Files
awesome-awesomeness/html/pythondatascience.html
2025-07-18 22:22:32 +02:00

1325 lines
68 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<div data-align="center">
<pre><code>&lt;a href=&quot;https://krzjoa.github.io/awesome-python-data-science/&quot;&gt;&lt;img width=&quot;250&quot; height=&quot;250&quot; src=&quot;img/py-datascience.png&quot; alt=&quot;pyds&quot;&gt;&lt;/a&gt;
&lt;br&gt;
&lt;br&gt;
&lt;br&gt;</code></pre>
</div>
<h1 align="center">
Awesome Python Data Science
</h1>
<div data-align="center">
<p><a href="https://github.com/sindresorhus/awesome">
<img src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg" alt="Awesome" border="0">
</a></p>
</div>
<p></br></p>
<blockquote>
<p>Probably the best curated list of data science software in Python</p>
</blockquote>
<h2 id="contents">Contents</h2>
<ul>
<li><a href="#contents">Contents</a></li>
<li><a href="#machine-learning">Machine Learning</a>
<ul>
<li><a href="#general-purpose-machine-learning">General Purpose Machine
Learning</a></li>
<li><a href="#gradient-boosting">Gradient Boosting</a></li>
<li><a href="#ensemble-methods">Ensemble Methods</a></li>
<li><a href="#imbalanced-datasets">Imbalanced Datasets</a></li>
<li><a href="#random-forests">Random Forests</a></li>
<li><a href="#kernel-methods">Kernel Methods</a></li>
</ul></li>
<li><a href="#deep-learning">Deep Learning</a>
<ul>
<li><a href="#pytorch">PyTorch</a></li>
<li><a href="#tensorflow">TensorFlow</a></li>
<li><a href="#jax">JAX</a></li>
<li><a href="#others">Others</a></li>
</ul></li>
<li><a href="#automated-machine-learning">Automated Machine
Learning</a></li>
<li><a href="#natural-language-processing">Natural Language
Processing</a></li>
<li><a href="#computer-audition">Computer Audition</a></li>
<li><a href="#computer-vision">Computer Vision</a></li>
<li><a href="#time-series">Time Series</a></li>
<li><a href="#reinforcement-learning">Reinforcement Learning</a></li>
<li><a href="#graph-machine-learning">Graph Machine Learning</a></li>
<li><a
href="#learning-to-rank-&amp;-recommender-systems">Learning-to-Rank
&amp; Recommender Systems</a></li>
<li><a href="#probabilistic-graphical-models">Probabilistic Graphical
Models</a></li>
<li><a href="#probabilistic-methods">Probabilistic Methods</a></li>
<li><a href="#model-explanation">Model Explanation</a></li>
<li><a href="#optimization">Optimization</a></li>
<li><a href="#genetic-programming">Genetic Programming</a></li>
<li><a href="#feature-engineering">Feature Engineering</a>
<ul>
<li><a href="#general">General</a></li>
<li><a href="#feature-selection">Feature Selection</a></li>
</ul></li>
<li><a href="#visualization">Visualization</a>
<ul>
<li><a href="#general-purposes">General Purposes</a></li>
<li><a href="#interactive-plots">Interactive plots</a></li>
<li><a href="#map">Map</a></li>
<li><a href="#automatic-plotting">Automatic Plotting</a></li>
<li><a href="#nlp">NLP</a></li>
</ul></li>
<li><a href="#data-manipulation">Data Manipulation</a>
<ul>
<li><a href="#data-frames">Data Frames</a></li>
<li><a href="#pipelines">Pipelines</a></li>
<li><a href="#data-centric-ai">Data-centric AI</a></li>
<li><a href="#synthetic-data">Synthetic Data</a></li>
</ul></li>
<li><a href="#deployment">Deployment</a></li>
<li><a href="#statistics">Statistics</a></li>
<li><a href="#distributed-computing">Distributed Computing</a></li>
<li><a href="#experimentation">Experimentation</a></li>
<li><a href="#data-validation">Data Validation</a></li>
<li><a href="#evaluation">Evaluation</a></li>
<li><a href="#computations">Computations</a></li>
<li><a href="#web-scraping">Web Scraping</a></li>
<li><a href="#spatial-analysis">Spatial Analysis</a></li>
<li><a href="#quantum-computing">Quantum Computing</a></li>
<li><a href="#conversion">Conversion</a></li>
<li><a href="#contributing">Contributing</a></li>
<li><a href="#license">License</a></li>
</ul>
<h2 id="machine-learning">Machine Learning</h2>
<h3 id="general-purpose-machine-learning">General Purpose Machine
Learning</h3>
<ul>
<li><a href="http://scikit-learn.org/stable/">scikit-learn</a> - Machine
learning in Python.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/pycaret/pycaret">PyCaret</a> - An
open-source, low-code machine learning library in Python.
<img height="20" src="img/R_big.png" alt="R inspired lib"></li>
<li><a href="https://github.com/shogun-toolbox/shogun">Shogun</a> -
Machine learning toolbox.</li>
<li><a href="https://github.com/aksnzhy/xlearn">xLearn</a> - High
Performance, Easy-to-use, and Scalable Machine Learning Package.</li>
<li><a href="https://github.com/rapidsai/cuml">cuML</a> - RAPIDS Machine
Learning Library.
<img height="20" src="img/sklearn_big.png" alt="sklearn">
<img height="20" src="img/gpu_big.png" alt="GPU accelerated"></li>
<li><a href="https://github.com/cosmic-cortex/modAL">modAL</a> - Modular
active learning framework for Python3.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a
href="https://github.com/lensacom/sparkit-learn">Sparkit-learn</a> -
PySpark + scikit-learn = Sparkit-learn.
<img height="20" src="img/sklearn_big.png" alt="sklearn">
<img height="20" src="img/spark_big.png" alt="Apache Spark based"></li>
<li><a href="https://github.com/mlpack/mlpack">mlpack</a> - A scalable
C++ machine learning library (Python bindings).</li>
<li><a href="https://github.com/davisking/dlib">dlib</a> - Toolkit for
making real-world machine learning and data analysis applications in C++
(Python bindings).</li>
<li><a href="https://github.com/rasbt/mlxtend">MLxtend</a> - Extension
and helper modules for Pythons data analysis and machine learning
libraries.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/danielhanchen/hyperlearn">hyperlearn</a>
- 50%+ Faster, 50%+ less RAM usage, GPU support re-written Sklearn,
Statsmodels. <img height="20" src="img/sklearn_big.png" alt="sklearn">
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/yandex/rep">Reproducible Experiment
Platform (REP)</a> - Machine Learning toolbox for Humans.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a
href="https://github.com/scikit-multilearn/scikit-multilearn">scikit-multilearn</a>
- Multi-label classification for python.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/larsmans/seqlearn">seqlearn</a> -
Sequence classification toolkit for Python.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/pystruct/pystruct">pystruct</a> - Simple
structured learning framework for Python.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a
href="https://github.com/tmadl/sklearn-expertsys">sklearn-expertsys</a>
- Highly interpretable classifiers for scikit learn.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/christophM/rulefit">RuleFit</a> -
Implementation of the rulefit.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/all-umass/metric-learn">metric-learn</a>
- Metric learning algorithms in Python.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/dswah/pyGAM">pyGAM</a> - Generalized
Additive Models in Python.</li>
<li><a href="https://github.com/uber/causalml">causalml</a> - Uplift
modeling and causal inference with machine learning algorithms.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
</ul>
<h3 id="gradient-boosting">Gradient Boosting</h3>
<ul>
<li><a href="https://github.com/dmlc/xgboost">XGBoost</a> - Scalable,
Portable, and Distributed Gradient Boosting.
<img height="20" src="img/sklearn_big.png" alt="sklearn">
<img height="20" src="img/gpu_big.png" alt="GPU accelerated"></li>
<li><a href="https://github.com/Microsoft/LightGBM">LightGBM</a> - A
fast, distributed, high-performance gradient boosting.
<img height="20" src="img/sklearn_big.png" alt="sklearn">
<img height="20" src="img/gpu_big.png" alt="GPU accelerated"></li>
<li><a href="https://github.com/catboost/catboost">CatBoost</a> - An
open-source gradient boosting on decision trees library.
<img height="20" src="img/sklearn_big.png" alt="sklearn">
<img height="20" src="img/gpu_big.png" alt="GPU accelerated"></li>
<li><a
href="https://github.com/Xtra-Computing/thundergbm">ThunderGBM</a> -
Fast GBDTs and Random Forests on GPUs.
<img height="20" src="img/sklearn_big.png" alt="sklearn">
<img height="20" src="img/gpu_big.png" alt="GPU accelerated"></li>
<li><a href="https://github.com/stanfordmlgroup/ngboost">NGBoost</a> -
Natural Gradient Boosting for Probabilistic Prediction.</li>
<li><a href="https://github.com/tensorflow/decision-forests">TensorFlow
Decision Forests</a> - A collection of state-of-the-art algorithms for
the training, serving and interpretation of Decision Forest models in
Keras. <img height="20" src="img/keras_big.png" alt="keras">
<img height="20" src="img/tf_big2.png" alt="TensorFlow"></li>
</ul>
<h3 id="ensemble-methods">Ensemble Methods</h3>
<ul>
<li><a href="http://ml-ensemble.com/">ML-Ensemble</a> - High performance
ensemble learning.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/ikki407/stacking">Stacking</a> - Simple
and useful stacking library written in Python.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a
href="https://github.com/fukatani/stacked_generalization">stacked_generalization</a>
- Library for machine learning stacking generalization.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/vecxoz/vecstack">vecstack</a> - Python
package for stacking (machine learning technique).
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
</ul>
<h3 id="imbalanced-datasets">Imbalanced Datasets</h3>
<ul>
<li><a
href="https://github.com/scikit-learn-contrib/imbalanced-learn">imbalanced-learn</a>
- Module to perform under-sampling and over-sampling with various
techniques.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a
href="https://github.com/dialnd/imbalanced-algorithms">imbalanced-algorithms</a>
- Python-based implementations of algorithms for learning on imbalanced
data. <img height="20" src="img/sklearn_big.png" alt="sklearn">
<img height="20" src="img/tf_big2.png" alt="sklearn"></li>
</ul>
<h3 id="random-forests">Random Forests</h3>
<ul>
<li><a href="https://github.com/lyst/rpforest">rpforest</a> - A forest
of random projection trees.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a
href="https://github.com/tmadl/sklearn-random-bits-forest">sklearn-random-bits-forest</a>
- Wrapper of the Random Bits Forest program written by (Wang et al.,
2016).<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/fukatani/rgf_python">rgf_python</a> -
Python Wrapper of Regularized Greedy Forest.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
</ul>
<h3 id="kernel-methods">Kernel Methods</h3>
<ul>
<li><a href="https://github.com/coreylynch/pyFM">pyFM</a> -
Factorization machines in python.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/ibayer/fastFM">fastFM</a> - A library
for Factorization Machines.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/geffy/tffm">tffm</a> - TensorFlow
implementation of an arbitrary order Factorization Machine.
<img height="20" src="img/sklearn_big.png" alt="sklearn">
<img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a href="https://github.com/liquidSVM/liquidSVM">liquidSVM</a> - An
implementation of SVMs.</li>
<li><a href="https://github.com/JamesRitchie/scikit-rvm">scikit-rvm</a>
- Relevance Vector Machine implementation using the scikit-learn API.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a
href="https://github.com/Xtra-Computing/thundersvm">ThunderSVM</a> - A
fast SVM Library on GPUs and CPUs.
<img height="20" src="img/sklearn_big.png" alt="sklearn">
<img height="20" src="img/gpu_big.png" alt="GPU accelerated"></li>
</ul>
<h2 id="deep-learning">Deep Learning</h2>
<h3 id="pytorch">PyTorch</h3>
<ul>
<li><a href="https://github.com/pytorch/pytorch">PyTorch</a> - Tensors
and Dynamic neural networks in Python with strong GPU acceleration.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a
href="https://github.com/Lightning-AI/lightning">pytorch-lightning</a> -
PyTorch Lightning is just organized PyTorch.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/pytorch/ignite">ignite</a> - High-level
library to help with training neural networks in PyTorch.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/dnouri/skorch">skorch</a> - A
scikit-learn compatible neural network library that wraps PyTorch.
<img height="20" src="img/sklearn_big.png" alt="sklearn">
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/catalyst-team/catalyst">Catalyst</a> -
High-level utils for PyTorch DL &amp; RL research.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/AstraZeneca/chemicalx">ChemicalX</a> - A
PyTorch-based deep learning library for drug pair scoring.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
</ul>
<h3 id="tensorflow">TensorFlow</h3>
<ul>
<li><a href="https://github.com/tensorflow/tensorflow">TensorFlow</a> -
Computation using data flow graphs for scalable machine learning by
Google. <img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a href="https://github.com/zsdonghao/tensorlayer">TensorLayer</a> -
Deep Learning and Reinforcement Learning Library for Researcher and
Engineer. <img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a href="https://github.com/tflearn/tflearn">TFLearn</a> - Deep
learning library featuring a higher-level API for TensorFlow.
<img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a href="https://github.com/deepmind/sonnet">Sonnet</a> -
TensorFlow-based neural network library.
<img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a href="https://github.com/ppwwyyxx/tensorpack">tensorpack</a> - A
Neural Net Training Interface on TensorFlow.
<img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a href="https://github.com/polyaxon/polyaxon">Polyaxon</a> - A
platform that helps you build, manage and monitor deep learning models.
<img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a href="https://github.com/riga/tfdeploy">tfdeploy</a> - Deploy
TensorFlow graphs for fast evaluation and export to TensorFlow-less
environments running numpy.
<img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a
href="https://github.com/ROCmSoftwarePlatform/tensorflow-upstream">tensorflow-upstream</a>
- TensorFlow ROCm port.
<img height="20" src="img/tf_big2.png" alt="sklearn">
<img height="20" src="img/amd_big.png" alt="Possible to run on AMD GPU"></li>
<li><a href="https://github.com/tensorflow/fold">TensorFlow Fold</a> -
Deep learning with dynamic computation graphs in TensorFlow.
<img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a
href="https://github.com/bsautermeister/tensorlight">TensorLight</a> - A
high-level framework for TensorFlow.
<img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a href="https://github.com/tensorflow/mesh">Mesh TensorFlow</a> -
Model Parallelism Made Easier.
<img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a href="https://github.com/uber/ludwig">Ludwig</a> - A toolbox that
allows one to train and test deep learning models without the need to
write code. <img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a href="https://keras.io">Keras</a> - A high-level neural networks
API running on top of TensorFlow.
<img height="20" src="img/keras_big.png" alt="Keras compatible"></li>
<li><a
href="https://github.com/keras-team/keras-contrib">keras-contrib</a> -
Keras community contributions.
<img height="20" src="img/keras_big.png" alt="Keras compatible"></li>
<li><a href="https://github.com/maxpumperla/hyperas">Hyperas</a> - Keras
+ Hyperopt: A straightforward wrapper for a convenient hyperparameter.
<img height="20" src="img/keras_big.png" alt="Keras compatible"></li>
<li><a href="https://github.com/maxpumperla/elephas">Elephas</a> -
Distributed Deep learning with Keras &amp; Spark.
<img height="20" src="img/keras_big.png" alt="Keras compatible"></li>
<li><a href="https://github.com/google/qkeras">qkeras</a> - A
quantization deep learning library.
<img height="20" src="img/keras_big.png" alt="Keras compatible"></li>
</ul>
<h3 id="jax">JAX</h3>
<ul>
<li><a href="https://github.com/google/jax">JAX</a> - Composable
transformations of Python+NumPy programs: differentiate, vectorize, JIT
to GPU/TPU, and more.</li>
<li><a href="https://github.com/google/flax">FLAX</a> - A neural network
library for JAX that is designed for flexibility.</li>
<li><a href="https://github.com/google-deepmind/optax">Optax</a> - A
gradient processing and optimization library for JAX.</li>
</ul>
<h3 id="others">Others</h3>
<ul>
<li><a
href="https://github.com/huggingface/transformers">transformers</a> -
State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
<img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a href="https://github.com/google/tangent">Tangent</a> -
Source-to-Source Debuggable Derivatives in Pure Python.</li>
<li><a href="https://github.com/HIPS/autograd">autograd</a> -
Efficiently computes derivatives of numpy code.</li>
<li><a href="https://github.com/BVLC/caffe">Caffe</a> - A fast open
framework for deep learning.</li>
<li><a href="https://github.com/sony/nnabla">nnabla</a> - Neural Network
Libraries by Sony.</li>
</ul>
<h2 id="automated-machine-learning">Automated Machine Learning</h2>
<ul>
<li><a href="https://github.com/automl/auto-sklearn">auto-sklearn</a> -
An AutoML toolkit and a drop-in replacement for a scikit-learn
estimator.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/automl/Auto-PyTorch">Auto-PyTorch</a> -
Automatic architecture search and hyperparameter optimization for
PyTorch.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/keras-team/autokeras">AutoKeras</a> -
AutoML library for deep learning.
<img height="20" src="img/keras_big.png" alt="Keras compatible"></li>
<li><a href="https://github.com/awslabs/autogluon">AutoGluon</a> -
AutoML for Image, Text, Tabular, Time-Series, and MultiModal Data.</li>
<li><a href="https://github.com/rhiever/tpot">TPOT</a> - AutoML tool
that optimizes machine learning pipelines using genetic programming.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/AxeldeRomblay/MLBox">MLBox</a> - A
powerful Automated Machine Learning python library.</li>
</ul>
<h2 id="natural-language-processing">Natural Language Processing</h2>
<ul>
<li><a href="https://github.com/pytorch/text">torchtext</a> - Data
loaders and abstractions for text and NLP.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/keras-team/keras-nlp">KerasNLP</a> -
Modular Natural Language Processing workflows with Keras.
<img height="20" src="img/keras_big.png" alt="Keras based/compatible"></li>
<li><a href="https://spacy.io/">spaCy</a> - Industrial-Strength Natural
Language Processing.</li>
<li><a href="https://github.com/nltk/nltk">NLTK</a> - Modules, data
sets, and tutorials supporting research and development in Natural
Language Processing.</li>
<li><a href="https://github.com/cltk/cltk">CLTK</a> - The Classical
Language Toolkik.</li>
<li><a href="https://radimrehurek.com/gensim/">gensim</a> - Topic
Modelling for Humans.</li>
<li><a href="https://github.com/dmirecki/pyMorfologik">pyMorfologik</a>
- Python binding for
<a href="https://github.com/morfologik/morfologik-stemming">Morfologik</a>.</li>
<li><a href="https://github.com/shaypal5/skift">skift</a> - Scikit-learn
wrappers for Python fastText.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/bootphon/phonemizer">Phonemizer</a> -
Simple text-to-phonemes converter for multiple languages.</li>
<li><a href="https://github.com/zalandoresearch/flair">flair</a> - Very
simple framework for state-of-the-art NLP.</li>
</ul>
<h2 id="computer-audition">Computer Audition</h2>
<ul>
<li><a href="https://github.com/pytorch/audio">torchaudio</a> - An audio
library for PyTorch.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/librosa/librosa">librosa</a> - Python
library for audio and music analysis.</li>
<li><a href="https://github.com/Yaafe/Yaafe">Yaafe</a> - Audio features
extraction.</li>
<li><a href="https://github.com/aubio/aubio">aubio</a> - A library for
audio and music analysis.</li>
<li><a href="https://github.com/MTG/essentia">Essentia</a> - Library for
audio and music analysis, description, and synthesis.</li>
<li><a href="https://github.com/jamiebullock/LibXtract">LibXtract</a> -
A simple, portable, lightweight library of audio feature extraction
functions.</li>
<li><a href="https://github.com/marsyas/marsyas">Marsyas</a> - Music
Analysis, Retrieval, and Synthesis for Audio Signals.</li>
<li><a href="https://github.com/bmcfee/muda">muda</a> - A library for
augmenting annotated audio data.</li>
<li><a href="https://github.com/CPJKU/madmom">madmom</a> - Python audio
and music signal processing library.</li>
</ul>
<h2 id="computer-vision">Computer Vision</h2>
<ul>
<li><a href="https://github.com/pytorch/vision">torchvision</a> -
Datasets, Transforms, and Models specific to Computer Vision.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a
href="https://github.com/facebookresearch/pytorch3d">PyTorch3D</a> -
PyTorch3D is FAIRs library of reusable components for deep learning
with 3D data.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/keras-team/keras-cv">KerasCV</a> -
Industry-strength Computer Vision workflows with Keras.
<img height="20" src="img/keras_big.png" alt="MXNet based"></li>
<li><a href="https://github.com/opencv/opencv">OpenCV</a> - Open Source
Computer Vision Library.</li>
<li><a href="https://github.com/dmlc/decord">Decord</a> - An efficient
video loader for deep learning with smart shuffling thats super easy to
digest.</li>
<li><a href="https://github.com/open-mmlab/mmengine">MMEngine</a> -
OpenMMLab Foundational Library for Training Deep Learning Models.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a
href="https://github.com/scikit-image/scikit-image">scikit-image</a> -
Image Processing SciKit (Toolbox for SciPy).</li>
<li><a href="https://github.com/aleju/imgaug">imgaug</a> - Image
augmentation for machine learning experiments.</li>
<li><a
href="https://github.com/cadenai/imgaug_extension">imgaug_extension</a>
- Additional augmentations for imgaug.</li>
<li><a href="https://github.com/mdbloice/Augmentor">Augmentor</a> -
Image augmentation library in Python for machine learning.</li>
<li><a href="https://github.com/albu/albumentations">albumentations</a>
- Fast image augmentation library and easy-to-use wrapper around other
libraries.</li>
<li><a href="https://github.com/salesforce/LAVIS">LAVIS</a> - A One-stop
Library for Language-Vision Intelligence.</li>
</ul>
<h2 id="time-series">Time Series</h2>
<ul>
<li><a href="https://github.com/alan-turing-institute/sktime">sktime</a>
- A unified framework for machine learning with time series.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a
href="https://github.com/JoaquinAmatRodrigo/skforecast">skforecast</a> -
Time series forecasting with machine learning models</li>
<li><a href="https://github.com/unit8co/darts">darts</a> - A python
library for easy manipulation and forecasting of time series.</li>
<li><a href="https://github.com/Nixtla/statsforecast">statsforecast</a>
- Lightning fast forecasting with statistical and econometric
models.</li>
<li><a href="https://github.com/Nixtla/mlforecast">mlforecast</a> -
Scalable machine learning-based time series forecasting.</li>
<li><a
href="https://github.com/Nixtla/neuralforecast">neuralforecast</a> -
Scalable machine learning-based time series forecasting.</li>
<li><a href="https://github.com/rtavenar/tslearn">tslearn</a> - Machine
learning toolkit dedicated to time-series data.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/X-DataInitiative/tick">tick</a> - Module
for statistical learning, with a particular emphasis on time-dependent
modeling. <img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/linkedin/greykite">greykite</a> - A
flexible, intuitive, and fast forecasting library next.</li>
<li><a href="https://github.com/facebook/prophet">Prophet</a> -
Automatic Forecasting Procedure.</li>
<li><a href="https://github.com/RJT1990/pyflux">PyFlux</a> - Open source
time series library for Python.</li>
<li><a href="https://github.com/christophmark/bayesloop">bayesloop</a> -
Probabilistic programming framework that facilitates objective model
selection for time-varying parameter models.</li>
<li><a href="https://github.com/linkedin/luminol">luminol</a> - Anomaly
Detection and Correlation library.</li>
<li><a href="https://dateutil.readthedocs.io/en/stable/">dateutil</a> -
Powerful extensions to the standard datetime module</li>
<li><a href="https://github.com/timofurrer/maya">maya</a> - makes it
very easy to parse a string and for changing timezones</li>
<li><a href="https://github.com/chaos-genius/chaos_genius">Chaos
Genius</a> - ML powered analytics engine for outlier/anomaly detection
and root cause analysis</li>
</ul>
<h2 id="reinforcement-learning">Reinforcement Learning</h2>
<ul>
<li><a
href="https://github.com/Farama-Foundation/Gymnasium">Gymnasium</a> - An
API standard for single-agent reinforcement learning environments, with
popular reference environments and related utilities (formerly <a
href="https://github.com/openai/gym">Gym</a>).</li>
<li><a
href="https://github.com/Farama-Foundation/PettingZoo">PettingZoo</a> -
An API standard for multi-agent reinforcement learning environments,
with popular reference environments and related utilities.</li>
<li><a href="https://github.com/Farama-Foundation/MAgent2">MAgent2</a> -
An engine for high performance multi-agent environments with very large
numbers of agents, along with a set of reference environments.</li>
<li><a href="https://github.com/DLR-RM/stable-baselines3">Stable
Baselines3</a> - A set of improved implementations of reinforcement
learning algorithms based on OpenAI Baselines.</li>
<li><a href="https://github.com/Farama-Foundation/Shimmy">Shimmy</a> -
An API conversion tool for popular external reinforcement learning
environments.</li>
<li><a href="https://github.com/sail-sg/envpool">EnvPool</a> - C++-based
high-performance parallel environment execution engine (vectorized env)
for general RL environments.</li>
<li><a href="https://ray.readthedocs.io/en/latest/rllib.html">RLlib</a>
- Scalable Reinforcement Learning.</li>
<li><a
href="https://github.com/thu-ml/tianshou/#comprehensive-functionality">Tianshou</a>
- An elegant PyTorch deep reinforcement learning library.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/google-deepmind/acme">Acme</a> - A
library of reinforcement learning components and agents.</li>
<li><a
href="https://github.com/catalyst-team/catalyst-rl">Catalyst-RL</a> -
PyTorch framework for RL research.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/takuseno/d3rlpy">d3rlpy</a> - An offline
deep reinforcement learning library.</li>
<li><a href="https://github.com/opendilab/DI-engine">DI-engine</a> -
OpenDILab Decision AI Engine.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/tensorflow/agents">TF-Agents</a> - A
library for Reinforcement Learning in TensorFlow.
<img height="20" src="img/tf_big2.png" alt="TensorFlow"></li>
<li><a href="https://github.com/reinforceio/tensorforce">TensorForce</a>
- A TensorFlow library for applied reinforcement learning.
<img height="20" src="img/tf_big2.png" alt="TensorFlow"></li>
<li><a href="https://github.com/deepmind/trfl">TRFL</a> - TensorFlow
Reinforcement Learning.
<img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a href="https://github.com/google/dopamine">Dopamine</a> - A
research framework for fast prototyping of reinforcement learning
algorithms.</li>
<li><a href="https://github.com/keras-rl/keras-rl">keras-rl</a> - Deep
Reinforcement Learning for Keras.
<img height="20" src="img/keras_big.png" alt="Keras compatible"></li>
<li><a href="https://github.com/rlworkgroup/garage">garage</a> - A
toolkit for reproducible reinforcement learning research.</li>
<li><a href="https://github.com/facebookresearch/Horizon">Horizon</a> -
A platform for Applied Reinforcement Learning.</li>
<li><a href="https://github.com/astooke/rlpyt">rlpyt</a> - Reinforcement
Learning in PyTorch.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/vwxyzjn/cleanrl">cleanrl</a> -
High-quality single file implementation of Deep Reinforcement Learning
algorithms with research-friendly features (PPO, DQN, C51, DDPG, TD3,
SAC, PPG).</li>
<li><a href="https://github.com/iffiX/machin">Machin</a> - A
reinforcement library designed for pytorch.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/Toni-SM/skrl">SKRL</a> - Modular
reinforcement learning library (on PyTorch and JAX) with support for
NVIDIA Isaac Gym, Isaac Orbit and Omniverse Isaac Gym.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a
href="https://github.com/HumanCompatibleAI/imitation">Imitation</a> -
Clean PyTorch implementations of imitation and reward learning
algorithms.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
</ul>
<h2 id="graph-machine-learning">Graph Machine Learning</h2>
<ul>
<li><a
href="https://github.com/rusty1s/pytorch_geometric">pytorch_geometric</a>
- Geometric Deep Learning Extension Library for PyTorch.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a
href="https://github.com/benedekrozemberczki/pytorch_geometric_temporal">pytorch_geometric_temporal</a>
- Temporal Extension Library for PyTorch Geometric.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a
href="https://github.com/SherylHYX/pytorch_geometric_signed_directed">PyTorch
Geometric Signed Directed</a> - A signed/directed graph neural network
extension library for PyTorch Geometric.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/dmlc/dgl">dgl</a> - Python package built
to ease deep learning on graph, on top of existing DL frameworks.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
<img height="20" src="img/tf_big2.png" alt="TensorFlow">
<img height="20" src="img/mxnet_big.png" alt="MXNet based"></li>
<li><a href="https://github.com/danielegrattarola/spektral">Spektral</a>
- Deep learning on graphs.
<img height="20" src="img/keras_big.png" alt="Keras compatible"></li>
<li><a
href="https://github.com/stellargraph/stellargraph">StellarGraph</a> -
Machine Learning on Graphs.
<img height="20" src="img/tf_big2.png" alt="TensorFlow">
<img height="20" src="img/keras_big.png" alt="Keras compatible"></li>
<li><a href="https://github.com/google-deepmind/graph_nets">Graph
Nets</a> - Build Graph Nets in Tensorflow.
<img height="20" src="img/tf_big2.png" alt="TensorFlow"></li>
<li><a href="https://github.com/tensorflow/gnn">TensorFlow GNN</a> - A
library to build Graph Neural Networks on the TensorFlow platform.
<img height="20" src="img/tf_big2.png" alt="TensorFlow"></li>
<li><a href="https://github.com/THUMNLab/AutoGL">Auto Graph Learning</a>
-An autoML framework &amp; toolkit for machine learning on graphs.</li>
<li><a
href="https://github.com/facebookresearch/PyTorch-BigGraph">PyTorch-BigGraph</a>
- Generate embeddings from large-scale graph-structured data.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/THUMNLab/AutoGL">Auto Graph Learning</a>
- An autoML framework &amp; toolkit for machine learning on graphs.</li>
<li><a href="https://github.com/benedekrozemberczki/karateclub">Karate
Club</a> - An unsupervised machine learning library for graph-structured
data.</li>
<li><a
href="https://github.com/benedekrozemberczki/littleballoffur">Little
Ball of Fur</a> - A library for sampling graph structured data.</li>
<li><a href="https://github.com/EdisonLeeeee/GreatX">GreatX</a> - A
graph reliability toolbox based on PyTorch and PyTorch Geometric (PyG).
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/google-deepmind/jraph">Jraph</a> - A
Graph Neural Network Library in Jax.</li>
</ul>
<h2 id="learning-to-rank-recommender-systems">Learning-to-Rank &amp;
Recommender Systems</h2>
<ul>
<li><a href="https://github.com/lyst/lightfm">LightFM</a> - A Python
implementation of LightFM, a hybrid recommendation algorithm.</li>
<li><a href="https://maciejkula.github.io/spotlight/">Spotlight</a> -
Deep recommender models using PyTorch.</li>
<li><a href="https://github.com/NicolasHug/Surprise">Surprise</a> - A
Python scikit for building and analyzing recommender systems.</li>
<li><a href="https://github.com/RUCAIBox/RecBole">RecBole</a> - A
unified, comprehensive and efficient recommendation library.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/allegro/allRank">allRank</a> - allRank
is a framework for training learning-to-rank neural models based on
PyTorch.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/tensorflow/recommenders">TensorFlow
Recommenders</a> - A library for building recommender system models
using TensorFlow.
<img height="20" src="img/tf_big2.png" alt="TensorFlow">
<img height="20" src="img/keras_big.png" alt="Keras compatible"></li>
<li><a href="https://github.com/tensorflow/ranking">TensorFlow
Ranking</a> - Learning to Rank in TensorFlow.
<img height="20" src="img/tf_big2.png" alt="TensorFlow"></li>
</ul>
<h2 id="probabilistic-graphical-models">Probabilistic Graphical
Models</h2>
<ul>
<li><a href="https://github.com/jmschrei/pomegranate">pomegranate</a> -
Probabilistic and graphical models for Python.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/pgmpy/pgmpy">pgmpy</a> - A python
library for working with Probabilistic Graphical Models.</li>
<li><a href="https://agrum.gitlab.io/">pyAgrum</a> - A GRaphical
Universal Modeler.</li>
</ul>
<h2 id="probabilistic-methods">Probabilistic Methods</h2>
<ul>
<li><a href="https://github.com/uber/pyro">pyro</a> - A flexible,
scalable deep probabilistic programming library built on PyTorch.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/pymc-devs/pymc">PyMC</a> - Bayesian
Stochastic Modelling in Python.</li>
<li><a href="http://zhusuan.readthedocs.io/en/latest/">ZhuSuan</a> -
Bayesian Deep Learning.
<img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a
href="http://gpflow.readthedocs.io/en/latest/?badge=latest">GPflow</a> -
Gaussian processes in TensorFlow.
<img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a href="https://github.com/PGM-Lab/InferPy">InferPy</a> - Deep
Probabilistic Modelling Made Easy.
<img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a href="https://github.com/stan-dev/pystan">PyStan</a> - Bayesian
inference using the No-U-Turn sampler (Python interface).</li>
<li><a
href="https://github.com/AmazaspShumik/sklearn-bayes">sklearn-bayes</a>
- Python package for Bayesian Machine Learning with scikit-learn API.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/alan-turing-institute/skpro">skpro</a> -
Supervised domain-agnostic prediction framework for probabilistic
modelling by <a href="https://www.turing.ac.uk/">The Alan Turing
Institute</a>.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/ctallec/pyvarinf">PyVarInf</a> -
Bayesian Deep Learning methods with Variational Inference for PyTorch.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a href="https://github.com/dfm/emcee">emcee</a> - The Python
ensemble sampling toolkit for affine-invariant MCMC.</li>
<li><a href="https://github.com/jvkersch/hsmmlearn">hsmmlearn</a> - A
library for hidden semi-Markov models with explicit durations.</li>
<li><a href="https://github.com/mattjj/pyhsmm">pyhsmm</a> - Bayesian
inference in HSMMs and HMMs.</li>
<li><a href="https://github.com/cornellius-gp/gpytorch">GPyTorch</a> - A
highly efficient and modular implementation of Gaussian Processes in
PyTorch.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"></li>
<li><a
href="https://github.com/TeamHG-Memex/sklearn-crfsuite">sklearn-crfsuite</a>
- A scikit-learn-inspired API for CRFsuite.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
</ul>
<h2 id="model-explanation">Model Explanation</h2>
<ul>
<li><a href="https://github.com/ModelOriented/DALEX">dalex</a> - moDel
Agnostic Language for Exploration and explanation.
<img height="20" src="img/sklearn_big.png" alt="sklearn"><img height="20" src="img/R_big.png" alt="R inspired/ported lib"></li>
<li><a href="https://github.com/benedekrozemberczki/shapley">Shapley</a>
- A data-driven framework to quantify the value of classifiers in a
machine learning ensemble.</li>
<li><a href="https://github.com/SeldonIO/alibi">Alibi</a> - Algorithms
for monitoring and explaining machine learning models.</li>
<li><a href="https://github.com/marcotcr/anchor">anchor</a> - Code for
“High-Precision Model-Agnostic Explanations” paper.</li>
<li><a href="https://github.com/dssg/aequitas">aequitas</a> - Bias and
Fairness Audit Toolkit.</li>
<li><a
href="https://github.com/MarcelRobeer/ContrastiveExplanation">Contrastive
Explanation</a> - Contrastive Explanation (Foil Trees).
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a
href="https://github.com/DistrictDataLabs/yellowbrick">yellowbrick</a> -
Visual analysis and diagnostic tools to facilitate machine learning
model selection.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/reiinakano/scikit-plot">scikit-plot</a>
- An intuitive library to add plotting functionality to scikit-learn
objects. <img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/slundberg/shap">shap</a> - A unified
approach to explain the output of any machine learning model.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/TeamHG-Memex/eli5">ELI5</a> - A library
for debugging/inspecting machine learning classifiers and explaining
their predictions.</li>
<li><a href="https://github.com/marcotcr/lime">Lime</a> - Explaining the
predictions of any machine learning classifier.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/adebayoj/fairml">FairML</a> - FairML is
a python toolbox auditing the machine learning models for bias.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/Jianbo-Lab/L2X">L2X</a> - Code for
replicating the experiments in the paper <em>Learning to Explain: An
Information-Theoretic Perspective on Model Interpretation</em>.</li>
<li><a href="https://github.com/SauceCat/PDPbox">PDPbox</a> - Partial
dependence plot toolbox.</li>
<li><a href="https://github.com/AustinRochford/PyCEbox">PyCEbox</a> -
Python Individual Conditional Expectation Plot Toolbox.</li>
<li><a href="https://github.com/datascienceinc/Skater">Skater</a> -
Python Library for Model Interpretation.</li>
<li><a
href="https://github.com/tensorflow/model-analysis">model-analysis</a> -
Model analysis tools for TensorFlow.
<img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a href="https://github.com/cosmicBboy/themis-ml">themis-ml</a> - A
library that implements fairness-aware machine learning algorithms.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a
href="https://github.com/andosa/treeinterpreter">treeinterpreter</a> -
Interpreting scikit-learns decision tree and random forest predictions.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/IBM/AIX360">AI Explainability 360</a> -
Interpretability and explainability of data and machine learning
models.</li>
<li><a
href="https://github.com/keunwoochoi/Auralisation">Auralisation</a> -
Auralisation of learned features in CNN (for audio).</li>
<li><a
href="https://github.com/bourdakos1/CapsNet-Visualization">CapsNet-Visualization</a>
- A visualization of the CapsNet layers to better understand how it
works.</li>
<li><a href="https://github.com/tensorflow/lucid">lucid</a> - A
collection of infrastructure and tools for research in neural network
interpretability.</li>
<li><a href="https://github.com/lutzroeder/Netron">Netron</a> -
Visualizer for deep learning and machine learning models (no Python
code, but visualizes models from most Python Deep Learning
frameworks).</li>
<li><a href="https://github.com/dlguys/flashlight">FlashLight</a> -
Visualization Tool for your NeuralNetwork.</li>
<li><a
href="https://github.com/lanpa/tensorboard-pytorch">tensorboard-pytorch</a>
- Tensorboard for PyTorch (and chainer, mxnet, numpy, …).</li>
</ul>
<h2 id="genetic-programming">Genetic Programming</h2>
<ul>
<li><a href="https://github.com/trevorstephens/gplearn">gplearn</a> -
Genetic Programming in Python.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a
href="https://github.com/ahmedfgad/GeneticAlgorithmPython">PyGAD</a> -
Genetic Algorithm in Python.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
<img height="20" src="img/keras_big.png" alt="keras"></li>
<li><a href="https://github.com/DEAP/deap">DEAP</a> - Distributed
Evolutionary Algorithms in Python.</li>
<li><a href="https://github.com/kstaats/karoo_gp">karoo_gp</a> - A
Genetic Programming platform for Python with GPU support.
<img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a href="https://github.com/hchasestevens/monkeys">monkeys</a> - A
strongly-typed genetic programming framework for Python.</li>
<li><a
href="https://github.com/manuel-calzolari/sklearn-genetic">sklearn-genetic</a>
- Genetic feature selection module for scikit-learn.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
</ul>
<p><a name="opt"></a> ## Optimization * <a
href="https://github.com/optuna/optuna">Optuna</a> - A hyperparameter
optimization framework. * <a
href="https://github.com/anyoptimization/pymoo">pymoo</a> -
Multi-objective Optimization in Python. * <a
href="https://github.com/CMA-ES/pycma?tab=readme-ov-file">pycma</a> -
Python implementation of CMA-ES. * <a
href="https://github.com/HIPS/Spearmint">Spearmint</a> - Bayesian
optimization. * <a href="https://github.com/pytorch/botorch">BoTorch</a>
- Bayesian optimization in PyTorch.
<img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
* <a href="https://github.com/guofei9987/scikit-opt">scikit-opt</a> -
Heuristic Algorithms for optimization. * <a
href="https://github.com/rodrigo-arenas/Sklearn-genetic-opt">sklearn-genetic-opt</a>
- Hyperparameters tuning and feature selection using evolutionary
algorithms. <img height="20" src="img/sklearn_big.png" alt="sklearn"> *
<a href="https://github.com/automl/SMAC3">SMAC3</a> - Sequential
Model-based Algorithm Configuration. * <a
href="https://github.com/claesenm/optunity">Optunity</a> - Is a library
containing various optimizers for hyperparameter tuning. * <a
href="https://github.com/hyperopt/hyperopt">hyperopt</a> - Distributed
Asynchronous Hyperparameter Optimization in Python. * <a
href="https://github.com/hyperopt/hyperopt-sklearn">hyperopt-sklearn</a>
- Hyper-parameter optimization for sklearn.
<img height="20" src="img/sklearn_big.png" alt="sklearn"> * <a
href="https://github.com/rsteca/sklearn-deap">sklearn-deap</a> - Use
evolutionary algorithms instead of gridsearch in scikit-learn.
<img height="20" src="img/sklearn_big.png" alt="sklearn"> * <a
href="https://github.com/sigopt/sigopt_sklearn">sigopt_sklearn</a> -
SigOpt wrappers for scikit-learn methods.
<img height="20" src="img/sklearn_big.png" alt="sklearn"> * <a
href="https://github.com/fmfn/BayesianOptimization">Bayesian
Optimization</a> - A Python implementation of global optimization with
gaussian processes. * <a
href="https://github.com/befelix/SafeOpt">SafeOpt</a> - Safe Bayesian
Optimization. * <a
href="https://github.com/scikit-optimize/scikit-optimize">scikit-optimize</a>
- Sequential model-based optimization with a <code>scipy.optimize</code>
interface. * <a href="https://github.com/100/Solid">Solid</a> - A
comprehensive gradient-free optimization framework written in Python. *
<a href="https://github.com/ljvmiranda921/pyswarms">PySwarms</a> - A
research toolkit for particle swarm optimization in Python. * <a
href="https://github.com/Project-Platypus/Platypus">Platypus</a> - A
Free and Open Source Python Library for Multiobjective Optimization. *
<a href="https://github.com/GPflow/GPflowOpt">GPflowOpt</a> - Bayesian
Optimization using GPflow.
<img height="20" src="img/tf_big2.png" alt="sklearn"> * <a
href="https://github.com/rflamary/POT">POT</a> - Python Optimal
Transport library. * <a
href="https://github.com/autonomio/talos">Talos</a> - Hyperparameter
Optimization for Keras Models. * <a
href="https://github.com/stevengj/nlopt">nlopt</a> - Library for
nonlinear optimization (global and local, constrained or unconstrained).
* <a href="https://developers.google.com/optimization">OR-Tools</a> - An
open-source software suite for optimization by Google; provides a
unified programming interface to a half dozen solvers: SCIP, GLPK, GLOP,
CP-SAT, CPLEX, and Gurobi.</p>
<h2 id="feature-engineering">Feature Engineering</h2>
<h3 id="general">General</h3>
<ul>
<li><a
href="https://github.com/Featuretools/featuretools">Featuretools</a> -
Automated feature engineering.</li>
<li><a href="https://github.com/feature-engine/feature_engine">Feature
Engine</a> - Feature engineering package with sklearn-like
functionality.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/IIIS-Li-Group/OpenFE">OpenFE</a> -
Automated feature generation with expert-level performance.</li>
<li><a
href="https://github.com/dougalsutherland/skl-groups">skl-groups</a> - A
scikit-learn addon to operate on set/“group”-based features.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/machinalis/featureforge">Feature
Forge</a> - A set of tools for creating and testing machine learning
features. <img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/lacava/few">few</a> - A feature
engineering wrapper for sklearn.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/EpistasisLab/scikit-mdr">scikit-mdr</a>
- A sklearn-compatible Python implementation of Multifactor
Dimensionality Reduction (MDR) for feature construction.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/blue-yonder/tsfresh">tsfresh</a> -
Automatic extraction of relevant features from time series.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/dirty-cat/dirty_cat">dirty_cat</a> -
Machine learning on dirty tabular data (especially: string-based
variables for classifcation and regression).
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/NITRO-AI/NitroFE">NitroFE</a> - Moving
window features.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a
href="https://github.com/chrislemke/sk-transformers">sk-transformer</a>
- A collection of various pandas &amp; scikit-learn compatible
transformers for all kinds of preprocessing and feature engineering
steps
<img height="20" src="img/pandas_big.png" alt="pandas compatible"></li>
</ul>
<h3 id="feature-selection">Feature Selection</h3>
<ul>
<li><a
href="https://github.com/jundongl/scikit-feature">scikit-feature</a> -
Feature selection repository in Python.</li>
<li><a
href="https://github.com/scikit-learn-contrib/boruta_py">boruta_py</a> -
Implementations of the Boruta all-relevant feature selection method.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/chasedehan/BoostARoota">BoostARoota</a>
- A fast xgboost feature selection algorithm.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a
href="https://github.com/EpistasisLab/scikit-rebate">scikit-rebate</a> -
A scikit-learn-compatible Python implementation of ReBATE, a suite of
Relief-based feature selection algorithms for Machine Learning.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/jaswinder9051998/zoofs">zoofs</a> - A
feature selection library based on evolutionary algorithms.</li>
</ul>
<h2 id="visualization">Visualization</h2>
<h3 id="general-purposes">General Purposes</h3>
<ul>
<li><a href="https://github.com/matplotlib/matplotlib">Matplotlib</a> -
Plotting with Python.</li>
<li><a href="https://github.com/mwaskom/seaborn">seaborn</a> -
Statistical data visualization using matplotlib.</li>
<li><a href="https://github.com/olgabot/prettyplotlib">prettyplotlib</a>
- Painlessly create beautiful matplotlib plots.</li>
<li><a
href="https://github.com/marcharper/python-ternary">python-ternary</a> -
Ternary plotting library for Python with matplotlib.</li>
<li><a href="https://github.com/ResidentMario/missingno">missingno</a> -
Missing data visualization module for Python.</li>
<li><a href="https://github.com/spotify/chartify/">chartify</a> - Python
library that makes it easy for data scientists to create charts.</li>
<li><a href="https://github.com/janpipek/physt">physt</a> - Improved
histograms. ### Interactive plots</li>
<li><a href="https://github.com/t-makaro/animatplot">animatplot</a> - A
python package for animating plots built on matplotlib.</li>
<li><a href="https://plot.ly/python/">plotly</a> - A Python library that
makes interactive and publication-quality graphs.</li>
<li><a href="https://github.com/bokeh/bokeh">Bokeh</a> - Interactive Web
Plotting for Python.</li>
<li><a href="https://altair-viz.github.io/">Altair</a> - Declarative
statistical visualization library for Python. Can easily do many data
transformation within the code to create graph</li>
<li><a href="https://github.com/bqplot/bqplot">bqplot</a> - Plotting
library for IPython/Jupyter notebooks</li>
<li><a href="https://github.com/pyecharts/pyecharts">pyecharts</a> -
Migrated from <a href="https://github.com/apache/echarts">Echarts</a>, a
charting and visualization library, to Pythons interactive visual
drawing
library.<img height="20" src="img/pyecharts.png" alt="pyecharts">
<img height="20" src="img/echarts.png" alt="echarts"> ### Map</li>
<li><a
href="https://python-visualization.github.io/folium/quickstart.html#Getting-Started">folium</a>
- Makes it easy to visualize data on an interactive open street map</li>
<li><a href="https://github.com/giswqs/geemap">geemap</a> - Python
package for interactive mapping with Google Earth Engine (GEE) ###
Automatic Plotting</li>
<li><a href="https://github.com/ioam/holoviews">HoloViews</a> - Stop
plotting your data - annotate your data and let it visualize
itself.</li>
<li><a href="https://github.com/AutoViML/AutoViz">AutoViz</a>: Visualize
data automatically with 1 line of code (ideal for machine learning)</li>
<li><a href="https://github.com/fbdesignpro/sweetviz">SweetViz</a>:
Visualize and compare datasets, target values and associations, with one
line of code.</li>
</ul>
<h3 id="nlp">NLP</h3>
<ul>
<li><a href="https://github.com/bmabey/pyLDAvis">pyLDAvis</a>: Visualize
interactive topic model</li>
</ul>
<h2 id="deployment">Deployment</h2>
<ul>
<li><a href="https://fastapi.tiangolo.com/">fastapi</a> - Modern, fast
(high-performance), a web framework for building APIs with Python</li>
<li><a href="https://www.streamlit.io/">streamlit</a> - Make it easy to
deploy the machine learning model</li>
<li><a
href="https://github.com/streamsync-cloud/streamsync">streamsync</a> -
No-code in the front, Python in the back. An open-source framework for
creating data apps.</li>
<li><a href="https://github.com/gradio-app/gradio">gradio</a> - Create
UIs for your machine learning model in Python in 3 minutes.</li>
<li><a href="https://github.com/mckinsey/vizro">Vizro</a> - A toolkit
for creating modular data visualization applications.</li>
<li><a href="https://datapane.com/">datapane</a> - A collection of APIs
to turn scripts and notebooks into interactive reports.</li>
<li><a href="https://mybinder.org/">binder</a> - Enable sharing and
execute Jupyter Notebooks</li>
</ul>
<h2 id="statistics">Statistics</h2>
<ul>
<li><a
href="https://github.com/mouradmourafiq/pandas-summary">pandas_summary</a>
- Extension to pandas dataframes describe function.
<img height="20" src="img/pandas_big.png" alt="pandas compatible"></li>
<li><a
href="https://github.com/pandas-profiling/pandas-profiling">Pandas
Profiling</a> - Create HTML profiling reports from pandas DataFrame
objects.
<img height="20" src="img/pandas_big.png" alt="pandas compatible"></li>
<li><a href="https://github.com/statsmodels/statsmodels">statsmodels</a>
- Statistical modeling and econometrics in Python.</li>
<li><a href="https://github.com/jealous/stockstats">stockstats</a> -
Supply a wrapper <code>StockDataFrame</code> based on the
<code>pandas.DataFrame</code> with inline stock statistics/indicators
support.</li>
<li><a href="https://github.com/jsvine/weightedcalcs">weightedcalcs</a>
- A pandas-based utility to calculate weighted means, medians,
distributions, standard deviations, and more.</li>
<li><a
href="https://github.com/maximtrp/scikit-posthocs">scikit-posthocs</a> -
Pairwise Multiple Comparisons Post-hoc Tests.</li>
<li><a href="https://github.com/quantopian/alphalens">Alphalens</a> -
Performance analysis of predictive (alpha) stock factors.</li>
</ul>
<h2 id="data-manipulation">Data Manipulation</h2>
<h3 id="data-frames">Data Frames</h3>
<ul>
<li><a href="https://pandas.pydata.org/pandas-docs/stable/">pandas</a> -
Powerful Python data analysis toolkit.</li>
<li><a href="https://github.com/pola-rs/polars">polars</a> - A fast
multi-threaded, hybrid-out-of-core DataFrame library.</li>
<li><a href="https://github.com/manahl/arctic">Arctic</a> -
High-performance datastore for time series and tick data.</li>
<li><a href="https://github.com/h2oai/datatable">datatable</a> -
Data.table for Python.
<img height="20" src="img/R_big.png" alt="R inspired/ported lib"></li>
<li><a
href="https://github.com/pandas-profiling/pandas-profiling">pandas_profiling</a>
- Create HTML profiling reports from pandas DataFrame objects</li>
<li><a href="https://github.com/rapidsai/cudf">cuDF</a> - GPU DataFrame
Library.
<img height="20" src="img/pandas_big.png" alt="pandas compatible">
<img height="20" src="img/gpu_big.png" alt="GPU accelerated"></li>
<li><a href="https://github.com/blaze/blaze">blaze</a> - NumPy and
pandas interface to Big Data.
<img height="20" src="img/pandas_big.png" alt="pandas compatible"></li>
<li><a href="https://github.com/yhat/pandasql">pandasql</a> - Allows you
to query pandas DataFrames using SQL syntax.
<img height="20" src="img/pandas_big.png" alt="pandas compatible"></li>
<li><a href="https://github.com/pydata/pandas-gbq">pandas-gbq</a> -
pandas Google Big Query.
<img height="20" src="img/pandas_big.png" alt="pandas compatible"></li>
<li><a
href="https://github.com/alan-turing-institute/xpandas">xpandas</a> -
Universal 1d/2d data containers with Transformers .functionality for
data analysis by <a href="https://www.turing.ac.uk/">The Alan Turing
Institute</a>.</li>
<li><a href="https://github.com/svenkreiss/pysparkling">pysparkling</a>
- A pure Python implementation of Apache Sparks RDD and DStream
interfaces.
<img height="20" src="img/spark_big.png" alt="Apache Spark based"></li>
<li><a href="https://github.com/modin-project/modin">modin</a> - Speed
up your pandas workflows by changing a single line of code.
<img height="20" src="img/pandas_big.png" alt="pandas compatible"></li>
<li><a href="https://github.com/jmcarpenter2/swifter">swifter</a> - A
package that efficiently applies any function to a pandas dataframe or
series in the fastest available manner.</li>
<li><a href="https://github.com/eyaltrabelsi/pandas-log">pandas-log</a>
- A package that allows providing feedback about basic pandas operations
and finds both business logic and performance issues.</li>
<li><a href="https://github.com/vaexio/vaex">vaex</a> - Out-of-Core
DataFrames for Python, ML, visualize and explore big tabular data at a
billion rows per second.</li>
<li><a href="https://github.com/pydata/xarray">xarray</a> - Xarray
combines the best features of NumPy and pandas for multidimensional data
selection by supplementing numerical axis labels with named dimensions
for more intuitive, concise, and less error-prone indexing
routines.</li>
</ul>
<h3 id="pipelines">Pipelines</h3>
<ul>
<li><a href="https://github.com/shaypal5/pdpipe">pdpipe</a> - Sasy
pipelines for pandas DataFrames.</li>
<li><a href="https://sspipe.github.io/">SSPipe</a> - Python pipe (|)
operator with support for DataFrames and Numpy, and Pytorch.</li>
<li><a href="https://github.com/coursera/pandas-ply">pandas-ply</a> -
Functional data manipulation for pandas.
<img height="20" src="img/pandas_big.png" alt="pandas compatible"></li>
<li><a href="https://github.com/dodger487/dplython">Dplython</a> - Dplyr
for Python.
<img height="20" src="img/R_big.png" alt="R inspired/ported lib"></li>
<li><a
href="https://github.com/scikit-learn-contrib/sklearn-pandas">sklearn-pandas</a>
- pandas integration with sklearn.
<img height="20" src="img/sklearn_big.png" alt="sklearn">
<img height="20" src="img/pandas_big.png" alt="pandas compatible"></li>
<li><a href="https://github.com/analysiscenter/dataset">Dataset</a> -
Helps you conveniently work with random or sequential batches of your
data and define data processing.</li>
<li><a href="https://github.com/ericmjl/pyjanitor">pyjanitor</a> - Clean
APIs for data cleaning.
<img height="20" src="img/pandas_big.png" alt="pandas compatible"></li>
<li><a href="https://github.com/reubano/meza">meza</a> - A Python
toolkit for processing tabular data.</li>
<li><a href="https://github.com/prodmodel/prodmodel">Prodmodel</a> -
Build system for data science pipelines.</li>
<li><a href="https://github.com/dovpanda-dev/dovpanda">dopanda</a> -
Hints and tips for using pandas in an analysis environment.
<img height="20" src="img/pandas_big.png" alt="pandas compatible"></li>
<li><a href="https://github.com/DAGWorks-Inc/hamilton">Hamilton</a> - A
microframework for dataframe generation that applies Directed Acyclic
Graphs specified by a flow of lazily evaluated Python functions.</li>
</ul>
<h3 id="data-centric-ai">Data-centric AI</h3>
<ul>
<li><a href="https://github.com/cleanlab/cleanlab">cleanlab</a> - The
standard data-centric AI package for data quality and machine learning
with messy, real-world data and labels.</li>
<li><a href="https://github.com/snorkel-team/snorkel">snorkel</a> - A
system for quickly generating training data with weak supervision.</li>
<li><a href="https://github.com/sfu-db/dataprep">dataprep</a> - Collect,
clean, and visualize your data in Python with a few lines of code.</li>
</ul>
<h3 id="synthetic-data">Synthetic Data</h3>
<ul>
<li><a
href="https://github.com/ydataai/ydata-synthetic">ydata-synthetic</a> -
A package to generate synthetic tabular and time-series data leveraging
the state-of-the-art generative models.
<img height="20" src="img/pandas_big.png" alt="pandas compatible"></li>
</ul>
<h2 id="distributed-computing">Distributed Computing</h2>
<ul>
<li><a href="https://github.com/uber/horovod">Horovod</a> - Distributed
training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.
<img height="20" src="img/tf_big2.png" alt="sklearn"></li>
<li><a
href="https://spark.apache.org/docs/0.9.0/python-programming-guide.html">PySpark</a>
- Exposes the Spark programming model to Python.
<img height="20" src="img/spark_big.png" alt="Apache Spark based"></li>
<li><a href="https://github.com/Samsung/veles">Veles</a> - Distributed
machine learning platform.</li>
<li><a href="https://github.com/jubatus/jubatus">Jubatus</a> - Framework
and Library for Distributed Online Machine Learning.</li>
<li><a href="https://github.com/Microsoft/DMTK">DMTK</a> - Microsoft
Distributed Machine Learning Toolkit.</li>
<li><a href="https://github.com/PaddlePaddle/Paddle">PaddlePaddle</a> -
PArallel Distributed Deep LEarning.</li>
<li><a href="https://github.com/dask/dask-ml">dask-ml</a> - Distributed
and parallel machine learning.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/dask/distributed">Distributed</a> -
Distributed computation in Python.</li>
</ul>
<h2 id="experimentation">Experimentation</h2>
<ul>
<li><a href="https://github.com/mlflow/mlflow">mlflow</a> - Open source
platform for the machine learning lifecycle.</li>
<li><a href="https://neptune.ai">Neptune</a> - A lightweight ML
experiment tracking, results visualization, and management tool.</li>
<li><a href="https://github.com/iterative/dvc">dvc</a> - Data Version
Control | Git for Data &amp; Models | ML Experiments Management.</li>
<li><a href="https://github.com/tensorchord/envd">envd</a> - 🏕️ machine
learning development environment for data science and AI/ML engineering
teams.</li>
<li><a href="https://github.com/IDSIA/sacred">Sacred</a> - A tool to
help you configure, organize, log, and reproduce experiments.</li>
<li><a href="https://github.com/facebook/Ax">Ax</a> - Adaptive
Experimentation Platform.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
</ul>
<h2 id="data-validation">Data Validation</h2>
<ul>
<li><a
href="https://github.com/great-expectations/great_expectations">great_expectations</a>
- Always know what to expect from your data.</li>
<li><a href="https://github.com/unionai-oss/pandera">pandera</a> - A
lightweight, flexible, and expressive statistical data testing
library.</li>
<li><a href="https://github.com/deepchecks/deepchecks">deepchecks</a> -
Validation &amp; testing of ML models and data during model development,
deployment, and production.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/evidentlyai/evidently">evidently</a> -
Evaluate and monitor ML models from validation to production.</li>
<li><a href="https://github.com/tensorflow/data-validation">TensorFlow
Data Validation</a> - Library for exploring and validating machine
learning data.</li>
<li><a href="https://github.com/capitalone/datacompy">DataComPy</a>- A
library to compare Pandas, Polars, and Spark data frames. It provides
stats and lets users adjust for match accuracy.</li>
</ul>
<h2 id="evaluation">Evaluation</h2>
<ul>
<li><a
href="https://github.com/statisticianinstilettos/recmetrics">recmetrics</a>
- Library of useful metrics and plots for evaluating recommender
systems.</li>
<li><a href="https://github.com/benhamner/Metrics">Metrics</a> - Machine
learning evaluation metric.</li>
<li><a
href="https://github.com/edublancas/sklearn-evaluation">sklearn-evaluation</a>
- Model evaluation made easy: plots, tables, and markdown reports.
<img height="20" src="img/sklearn_big.png" alt="sklearn"></li>
<li><a href="https://github.com/IBM/AIF360">AI Fairness 360</a> -
Fairness metrics for datasets and ML models, explanations, and
algorithms to mitigate bias in datasets and models.</li>
</ul>
<h2 id="computations">Computations</h2>
<ul>
<li><a href="http://www.numpy.org/">numpy</a> - The fundamental package
needed for scientific computing with Python.</li>
<li><a href="https://github.com/dask/dask">Dask</a> - Parallel computing
with task scheduling.
<img height="20" src="img/pandas_big.png" alt="pandas compatible"></li>
<li><a href="https://github.com/kwgoodman/bottleneck">bottleneck</a> -
Fast NumPy array functions written in C.</li>
<li><a href="https://github.com/cupy/cupy">CuPy</a> - NumPy-like API
accelerated with CUDA.</li>
<li><a href="https://github.com/mnick/scikit-tensor">scikit-tensor</a> -
Python library for multilinear algebra and tensor factorizations.</li>
<li><a href="https://github.com/pbrod/numdifftools">numdifftools</a> -
Solve automatic numerical differentiation problems in one or more
variables.</li>
<li><a href="https://github.com/moble/quaternion">quaternion</a> - Add
built-in support for quaternions to numpy.</li>
<li><a href="https://github.com/python-adaptive/adaptive">adaptive</a> -
Tools for adaptive and parallel samping of mathematical functions.</li>
<li><a href="https://github.com/pydata/numexpr">NumExpr</a> - A fast
numerical expression evaluator for NumPy that comes with an integrated
computing virtual machine to speed calculations up by avoiding memory
allocation for intermediate results.</li>
</ul>
<h2 id="web-scraping">Web Scraping</h2>
<ul>
<li><a
href="https://www.crummy.com/software/BeautifulSoup/bs4/doc/">BeautifulSoup</a>:
The easiest library to scrape static websites for beginners</li>
<li><a href="https://scrapy.org/">Scrapy</a>: Fast and extensible
scraping library. Can write rules and create customized scraper without
touching the core</li>
<li><a
href="https://selenium-python.readthedocs.io/installation.html#introduction">Selenium</a>:
Use Selenium Python API to access all functionalities of Selenium
WebDriver in an intuitive way like a real user.</li>
<li><a href="https://github.com/clips/pattern">Pattern</a>: High level
scraping for well-establish websites such as Google, Twitter, and
Wikipedia. Also has NLP, machine learning algorithms, and
visualization</li>
<li><a
href="https://github.com/taspinar/twitterscraper">twitterscraper</a>:
Efficient library to scrape Twitter</li>
</ul>
<h2 id="spatial-analysis">Spatial Analysis</h2>
<ul>
<li><a href="https://github.com/geopandas/geopandas">GeoPandas</a> -
Python tools for geographic data.
<img height="20" src="img/pandas_big.png" alt="pandas compatible"></li>
<li><a href="https://github.com/pysal/pysal">PySal</a> - Python Spatial
Analysis Library.</li>
</ul>
<h2 id="quantum-computing">Quantum Computing</h2>
<ul>
<li><a href="https://github.com/Qiskit/qiskit">qiskit</a> - Qiskit is an
open-source SDK for working with quantum computers at the level of
circuits, algorithms, and application modules.</li>
<li><a href="https://github.com/quantumlib/Cirq">cirq</a> - A python
framework for creating, editing, and invoking Noisy Intermediate Scale
Quantum (NISQ) circuits.</li>
<li><a href="https://github.com/XanaduAI/pennylane">PennyLane</a> -
Quantum machine learning, automatic differentiation, and optimization of
hybrid quantum-classical computations.</li>
<li><a href="https://github.com/qmlcode/qml">QML</a> - A Python Toolkit
for Quantum Machine Learning.</li>
</ul>
<h2 id="conversion">Conversion</h2>
<ul>
<li><a href="https://github.com/nok/sklearn-porter">sklearn-porter</a> -
Transpile trained scikit-learn estimators to C, Java, JavaScript, and
others.</li>
<li><a href="https://github.com/onnx/onnx">ONNX</a> - Open Neural
Network Exchange.</li>
<li><a href="https://github.com/Microsoft/MMdnn">MMdnn</a> - A set of
tools to help users inter-operate among different deep learning
frameworks.</li>
<li><a href="https://github.com/dmlc/treelite">treelite</a> - Universal
model exchange and serialization format for decision tree forests.</li>
</ul>
<h2 id="contributing">Contributing</h2>
<p>Contributions are welcome! :sunglasses: </br> Read the
<a href=https://github.com/krzjoa/awesome-python-datascience/blob/master/CONTRIBUTING.md>contribution
guideline</a>.</p>
<h2 id="license">License</h2>
<p>This work is licensed under the Creative Commons Attribution 4.0
International License - <a
href="https://creativecommons.org/licenses/by/4.0/">CC BY 4.0</a></p>
<p><a
href="https://github.com/krzjoa/awesome-python-data-science">pythondatascience.md
Github</a></p>