP and WebSocket server library.
* [XML <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](http://cran.r-project.org/web/packages/XML/index.html) - Tools for parsing and generating XML within R.
* [xml2 <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://cran.r-project.org/web/packages/xml2/index.html) - Optimized tools for parsing and generating XML within R.
* [rvest <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/hadley/rvest) - Simple web scraping for R, using CSSSelect or XPath syntax.
* [OpenCPU <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://www.opencpu.org/) - HTTP API for R handling concurrent calls, based on the Apache2 web server, to expose R code as REST web services and create full-sized, multi-page web applications.
* [Rfacebook](https://github.com/pablobarbera/Rfacebook) - Access to Facebook API via R.
* [RSiteCatalyst](https://github.com/randyzwitch/RSiteCatalyst) - R client library for the Adobe Analytics.
* [plumber](https://github.com/trestletech/plumber) - A library to expose existing R code as web API.
* [golem](https://thinkr-open.github.io/golem/) - A framework for building production-grade Shiny apps.
## Parallel Computing
*Packages for parallel computing.*
* [parallel](http://cran.r-project.org/web/views/HighPerformanceComputing.html) - R started with release 2.14.0 which includes a new package parallel incorporating (slightly revised) copies of packages [multicore](http://cran.r-project.org/web/packages/multicore/index.html) and [snow](http://cran.r-project.org/web/packages/snow/index.html).
* [Rmpi](http://cran.r-project.org/web/packages/Rmpi/index.html) - Rmpi provides an interface (wrapper) to MPI APIs. It also provides interactive R slave environment.
* [foreach <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](http://cran.r-project.org/web/packages/foreach/index.html) - Executing the loop in parallel.
* [future <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://cran.r-project.org/package=future) - A minimal, efficient, cross-platform unified Future API for parallel and distributed processing in R; designed for beginners as well as advanced developers.
* [SparkR <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/amplab-extras/SparkR-pkg) - R frontend for Spark.
* [DistributedR](https://github.com/vertica/DistributedR) - A scalable high-performance platform from HP Vertica Analytics Team.
* [ddR](https://github.com/vertica/ddR) - Provides distributed data structures and simplifies distributed computing in R.
* [sparklyr](http://spark.rstudio.com/) - R interface for Apache Spark from RStudio.
* [batchtools](https://cran.r-project.org/package=batchtools) - High performance computing with LSF, TORQUE, Slurm, OpenLava, SGE and Docker Swarm.
## High Performance
*Packages for making R faster.*
* [Rcpp <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](http://rcpp.org/) - Rcpp provides a powerful API on top of R, make function in R extremely faster.
* [Rcpp11](https://github.com/Rcpp11/Rcpp11) - Rcpp11 is a complete redesign of Rcpp, targetting C++11.
* [compiler](http://stat.ethz.ch/R-manual/R-devel/library/compiler/html/compile.html) - speeding up your R code using the JIT
* [cpp11](https://github.com/r-lib/cpp11) - cpp11 is a header-only R package that helps R package developers handle R objects with C++ code. It's similar to Rcpp but with different design trade-offs and features.
## Language API
*Packages for other languages.*
* [rJava](http://cran.r-project.org/web/packages/rJava/) - Low-level R to Java interface.
* [jvmr](https://github.com/cran/jvmr) - Integration of R, Java, and Scala.
* [reticulate <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://cran.r-project.org/web/packages/reticulate/index.html) - Interface to 'Python'.
* [rJython](http://cran.r-project.org/web/packages/rJython/index.html) - R interface to Python via Jython.
* [rPython](http://cran.r-project.org/web/packages/rPython/index.html) - Package allowing R to call Python.
* [runr](https://github.com/yihui/runr) - Run Julia and Bash from R.
* [RJulia](https://github.com/armgong/RJulia) - R package Call Julia.
* [JuliaCall](https://github.com/Non-Contradiction/JuliaCall) - Seamless Integration Between R and Julia.
* [RinRuby](https://sites.google.com/a/ddahl.org/rinruby-users/) - a Ruby library that integrates the R interpreter in Ruby.
* [R.matlab](http://cran.r-project.org/web/packages/R.matlab/index.html) - Read and write of MAT files together with R-to-MATLAB connectivity.
* [RcppOctave](https://github.com/renozao/RcppOctave) - Seamless Interface to Octave and Matlab.
* [RSPerl](http://www.omegahat.org/RSPerl/) - A bidirectional interface for calling R from Perl and Perl from R.
* [V8](https://github.com/jeroenooms/V8) - Embedded JavaScript Engine.
* [htmlwidgets](http://www.htmlwidgets.org/) - Bring the best of JavaScript data visualization to R.
* [rpy2](http://rpy.sourceforge.net/) - Python interface for R.
## Database Management
*Packages for managing data.*
* [RODBC](http://cran.r-project.org/web/packages/RODBC/) - ODBC database access for R.
* [DBI](https://github.com/rstats-db/DBI) - Defines a common interface between the R and database management systems.
* [elastic](https://github.com/ropensci/elastic) - Wrapper for the Elasticsearch HTTP API
* [mongolite](https://github.com/jeroenooms/mongolite) - Streaming Mongo Client for R
* [odbc](https://github.com/r-dbi/odbc) - Connect to ODBC databases (using the DBI interface)
* [RMariaDB](https://github.com/rstats-db/RMariaDB) - An R interface to MariaDB (a replacement for the old RMySQL package)
* [RMySQL](http://cran.r-project.org/web/packages/RMySQL/) - R interface to the MySQL database.
* [ROracle](http://cran.r-project.org/web/packages/ROracle/index.html) - OCI based Oracle database interface for R.
* [RPostgres](https://github.com/r-dbi/RPostgres) - an DBI-compliant interface to the postgres database.
* [RPostgreSQL](https://code.google.com/p/rpostgresql/) - R interface to the PostgreSQL database system.
* [RSQLite](http://cran.r-project.org/web/packages/RSQLite/) - SQLite interface for R
* [RJDBC](http://cran.r-project.org/web/packages/RJDBC/) - Provides access to databases through the JDBC interface.
* [rmongodb](https://github.com/mongosoup/rmongodb) - R driver for MongoDB.
* [redux](https://github.com/richfitz/redux) - Redis client for R.
* [RCassandra](http://cran.r-project.org/web/packages/RCassandra/index.html) - Direct interface (not Java) to the most basic functionality of Apache Cassandra.
* [RHive](https://github.com/nexr/RHive) - R extension facilitating distributed computing via Apache Hive.
* [RNeo4j](https://github.com/nicolewhite/Rneo4j) - Neo4j graph database driver.
* [rpostgis](https://github.com/mablab/rpostgis) - R interface to PostGIS database and get spatial objects in R.
## Machine Learning
*Packages for making R cleverer.*
* [anomalize](https://github.com/business-science/anomalize) - Tidy Anomaly Detection using Twitter's AnomalyDetection method.
* [AnomalyDetection <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/twitter/AnomalyDetection) - AnomalyDetection R package from Twitter.
* [ahaz](http://cran.r-project.org/web/packages/ahaz/index.html) - Regularization for semiparametric additive hazards regression.
* [arules](http://cran.r-project.org/web/packages/arules/index.html) - Mining Association Rules and Frequent Itemsets
* [bigrf](http://cran.r-project.org/web/packages/bigrf/index.html) - Big Random Forests: Classification and Regression Forests for
Large Data Sets
* [bigRR](http://cran.r-project.org/web/packages/bigRR/index.html) - Generalized Ridge Regression (with special advantage for p >> n
cases)
* [bmrm](http://cran.r-project.org/web/packages/bmrm/index.html) - Bundle Methods for Regularized Risk Minimization Package
* [Boruta](http://cran.r-project.org/web/packages/Boruta/index.html) - A wrapper algorithm for all-relevant feature selection
* [BreakoutDetection <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/twitter/BreakoutDetection) - Breakout Detection via Robust E-Statistics from Twitter.
* [bst](http://cran.r-project.org/web/packages/bst/index.html) - Gradient Boosting
* [CausalImpact <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/google/CausalImpact) - Causal inference using Bayesian structural time-series models.
* [C50](http://cran.r-project.org/web/packages/C50/index.html) - C5.0 Decision Trees and Rule-Based Models
* [caret <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](http://cran.r-project.org/web/packages/caret/index.html) - Classification and Regression Training
* [Clever Algorithms For Machine Learning](https://github.com/jbrownlee/CleverAlgorithmsMachineLearning)
* [CORElearn](http://cran.r-project.org/web/packages/CORElearn/index.html) - Classification, regression, feature evaluation and ordinal
evaluation
* [CoxBoost](http://cran.r-project.org/web/packages/CoxBoost/index.html) - Cox models by likelihood based boosting for a single survival
endpoint or competing risks
* [Cubist](http://cran.r-project.org/web/packages/Cubist/index.html) - Rule- and Instance-Based Regression Modeling
* [e1071](http://cran.r-project.org/web/packages/e1071/index.html) - Misc Functions of the Department of Statistics (e1071), TU Wien
* [earth](http://cran.r-project.org/web/packages/earth/index.html) - Multivariate Adaptive Regression Spline Models
* [elasticnet](http://cran.r-project.org/web/packages/elasticnet/index.html) - Elastic-Net for Sparse Estimation and Sparse PCA
* [ElemStatLearn](http://cran.r-project.org/web/packages/ElemStatLearn/index.html) - Data sets, functions and examples from the book: "The Elements
of Statistical Learning, Data Mining, Inference, and
Prediction" by Trevor Hastie, Robert Tibshirani and Jerome
Friedman
* [evtree](http://cran.r-project.org/web/packages/evtree/index.html) - Evolutionary Learning of Globally Optimal Trees
* [fable](https://github.com/tidyverts/fable/) - a collection of commonly used univariate and multivariate time series forecasting models
* [prophet <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/facebookincubator/prophet) - Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.
* [FSelector](https://cran.r-project.org/web/packages/FSelector/index.html) - A feature selection framework, based on subset-search or feature ranking approches.
* [frbs](http://cran.r-project.org/web/packages/frbs/index.html) - Fuzzy Rule-based Systems for Classification and Regression Tasks
* [GAMBoost](http://cran.r-project.org/web/packages/GAMBoost/index.html) - Generalized linear and additive models by likelihood based
boosting
* [gamboostLSS](http://cran.r-project.org/web/packages/gamboostLSS/index.html) - Boosting Methods for GAMLSS
* [gbm](http://cran.r-project.org/web/packages/gbm/index.html) - Generalized Boosted Regression Models
* [glmnet <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](http://cran.r-project.org/web/packages/glmnet/index.html) - Lasso and elastic-net regularized generalized linear models
* [glmpath](http://cran.r-project.org/web/packages/glmpath/index.html) - L1 Regularization Path for Generalized Linear Models and Cox
Proportional Hazards Model
* [GMMBoost](http://cran.r-project.org/web/packages/GMMBoost/index.html) - Likelihood-based Boosting for Generalized mixed models
* [grplasso](http://cran.r-project.org/web/packages/grplasso/index.html) - Fitting user specified models with Group Lasso penalty
* [grpreg](http://cran.r-project.org/web/packages/grpreg/index.html) - Regularization paths for regression models with grouped
covariates
* [h2o <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](http://cran.r-project.org/web/packages/h2o/index.html) - Deeplearning, Random forests, GBM, KMeans, PCA, GLM
* [hda](http://cran.r-project.org/web/packages/hda/index.html) - Heteroscedastic Discriminant Analysis
* [ipred](http://cran.r-project.org/web/packages/ipred/index.html) - Improved Predictors
* [kernlab](http://cran.r-project.org/web/packages/kernlab/index.html) - kernlab: Kernel-based Machine Learning Lab
* [klaR](http://cran.r-project.org/web/packages/klaR/index.html) - Classification and visualization
* [kohonen](http://cran.r-project.org/web/packages/kohonen/) - Supervised and Unsupervised Self-Organising Maps.
* [L0Learn](https://cran.r-project.org/web/packages/L0Learn/index.html) - Fast algorithms for best subset selection
* [lars](http://cran.r-project.org/web/packages/lars/index.html) - Least Angle Regression, Lasso and Forward Stagewise
* [lasso2](http://cran.r-project.org/web/packages/lasso2/index.html) - L1 constrained estimation aka lasso
* [LiblineaR](http://cran.r-project.org/web/packages/LiblineaR/index.html) - Linear Predictive Models Based On The Liblinear C/C++ Library
* [lightgbm <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://cran.r-project.org/web/packages/lightgbm/index.html) - Light Gradient Boosting Machine.
* [lme4 <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/lme4/lme4) - Mixed-effects models
* [nlme <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://cran.r-project.org/web/packages/nlme/index.html) - Mixed-effects models, handling user-specified matrix of residual covariance, relevant for the analysis of repeated observations in longitudinal trials
* [glmmTMB](https://cran.r-project.org/web/packages/glmmTMB/index.html) - Generalized mixed-effects models, handling user-specified matrix of residual covariance, relevant for the analysis of repeated observations in longitudinal trials
* [LogicReg](http://cran.r-project.org/web/packages/LogicReg/index.html) - Logic Regression
* [maptree](http://cran.r-project.org/web/packages/maptree/index.html) - Mapping, pruning, and graphing tree models
* [mboost](http://cran.r-project.org/web/packages/mboost/index.html) - Model-Based Boosting
* [Machine Learning For Hackers <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/johnmyleswhite/ML_for_Hackers)
* [mlr](https://github.com/mlr-org/mlr) - Extensible framework for classification, regression, survival analysis and clustering [DEPRECIATED]
* [mlr3 <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/mlr-org/mlr3) - Next generation extensible framework for classification, regression, survival analysis and clustering
* [mvpart](http://cran.r-project.org/web/packages/mvpart/index.html) - Multivariate partitioning
* [MXNet <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/dmlc/mxnet/tree/master/R-package) - MXNet brings flexible and efficient GPU computing and state-of-art deep learning to R.
* [ncvreg](http://cran.r-project.org/web/packages/ncvreg/index.html) - Regularization paths for SCAD- and MCP-penalized regression
models
* [nnet](http://cran.r-project.org/web/packages/nnet/index.html) - eed-forward Neural Networks and Multinomial Log-Linear Models
* [oblique.tree](http://cran.r-project.org/web/packages/oblique.tree/index.html) - Oblique Trees for Classification Data
* [pamr](http://cran.r-project.org/web/packages/pamr/index.html) - Pam: prediction analysis for microarrays
* [party](http://cran.r-project.org/web/packages/party/index.html) - A Laboratory for Recursive Partytioning
* [partykit](http://cran.r-project.org/web/packages/partykit/index.html) - A Toolkit for Recursive Partytioning
* [penalized](http://cran.r-project.org/web/packages/penalized/index.html) - L1 (lasso and fused lasso) and L2 (ridge) penalized estimation
in GLMs and in the Cox model
* [penalizedLDA](http://cran.r-project.org/web/packages/penalizedLDA/index.html) - Penalized classification using Fisher's linear discriminant
* [penalizedSVM](http://cran.r-project.org/web/packages/penalizedSVM/index.html) - Feature Selection SVM using penalty functions
* [quantregForest](http://cran.r-project.org/web/packages/quantregForest/index.html) - quantregForest: Quantile Regression Forests
* [randomForest](http://cran.r-project.org/web/packages/randomForest/index.html) - randomForest: Breiman and Cutler's random forests for classification and regression.
* [randomForestSRC](http://cran.r-project.org/web/packages/randomForestSRC/index.html) - randomForestSRC: Random Forests for Survival, Regression and Classification (RF-SRC).
* [ranger](https://github.com/imbs-hl/ranger) - A Fast Implementation of Random Forests.
* [rattle](http://cran.r-project.org/web/packages/rattle/index.html) - Graphical user interface for data mining in R.
* [rda](http://cran.r-project.org/web/packages/rda/index.html) - Shrunken Centroids Regularized Discriminant Analysis
* [rdetools](http://cran.r-project.org/web/packages/rdetools/index.html) - Relevant Dimension Estimation (RDE) in Feature Spaces
* [REEMtree](http://cran.r-project.org/web/packages/REEMtree/index.html) - Regression Trees with Random Effects for Longitudinal (Panel)
Data
* [relaxo](http://cran.r-project.org/web/packages/relaxo/index.html) - Relaxed Lasso
* [rgenoud](http://cran.r-project.org/web/packages/rgenoud/index.html) - R version of GENetic Optimization Using Derivatives
* [rgp](http://cran.r-project.org/web/packages/rgp/index.html) - R genetic programming framework
* [Rmalschains](http://cran.r-project.org/web/packages/Rmalschains/index.html) - Continuous Optimization using Memetic Algorithms with Local
Search Chains (MA-LS-Chains) in R
* [rminer](http://cran.r-project.org/web/packages/rminer/index.html) - Simpler use of data mining methods (e.g. NN and SVM) in
classification and regression
* [ROCR](http://cran.r-project.org/web/packages/ROCR/index.html) - Visualizing the performance of scoring classifiers
* [RoughSets](http://cran.r-project.org/web/packages/RoughSets/index.html) - Data Analysis Using Rough Set and Fuzzy Rough Set Theories
* [rpart](http://cran.r-project.org/web/packages/rpart/index.html) - Recursive Partitioning and Regression Trees
* [RPMM](http://cran.r-project.org/web/packages/RPMM/index.html) - Recursively Partitioned Mixture Model
* [RSNNS](http://cran.r-project.org/web/packages/RSNNS/index.html) - Neural Networks in R using the Stuttgart Neural Network
Simulator (SNNS)
* [Rsomoclu](https://cran.r-project.org/web/packages/Rsomoclu/index.html) - Parallel implementation of self-organizing maps.
* [RWeka](http://cran.r-project.org/web/packages/RWeka/index.html) - R/Weka interface
* [RXshrink](http://cran.r-project.org/web/packages/RXshrink/index.html) - RXshrink: Maximum Likelihood Shrinkage via Generalized Ridge or Least
Angle Regression
* [sda](http://cran.r-project.org/web/packages/sda/index.html) - Shrinkage Discriminant Analysis and CAT Score Variable Selection
* [SDDA](http://cran.r-project.org/web/packages/SDDA/index.html) - Stepwise Diagonal Discriminant Analysis
* [SuperLearner](https://github.com/ecpolley/SuperLearner) and [subsemble](http://cran.r-project.org/web/packages/subsemble/index.html) - Multi-algorithm ensemble learning packages.
* [survminer](https://github.com/kassambara/survminer) - Survival Analysis & Visualization
* [survival](https://cran.r-project.org/web/packages/survival/index.html) - Survival Analysis
* [svmpath](http://cran.r-project.org/web/packages/svmpath/index.html) - svmpath: the SVM Path algorithm
* [tgp](http://cran.r-project.org/web/packages/tgp/index.html) - Bayesian treed Gaussian process models
* [tidymodels](https://cran.r-project.org/web/packages/tidymodels/index.html) - A collection of packages for modeling and statistical analysis that share the underlying design philosophy, grammar, and data structures of the tidyverse.
* [torch](https://cran.r-project.org/web/packages/torch/index.html) - Tensors and Neural Networks with 'GPU' Acceleration.
* [tree](http://cran.r-project.org/web/packages/tree/index.html) - Classification and regression trees
* [varSelRF](http://cran.r-project.org/web/packages/varSelRF/index.html) - Variable selection using random forests
* [xgboost <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/tqchen/xgboost/tree/master/R-package) - eXtreme Gradient Boosting Tree model, well known for its speed and performance.
## Natural Language Processing
*Packages for Natural Language Processing.*
* [text2vec](https://github.com/dselivanov/text2vec) - Fast Text Mining Framework for Vectorization and Word Embeddings.
* [tm](http://cran.r-project.org/web/packages/tm/index.html) - A comprehensive text mining framework for R.
* [openNLP](http://cran.r-project.org/web/packages/openNLP/index.html) - Apache OpenNLP Tools Interface.
* [koRpus](http://cran.r-project.org/web/packages/koRpus/index.html) - An R Package for Text Analysis.
* [zipfR](http://cran.r-project.org/web/packages/zipfR/index.html) - Statistical models for word frequency distributions.
* [NLP](http://cran.r-project.org/web/packages/NLP/index.html) - Basic functions for Natural Language Processing.
* [LDAvis](https://github.com/cpsievert/LDAvis) - Interactive visualization of topic models.
* [topicmodels](https://cran.r-project.org/web/packages/topicmodels/index.html) - Topic modeling interface to the C code developed by by David M. Blei for Topic Modeling (Latent Dirichlet Allocation (LDA), and Correlated Topics Models (CTM)).
* [syuzhet](https://cran.r-project.org/web/packages/syuzhet/index.html) - Extracts sentiment from text using three different sentiment dictionaries.
* [SnowballC](https://cran.rstudio.com/web/packages/SnowballC/index.html) - Snowball stemmers based on the C libstemmer UTF-8 library.
* [quanteda](https://github.com/kbenoit/quanteda) - R functions for Quantitative Analysis of Textual Data.
* [Topic Models Resources](https://github.com/trinker/topicmodels_learning) - Topic Models learning and R related resources.
* [NLP for <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f1e8-1f1f3.png" width="20" heigth="20" align="absmiddle" class="emoji" alt=":cn:">](https://github.com/BZRLC/R-notes/blob/master/NLP/readme.md) - NLP related resources in R. @Chinese
* [MonkeyLearn](https://github.com/masalmon/monkeylearn) - 🐒 R package for text analysis with Monkeylearn 🐒.
* [tidytext](http://tidytextmining.com/index.html) - Implementing tidy principles of Hadley Wickham to text mining.
* [utf8](https://github.com/patperry/r-utf8) - Manipulating and printing UTF-8 text that fixes multiple bugs in R's UTF-8 handling.
* [corporaexplorer](https://kgjerde.github.io/corporaexplorer/) - Dynamic exploration of text collections
## Bayesian
*Packages for Bayesian Inference.*
* [brms](https://cran.r-project.org/web/packages/brms/index.html) - High-level interface for Bayesian regression models using Stan.
* [coda](http://cran.r-project.org/web/packages/coda/index.html) - Output analysis and diagnostics for MCMC.
* [mcmc](http://cran.r-project.org/web/packages/mcmc/index.html) - Markov Chain Monte Carlo.
* [MCMCpack](http://mcmcpack.berkeley.edu/) - Markov chain Monte Carlo (MCMC) Package.
* [R2WinBUGS](http://cran.r-project.org/web/packages/R2WinBUGS/index.html) - Running WinBUGS and OpenBUGS from R / S-PLUS.
* [BRugs](http://cran.r-project.org/web/packages/BRugs/index.html) - R interface to the OpenBUGS MCMC software.
* [rjags](http://cran.r-project.org/web/packages/rjags/index.html) - R interface to the JAGS MCMC library.
* [rstan <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](http://mc-stan.org/interfaces/rstan.html) - R interface to the Stan MCMC software.
## Optimization
*Packages for Optimization.*
* [lpSolve](https://cran.rstudio.com/web/packages/lpSolve/index.html) - Interface to `Lp_solve` to Solve Linear/Integer Programs.
* [minqa](https://cran.rstudio.com/web/packages/minqa/index.html) - Derivative-free optimization algorithms by quadratic approximation.
* [nloptr](https://cran.rstudio.com/web/packages/nloptr/index.html) - NLopt is a free/open-source library for nonlinear optimization.
* [ompr](https://cran.rstudio.com/web/packages/ompr/index.html) - Model mixed integer linear programs in an algebraic way directly in R.
* [Rglpk](https://cran.rstudio.com/web/packages/Rglpk/index.html) - R/GNU Linear Programming Kit Interface
* [ROI](https://cran.rstudio.com/web/packages/ROI/index.html) - The R Optimization Infrastructure ('ROI') is a sophisticated framework for handling optimization problems in R.
## Finance
*Packages for dealing with money.*
* [quantmod <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](http://www.quantmod.com/) - Quantitative Financial Modelling & Trading Framework for R.
* [pedquant](http://pedquant.com/) - Public Economic Data and Quantitative Analysis
* [TTR](http://cran.r-project.org/web/packages/TTR/index.html) - Functions and data to construct technical trading rules with R.
* [PerformanceAnalytics](http://cran.r-project.org/web/packages/PerformanceAnalytics/index.html) - Econometric tools for performance and risk analysis.
* [zoo <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](http://cran.r-project.org/web/packages/zoo/index.html) - S3 Infrastructure for Regular and Irregular Time Series.
* [xts](http://cran.r-project.org/web/packages/xts/index.html) - eXtensible Time Series.
* [tseries](http://cran.r-project.org/web/packages/tseries/index.html) - Time series analysis and computational finance.
* [fAssets](http://cran.r-project.org/web/packages/fAssets/index.html) - Analysing and Modelling Financial Assets.
* [scorecard](https://github.com/ShichenXie/scorecard) - Credit Risk Scorecard
## Bioinformatics and Biostatistics
*Packages for processing biological datasets.*
* [Bioconductor <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](http://www.bioconductor.org/) - Tools for the analysis and comprehension of high-throughput genomic data.
* [genetics](http://cran.r-project.org/web/packages/genetics/index.html) - Classes and methods for handling genetic data.
* [gap](http://cran.r-project.org/web/packages/gap/index.html) - An integrated package for genetic data analysis of both population and family data.
* [ape](http://cran.r-project.org/web/packages/ape/index.html) - Analyses of Phylogenetics and Evolution.
* [pheatmap](http://cran.r-project.org/web/packages/pheatmap/index.html) - Pretty heatmaps made easy.
* [lme4](https://github.com/lme4/lme4) - Generalized mixed-effects models.
* [nlme](https://cran.r-project.org/web/packages/nlme/index.html) - Mixed-effects models, handling user-specified matrix of residual covariance, relevant for the anaysis of repeated observations in longitudinal trials.
* [glmmTMB](https://cran.r-project.org/web/packages/glmmTMB/index.html) - Generalized mixed-effects models, handling user-specified matrix of residual covariance, relevant for the anaysis of repeated observations in longitudinal trials.
## Network Analysis
*Packages to construct, analyze and visualize network data.*
* [Network Analysis List](https://github.com/briatte/awesome-network-analysis) - Network Analysis related resources.
* [igraph <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](http://igraph.org/r/) - A collection of network analysis tools.
* [network](https://cran.r-project.org/web/packages/network/index.html) - Basic tools to manipulate relational data in R.
* [sna](https://cran.r-project.org/web/packages/sna/index.html) - Basic network measures and visualization tools.
* [netdiffuseR](https://github.com/USCCANA/netdiffuseR) - Tools for Analysis of Network Diffusion.
* [networkDynamic](https://cran.r-project.org/web/packages/networkDynamic/) - Support for dynamic, (inter)temporal networks.
* [ndtv](https://cran.r-project.org/web/packages/ndtv/) - Tools to construct animated visualizations of dynamic network data in various formats.
* [statnet](http://statnet.org/) - The project behind many R network analysis packages.
* [ergm](https://cran.r-project.org/web/packages/ergm/index.html) - Exponential random graph models in R.
* [latentnet](https://cran.r-project.org/web/packages/latentnet/index.html) - Latent position and cluster models for network objects.
* [tnet](https://cran.r-project.org/web/packages/tnet/index.html) - Network measures for weighted, two-mode and longitudinal networks.
* [rgexf](https://bitbucket.org/gvegayon/rgexf/wiki/Home) - Export network objects from R to [GEXF](http://gexf.net/format/), for manipulation with network software like [Gephi](https://gephi.org/) or [Sigma](http://sigmajs.org/).
* [visNetwork](https://github.com/datastorm-open/visNetwork) - Using vis.js library for network visualization.
* [tidygraph](https://github.com/thomasp85/tidygraph) - A tidy API for graph manipulation
## Spatial
*Packages to explore the earth.*
* [CRAN Task View: Analysis of Spatial Data](https://cran.r-project.org/web/views/Spatial.html)- Spatial Analysis related resources.
* [Leaflet](http://rstudio.github.io/leaflet/) - One of the most popular JavaScript libraries interactive maps.
* [ggmap](https://github.com/dkahle/ggmap) - Plotting maps in R with ggplot2.
* [REmap](https://github.com/Lchiffon/REmap) - R interface to the JavaScript library ECharts for interactive map data visualization.
* [sf](https://cran.r-project.org/web/packages/sf/index.html) - Improved Classes and Methods for Spatial Data.
* [sp](https://edzer.github.io/sp/) - Classes and Methods for Spatial Data.
* [rgeos](https://cran.r-project.org/web/packages/rgeos/index.html) - Interface to Geometry Engine - Open Source
* [rgdal](https://cran.r-project.org/web/packages/rgdal/index.html) - Bindings for the Geospatial Data Abstraction Library
* [maptools](https://cran.r-project.org/web/packages/maptools/index.html) - Tools for Reading and Handling Spatial Objects
* [gstat](https://github.com/edzer/gstat) - Spatial and spatio-temporal geostatistical modelling, prediction and simulation.
* [spacetime](https://github.com/edzer/spacetime) - R classes and methods for spatio-temporal data.
* [RColorBrewer](https://cran.r-project.org/web/packages/RColorBrewer/index.html) - Provides color schemes for maps
* [spatstat](https://github.com/spatstat/spatstat) - Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests
* [spdep](https://cran.r-project.org/web/packages/spdep/index.html) - Spatial Dependence: Weighting Schemes, Statistics and Models
* [tigris](https://github.com/walkerke/tigris) - Download and use Census TIGER/Line shapefiles in R
* [GWmodel](https://cran.r-project.org/web/packages/GWmodel/) - Geographically-Weighted Models
* [tmap](https://github.com/mtennekes/tmap) - R package for thematic maps
## R Development
*Packages for packages.*
* [Package Development List](https://github.com/ropensci/PackageDevelopment) - R packages to improve package development.
* [promises](https://cran.r-project.org/web/packages/promises/index.html) - Abstractions for Promise-Based Asynchronous Programming
* [devtools <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/hadley/devtools) - Tools to make an R developer's life easier.
* [testthat <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/hadley/testthat) - An R package to make testing fun.
* [R6 <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/wch/R6) - simpler, faster, lighter-weight alternative to R's built-in classes.
* [pryr <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/hadley/pryr) - Make it easier to understand what's going on in R.
* [roxygen <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/klutometis/roxygen) - Describe your functions in comments next to their definitions.
* [lineprof](https://github.com/hadley/lineprof) - Visualise line profiling results in R.
* [renv <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/rstudio/renv) - Make your R projects more isolated, portable, and reproducible.
* [installr](https://github.com/talgalili/installr/) - Functions for installing softwares from within R (for Windows).
* [import](https://github.com/smbache/import/) - An import mechanism for R.
* [box <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/klmr/box) - A modern module system for R.
* [Rocker <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/rocker-org) - R configurations for [Docker](https://www.docker.com/).
* [RStudio Addins](https://github.com/daattali/rstudio-addins) - List of RStudio addins.
* [drat](https://github.com/eddelbuettel/drat) - Creation and use of R repositories on GitHub or other repos.
* [covr](https://github.com/jimhester/covr) - Test coverage for your R package and (optionally) upload the results to [coveralls](https://coveralls.io/) or [codecov](https://codecov.io/).
* [lintr](https://github.com/jimhester/lintr) - Static code analysis for R to enforce code style.
* [staticdocs](https://github.com/hadley/staticdocs) - Generate static html documentation for an R package.
* [sinew](https://github.com/metrumresearchgroup/sinew) - Generate roxygen2 skeletons populated with information scraped from the function script.
## Logging
*Packages for Logging*
* [futile.logger](https://github.com/zatonovo/futile.logger) - A logging package in R similar to log4j
* [log4r](https://github.com/johnmyleswhite/log4r) - A log4j derivative for R
* [logging](https://cran.r-project.org/web/packages/logging/index.html) - A logging package emulating the python logging package.
## Data Packages
*Handy Data Packages*
* [engsoccerdata](https://github.com/jalapic/engsoccerdata) - English and European soccer results 1871-2016.
* [gapminder](http://github.com/jennybc/gapminder) - Excerpt from the Gapminder dataset (data about countries through the past 50 years).
* [wbstats](https://cran.r-project.org/web/packages/wbstats/index.html) - Tools for searching and downloading data and statistics from the World Bank Data API and the World Bank Data Catalog API.
* [ICON](https://github.com/rrrlw/ICON) - complex systems & networks datasets from the Index of COmplex Networks (ICON) database [webpage](http://icon.colorado.edu).
* [RCOBOLDI](https://github.com/thospfuller/rcoboldi) - Import COBOL CopyBook data files directly into R as properly structured data frames. Package builds are available via [Drat](https://github.com/thospfuller/drat) and [DockerHub](https://hub.docker.com/r/thospfuller/rcoboldi-rocker-rstudio).
## Other Tools
*Handy Tools for R*
* [git2r](https://github.com/ropensci/git2r) - Gives you programmatic access to Git repositories from R.
* [Conda](https://anaconda.org/r/repo) - Most R packages are available through the Conda polyglot cross-platform dependency manager.
## Other Interpreters
*Alternative R engines.*
* [CXXR](https://www.cs.kent.ac.uk/projects/cxxr/) - Refactorising R into C++.
* [fastR](https://bitbucket.org/allr/fastr/wiki/Home) - FastR is an implementation of the R Language in Java atop Truffle and Graal.
* [pqR](http://www.pqr-project.org/) - a "pretty quick" implementation of R
* [renjin](http://www.renjin.org/) - a JVM-based interpreter for R.
* [rho](https://github.com/rho-devel/rho) - Refactor the interpreter of the R language into a fully-compatible, efficient, VM for R.
* [riposte](https://github.com/jtalbot/riposte) - a fast interpreter and JIT for R.
* [TERR](http://spotfire.tibco.com/discover-spotfire/what-does-spotfire-do/predictive-analytics/tibco-enterprise-runtime-for-r-terr) - TIBCO Enterprise Runtime for R.
## Learning R
*Packages for Learning R.*
* [swirl <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](http://swirlstats.com/) - An interactive R tutorial directly in your R console.
* [DataScienceR <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://github.com/ujjwalkarn/DataScienceR) - a list of R tutorials for Data Science, NLP and Machine Learning.
# Resources
Where to discover new R-esources.
## Websites
### Manuals
* [R-project](http://www.r-project.org/) - The R Project for Statistical Computing.
* [An Introduction to R](https://cran.r-project.org/doc/manuals/R-intro.pdf) - A very good introductory text on R, also covers some advanced topic. See also the `Manuals` section on [CRAN](https://cran.r-project.org/manuals.html)
* [CRAN Contributed Docs](https://cran.r-project.org/other-docs.html) - CRAN Contributed Documentation in many languages.
* [Quick-R](http://www.statmethods.net/) - An excellent quick reference
* [tryR](http://tryr.codeschool.com/) - A quick course for getting started with R.
### Tools and References
* [RDocumentation](https://www.rdocumentation.org/) - Search through all CRAN, Bioconductor, Github packages and their archives with RDocumentation.
* [rdrr.io](https://rdrr.io/) - Find R package documentation. Try R packages in your browser.
* [CRAN Task Views](http://cran.r-project.org/web/views/) - Task Views for CRAN packages.
* [rnotebook.io](https://rnotebook.io/) - Create online R Jupyter Notebooks for free.
### News and Info
* [R Weekly](https://rweekly.org) - Weekly updates about R and Data Science. R Weekly is openly developed on GitHub.
* [R Bloggers](http://www.r-bloggers.com/) - There are people scattered across the Web who blog about R. This is simply an aggregator of many of those feeds.
* [R-users](https://www.r-users.com/) - A job board for R users (and the people who are looking to hire them)
## Books
### Free and Online
* [_R for Data Science_ by Garrett Grolemund & Hadley Wickham](http://r4ds.had.co.nz/) - Free book from RStudio developers with emphasis on data science workflow.
* [_R Cookbook_ by Winston Chang](http://www.cookbook-r.com/) - A problem-oriented online book that supports his [R Graphics Cookbook, 2nd ed. (2018)](http://shop.oreilly.com/product/0636920063704.do).
* [_Advanced R_, 2nd ed. by Hadley Wickham (2019) <img class="emoji" alt="heart" src="https://cdn.jsdelivr.net/gh/qinwf/awesome-R@3c66da6e291bcc0520b1649125b0bed750896a9a/heart.png" height="20" align="absmiddle" width="20">](https://adv-r.hadley.nz/) - An online version of the Advanced R book.
* [_R Packages_, 2nd ed. by Hadley Wickham & Jennifer Bryan](https://r-pkgs.org/) - A book (in paper and website formats) on writing R packages.
* Books written as part of the Johns Hopkins Data Science Specialization:
* [_Exploratory Data Analysis with R_ by Roger D. Peng (2016)](https://leanpub.com/exdata) - Basic analytical skills for all sorts of data in R.
* [_R Programming for Data Science_ by Roger D. Peng (2019)](https://leanpub.com/rprogramming) - More advanced data analysis that relies on R programming.
* [_Report Writing for Data Science in R_ by Roger D. Peng (2019)](https://leanpub.com/reportwriting) - R-based methods for reproducible research and report generation.
* [_R for SAS and SPSS users_ by Bob Muenchen (2012)](http://r4stats.com/books/free-version/) - An excellent resource for users already familiar with SAS or SPSS.
* [_Introduction to Statistical Learning with Application in R_ by Gareth James et al. (2017)](http://faculty.marshall.usc.edu/gareth-james/ISL/) - A simplified and "operational" version of *The Elements of Statistical Learning*. Free softcopy provided by its authors.
* [_The R Inferno_ by Patrick Burns (2011)](http://www.burns-stat.com/pages/Tutor/R_inferno.pdf) - Patrick Burns gives insight into R's ins and outs along with its quirks!
* [_Efficient R Programming_ by Colin Gillespie & Robin Lovelace (2017)](https://csgillespie.github.io/efficientR/) - An online version of the OReilly book: Efficient R Programming.
* [The R Programming Wikibook](https://en.wikibooks.org/wiki/R_Programming) - A collaborative handbook for R.
### Paid
* [The Art of R Programming](http://shop.oreilly.com/product/9781593273842.do) - It's a good resource for systematically learning fundamentals such as types of objects, control statements, variable scope, classes and debugging in R.
* [_R Cookbook_, 2nd ed. by JD Long & Paul Teetor (2019)](http://shop.oreilly.com/product/0636920174851.do) - A quick and simple introduction to conducting many common statistical tasks with R.
* [R in Action](http://www.manning.com/kabacoff2/) - This book aims at all levels of users, with sections for beginning, intermediate and advanced R ranging from "Exploring R data structures" to running regressions and conducting factor analyses.
* [_Use R!_ Series by Springer](http://www.springer.com/series/6991?detailsPage=titles) - This series of inexpensive and focused books from Springer publish shorter books aimed at practitioners. Books can discuss the use of R in a particular subject area, such as Bayesian networks, ggplot2 and Rcpp.
* [Learning R Programming](https://www.packtpub.com/big-data-and-business-intelligence/learning-r-programming) - Learning R as a programming language from basics to advanced topics.
### Book/monograph Lists and Reviews
* [R Books List](https://github.com/RomanTsegelskyi/rbooks) - List of R Books.
* [Readings in Applied Data Science](https://github.com/hadley/stats337) - These readings reflect Hadley's personal thoughts about applied data science.
## Podcasts
* [Not So Standard Deviations](https://soundcloud.com/nssd-podcast) - The Data Science Podcast.
* [@Roger Peng](https://twitter.com/rdpeng) and [@Hilary Parker](https://twitter.com/hspter).
* [R World News](http://www.rworld.news/blog/) - R World News helps you keep up with happenings within the R community.
* [@Bob Rudis](https://twitter.com/hrbrmstr) and [@Jay Jacobs](https://twitter.com/jayjacobs).
* [The R-Podcast](https://r-podcast.org/) - Giving practical advice on how to use R.
* [@Eric Nantz](https://r-podcast.org/stories/contact.html).
* [R Talk](http://rtalk.org) - News and discussions of statistical software and language R.
* [@Oliver Keyes](https://twitter.com/quominus), [@Jasmine Dumas](https://twitter.com/jasdumas), [@Ted Hart](https://twitter.com/emhrt_) and [@Mikhail Popov](https://twitter.com/bearloga).
* [R Weekly](https://rweekly.org) - Weekly news updates about the R community.
## Reference Cards
* [RStudio Cheat Sheets](https://www.rstudio.com/resources/cheatsheets/)
* [R Reference Card 2.0](http://cran.r-project.org/doc/contrib/Baggott-refcard-v2.pdf) - Material from R for Beginners by permission of Emmanuel Paradis (Version 2 by Matt Baggott).
* [Regression Analysis Refcard](http://cran.r-project.org/doc/contrib/Ricci-refcard-regression.pdf) - R Reference Card for Regression Analysis.
* [Reference Card for ESS](http://ess.r-project.org/refcard.pdf) - Reference Card for ESS.
## MOOCs
*Massive open online courses.*
* [Johns Hopkins University Data Science Specialization](https://www.coursera.org/specialization/jhudatascience/1) - 9 courses including: Introduction to R, literate analysis tools, Shiny and some more.
* [HarvardX Biomedical Data Science](http://simplystatistics.org/2014/11/25/harvardx-biomedical-data-science-open-online-training-curriculum-launches-on-january-19/) - Introduction to R for the Life Sciences.
* [Explore Statistics with R](https://www.edx.org/course/explore-statistics-r-kix-kiexplorx-0) - Covers introduction, data handling and statistical analysis in R.
## Lists
*Great resources for learning domain knowledge.*
* [Books](https://github.com/RomanTsegelskyi/rbooks) - List of R Books.
* [ggplot2 Extensions](https://ggplot2-exts.github.io/ggiraph.html) - Showcases of ggplot2 extensions.
* [Natural Language Processing <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f1e8-1f1f3.png" width="20" heigth="20" align="absmiddle" class="emoji" alt=":cn:">](https://github.com/BZRLC/R-notes/blob/master/NLP/readme.md) - NLP related resources in R. @Chinese
* [Network Analysis](https://github.com/briatte/awesome-network-analysis) - Network Analysis related resources.
* [Open Data](https://github.com/ropensci/opendata) - Using R to obtain, parse, manipulate, create, and share open data.
* [Posts](https://github.com/qinwf/awesome-R/blob/master/misc/posts.md) - Great R blog posts or Rticles.
* [Package Development](https://github.com/ropensci/PackageDevelopment) - R packages to improve package development.
* [R Project Conferences](https://www.r-project.org/conferences.html) - Information about useR! Conferences and DSC Conferences.
* [RStartHere](https://github.com/rstudio/RStartHere) - A guide to some of the most useful R packages, organized by workflow.
* [RStudio Addins](https://github.com/daattali/addinslist) - List of RStudio addins.
* [Topic Models](https://github.com/trinker/topicmodels_learning) - Topic Models learning and R related resources.
* [Web Technologies](https://github.com/ropensci/webservices) - Information about how to use R and the world wide web together.
## R Ecosystems
R communities and package collections (in alphabetical order):
* [rOpenGov](http://ropengov.github.io/) Open government data, computational social science, digital humanities
* [rOpenHealth](https://github.com/rOpenHealth) Public health data
* [rOpenSci](https://ropensci.org) Open science
## 2018
* [fable](https://github.com/tidyverts/fable) - univariate and multivariate time series forecasting models ![fable](https://cranlogs.r-pkg.org/badges/fable)
* [r2d3](https://rstudio.github.io/r2d3/) - R Interface to D3 Visualizations ![r2d3](https://cranlogs.r-pkg.org/badges/r2d3)
* [rstats-ed](https://github.com/rstudio-education/rstats-ed) - List of courses teaching R
* [promises](https://cran.r-project.org/web/packages/promises/index.html) - Abstractions for Promise-Based Asynchronous Programming ![promises](https://cranlogs.r-pkg.org/badges/promises)
* [tinytex](https://yihui.name/tinytex/) - A lightweight and easy-to-maintain LaTeX distribution ![tinytex](https://cranlogs.r-pkg.org/badges/tinytex)
* [Readings in Applied Data Science](https://github.com/hadley/stats337) - These readings reflect Hadley's personal thoughts about applied data science.
## 2017
* [prophet](https://github.com/facebookincubator/prophet) - Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.
* [tidyverse](https://github.com/tidyverse/tidyverse) - Easily install and load packages from the tidyverse
* [purrr](https://github.com/tidyverse/purrr) - A functional programming toolkit for R
* [hrbrthemes](https://github.com/hrbrmstr/hrbrthemes) - 🔏 Opinionated, typographic-centric ggplot2 themes and theme components
* [xaringan](https://github.com/yihui/xaringan) - Create HTML5 slides with R Markdown and the JavaScript library
* [blogdown](https://github.com/rstudio/blogdown) - Create Blogs and Websites with R Markdown
* [glue](https://github.com/tidyverse/glue) - Glue strings to data in R. Small, fast, dependency free interpreted string literals.
* [covr](https://github.com/jimhester/covr) - Test coverage reports for R
* [lintr](https://github.com/jimhester/lintr) - Static Code Analysis for R
* [reprex](https://github.com/jennybc/reprex) - Render bits of R code for sharing, e.g., on GitHub or StackOverflow.
* [reticulate](https://github.com/rstudio/reticulate) - R Interface to Python
* [tensorflow](https://github.com/rstudio/tensorflow) - TensorFlow for R
* [utf8](https://github.com/patperry/r-utf8) - Manipulating and printing UTF-8 text that fixes multiple bugs in R's UTF-8 handling.
* [Patchwork](https://github.com/thomasp85/patchwork) - Combine separate ggplots into the same graphic.
# Other Awesome Lists
* [awesome-awesomeness](https://github.com/bayandin/awesome-awesomeness)
* [lists](https://github.com/jnv/lists)
* [awesome-rshiny](https://github.com/grabear/awesome-rshiny)
# Contributing
Your contributions are always welcome!
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License - [CC BY-NC-SA 4.0](http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode)
[R.md Github](https://github.com/qinwf/awesome-R
)