4327 lines
224 KiB
HTML
4327 lines
224 KiB
HTML
<h1 id="awesome-machine-learning-awesome-track-awesome-list">Awesome
|
||
Machine Learning <a href="https://github.com/sindresorhus/awesome"><img
|
||
src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg"
|
||
alt="Awesome" /></a> <a
|
||
href="https://www.trackawesomelist.com/josephmisiti/awesome-machine-learning/"><img
|
||
src="https://www.trackawesomelist.com/badge.svg"
|
||
alt="Track Awesome List" /></a></h1>
|
||
<p>A curated list of awesome machine learning frameworks, libraries and
|
||
software (by language). Inspired by <code>awesome-php</code>.</p>
|
||
<p><em>If you want to contribute to this list (please do), send me a
|
||
pull request or contact me <a
|
||
href="https://twitter.com/josephmisiti"><span class="citation"
|
||
data-cites="josephmisiti">@josephmisiti</span></a>.</em> Also, a listed
|
||
repository should be deprecated if:</p>
|
||
<ul>
|
||
<li>Repository’s owner explicitly says that “this library is not
|
||
maintained”.</li>
|
||
<li>Not committed for a long time (2~3 years).</li>
|
||
</ul>
|
||
<p>Further resources:</p>
|
||
<ul>
|
||
<li><p>For a list of free machine learning books available for download,
|
||
go <a
|
||
href="https://github.com/josephmisiti/awesome-machine-learning/blob/master/books.md">here</a>.</p></li>
|
||
<li><p>For a list of professional machine learning events, go <a
|
||
href="https://github.com/josephmisiti/awesome-machine-learning/blob/master/events.md">here</a>.</p></li>
|
||
<li><p>For a list of (mostly) free machine learning courses available
|
||
online, go <a
|
||
href="https://github.com/josephmisiti/awesome-machine-learning/blob/master/courses.md">here</a>.</p></li>
|
||
<li><p>For a list of blogs and newsletters on data science and machine
|
||
learning, go <a
|
||
href="https://github.com/josephmisiti/awesome-machine-learning/blob/master/blogs.md">here</a>.</p></li>
|
||
<li><p>For a list of free-to-attend meetups and local events, go <a
|
||
href="https://github.com/josephmisiti/awesome-machine-learning/blob/master/meetups.md">here</a>.</p></li>
|
||
</ul>
|
||
<h2 id="table-of-contents">Table of Contents</h2>
|
||
<h3 id="frameworks-and-libraries">Frameworks and Libraries</h3>
|
||
<!-- MarkdownTOC depth=4 -->
|
||
<!-- Contents-->
|
||
<ul>
|
||
<li><a href="#awesome-machine-learning-">Awesome Machine Learning <img
|
||
src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg"
|
||
alt="Awesome" /></a>
|
||
<ul>
|
||
<li><a href="#table-of-contents">Table of Contents</a>
|
||
<ul>
|
||
<li><a href="#frameworks-and-libraries">Frameworks and
|
||
Libraries</a></li>
|
||
<li><a href="#tools">Tools</a></li>
|
||
</ul></li>
|
||
<li><a href="#apl">APL</a>
|
||
<ul>
|
||
<li><a href="#apl-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
</ul></li>
|
||
<li><a href="#c">C</a>
|
||
<ul>
|
||
<li><a href="#c-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
<li><a href="#c-computer-vision">Computer Vision</a></li>
|
||
</ul></li>
|
||
<li><a href="#cpp">C++</a>
|
||
<ul>
|
||
<li><a href="#cpp-computer-vision">Computer Vision</a></li>
|
||
<li><a href="#cpp-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
<li><a href="#cpp-natural-language-processing">Natural Language
|
||
Processing</a></li>
|
||
<li><a href="#cpp-speech-recognition">Speech Recognition</a></li>
|
||
<li><a href="#cpp-sequence-analysis">Sequence Analysis</a></li>
|
||
<li><a href="#cpp-gesture-detection">Gesture Detection</a></li>
|
||
<li><a href="#cpp-reinforcement-learning">Reinforcement
|
||
Learning</a></li>
|
||
</ul></li>
|
||
<li><a href="#common-lisp">Common Lisp</a>
|
||
<ul>
|
||
<li><a
|
||
href="#common-lisp-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
</ul></li>
|
||
<li><a href="#clojure">Clojure</a>
|
||
<ul>
|
||
<li><a href="#clojure-natural-language-processing">Natural Language
|
||
Processing</a></li>
|
||
<li><a href="#clojure-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
<li><a href="#clojure-deep-learning">Deep Learning</a></li>
|
||
<li><a href="#clojure-data-analysis--data-visualization">Data
|
||
Analysis</a></li>
|
||
<li><a href="#clojure-data-visualization">Data Visualization</a></li>
|
||
<li><a href="#clojure-interop">Interop</a></li>
|
||
<li><a href="#clojure-misc">Misc</a></li>
|
||
<li><a href="#clojure-extra">Extra</a></li>
|
||
</ul></li>
|
||
<li><a href="#crystal">Crystal</a>
|
||
<ul>
|
||
<li><a href="#crystal-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
</ul></li>
|
||
<li><a href="#elixir">Elixir</a>
|
||
<ul>
|
||
<li><a href="#elixir-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
<li><a href="#elixir-natural-language-processing">Natural Language
|
||
Processing</a></li>
|
||
</ul></li>
|
||
<li><a href="#erlang">Erlang</a>
|
||
<ul>
|
||
<li><a href="#erlang-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
</ul></li>
|
||
<li><a href="#fortran">Fortran</a>
|
||
<ul>
|
||
<li><a href="#fortran-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
<li><a href="#fortran-data-analysis--data-visualization">Data Analysis /
|
||
Data Visualization</a></li>
|
||
</ul></li>
|
||
<li><a href="#go">Go</a>
|
||
<ul>
|
||
<li><a href="#go-natural-language-processing">Natural Language
|
||
Processing</a></li>
|
||
<li><a href="#go-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
<li><a href="#go-spatial-analysis-and-geometry">Spatial analysis and
|
||
geometry</a></li>
|
||
<li><a href="#go-data-analysis--data-visualization">Data Analysis / Data
|
||
Visualization</a></li>
|
||
<li><a href="#go-computer-vision">Computer vision</a></li>
|
||
<li><a href="#go-reinforcement-learning">Reinforcement learning</a></li>
|
||
</ul></li>
|
||
<li><a href="#haskell">Haskell</a>
|
||
<ul>
|
||
<li><a href="#haskell-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
</ul></li>
|
||
<li><a href="#java">Java</a>
|
||
<ul>
|
||
<li><a href="#java-natural-language-processing">Natural Language
|
||
Processing</a></li>
|
||
<li><a href="#java-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
<li><a href="#java-speech-recognition">Speech Recognition</a></li>
|
||
<li><a href="#java-data-analysis--data-visualization">Data Analysis /
|
||
Data Visualization</a></li>
|
||
<li><a href="#java-deep-learning">Deep Learning</a></li>
|
||
</ul></li>
|
||
<li><a href="#javascript">Javascript</a>
|
||
<ul>
|
||
<li><a href="#javascript-natural-language-processing">Natural Language
|
||
Processing</a></li>
|
||
<li><a href="#javascript-data-analysis--data-visualization">Data
|
||
Analysis / Data Visualization</a></li>
|
||
<li><a
|
||
href="#javascript-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
<li><a href="#javascript-misc">Misc</a></li>
|
||
<li><a href="#javascript-demos-and-scripts">Demos and Scripts</a></li>
|
||
</ul></li>
|
||
<li><a href="#julia">Julia</a>
|
||
<ul>
|
||
<li><a href="#julia-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
<li><a href="#julia-natural-language-processing">Natural Language
|
||
Processing</a></li>
|
||
<li><a href="#julia-data-analysis--data-visualization">Data Analysis /
|
||
Data Visualization</a></li>
|
||
<li><a href="#julia-misc-stuff--presentations">Misc Stuff /
|
||
Presentations</a></li>
|
||
</ul></li>
|
||
<li><a href="#kotlin">Kotlin</a>
|
||
<ul>
|
||
<li><a href="#kotlin-deep-learning">Deep Learning</a></li>
|
||
</ul></li>
|
||
<li><a href="#lua">Lua</a>
|
||
<ul>
|
||
<li><a href="#lua-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
<li><a href="#lua-demos-and-scripts">Demos and Scripts</a></li>
|
||
</ul></li>
|
||
<li><a href="#matlab">Matlab</a>
|
||
<ul>
|
||
<li><a href="#matlab-computer-vision">Computer Vision</a></li>
|
||
<li><a href="#matlab-natural-language-processing">Natural Language
|
||
Processing</a></li>
|
||
<li><a href="#matlab-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
<li><a href="#matlab-data-analysis--data-visualization">Data Analysis /
|
||
Data Visualization</a></li>
|
||
</ul></li>
|
||
<li><a href="#net">.NET</a>
|
||
<ul>
|
||
<li><a href="#net-computer-vision">Computer Vision</a></li>
|
||
<li><a href="#net-natural-language-processing">Natural Language
|
||
Processing</a></li>
|
||
<li><a href="#net-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
<li><a href="#net-data-analysis--data-visualization">Data Analysis /
|
||
Data Visualization</a></li>
|
||
</ul></li>
|
||
<li><a href="#objective-c">Objective C</a>
|
||
<ul>
|
||
<li><a
|
||
href="#objective-c-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
</ul></li>
|
||
<li><a href="#ocaml">OCaml</a>
|
||
<ul>
|
||
<li><a href="#ocaml-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
</ul></li>
|
||
<li><a href="#opencv">OpenCV</a>
|
||
<ul>
|
||
<li><a href="#opencv-Computer-Vision">Computer Vision</a></li>
|
||
<li><a href="#Text-Character-Number-Detection">Text-Detection</a></li>
|
||
</ul></li>
|
||
<li><a href="#perl">Perl</a>
|
||
<ul>
|
||
<li><a href="#perl-data-analysis--data-visualization">Data Analysis /
|
||
Data Visualization</a></li>
|
||
<li><a href="#perl-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
</ul></li>
|
||
<li><a href="#perl-6">Perl 6</a>
|
||
<ul>
|
||
<li><a href="#perl-6-data-analysis--data-visualization">Data Analysis /
|
||
Data Visualization</a></li>
|
||
<li><a href="#perl-6-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
</ul></li>
|
||
<li><a href="#php">PHP</a>
|
||
<ul>
|
||
<li><a href="#php-natural-language-processing">Natural Language
|
||
Processing</a></li>
|
||
<li><a href="#php-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
</ul></li>
|
||
<li><a href="#python">Python</a>
|
||
<ul>
|
||
<li><a href="#python-computer-vision">Computer Vision</a></li>
|
||
<li><a href="#python-natural-language-processing">Natural Language
|
||
Processing</a></li>
|
||
<li><a href="#python-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
<li><a href="#python-data-analysis--data-visualization">Data Analysis /
|
||
Data Visualization</a></li>
|
||
<li><a href="#python-misc-scripts--ipython-notebooks--codebases">Misc
|
||
Scripts / iPython Notebooks / Codebases</a></li>
|
||
<li><a href="#python-neural-networks">Neural Networks</a></li>
|
||
<li><a href="#python-survival-analysis">Survival Analysis</a></li>
|
||
<li><a href="#python-federated-learning">Federated Learning</a></li>
|
||
<li><a href="#python-kaggle-competition-source-code">Kaggle Competition
|
||
Source Code</a></li>
|
||
<li><a href="#python-reinforcement-learning">Reinforcement
|
||
Learning</a></li>
|
||
<li><a href="#python-speech-recognition">Speech Recognition</a></li>
|
||
</ul></li>
|
||
<li><a href="#ruby">Ruby</a>
|
||
<ul>
|
||
<li><a href="#ruby-natural-language-processing">Natural Language
|
||
Processing</a></li>
|
||
<li><a href="#ruby-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
<li><a href="#ruby-data-analysis--data-visualization">Data Analysis /
|
||
Data Visualization</a></li>
|
||
<li><a href="#ruby-misc">Misc</a></li>
|
||
</ul></li>
|
||
<li><a href="#rust">Rust</a>
|
||
<ul>
|
||
<li><a href="#rust-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
<li><a href="#rust-deep-learning">Deep Learning</a></li>
|
||
<li><a href="#rust-natural-language-processing">Natural Language
|
||
Processing</a></li>
|
||
</ul></li>
|
||
<li><a href="#r">R</a>
|
||
<ul>
|
||
<li><a href="#r-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
<li><a href="#r-data-analysis--data-visualization">Data Analysis / Data
|
||
Visualization</a></li>
|
||
</ul></li>
|
||
<li><a href="#sas">SAS</a>
|
||
<ul>
|
||
<li><a href="#sas-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
<li><a href="#sas-data-analysis--data-visualization">Data Analysis /
|
||
Data Visualization</a></li>
|
||
<li><a href="#sas-natural-language-processing">Natural Language
|
||
Processing</a></li>
|
||
<li><a href="#sas-demos-and-scripts">Demos and Scripts</a></li>
|
||
</ul></li>
|
||
<li><a href="#scala">Scala</a>
|
||
<ul>
|
||
<li><a href="#scala-natural-language-processing">Natural Language
|
||
Processing</a></li>
|
||
<li><a href="#scala-data-analysis--data-visualization">Data Analysis /
|
||
Data Visualization</a></li>
|
||
<li><a href="#scala-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
</ul></li>
|
||
<li><a href="#scheme">Scheme</a>
|
||
<ul>
|
||
<li><a href="#scheme-neural-networks">Neural Networks</a></li>
|
||
</ul></li>
|
||
<li><a href="#swift">Swift</a>
|
||
<ul>
|
||
<li><a href="#swift-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
</ul></li>
|
||
<li><a href="#tensorflow">TensorFlow</a>
|
||
<ul>
|
||
<li><a
|
||
href="#tensorflow-general-purpose-machine-learning">General-Purpose
|
||
Machine Learning</a></li>
|
||
</ul></li>
|
||
</ul></li>
|
||
</ul>
|
||
<h3 id="tools"><a href="#tools-1">Tools</a></h3>
|
||
<ul>
|
||
<li><a href="#tools-neural-networks">Neural Networks</a></li>
|
||
<li><a href="#tools-misc">Misc</a></li>
|
||
</ul>
|
||
<p><a href="#credits">Credits</a></p>
|
||
<!-- /MarkdownTOC -->
|
||
<p><a name="apl"></a> ## APL</p>
|
||
<p><a name="apl-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning * <a
|
||
href="https://github.com/mattcunningham/naive-apl">naive-apl</a> - Naive
|
||
Bayesian Classifier implementation in APL.
|
||
<strong>[Deprecated]</strong></p>
|
||
<p><a name="c"></a> ## C</p>
|
||
<p><a name="c-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning * <a
|
||
href="https://github.com/pjreddie/darknet">Darknet</a> - Darknet is an
|
||
open source neural network framework written in C and CUDA. It is fast,
|
||
easy to install, and supports CPU and GPU computation. * <a
|
||
href="https://github.com/GHamrouni/Recommender">Recommender</a> - A C
|
||
library for product recommendations/suggestions using collaborative
|
||
filtering (CF). * <a
|
||
href="https://github.com/SeniorSA/hybrid-rs-trainner">Hybrid Recommender
|
||
System</a> - A hybrid recommender system based upon scikit-learn
|
||
algorithms. <strong>[Deprecated]</strong> * <a
|
||
href="https://github.com/siavashserver/neonrvm">neonrvm</a> - neonrvm is
|
||
an open source machine learning library based on RVM technique. It’s
|
||
written in C programming language and comes with Python programming
|
||
language bindings. * <a
|
||
href="https://github.com/alrevuelta/cONNXr">cONNXr</a> - An
|
||
<code>ONNX</code> runtime written in pure C (99) with zero dependencies
|
||
focused on small embedded devices. Run inference on your machine
|
||
learning models no matter which framework you train it with. Easy to
|
||
install and compiles everywhere, even in very old devices. * <a
|
||
href="https://github.com/xboot/libonnx">libonnx</a> - A lightweight,
|
||
portable pure C99 onnx inference engine for embedded devices with
|
||
hardware acceleration support.</p>
|
||
<p><a name="c-computer-vision"></a> #### Computer Vision</p>
|
||
<ul>
|
||
<li><a href="https://github.com/liuliu/ccv">CCV</a> -
|
||
C-based/Cached/Core Computer Vision Library, A Modern Computer Vision
|
||
Library.</li>
|
||
<li><a href="http://www.vlfeat.org/">VLFeat</a> - VLFeat is an open and
|
||
portable library of computer vision algorithms, which has a Matlab
|
||
toolbox.</li>
|
||
</ul>
|
||
<p><a name="cpp"></a> ## C++</p>
|
||
<p><a name="cpp-computer-vision"></a> #### Computer Vision</p>
|
||
<ul>
|
||
<li><a href="http://dlib.net/imaging.html">DLib</a> - DLib has C++ and
|
||
Python interfaces for face detection and training general object
|
||
detectors.</li>
|
||
<li><a href="http://eblearn.sourceforge.net/">EBLearn</a> - Eblearn is
|
||
an object-oriented C++ library that implements various machine learning
|
||
models <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://opencv.org">OpenCV</a> - OpenCV has C++, C, Python,
|
||
Java and MATLAB interfaces and supports Windows, Linux, Android and Mac
|
||
OS.</li>
|
||
<li><a href="https://github.com/ukoethe/vigra">VIGRA</a> - VIGRA is a
|
||
genertic cross-platform C++ computer vision and machine learning library
|
||
for volumes of arbitrary dimensionality with Python bindings.</li>
|
||
<li><a
|
||
href="https://github.com/CMU-Perceptual-Computing-Lab/openpose">Openpose</a>
|
||
- A real-time multi-person keypoint detection library for body, face,
|
||
hands, and foot estimation</li>
|
||
</ul>
|
||
<p><a name="cpp-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/nebuly-ai/nebullvm/tree/main/apps/accelerate/speedster">Speedster</a>
|
||
-Automatically apply SOTA optimization techniques to achieve the maximum
|
||
inference speed-up on your hardware. <a href="#deep-learning">DEEP
|
||
LEARNING</a></li>
|
||
<li><a href="https://github.com/jkomiyama/banditlib">BanditLib</a> - A
|
||
simple Multi-armed Bandit library. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/BVLC/caffe">Caffe</a> - A deep learning
|
||
framework developed with cleanliness, readability, and speed in mind. <a
|
||
href="#deep-learning">DEEP LEARNING</a></li>
|
||
<li><a href="https://github.com/catboost/catboost">CatBoost</a> -
|
||
General purpose gradient boosting on decision trees library with
|
||
categorical features support out of the box. It is easy to install,
|
||
contains fast inference implementation and supports CPU and GPU (even
|
||
multi-GPU) computation.</li>
|
||
<li><a href="https://github.com/Microsoft/CNTK">CNTK</a> - The
|
||
Computational Network Toolkit (CNTK) by Microsoft Research, is a unified
|
||
deep-learning toolkit that describes neural networks as a series of
|
||
computational steps via a directed graph.</li>
|
||
<li><a href="https://code.google.com/p/cuda-convnet/">CUDA</a> - This is
|
||
a fast C++/CUDA implementation of convolutional <a
|
||
href="#deep-learning">DEEP LEARNING</a></li>
|
||
<li><a href="https://github.com/jolibrain/deepdetect">DeepDetect</a> - A
|
||
machine learning API and server written in C++11. It makes state of the
|
||
art machine learning easy to work with and integrate into existing
|
||
applications.</li>
|
||
<li><a href="http://www.dmtk.io/">Distributed Machine learning Tool Kit
|
||
(DMTK)</a> - A distributed machine learning (parameter server) framework
|
||
by Microsoft. Enables training models on large data sets across multiple
|
||
machines. Current tools bundled with it include: LightLDA and
|
||
Distributed (Multisense) Word Embedding.</li>
|
||
<li><a href="http://dlib.net/ml.html">DLib</a> - A suite of ML tools
|
||
designed to be easy to imbed in other applications.</li>
|
||
<li><a href="https://github.com/amznlabs/amazon-dsstne">DSSTNE</a> - A
|
||
software library created by Amazon for training and deploying deep
|
||
neural networks using GPUs which emphasizes speed and scale over
|
||
experimental flexibility.</li>
|
||
<li><a href="https://github.com/clab/dynet">DyNet</a> - A dynamic neural
|
||
network library working well with networks that have dynamic structures
|
||
that change for every training instance. Written in C++ with bindings in
|
||
Python.</li>
|
||
<li><a href="https://github.com/FidoProject/Fido">Fido</a> - A
|
||
highly-modular C++ machine learning library for embedded electronics and
|
||
robotics.</li>
|
||
<li><a href="https://github.com/ozguraslank/flexml">FlexML</a> -
|
||
Easy-to-use and flexible AutoML library for Python.</li>
|
||
<li><a href="http://igraph.org/">igraph</a> - General purpose graph
|
||
library.</li>
|
||
<li><a href="https://github.com/oneapi-src/oneDAL">Intel® oneAPI Data
|
||
Analytics Library</a> - A high performance software library developed by
|
||
Intel and optimized for Intel’s architectures. Library provides
|
||
algorithmic building blocks for all stages of data analytics and allows
|
||
to process data in batch, online and distributed modes.</li>
|
||
<li><a href="https://github.com/Microsoft/LightGBM">LightGBM</a> -
|
||
Microsoft’s fast, distributed, high performance gradient boosting (GBDT,
|
||
GBRT, GBM or MART) framework based on decision tree algorithms, used for
|
||
ranking, classification and many other machine learning tasks.</li>
|
||
<li><a href="https://github.com/srendle/libfm">libfm</a> - A generic
|
||
approach that allows to mimic most factorization models by feature
|
||
engineering.</li>
|
||
<li><a href="https://mldb.ai">MLDB</a> - The Machine Learning Database
|
||
is a database designed for machine learning. Send it commands over a
|
||
RESTful API to store data, explore it using SQL, then train machine
|
||
learning models and expose them as APIs.</li>
|
||
<li><a href="https://www.mlpack.org/">mlpack</a> - A scalable C++
|
||
machine learning library.</li>
|
||
<li><a href="https://github.com/apache/incubator-mxnet">MXNet</a> -
|
||
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with
|
||
Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia,
|
||
Go, JavaScript and more.</li>
|
||
<li><a href="https://github.com/CEA-LIST/N2D2">N2D2</a> - CEA-List’s CAD
|
||
framework for designing and simulating Deep Neural Network, and building
|
||
full DNN-based applications on embedded platforms</li>
|
||
<li><a href="https://github.com/oneapi-src/oneDNN">oneDNN</a> - An
|
||
open-source cross-platform performance library for deep learning
|
||
applications.</li>
|
||
<li><a href="https://www.comet.com/site/products/opik/">Opik</a> - Open
|
||
source engineering platform to debug, evaluate, and monitor your LLM
|
||
applications, RAG systems, and agentic workflows with comprehensive
|
||
tracing, automated evaluations, and production-ready dashboards. (<a
|
||
href="https://github.com/comet-ml/opik/">Source Code</a>)</li>
|
||
<li><a href="https://github.com/cdslaborg/paramonte">ParaMonte</a> - A
|
||
general-purpose library with C/C++ interface for Bayesian data analysis
|
||
and visualization via serial/parallel Monte Carlo and MCMC simulations.
|
||
Documentation can be found <a
|
||
href="https://www.cdslab.org/paramonte/">here</a>.</li>
|
||
<li><a href="https://github.com/cnclabs/proNet-core">proNet-core</a> - A
|
||
general-purpose network embedding framework: pair-wise representations
|
||
optimization Network Edit.</li>
|
||
<li><a href="https://github.com/pycaret/pycaret">PyCaret</a> - An
|
||
open-source, low-code machine learning library in Python that automates
|
||
machine learning workflows.</li>
|
||
<li><a href="https://mathema.tician.de/software/pycuda/">PyCUDA</a> -
|
||
Python interface to CUDA</li>
|
||
<li><a href="https://root.cern.ch">ROOT</a> - A modular scientific
|
||
software framework. It provides all the functionalities needed to deal
|
||
with big data processing, statistical analysis, visualization and
|
||
storage.</li>
|
||
<li><a
|
||
href="http://image.diku.dk/shark/sphinx_pages/build/html/index.html">shark</a>
|
||
- A fast, modular, feature-rich open-source C++ machine learning
|
||
library.</li>
|
||
<li><a href="https://github.com/shogun-toolbox/shogun">Shogun</a> - The
|
||
Shogun Machine Learning Toolbox.</li>
|
||
<li><a href="https://code.google.com/archive/p/sofia-ml">sofia-ml</a> -
|
||
Suite of fast incremental algorithms.</li>
|
||
<li><a href="http://mc-stan.org/">Stan</a> - A probabilistic programming
|
||
language implementing full Bayesian statistical inference with
|
||
Hamiltonian Monte Carlo sampling.</li>
|
||
<li><a href="https://languagemachines.github.io/timbl/">Timbl</a> - A
|
||
software package/C++ library implementing several memory-based learning
|
||
algorithms, among which IB1-IG, an implementation of k-nearest neighbor
|
||
classification, and IGTree, a decision-tree approximation of IB1-IG.
|
||
Commonly used for NLP.</li>
|
||
<li><a href="https://github.com/VowpalWabbit/vowpal_wabbit">Vowpal
|
||
Wabbit (VW)</a> - A fast out-of-core learning system.</li>
|
||
<li><a href="https://github.com/baidu-research/warp-ctc">Warp-CTC</a> -
|
||
A fast parallel implementation of Connectionist Temporal Classification
|
||
(CTC), on both CPU and GPU.</li>
|
||
<li><a href="https://github.com/dmlc/xgboost">XGBoost</a> - A
|
||
parallelized optimized general purpose gradient boosting library.</li>
|
||
<li><a
|
||
href="https://github.com/Xtra-Computing/thundergbm">ThunderGBM</a> - A
|
||
fast library for GBDTs and Random Forests on GPUs.</li>
|
||
<li><a
|
||
href="https://github.com/Xtra-Computing/thundersvm">ThunderSVM</a> - A
|
||
fast SVM library on GPUs and CPUs.</li>
|
||
<li><a href="https://github.com/mosdeo/LKYDeepNN">LKYDeepNN</a> - A
|
||
header-only C++11 Neural Network library. Low dependency, native
|
||
traditional chinese document.</li>
|
||
<li><a href="https://github.com/aksnzhy/xlearn">xLearn</a> - A high
|
||
performance, easy-to-use, and scalable machine learning package, which
|
||
can be used to solve large-scale machine learning problems. xLearn is
|
||
especially useful for solving machine learning problems on large-scale
|
||
sparse data, which is very common in Internet services such as online
|
||
advertising and recommender systems.</li>
|
||
<li><a
|
||
href="https://github.com/featuretools/featuretools">Featuretools</a> - A
|
||
library for automated feature engineering. It excels at transforming
|
||
transactional and relational datasets into feature matrices for machine
|
||
learning using reusable feature engineering “primitives”.</li>
|
||
<li><a href="https://github.com/Tyill/skynet">skynet</a> - A library for
|
||
learning neural networks, has C-interface, net set in JSON. Written in
|
||
C++ with bindings in Python, C++ and C#.</li>
|
||
<li><a href="https://github.com/gojek/feast">Feast</a> - A feature store
|
||
for the management, discovery, and access of machine learning features.
|
||
Feast provides a consistent view of feature data for both model training
|
||
and model serving.</li>
|
||
<li><a href="https://github.com/logicalclocks/hopsworks">Hopsworks</a> -
|
||
A data-intensive platform for AI with the industry’s first open-source
|
||
feature store. The Hopsworks Feature Store provides both a feature
|
||
warehouse for training and batch based on Apache Hive and a feature
|
||
serving database, based on MySQL Cluster, for online applications.</li>
|
||
<li><a href="https://github.com/polyaxon/polyaxon">Polyaxon</a> - A
|
||
platform for reproducible and scalable machine learning and deep
|
||
learning.</li>
|
||
<li><a href="https://questdb.io/">QuestDB</a> - A relational
|
||
column-oriented database designed for real-time analytics on time series
|
||
and event data.</li>
|
||
<li><a href="https://phoenix.arize.com">Phoenix</a> - Uncover insights,
|
||
surface problems, monitor and fine tune your generative LLM, CV and
|
||
tabular models.</li>
|
||
<li><a href="https://github.com/auto-differentiation/XAD">XAD</a> -
|
||
Comprehensive backpropagation tool for C++.</li>
|
||
<li><a href="https://truss.baseten.co">Truss</a> - An open source
|
||
framework for packaging and serving ML models.</li>
|
||
</ul>
|
||
<p><a name="cpp-natural-language-processing"></a> #### Natural Language
|
||
Processing</p>
|
||
<ul>
|
||
<li><a href="https://github.com/BLLIP/bllip-parser">BLLIP Parser</a> -
|
||
BLLIP Natural Language Parser (also known as the Charniak-Johnson
|
||
parser).</li>
|
||
<li><a href="https://github.com/proycon/colibri-core">colibri-core</a> -
|
||
C++ library, command line tools, and Python binding for extracting and
|
||
working with basic linguistic constructions such as n-grams and
|
||
skipgrams in a quick and memory-efficient way.</li>
|
||
<li><a href="https://taku910.github.io/crfpp/">CRF++</a> - Open source
|
||
implementation of Conditional Random Fields (CRFs) for
|
||
segmenting/labeling sequential data & other Natural Language
|
||
Processing tasks. <strong>[Deprecated]</strong></li>
|
||
<li><a href="http://www.chokkan.org/software/crfsuite/">CRFsuite</a> -
|
||
CRFsuite is an implementation of Conditional Random Fields (CRFs) for
|
||
labeling sequential data. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/LanguageMachines/frog">frog</a> -
|
||
Memory-based NLP suite developed for Dutch: PoS tagger, lemmatiser,
|
||
dependency parser, NER, shallow parser, morphological analyzer.</li>
|
||
<li><a href="https://github.com/LanguageMachines/libfolia">libfolia</a>
|
||
- C++ library for the <a href="https://proycon.github.io/folia/">FoLiA
|
||
format</a></li>
|
||
<li><a href="https://github.com/meta-toolkit/meta">MeTA</a> - <a
|
||
href="https://meta-toolkit.org/">MeTA : ModErn Text Analysis</a> is a
|
||
C++ Data Sciences Toolkit that facilitates mining big text data.</li>
|
||
<li><a href="https://github.com/mit-nlp/MITIE">MIT Information
|
||
Extraction Toolkit</a> - C, C++, and Python tools for named entity
|
||
recognition and relation extraction</li>
|
||
<li><a href="https://github.com/LanguageMachines/ucto">ucto</a> -
|
||
Unicode-aware regular-expression based tokenizer for various languages.
|
||
Tool and C++ library. Supports FoLiA format.</li>
|
||
</ul>
|
||
<p><a name="cpp-speech-recognition"></a> #### Speech Recognition * <a
|
||
href="https://github.com/kaldi-asr/kaldi">Kaldi</a> - Kaldi is a toolkit
|
||
for speech recognition written in C++ and licensed under the Apache
|
||
License v2.0. Kaldi is intended for use by speech recognition
|
||
researchers.</p>
|
||
<p><a name="cpp-sequence-analysis"></a> #### Sequence Analysis * <a
|
||
href="https://github.com/ayoshiaki/tops">ToPS</a> - This is an
|
||
object-oriented framework that facilitates the integration of
|
||
probabilistic models for sequences over a user defined alphabet.
|
||
<strong>[Deprecated]</strong></p>
|
||
<p><a name="cpp-gesture-detection"></a> #### Gesture Detection * <a
|
||
href="https://github.com/nickgillian/grt">grt</a> - The Gesture
|
||
Recognition Toolkit (GRT) is a cross-platform, open-source, C++ machine
|
||
learning library designed for real-time gesture recognition.</p>
|
||
<p><a name="cpp-reinforcement-learning"></a> #### Reinforcement Learning
|
||
* <a href="https://github.com/rl-tools/rl-tools">RLtools</a> - The
|
||
fastest deep reinforcement learning library for continuous control,
|
||
implemented header-only in pure, dependency-free C++ (Python bindings
|
||
available as well).</p>
|
||
<p><a name="common-lisp"></a> ## Common Lisp</p>
|
||
<p><a name="common-lisp-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a href="https://github.com/melisgl/mgl/">mgl</a> - Neural networks
|
||
(boltzmann machines, feed-forward and recurrent nets), Gaussian
|
||
Processes.</li>
|
||
<li><a href="https://github.com/melisgl/mgl-gpr/">mgl-gpr</a> -
|
||
Evolutionary algorithms. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/melisgl/cl-libsvm/">cl-libsvm</a> -
|
||
Wrapper for the libsvm support vector machine library.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/masatoi/cl-online-learning">cl-online-learning</a>
|
||
- Online learning algorithms (Perceptron, AROW, SCW, Logistic
|
||
Regression).</li>
|
||
<li><a
|
||
href="https://github.com/masatoi/cl-random-forest">cl-random-forest</a>
|
||
- Implementation of Random Forest in Common Lisp.</li>
|
||
</ul>
|
||
<p><a name="clojure"></a> ## Clojure</p>
|
||
<p><a name="clojure-natural-language-processing"></a> #### Natural
|
||
Language Processing</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/dakrone/clojure-opennlp">Clojure-openNLP</a> -
|
||
Natural Language Processing in Clojure (opennlp).</li>
|
||
<li><a
|
||
href="https://github.com/r0man/inflections-clj">Infections-clj</a> -
|
||
Rails-like inflection library for Clojure and ClojureScript.</li>
|
||
</ul>
|
||
<p><a name="clojure-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a href="https://github.com/scicloj/scicloj.ml">scicloj.ml</a> - A
|
||
idiomatic Clojure machine learning library based on tech.ml.dataset with
|
||
a unique approach for immutable data processing pipelines.</li>
|
||
<li><a href="https://github.com/joshuaeckroth/clj-ml/">clj-ml</a> - A
|
||
machine learning library for Clojure built on top of Weka and
|
||
friends.</li>
|
||
<li><a href="https://gitlab.com/alanmarazzi/clj-boost">clj-boost</a> -
|
||
Wrapper for XGBoost</li>
|
||
<li><a href="https://github.com/ptaoussanis/touchstone">Touchstone</a> -
|
||
Clojure A/B testing library.</li>
|
||
<li><a href="https://github.com/lspector/Clojush">Clojush</a> - The Push
|
||
programming language and the PushGP genetic programming system
|
||
implemented in Clojure.</li>
|
||
<li><a href="https://github.com/cloudkj/lambda-ml">lambda-ml</a> -
|
||
Simple, concise implementations of machine learning techniques and
|
||
utilities in Clojure.</li>
|
||
<li><a href="https://github.com/aria42/infer">Infer</a> - Inference and
|
||
machine learning in Clojure. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/jimpil/enclog">Encog</a> - Clojure
|
||
wrapper for Encog (v3) (Machine-Learning framework that specializes in
|
||
neural-nets). <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/vollmerm/fungp">Fungp</a> - A genetic
|
||
programming library for Clojure. <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/clojurewerkz/statistiker">Statistiker</a> -
|
||
Basic Machine Learning algorithms in Clojure.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/htm-community/clortex">clortex</a> -
|
||
General Machine Learning library using Numenta’s Cortical Learning
|
||
Algorithm. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/htm-community/comportex">comportex</a> -
|
||
Functionally composable Machine Learning library using Numenta’s
|
||
Cortical Learning Algorithm. <strong>[Deprecated]</strong></li>
|
||
</ul>
|
||
<p><a name="clojure-deep-learning"></a> #### Deep Learning * <a
|
||
href="https://mxnet.apache.org/versions/1.7.0/api/clojure">MXNet</a> -
|
||
Bindings to Apache MXNet - part of the MXNet project * <a
|
||
href="https://github.com/uncomplicate/deep-diamond">Deep Diamond</a> - A
|
||
fast Clojure Tensor & Deep Learning library * <a
|
||
href="https://github.com/hswick/jutsu.ai">jutsu.ai</a> - Clojure wrapper
|
||
for deeplearning4j with some added syntactic sugar. * <a
|
||
href="https://github.com/originrose/cortex">cortex</a> - Neural
|
||
networks, regression and feature learning in Clojure. * <a
|
||
href="https://github.com/aria42/flare">Flare</a> - Dynamic Tensor Graph
|
||
library in Clojure (think PyTorch, DynNet, etc.) * <a
|
||
href="https://github.com/yetanalytics/dl4clj">dl4clj</a> - Clojure
|
||
wrapper for Deeplearning4j.</p>
|
||
<p><a name="clojure-data-analysis--data-visualization"></a> #### Data
|
||
Analysis * <a
|
||
href="https://github.com/techascent/tech.ml.dataset">tech.ml.dataset</a>
|
||
- Clojure dataframe library and pipeline for data processing and machine
|
||
learning * <a
|
||
href="https://github.com/scicloj/tablecloth">Tablecloth</a> - A
|
||
dataframe grammar wrapping tech.ml.dataset, inspired by several R
|
||
libraries * <a
|
||
href="https://github.com/alanmarazzi/panthera">Panthera</a> - Clojure
|
||
API wrapping Python’s Pandas library * <a
|
||
href="http://incanter.org/">Incanter</a> - Incanter is a Clojure-based,
|
||
R-like platform for statistical computing and graphics. * <a
|
||
href="https://github.com/Netflix/PigPen">PigPen</a> - Map-Reduce for
|
||
Clojure. * <a href="https://github.com/zero-one-group/geni">Geni</a> - a
|
||
Clojure dataframe library that runs on Apache Spark</p>
|
||
<p><a name="clojure-data-visualization"></a> #### Data Visualization *
|
||
<a href="https://github.com/jsa-aerial/hanami">Hanami</a> :
|
||
Clojure(Script) library and framework for creating interactive
|
||
visualization applications based in Vega-Lite (VGL) and/or Vega (VG)
|
||
specifications. Automatic framing and layouts along with a powerful
|
||
templating system for abstracting visualization specs * <a
|
||
href="https://github.com/jsa-aerial/saite">Saite</a> - Clojure(Script)
|
||
client/server application for dynamic interactive explorations and the
|
||
creation of live shareable documents capturing them using
|
||
Vega/Vega-Lite, CodeMirror, markdown, and LaTeX * <a
|
||
href="https://github.com/metasoarous/oz">Oz</a> - Data visualisation
|
||
using Vega/Vega-Lite and Hiccup, and a live-reload platform for
|
||
literate-programming * <a
|
||
href="https://github.com/clojurewerkz/envision">Envision</a> - Clojure
|
||
Data Visualisation library, based on Statistiker and D3. * <a
|
||
href="https://github.com/pink-gorilla/gorilla-notebook">Pink Gorilla
|
||
Notebook</a> - A Clojure/Clojurescript notebook application/-library
|
||
based on Gorilla-REPL * <a
|
||
href="https://github.com/clojupyter/clojupyter">clojupyter</a> - A
|
||
Jupyter kernel for Clojure - run Clojure code in Jupyter Lab, Notebook
|
||
and Console. * <a
|
||
href="https://github.com/scicloj/notespace">notespace</a> - Notebook
|
||
experience in your Clojure namespace * <a
|
||
href="https://github.com/datamechanics/delight">Delight</a> - A listener
|
||
that streams your spark events logs to delight, a free and improved
|
||
spark UI</p>
|
||
<p><a name="clojure-interop"></a> #### Interop</p>
|
||
<ul>
|
||
<li><a href="https://clojure.org/reference/java_interop">Java
|
||
Interop</a> - Clojure has Native Java Interop from which Java’s ML
|
||
ecosystem can be accessed</li>
|
||
<li><a
|
||
href="https://clojurescript.org/reference/javascript-api">JavaScript
|
||
Interop</a> - ClojureScript has Native JavaScript Interop from which
|
||
JavaScript’s ML ecosystem can be accessed</li>
|
||
<li><a
|
||
href="https://github.com/clj-python/libpython-clj">Libpython-clj</a> -
|
||
Interop with Python</li>
|
||
<li><a href="https://github.com/scicloj/clojisr">ClojisR</a> - Interop
|
||
with R and Renjin (R on the JVM)</li>
|
||
</ul>
|
||
<p><a name="clojure-misc"></a> #### Misc * <a
|
||
href="https://neanderthal.uncomplicate.org/">Neanderthal</a> - Fast
|
||
Clojure Matrix Library (native CPU, GPU, OpenCL, CUDA) * <a
|
||
href="https://github.com/MastodonC/kixi.stats">kixistats</a> - A library
|
||
of statistical distribution sampling and transducing functions * <a
|
||
href="https://github.com/generateme/fastmath">fastmath</a> - A
|
||
collection of functions for mathematical and statistical computing,
|
||
macine learning, etc., wrapping several JVM libraries * <a
|
||
href="https://github.com/atisharma/matlib">matlib</a> - A Clojure
|
||
library of optimisation and control theory tools and convenience
|
||
functions based on Neanderthal.</p>
|
||
<p><a name="clojure-extra"></a> #### Extra * <a
|
||
href="https://scicloj.github.io/pages/libraries/">Scicloj</a> - Curated
|
||
list of ML related resources for Clojure.</p>
|
||
<p><a name="crystal"></a> ## Crystal</p>
|
||
<p><a name="crystal-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a href="https://github.com/mathieulaporte/machine">machine</a> -
|
||
Simple machine learning algorithm.</li>
|
||
<li><a
|
||
href="https://github.com/NeuraLegion/crystal-fann">crystal-fann</a> -
|
||
FANN (Fast Artificial Neural Network) binding.</li>
|
||
</ul>
|
||
<p><a name="elixir"></a> ## Elixir</p>
|
||
<p><a name="elixir-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a href="https://github.com/fredwu/simple_bayes">Simple Bayes</a> -
|
||
A Simple Bayes / Naive Bayes implementation in Elixir.</li>
|
||
<li><a href="https://github.com/mrdimosthenis/emel">emel</a> - A simple
|
||
and functional machine learning library written in Elixir.</li>
|
||
<li><a href="https://github.com/anshuman23/tensorflex">Tensorflex</a> -
|
||
Tensorflow bindings for the Elixir programming language.</li>
|
||
</ul>
|
||
<p><a name="elixir-natural-language-processing"></a> #### Natural
|
||
Language Processing</p>
|
||
<ul>
|
||
<li><a href="https://github.com/fredwu/stemmer">Stemmer</a> - An English
|
||
(Porter2) stemming implementation in Elixir.</li>
|
||
</ul>
|
||
<p><a name="erlang"></a> ## Erlang</p>
|
||
<p><a name="erlang-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a href="https://github.com/discoproject/disco/">Disco</a> - Map
|
||
Reduce in Erlang. <strong>[Deprecated]</strong></li>
|
||
</ul>
|
||
<p><a name="fortran"></a> ## Fortran</p>
|
||
<p><a name="fortran-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/modern-fortran/neural-fortran">neural-fortran</a>
|
||
- A parallel neural net microframework. Read the paper <a
|
||
href="https://arxiv.org/abs/1902.06714">here</a>.</li>
|
||
</ul>
|
||
<p><a name="fortran-data-analysis--data-visualization"></a> #### Data
|
||
Analysis / Data Visualization</p>
|
||
<ul>
|
||
<li><a href="https://github.com/cdslaborg/paramonte">ParaMonte</a> - A
|
||
general-purpose Fortran library for Bayesian data analysis and
|
||
visualization via serial/parallel Monte Carlo and MCMC simulations.
|
||
Documentation can be found <a
|
||
href="https://www.cdslab.org/paramonte/">here</a>.</li>
|
||
</ul>
|
||
<p><a name="go"></a> ## Go</p>
|
||
<p><a name="go-natural-language-processing"></a> #### Natural Language
|
||
Processing</p>
|
||
<ul>
|
||
<li><a href="https://github.com/nlpodyssey/cybertron">Cybertron</a> -
|
||
Cybertron: the home planet of the Transformers in Go.</li>
|
||
<li><a href="https://github.com/tebeka/snowball">snowball</a> - Snowball
|
||
Stemmer for Go.</li>
|
||
<li><a href="https://github.com/ynqa/word-embedding">word-embedding</a>
|
||
- Word Embeddings: the full implementation of word2vec, GloVe in
|
||
Go.</li>
|
||
<li><a href="https://github.com/neurosnap/sentences">sentences</a> -
|
||
Golang implementation of Punkt sentence tokenizer.</li>
|
||
<li><a href="https://github.com/Lazin/go-ngram">go-ngram</a> - In-memory
|
||
n-gram index with compression. <em>[Deprecated]</em></li>
|
||
<li><a href="https://github.com/Rookii/paicehusk">paicehusk</a> - Golang
|
||
implementation of the Paice/Husk Stemming Algorithm.
|
||
<em>[Deprecated]</em></li>
|
||
<li><a
|
||
href="https://github.com/reiver/go-porterstemmer">go-porterstemmer</a> -
|
||
A native Go clean room implementation of the Porter Stemming algorithm.
|
||
<strong>[Deprecated]</strong></li>
|
||
</ul>
|
||
<p><a name="go-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a href="https://github.com/nlpodyssey/spago">Spago</a> -
|
||
Self-contained Machine Learning and Natural Language Processing library
|
||
in Go.</li>
|
||
<li><a href="https://github.com/rlouf/birdland">birdland</a> - A
|
||
recommendation library in Go.</li>
|
||
<li><a href="https://github.com/MaxHalford/eaopt">eaopt</a> - An
|
||
evolutionary optimization library.</li>
|
||
<li><a href="https://github.com/dmitryikh/leaves">leaves</a> - A pure Go
|
||
implementation of the prediction part of GBRTs, including XGBoost and
|
||
LightGBM.</li>
|
||
<li><a href="https://github.com/goml/gobrain">gobrain</a> - Neural
|
||
Networks written in Go.</li>
|
||
<li><a
|
||
href="https://github.com/nikolaydubina/go-featureprocessing">go-featureprocessing</a>
|
||
- Fast and convenient feature processing for low latency machine
|
||
learning in Go.</li>
|
||
<li><a
|
||
href="https://github.com/songtianyi/go-mxnet-predictor">go-mxnet-predictor</a>
|
||
- Go binding for MXNet c_predict_api to do inference with a pre-trained
|
||
model.</li>
|
||
<li><a
|
||
href="https://github.com/nikolaydubina/go-ml-benchmarks">go-ml-benchmarks</a>
|
||
— benchmarks of machine learning inference for Go.</li>
|
||
<li><a
|
||
href="https://github.com/znly/go-ml-transpiler">go-ml-transpiler</a> -
|
||
An open source Go transpiler for machine learning models.</li>
|
||
<li><a href="https://github.com/sjwhitworth/golearn">golearn</a> -
|
||
Machine learning for Go.</li>
|
||
<li><a href="https://github.com/cdipaolo/goml">goml</a> - Machine
|
||
learning library written in pure Go.</li>
|
||
<li><a href="https://github.com/gorgonia/gorgonia">gorgonia</a> - Deep
|
||
learning in Go.</li>
|
||
<li><a href="https://github.com/aunum/goro">goro</a> - A high-level
|
||
machine learning library in the vein of Keras.</li>
|
||
<li><a href="https://github.com/zhenghaoz/gorse">gorse</a> - An offline
|
||
recommender system backend based on collaborative filtering written in
|
||
Go.</li>
|
||
<li><a href="https://github.com/therfoo/therfoo">therfoo</a> - An
|
||
embedded deep learning library for Go.</li>
|
||
<li><a href="https://github.com/jinyeom/neat">neat</a> - Plug-and-play,
|
||
parallel Go framework for NeuroEvolution of Augmenting Topologies
|
||
(NEAT). <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/daviddengcn/go-pr">go-pr</a> - Pattern
|
||
recognition package in Go lang. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/alonsovidales/go_ml">go-ml</a> - Linear
|
||
/ Logistic regression, Neural Networks, Collaborative Filtering and
|
||
Gaussian Multivariate Distribution. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/fxsjy/gonn">GoNN</a> - GoNN is an
|
||
implementation of Neural Network in Go Language, which includes BPNN,
|
||
RBF, PCN. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/jbrukh/bayesian">bayesian</a> - Naive
|
||
Bayesian Classification for Golang. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/thoj/go-galib">go-galib</a> - Genetic
|
||
Algorithms library written in Go / Golang.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/ryanbressler/CloudForest">Cloudforest</a> -
|
||
Ensembles of decision trees in Go/Golang.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/sudachen/go-dnn">go-dnn</a> - Deep
|
||
Neural Networks for Golang (powered by MXNet)</li>
|
||
</ul>
|
||
<p><a name="go-spatial-analysis-and-geometry"></a> #### Spatial analysis
|
||
and geometry</p>
|
||
<ul>
|
||
<li><a href="https://github.com/twpayne/go-geom">go-geom</a> - Go
|
||
library to handle geometries.</li>
|
||
<li><a href="https://github.com/golang/geo">gogeo</a> - Spherical
|
||
geometry in Go.</li>
|
||
</ul>
|
||
<p><a name="go-data-analysis--data-visualization"></a> #### Data
|
||
Analysis / Data Visualization</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/rocketlaunchr/dataframe-go">dataframe-go</a> -
|
||
Dataframes for machine-learning and statistics (similar to pandas).</li>
|
||
<li><a href="https://github.com/go-gota/gota">gota</a> -
|
||
Dataframes.</li>
|
||
<li><a href="https://godoc.org/gonum.org/v1/gonum/mat">gonum/mat</a> - A
|
||
linear algebra package for Go.</li>
|
||
<li><a
|
||
href="https://godoc.org/gonum.org/v1/gonum/optimize">gonum/optimize</a>
|
||
- Implementations of optimization algorithms.</li>
|
||
<li><a href="https://godoc.org/gonum.org/v1/plot">gonum/plot</a> - A
|
||
plotting library.</li>
|
||
<li><a href="https://godoc.org/gonum.org/v1/gonum/stat">gonum/stat</a> -
|
||
A statistics library.</li>
|
||
<li><a href="https://github.com/ajstarks/svgo">SVGo</a> - The Go
|
||
Language library for SVG generation.</li>
|
||
<li><a href="https://github.com/arafatk/glot">glot</a> - Glot is a
|
||
plotting library for Golang built on top of gnuplot.</li>
|
||
<li><a href="https://github.com/mmcloughlin/globe">globe</a> - Globe
|
||
wireframe visualization.</li>
|
||
<li><a href="https://godoc.org/gonum.org/v1/gonum/graph">gonum/graph</a>
|
||
- General-purpose graph library.</li>
|
||
<li><a href="https://github.com/StepLg/go-graph">go-graph</a> - Graph
|
||
library for Go/Golang language. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/fxsjy/RF.go">RF</a> - Random forests
|
||
implementation in Go. <strong>[Deprecated]</strong></li>
|
||
</ul>
|
||
<p><a name="go-computer-vision"></a> #### Computer vision</p>
|
||
<ul>
|
||
<li><a href="https://github.com/hybridgroup/gocv">GoCV</a> - Package for
|
||
computer vision using OpenCV 4 and beyond.</li>
|
||
</ul>
|
||
<p><a name="go-reinforcement-learning"></a> #### Reinforcement
|
||
learning</p>
|
||
<ul>
|
||
<li><a href="https://github.com/aunum/gold">gold</a> - A reinforcement
|
||
learning library.</li>
|
||
<li><a
|
||
href="https://github.com/DLR-RM/stable-baselines3">stable-baselines3</a>
|
||
- PyTorch implementations of Stable Baselines (deep) reinforcement
|
||
learning algorithms.</li>
|
||
</ul>
|
||
<p><a name="haskell"></a> ## Haskell</p>
|
||
<p><a name="haskell-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning * <a
|
||
href="https://github.com/ajtulloch/haskell-ml">haskell-ml</a> - Haskell
|
||
implementations of various ML algorithms. <strong>[Deprecated]</strong>
|
||
* <a href="https://github.com/mikeizbicki/HLearn">HLearn</a> - a suite
|
||
of libraries for interpreting machine learning models according to their
|
||
algebraic structure. <strong>[Deprecated]</strong> * <a
|
||
href="https://github.com/alpmestan/HNN">hnn</a> - Haskell Neural Network
|
||
library. * <a
|
||
href="https://github.com/ajtulloch/hopfield-networks">hopfield-networks</a>
|
||
- Hopfield Networks for unsupervised learning in Haskell.
|
||
<strong>[Deprecated]</strong> * <a
|
||
href="https://github.com/ajtulloch/dnngraph">DNNGraph</a> - A DSL for
|
||
deep neural networks. <strong>[Deprecated]</strong> * <a
|
||
href="https://github.com/jbarrow/LambdaNet">LambdaNet</a> - Configurable
|
||
Neural Networks in Haskell. <strong>[Deprecated]</strong></p>
|
||
<p><a name="java"></a> ## Java</p>
|
||
<p><a name="java-natural-language-processing"></a> #### Natural Language
|
||
Processing * <a href="https://www.cortical.io/">Cortical.io</a> -
|
||
Retina: an API performing complex NLP operations (disambiguation,
|
||
classification, streaming text filtering, etc…) as quickly and
|
||
intuitively as the brain. * <a
|
||
href="https://github.com/cortical-io/Iris">IRIS</a> - <a
|
||
href="https://cortical.io">Cortical.io’s</a> FREE NLP, Retina API
|
||
Analysis Tool (written in JavaFX!) - <a
|
||
href="https://www.youtube.com/watch?v=CsF4pd7fGF0">See the Tutorial
|
||
Video</a>. * <a
|
||
href="https://nlp.stanford.edu/software/corenlp.shtml">CoreNLP</a> -
|
||
Stanford CoreNLP provides a set of natural language analysis tools which
|
||
can take raw English language text input and give the base forms of
|
||
words. * <a
|
||
href="https://nlp.stanford.edu/software/lex-parser.shtml">Stanford
|
||
Parser</a> - A natural language parser is a program that works out the
|
||
grammatical structure of sentences. * <a
|
||
href="https://nlp.stanford.edu/software/tagger.shtml">Stanford POS
|
||
Tagger</a> - A Part-Of-Speech Tagger (POS Tagger). * <a
|
||
href="https://nlp.stanford.edu/software/CRF-NER.shtml">Stanford Name
|
||
Entity Recognizer</a> - Stanford NER is a Java implementation of a Named
|
||
Entity Recognizer. * <a
|
||
href="https://nlp.stanford.edu/software/segmenter.shtml">Stanford Word
|
||
Segmenter</a> - Tokenization of raw text is a standard pre-processing
|
||
step for many NLP tasks. * <a
|
||
href="https://nlp.stanford.edu/software/tregex.shtml">Tregex, Tsurgeon
|
||
and Semgrex</a> - Tregex is a utility for matching patterns in trees,
|
||
based on tree relationships and regular expression matches on nodes (the
|
||
name is short for “tree regular expressions”). * <a
|
||
href="https://nlp.stanford.edu/phrasal/">Stanford Phrasal: A
|
||
Phrase-Based Translation System</a> * <a
|
||
href="https://nlp.stanford.edu/software/tokenizer.shtml">Stanford
|
||
English Tokenizer</a> - Stanford Phrasal is a state-of-the-art
|
||
statistical phrase-based machine translation system, written in Java. *
|
||
<a href="https://nlp.stanford.edu/software/tokensregex.shtml">Stanford
|
||
Tokens Regex</a> - A tokenizer divides text into a sequence of tokens,
|
||
which roughly correspond to “words”. * <a
|
||
href="https://nlp.stanford.edu/software/sutime.shtml">Stanford Temporal
|
||
Tagger</a> - SUTime is a library for recognizing and normalizing time
|
||
expressions. * <a
|
||
href="https://nlp.stanford.edu/software/patternslearning.shtml">Stanford
|
||
SPIED</a> - Learning entities from unlabeled text starting with seed
|
||
sets using patterns in an iterative fashion. * <a
|
||
href="https://github.com/twitter/twitter-text/tree/master/java">Twitter
|
||
Text Java</a> - A Java implementation of Twitter’s text processing
|
||
library. * <a href="http://mallet.cs.umass.edu/">MALLET</a> - A
|
||
Java-based package for statistical natural language processing, document
|
||
classification, clustering, topic modelling, information extraction, and
|
||
other machine learning applications to text. * <a
|
||
href="https://opennlp.apache.org/">OpenNLP</a> - A machine learning
|
||
based toolkit for the processing of natural language text. * <a
|
||
href="http://alias-i.com/lingpipe/index.html">LingPipe</a> - A tool kit
|
||
for processing text using computational linguistics. * <a
|
||
href="https://github.com/ClearTK/cleartk">ClearTK</a> - ClearTK provides
|
||
a framework for developing statistical natural language processing (NLP)
|
||
components in Java and is built on top of Apache UIMA.
|
||
<strong>[Deprecated]</strong> * <a
|
||
href="https://ctakes.apache.org/">Apache cTAKES</a> - Apache Clinical
|
||
Text Analysis and Knowledge Extraction System (cTAKES) is an open-source
|
||
natural language processing system for information extraction from
|
||
electronic medical record clinical free-text. * <a
|
||
href="https://github.com/emorynlp/nlp4j">NLP4J</a> - The NLP4J project
|
||
provides software and resources for natural language processing. The
|
||
project started at the Center for Computational Language and EducAtion
|
||
Research, and is currently developed by the Center for Language and
|
||
Information Research at Emory University. <strong>[Deprecated]</strong>
|
||
* <a href="https://github.com/CogComp/cogcomp-nlp">CogcompNLP</a> - This
|
||
project collects a number of core libraries for Natural Language
|
||
Processing (NLP) developed in the University of Illinois’ Cognitive
|
||
Computation Group, for example <code>illinois-core-utilities</code>
|
||
which provides a set of NLP-friendly data structures and a number of
|
||
NLP-related utilities that support writing NLP applications, running
|
||
experiments, etc, <code>illinois-edison</code> a library for feature
|
||
extraction from illinois-core-utilities data structures and many other
|
||
packages.</p>
|
||
<p><a name="java-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a href="https://github.com/airbnb/aerosolve">aerosolve</a> - A
|
||
machine learning library by Airbnb designed from the ground up to be
|
||
human friendly.</li>
|
||
<li><a href="http://www.amidsttoolbox.com/">AMIDST Toolbox</a> - A Java
|
||
Toolbox for Scalable Probabilistic Machine Learning.</li>
|
||
<li><a
|
||
href="https://github.com/cicirello/Chips-n-Salsa">Chips-n-Salsa</a> - A
|
||
Java library for genetic algorithms, evolutionary computation, and
|
||
stochastic local search, with a focus on self-adaptation / self-tuning,
|
||
as well as parallel execution.</li>
|
||
<li><a
|
||
href="https://github.com/datumbox/datumbox-framework">Datumbox</a> -
|
||
Machine Learning framework for rapid development of Machine Learning and
|
||
Statistical applications.</li>
|
||
<li><a href="https://elki-project.github.io/">ELKI</a> - Java toolkit
|
||
for data mining. (unsupervised: clustering, outlier detection etc.)</li>
|
||
<li><a href="https://github.com/encog/encog-java-core">Encog</a> - An
|
||
advanced neural network and machine learning framework. Encog contains
|
||
classes to create a wide variety of networks, as well as support classes
|
||
to normalize and process data for these neural networks. Encog trainings
|
||
using multithreaded resilient propagation. Encog can also make use of a
|
||
GPU to further speed processing time. A GUI based workbench is also
|
||
provided to help model and train neural networks.</li>
|
||
<li><a
|
||
href="https://ci.apache.org/projects/flink/flink-docs-master/dev/libs/ml/index.html">FlinkML
|
||
in Apache Flink</a> - Distributed machine learning library in
|
||
Flink.</li>
|
||
<li><a href="https://github.com/h2oai/h2o-3">H2O</a> - ML engine that
|
||
supports distributed learning on Hadoop, Spark or your laptop via APIs
|
||
in R, Python, Scala, REST/JSON.</li>
|
||
<li><a href="https://github.com/numenta/htm.java">htm.java</a> - General
|
||
Machine Learning library using Numenta’s Cortical Learning
|
||
Algorithm.</li>
|
||
<li><a
|
||
href="https://github.com/bwaldvogel/liblinear-java">liblinear-java</a> -
|
||
Java version of liblinear.</li>
|
||
<li><a href="https://github.com/apache/mahout">Mahout</a> - Distributed
|
||
machine learning.</li>
|
||
<li><a href="http://meka.sourceforge.net/">Meka</a> - An open source
|
||
implementation of methods for multi-label classification and evaluation
|
||
(extension to Weka).</li>
|
||
<li><a
|
||
href="https://spark.apache.org/docs/latest/mllib-guide.html">MLlib in
|
||
Apache Spark</a> - Distributed machine learning library in Spark.</li>
|
||
<li><a href="https://github.com/Hydrospheredata/mist">Hydrosphere
|
||
Mist</a> - a service for deployment Apache Spark MLLib machine learning
|
||
models as realtime, batch or reactive web services.</li>
|
||
<li><a href="http://neuroph.sourceforge.net/">Neuroph</a> - Neuroph is
|
||
lightweight Java neural network framework.</li>
|
||
<li><a href="https://github.com/oryxproject/oryx">ORYX</a> - Lambda
|
||
Architecture Framework using Apache Spark and Apache Kafka with a
|
||
specialization for real-time large-scale machine learning.</li>
|
||
<li><a href="https://samoa.incubator.apache.org/">Samoa</a> SAMOA is a
|
||
framework that includes distributed machine learning for data streams
|
||
with an interface to plug-in different stream processing platforms.</li>
|
||
<li><a href="https://sourceforge.net/p/lemur/wiki/RankLib/">RankLib</a>
|
||
- RankLib is a library of learning to rank algorithms.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/padreati/rapaio">rapaio</a> -
|
||
statistics, data mining and machine learning toolbox in Java.</li>
|
||
<li><a href="https://rapidminer.com">RapidMiner</a> - RapidMiner
|
||
integration into Java code.</li>
|
||
<li><a
|
||
href="https://nlp.stanford.edu/software/classifier.shtml">Stanford
|
||
Classifier</a> - A classifier is a machine learning tool that will take
|
||
data items and place them into one of k classes.</li>
|
||
<li><a href="https://haifengl.github.io/">Smile</a> - Statistical
|
||
Machine Intelligence & Learning Engine.</li>
|
||
<li><a href="https://github.com/apache/systemml">SystemML</a> -
|
||
flexible, scalable machine learning (ML) language.</li>
|
||
<li><a href="https://tribuo.org">Tribou</a> - A machine learning library
|
||
written in Java by Oracle.</li>
|
||
<li><a href="https://www.cs.waikato.ac.nz/ml/weka/">Weka</a> - Weka is a
|
||
collection of machine learning algorithms for data mining tasks.</li>
|
||
<li><a href="https://github.com/CogComp/lbjava">LBJava</a> - Learning
|
||
Based Java is a modelling language for the rapid development of software
|
||
systems, offers a convenient, declarative syntax for classifier and
|
||
constraint definition directly in terms of the objects in the
|
||
programmer’s application.</li>
|
||
<li><a
|
||
href="https://github.com/felipexw/knn-java-library">knn-java-library</a>
|
||
- Just a simple implementation of K-Nearest Neighbors algorithm using
|
||
with a bunch of similarity measures.</li>
|
||
</ul>
|
||
<p><a name="java-speech-recognition"></a> #### Speech Recognition * <a
|
||
href="https://cmusphinx.github.io">CMU Sphinx</a> - Open Source Toolkit
|
||
For Speech Recognition purely based on Java speech recognition
|
||
library.</p>
|
||
<p><a name="java-data-analysis--data-visualization"></a> #### Data
|
||
Analysis / Data Visualization</p>
|
||
<ul>
|
||
<li><a href="https://flink.apache.org/">Flink</a> - Open source platform
|
||
for distributed stream and batch data processing.</li>
|
||
<li><a href="https://github.com/apache/hadoop">Hadoop</a> -
|
||
Hadoop/HDFS.</li>
|
||
<li><a href="https://github.com/onyx-platform/onyx">Onyx</a> -
|
||
Distributed, masterless, high performance, fault tolerant data
|
||
processing. Written entirely in Clojure.</li>
|
||
<li><a href="https://github.com/apache/spark">Spark</a> - Spark is a
|
||
fast and general engine for large-scale data processing.</li>
|
||
<li><a href="https://storm.apache.org/">Storm</a> - Storm is a
|
||
distributed realtime computation system.</li>
|
||
<li><a href="https://github.com/cloudera/impala">Impala</a> - Real-time
|
||
Query for Hadoop.</li>
|
||
<li><a href="https://jwork.org/dmelt/">DataMelt</a> - Mathematics
|
||
software for numeric computation, statistics, symbolic calculations,
|
||
data analysis and data visualization.</li>
|
||
<li><a href="https://www.ee.ucl.ac.uk/~mflanaga/java/">Dr. Michael
|
||
Thomas Flanagan’s Java Scientific Library.</a>
|
||
<strong>[Deprecated]</strong></li>
|
||
</ul>
|
||
<p><a name="java-deep-learning"></a> #### Deep Learning</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/deeplearning4j/deeplearning4j">Deeplearning4j</a>
|
||
- Scalable deep learning for industry with parallel GPUs.</li>
|
||
<li><a
|
||
href="https://victorzhou.com/blog/keras-neural-network-tutorial/">Keras
|
||
Beginner Tutorial</a> - Friendly guide on using Keras to implement a
|
||
simple Neural Network in Python.</li>
|
||
<li><a
|
||
href="https://github.com/deepjavalibrary/djl">deepjavalibrary/djl</a> -
|
||
Deep Java Library (DJL) is an open-source, high-level, engine-agnostic
|
||
Java framework for deep learning, designed to be easy to get started
|
||
with and simple to use for Java developers.</li>
|
||
</ul>
|
||
<p><a name="javascript"></a> ## JavaScript</p>
|
||
<p><a name="javascript-natural-language-processing"></a> #### Natural
|
||
Language Processing</p>
|
||
<ul>
|
||
<li><a href="https://github.com/twitter/twitter-text">Twitter-text</a> -
|
||
A JavaScript implementation of Twitter’s text processing library.</li>
|
||
<li><a href="https://github.com/NaturalNode/natural">natural</a> -
|
||
General natural language facilities for node.</li>
|
||
<li><a href="https://github.com/loadfive/Knwl.js">Knwl.js</a> - A
|
||
Natural Language Processor in JS.</li>
|
||
<li><a href="https://github.com/retextjs/retext">Retext</a> - Extensible
|
||
system for analyzing and manipulating natural language.</li>
|
||
<li><a href="https://github.com/spencermountain/compromise">NLP
|
||
Compromise</a> - Natural Language processing in the browser.</li>
|
||
<li><a href="https://github.com/axa-group/nlp.js">nlp.js</a> - An NLP
|
||
library built in node over Natural, with entity extraction, sentiment
|
||
analysis, automatic language identify, and so more.</li>
|
||
</ul>
|
||
<p><a name="javascript-data-analysis--data-visualization"></a> #### Data
|
||
Analysis / Data Visualization</p>
|
||
<ul>
|
||
<li><a href="https://d3js.org/">D3.js</a></li>
|
||
<li><a href="https://www.highcharts.com/">High Charts</a></li>
|
||
<li><a href="http://nvd3.org/">NVD3.js</a></li>
|
||
<li><a href="https://dc-js.github.io/dc.js/">dc.js</a></li>
|
||
<li><a href="https://www.chartjs.org/">chartjs</a></li>
|
||
<li><a href="http://dimplejs.org/">dimple</a></li>
|
||
<li><a href="https://www.amcharts.com/">amCharts</a></li>
|
||
<li><a href="https://github.com/NathanEpstein/D3xter">D3xter</a> -
|
||
Straight forward plotting built on D3.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/rigtorp/statkit">statkit</a> -
|
||
Statistics kit for JavaScript. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/nathanepstein/datakit">datakit</a> - A
|
||
lightweight framework for data analysis in JavaScript</li>
|
||
<li><a href="https://github.com/jasondavies/science.js/">science.js</a>
|
||
- Scientific and statistical computing in JavaScript.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/NathanEpstein/Z3d">Z3d</a> - Easily make
|
||
interactive 3d plots built on Three.js
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="http://sigmajs.org/">Sigma.js</a> - JavaScript library
|
||
dedicated to graph drawing.</li>
|
||
<li><a href="https://c3js.org/">C3.js</a> - customizable library based
|
||
on D3.js for easy chart drawing.</li>
|
||
<li><a href="https://datamaps.github.io/">Datamaps</a> - Customizable
|
||
SVG map/geo visualizations using D3.js.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://www.zingchart.com/">ZingChart</a> - library written
|
||
on Vanilla JS for big data visualization.</li>
|
||
<li><a href="https://www.cheminfo.org/">cheminfo</a> - Platform for data
|
||
visualization and analysis, using the <a
|
||
href="https://github.com/npellet/visualizer">visualizer</a>
|
||
project.</li>
|
||
<li><a href="http://learnjsdata.com/">Learn JS Data</a></li>
|
||
<li><a href="https://www.anychart.com/">AnyChart</a></li>
|
||
<li><a href="https://www.fusioncharts.com/">FusionCharts</a></li>
|
||
<li><a href="https://nivo.rocks">Nivo</a> - built on top of the awesome
|
||
d3 and Reactjs libraries</li>
|
||
</ul>
|
||
<p><a name="javascript-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a href="https://github.com/ClimbsRocks/auto_ml">Auto ML</a> -
|
||
Automated machine learning, data formatting, ensembling, and
|
||
hyperparameter optimization for competitions and exploration- just give
|
||
it a .csv file! <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cs.stanford.edu/people/karpathy/convnetjs/">Convnet.js</a>
|
||
- ConvNetJS is a JavaScript library for training Deep Learning models<a
|
||
href="#deep-learning">DEEP LEARNING</a>
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/TSavo/creatify-mcp">Creatify MCP</a> -
|
||
Model Context Protocol server that exposes Creatify AI’s video
|
||
generation capabilities to AI assistants, enabling natural language
|
||
video creation workflows.</li>
|
||
<li><a href="https://harthur.github.io/clusterfck/">Clusterfck</a> -
|
||
Agglomerative hierarchical clustering implemented in JavaScript for
|
||
Node.js and the browser. <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/emilbayes/clustering.js">Clustering.js</a> -
|
||
Clustering algorithms implemented in JavaScript for Node.js and the
|
||
browser. <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/serendipious/nodejs-decision-tree-id3">Decision
|
||
Trees</a> - NodeJS Implementation of Decision Tree using ID3 Algorithm.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/antoniodeluca/dn2a.js">DN2A</a> -
|
||
Digital Neural Networks Architecture. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://code.google.com/archive/p/figue">figue</a> -
|
||
K-means, fuzzy c-means and agglomerative clustering.</li>
|
||
<li><a
|
||
href="https://github.com/lukapopijac/gaussian-mixture-model">Gaussian
|
||
Mixture Model</a> - Unsupervised machine learning with multivariate
|
||
Gaussian mixture model.</li>
|
||
<li><a href="https://github.com/rlidwka/node-fann">Node-fann</a> - FANN
|
||
(Fast Artificial Neural Network Library) bindings for Node.js
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/transcranial/keras-js">Keras.js</a> -
|
||
Run Keras models in the browser, with GPU support provided by WebGL
|
||
2.</li>
|
||
<li><a href="https://github.com/emilbayes/kMeans.js">Kmeans.js</a> -
|
||
Simple JavaScript implementation of the k-means algorithm, for node.js
|
||
and the browser. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/primaryobjects/lda">LDA.js</a> - LDA
|
||
topic modelling for Node.js</li>
|
||
<li><a href="https://github.com/yandongliu/learningjs">Learning.js</a> -
|
||
JavaScript implementation of logistic regression/c4.5 decision tree
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/machinelearnjs/machinelearnjs">machinelearn.js</a>
|
||
- Machine Learning library for the web, Node.js and developers</li>
|
||
<li><a href="https://github.com/mil-tokyo">mil-tokyo</a> - List of
|
||
several machine learning libraries.</li>
|
||
<li><a href="https://github.com/nicolaspanel/node-svm">Node-SVM</a> -
|
||
Support Vector Machine for Node.js</li>
|
||
<li><a href="https://github.com/harthur/brain">Brain</a> - Neural
|
||
networks in JavaScript <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/BrainJS/brain.js">Brain.js</a> - Neural
|
||
networks in JavaScript - continued community fork of <a
|
||
href="https://github.com/harthur/brain">Brain</a>.</li>
|
||
<li><a
|
||
href="https://github.com/omphalos/bayesian-bandit.js">Bayesian-Bandit</a>
|
||
- Bayesian bandit implementation for Node and the browser.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/cazala/synaptic">Synaptic</a> -
|
||
Architecture-free neural network library for Node.js and the
|
||
browser.</li>
|
||
<li><a href="https://github.com/NathanEpstein/kNear">kNear</a> -
|
||
JavaScript implementation of the k nearest neighbors algorithm for
|
||
supervised learning.</li>
|
||
<li><a href="https://github.com/totemstech/neuraln">NeuralN</a> - C++
|
||
Neural Network library for Node.js. It has advantage on large dataset
|
||
and multi-threaded training. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/itamarwe/kalman">kalman</a> - Kalman
|
||
filter for JavaScript. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/luccastera/shaman">shaman</a> - Node.js
|
||
library with support for both simple and multiple linear regression.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/mljs/ml">ml.js</a> - Machine learning
|
||
and numerical analysis tools for Node.js and the Browser!</li>
|
||
<li><a href="https://github.com/ml5js/ml5-library">ml5</a> - Friendly
|
||
machine learning for the web!</li>
|
||
<li><a href="https://github.com/NathanEpstein/Pavlov.js">Pavlov.js</a> -
|
||
Reinforcement learning using Markov Decision Processes.</li>
|
||
<li><a href="https://github.com/apache/incubator-mxnet">MXNet</a> -
|
||
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with
|
||
Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia,
|
||
Go, JavaScript and more.</li>
|
||
<li><a href="https://js.tensorflow.org/">TensorFlow.js</a> - A WebGL
|
||
accelerated, browser based JavaScript library for training and deploying
|
||
ML models.</li>
|
||
<li><a href="https://github.com/jsmlt/jsmlt">JSMLT</a> - Machine
|
||
learning toolkit with classification and clustering for Node.js;
|
||
supports visualization (see <a
|
||
href="https://visualml.io">visualml.io</a>).</li>
|
||
<li><a href="https://github.com/nuanio/xgboost-node">xgboost-node</a> -
|
||
Run XGBoost model and make predictions in Node.js.</li>
|
||
<li><a href="https://github.com/lutzroeder/netron">Netron</a> -
|
||
Visualizer for machine learning models.</li>
|
||
<li><a href="https://github.com/Hoff97/tensorjs">tensor-js</a> - A deep
|
||
learning library for the browser, accelerated by WebGL and
|
||
WebAssembly.</li>
|
||
<li><a href="https://github.com/mil-tokyo/webdnn">WebDNN</a> - Fast Deep
|
||
Neural Network JavaScript Framework. WebDNN uses next generation
|
||
JavaScript API, WebGPU for GPU execution, and WebAssembly for CPU
|
||
execution.</li>
|
||
<li><a href="https://webnn.dev">WebNN</a> - A new web standard that
|
||
allows web apps and frameworks to accelerate deep neural networks with
|
||
on-device hardware such as GPUs, CPUs, or purpose-built AI
|
||
accelerators.</li>
|
||
</ul>
|
||
<p><a name="javascript-misc"></a> #### Misc</p>
|
||
<ul>
|
||
<li><a href="https://github.com/stdlib-js/stdlib">stdlib</a> - A
|
||
standard library for JavaScript and Node.js, with an emphasis on numeric
|
||
computing. The library provides a collection of robust, high performance
|
||
libraries for mathematics, statistics, streams, utilities, and
|
||
more.</li>
|
||
<li><a href="https://github.com/jcoglan/sylvester">sylvester</a> -
|
||
Vector and Matrix math for JavaScript.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/simple-statistics/simple-statistics">simple-statistics</a>
|
||
- A JavaScript implementation of descriptive, regression, and inference
|
||
statistics. Implemented in literate JavaScript with no dependencies,
|
||
designed to work in all modern browsers (including IE) as well as in
|
||
Node.js.</li>
|
||
<li><a
|
||
href="https://github.com/Tom-Alexander/regression-js">regression-js</a>
|
||
- A javascript library containing a collection of least squares fitting
|
||
methods for finding a trend in a set of data.</li>
|
||
<li><a href="https://github.com/flurry/Lyric">Lyric</a> - Linear
|
||
Regression library. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/mwgg/GreatCircle">GreatCircle</a> -
|
||
Library for calculating great circle distance.</li>
|
||
<li><a href="https://github.com/jgreenemi/MLPleaseHelp">MLPleaseHelp</a>
|
||
- MLPleaseHelp is a simple ML resource search engine. You can use this
|
||
search engine right now at <a
|
||
href="https://jgreenemi.github.io/MLPleaseHelp/">https://jgreenemi.github.io/MLPleaseHelp/</a>,
|
||
provided via GitHub Pages.</li>
|
||
<li><a href="https://github.com/alibaba/pipcook">Pipcook</a> - A
|
||
JavaScript application framework for machine learning and its
|
||
engineering.</li>
|
||
</ul>
|
||
<p><a name="javascript-demos-and-scripts"></a> #### Demos and Scripts *
|
||
<a href="https://github.com/sta-ger/TheBot">The Bot</a> - Example of how
|
||
the neural network learns to predict the angle between two points
|
||
created with <a href="https://github.com/cazala/synaptic">Synaptic</a>.
|
||
* <a href="https://github.com/sta-ger/HalfBeer">Half Beer</a> - Beer
|
||
glass classifier created with <a
|
||
href="https://github.com/cazala/synaptic">Synaptic</a>. * <a
|
||
href="http://nsfwjs.com">NSFWJS</a> - Indecent content checker with
|
||
TensorFlow.js * <a href="https://rps-tfjs.netlify.com/">Rock Paper
|
||
Scissors</a> - Rock Paper Scissors trained in the browser with
|
||
TensorFlow.js * <a href="https://heroeswearmasks.fun/">Heroes Wear
|
||
Masks</a> - A fun TensorFlow.js-based oracle that tells, whether one
|
||
wears a face mask or not. It can even tell when one wears the mask
|
||
incorrectly.</p>
|
||
<p><a name="julia"></a> ## Julia</p>
|
||
<p><a name="julia-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/benhamner/MachineLearning.jl">MachineLearning</a>
|
||
- Julia Machine Learning library. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/JuliaStats/MLBase.jl">MLBase</a> - A set
|
||
of functions to support the development of machine learning
|
||
algorithms.</li>
|
||
<li><a href="https://github.com/JuliaStats/PGM.jl">PGM</a> - A Julia
|
||
framework for probabilistic graphical models.</li>
|
||
<li><a
|
||
href="https://github.com/trthatcher/DiscriminantAnalysis.jl">DA</a> -
|
||
Julia package for Regularized Discriminant Analysis.</li>
|
||
<li><a href="https://github.com/lindahua/Regression.jl">Regression</a> -
|
||
Algorithms for regression analysis (e.g. linear regression and logistic
|
||
regression). <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/JuliaStats/Loess.jl">Local
|
||
Regression</a> - Local regression, so smooooth!</li>
|
||
<li><a href="https://github.com/nutsiepully/NaiveBayes.jl">Naive
|
||
Bayes</a> - Simple Naive Bayes implementation in Julia.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/dmbates/MixedModels.jl">Mixed Models</a>
|
||
- A Julia package for fitting (statistical) mixed-effects models.</li>
|
||
<li><a href="https://github.com/fredo-dedup/SimpleMCMC.jl">Simple
|
||
MCMC</a> - basic MCMC sampler implemented in Julia.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/JuliaStats/Distances.jl">Distances</a> -
|
||
Julia module for Distance evaluation.</li>
|
||
<li><a href="https://github.com/bensadeghi/DecisionTree.jl">Decision
|
||
Tree</a> - Decision Tree Classifier and Regressor.</li>
|
||
<li><a
|
||
href="https://github.com/compressed/BackpropNeuralNet.jl">Neural</a> - A
|
||
neural network in Julia.</li>
|
||
<li><a href="https://github.com/doobwa/MCMC.jl">MCMC</a> - MCMC tools
|
||
for Julia. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/brian-j-smith/Mamba.jl">Mamba</a> -
|
||
Markov chain Monte Carlo (MCMC) for Bayesian analysis in Julia.</li>
|
||
<li><a href="https://github.com/JuliaStats/GLM.jl">GLM</a> - Generalized
|
||
linear models in Julia.</li>
|
||
<li><a href="https://github.com/STOR-i/GaussianProcesses.jl">Gaussian
|
||
Processes</a> - Julia package for Gaussian processes.</li>
|
||
<li><a href="https://github.com/lendle/OnlineLearning.jl">Online
|
||
Learning</a> <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/simonster/GLMNet.jl">GLMNet</a> - Julia
|
||
wrapper for fitting Lasso/ElasticNet GLM models using glmnet.</li>
|
||
<li><a href="https://github.com/JuliaStats/Clustering.jl">Clustering</a>
|
||
- Basic functions for clustering data: k-means, dp-means, etc.</li>
|
||
<li><a href="https://github.com/JuliaStats/SVM.jl">SVM</a> - SVM for
|
||
Julia. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/JuliaStats/KernelDensity.jl">Kernel
|
||
Density</a> - Kernel density estimators for Julia.</li>
|
||
<li><a
|
||
href="https://github.com/JuliaStats/MultivariateStats.jl">MultivariateStats</a>
|
||
- Methods for dimensionality reduction.</li>
|
||
<li><a href="https://github.com/JuliaStats/NMF.jl">NMF</a> - A Julia
|
||
package for non-negative matrix factorization.</li>
|
||
<li><a href="https://github.com/EricChiang/ANN.jl">ANN</a> - Julia
|
||
artificial neural networks. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/pluskid/Mocha.jl">Mocha</a> - Deep
|
||
Learning framework for Julia inspired by Caffe.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/dmlc/XGBoost.jl">XGBoost</a> - eXtreme
|
||
Gradient Boosting Package in Julia.</li>
|
||
<li><a
|
||
href="https://github.com/wildart/ManifoldLearning.jl">ManifoldLearning</a>
|
||
- A Julia package for manifold learning and nonlinear dimensionality
|
||
reduction.</li>
|
||
<li><a href="https://github.com/apache/incubator-mxnet">MXNet</a> -
|
||
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with
|
||
Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia,
|
||
Go, JavaScript and more.</li>
|
||
<li><a href="https://github.com/hshindo/Merlin.jl">Merlin</a> - Flexible
|
||
Deep Learning Framework in Julia.</li>
|
||
<li><a
|
||
href="https://github.com/davidavdav/ROCAnalysis.jl">ROCAnalysis</a> -
|
||
Receiver Operating Characteristics and functions for evaluation
|
||
probabilistic binary classifiers.</li>
|
||
<li><a
|
||
href="https://github.com/davidavdav/GaussianMixtures.jl">GaussianMixtures</a>
|
||
- Large scale Gaussian Mixture Models.</li>
|
||
<li><a href="https://github.com/cstjean/ScikitLearn.jl">ScikitLearn</a>
|
||
- Julia implementation of the scikit-learn API.</li>
|
||
<li><a href="https://github.com/denizyuret/Knet.jl">Knet</a> - Koç
|
||
University Deep Learning Framework.</li>
|
||
<li><a href="https://fluxml.ai/">Flux</a> - Relax! Flux is the ML
|
||
library that doesn’t make you tensor</li>
|
||
<li><a href="https://github.com/alan-turing-institute/MLJ.jl">MLJ</a> -
|
||
A Julia machine learning framework.</li>
|
||
<li><a href="https://github.com/clugen/CluGen.jl/">CluGen</a> -
|
||
Multidimensional cluster generation in Julia.</li>
|
||
</ul>
|
||
<p><a name="julia-natural-language-processing"></a> #### Natural
|
||
Language Processing</p>
|
||
<ul>
|
||
<li><a href="https://github.com/slycoder/TopicModels.jl">Topic
|
||
Models</a> - TopicModels for Julia. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/JuliaText/TextAnalysis.jl">Text
|
||
Analysis</a> - Julia package for text analysis.</li>
|
||
<li><a href="https://github.com/JuliaText/WordTokenizers.jl">Word
|
||
Tokenizers</a> - Tokenizers for Natural Language Processing in
|
||
Julia</li>
|
||
<li><a href="https://github.com/JuliaText/CorpusLoaders.jl">Corpus
|
||
Loaders</a> - A Julia package providing a variety of loaders for various
|
||
NLP corpora.</li>
|
||
<li><a href="https://github.com/JuliaText/Embeddings.jl">Embeddings</a>
|
||
- Functions and data dependencies for loading various word
|
||
embeddings</li>
|
||
<li><a href="https://github.com/JuliaText/Languages.jl">Languages</a> -
|
||
Julia package for working with various human languages</li>
|
||
<li><a href="https://github.com/JuliaText/WordNet.jl">WordNet</a> - A
|
||
Julia package for Princeton’s WordNet</li>
|
||
</ul>
|
||
<p><a name="julia-data-analysis--data-visualization"></a> #### Data
|
||
Analysis / Data Visualization</p>
|
||
<ul>
|
||
<li><a href="https://github.com/IainNZ/GraphLayout.jl">Graph Layout</a>
|
||
- Graph layout algorithms in pure Julia.</li>
|
||
<li><a
|
||
href="https://github.com/JuliaGraphs/LightGraphs.jl">LightGraphs</a> -
|
||
Graph modelling and analysis.</li>
|
||
<li><a href="https://github.com/JuliaData/DataFramesMeta.jl">Data Frames
|
||
Meta</a> - Metaprogramming tools for DataFrames.</li>
|
||
<li><a href="https://github.com/nfoti/JuliaData">Julia Data</a> -
|
||
library for working with tabular data in Julia.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/queryverse/ReadStat.jl">Data Read</a> -
|
||
Read files from Stata, SAS, and SPSS.</li>
|
||
<li><a
|
||
href="https://github.com/JuliaStats/HypothesisTests.jl">Hypothesis
|
||
Tests</a> - Hypothesis tests for Julia.</li>
|
||
<li><a href="https://github.com/GiovineItalia/Gadfly.jl">Gadfly</a> -
|
||
Crafty statistical graphics for Julia.</li>
|
||
<li><a href="https://github.com/JuliaStats/StatsKit.jl">Stats</a> -
|
||
Statistical tests for Julia.</li>
|
||
<li><a
|
||
href="https://github.com/johnmyleswhite/RDatasets.jl">RDataSets</a> -
|
||
Julia package for loading many of the data sets available in R.</li>
|
||
<li><a href="https://github.com/JuliaData/DataFrames.jl">DataFrames</a>
|
||
- library for working with tabular data in Julia.</li>
|
||
<li><a
|
||
href="https://github.com/JuliaStats/Distributions.jl">Distributions</a>
|
||
- A Julia package for probability distributions and associated
|
||
functions.</li>
|
||
<li><a href="https://github.com/JuliaStats/DataArrays.jl">Data
|
||
Arrays</a> - Data structures that allow missing values.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/JuliaStats/TimeSeries.jl">Time
|
||
Series</a> - Time series toolkit for Julia.</li>
|
||
<li><a href="https://github.com/lindahua/Sampling.jl">Sampling</a> -
|
||
Basic sampling algorithms for Julia.</li>
|
||
</ul>
|
||
<p><a name="julia-misc-stuff--presentations"></a> #### Misc Stuff /
|
||
Presentations</p>
|
||
<ul>
|
||
<li><a href="https://github.com/JuliaDSP/DSP.jl">DSP</a> - Digital
|
||
Signal Processing (filtering, periodograms, spectrograms, window
|
||
functions).</li>
|
||
<li><a href="https://github.com/JuliaCon/presentations">JuliaCon
|
||
Presentations</a> - Presentations for JuliaCon.</li>
|
||
<li><a href="https://github.com/JuliaDSP/DSP.jl">SignalProcessing</a> -
|
||
Signal Processing tools for Julia.</li>
|
||
<li><a href="https://github.com/JuliaImages/Images.jl">Images</a> - An
|
||
image library for Julia.</li>
|
||
<li><a href="https://github.com/oxinabox/DataDeps.jl">DataDeps</a> -
|
||
Reproducible data setup for reproducible science.</li>
|
||
</ul>
|
||
<p><a name="kotlin"></a> ## Kotlin</p>
|
||
<p><a name="kotlin-deep-learning"></a> #### Deep Learning * <a
|
||
href="https://github.com/JetBrains/KotlinDL">KotlinDL</a> - Deep
|
||
learning framework written in Kotlin.</p>
|
||
<p><a name="lua"></a> ## Lua</p>
|
||
<p><a name="lua-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a href="http://torch.ch/">Torch7</a>
|
||
<ul>
|
||
<li><a href="https://github.com/deepmind/torch-cephes">cephes</a> -
|
||
Cephes mathematical functions library, wrapped for Torch. Provides and
|
||
wraps the 180+ special mathematical functions from the Cephes
|
||
mathematical library, developed by Stephen L. Moshier. It is used, among
|
||
many other places, at the heart of SciPy.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/twitter/torch-autograd">autograd</a> -
|
||
Autograd automatically differentiates native Torch code. Inspired by the
|
||
original Python version.</li>
|
||
<li><a href="https://github.com/torch/graph">graph</a> - Graph package
|
||
for Torch. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/deepmind/torch-randomkit">randomkit</a>
|
||
- Numpy’s randomkit, wrapped for Torch.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/soumith/torch-signal">signal</a> - A
|
||
signal processing toolbox for Torch-7. FFT, DCT, Hilbert, cepstrums,
|
||
stft.</li>
|
||
<li><a href="https://github.com/torch/nn">nn</a> - Neural Network
|
||
package for Torch.</li>
|
||
<li><a href="https://github.com/torchnet/torchnet">torchnet</a> -
|
||
framework for torch which provides a set of abstractions aiming at
|
||
encouraging code re-use as well as encouraging modular programming.</li>
|
||
<li><a href="https://github.com/torch/nngraph">nngraph</a> - This
|
||
package provides graphical computation for nn library in Torch7.</li>
|
||
<li><a href="https://github.com/clementfarabet/lua---nnx">nnx</a> - A
|
||
completely unstable and experimental package that extends Torch’s
|
||
builtin nn library.</li>
|
||
<li><a href="https://github.com/Element-Research/rnn">rnn</a> - A
|
||
Recurrent Neural Network library that extends Torch’s nn. RNNs, LSTMs,
|
||
GRUs, BRNNs, BLSTMs, etc.</li>
|
||
<li><a href="https://github.com/Element-Research/dpnn">dpnn</a> - Many
|
||
useful features that aren’t part of the main nn package.</li>
|
||
<li><a href="https://github.com/nicholas-leonard/dp">dp</a> - A deep
|
||
learning library designed for streamlining research and development
|
||
using the Torch7 distribution. It emphasizes flexibility through the
|
||
elegant use of object-oriented design patterns.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/torch/optim">optim</a> - An optimization
|
||
library for Torch. SGD, Adagrad, Conjugate-Gradient, LBFGS, RProp and
|
||
more.</li>
|
||
<li><a href="https://github.com/koraykv/unsup">unsup</a> - A package for
|
||
unsupervised learning in Torch. Provides modules that are compatible
|
||
with nn (LinearPsd, ConvPsd, AutoEncoder, …), and self-contained
|
||
algorithms (k-means, PCA). <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/clementfarabet/manifold">manifold</a> -
|
||
A package to manipulate manifolds.</li>
|
||
<li><a href="https://github.com/koraykv/torch-svm">svm</a> - Torch-SVM
|
||
library. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/clementfarabet/lbfgs">lbfgs</a> - FFI
|
||
Wrapper for liblbfgs. <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/clementfarabet/vowpal_wabbit">vowpalwabbit</a>
|
||
- An old vowpalwabbit interface to torch.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/clementfarabet/lua---opengm">OpenGM</a>
|
||
- OpenGM is a C++ library for graphical modelling, and inference. The
|
||
Lua bindings provide a simple way of describing graphs, from Lua, and
|
||
then optimizing them with OpenGM. <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/MichaelMathieu/lua---spaghetti">spaghetti</a> -
|
||
Spaghetti (sparse linear) module for torch7 by <span class="citation"
|
||
data-cites="MichaelMathieu">@MichaelMathieu</span>
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/ocallaco/LuaSHkit">LuaSHKit</a> - A Lua
|
||
wrapper around the Locality sensitive hashing library SHKit
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/rlowrance/kernel-smoothers">kernel
|
||
smoothing</a> - KNN, kernel-weighted average, local linear regression
|
||
smoothers. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/torch/cutorch">cutorch</a> - Torch CUDA
|
||
Implementation.</li>
|
||
<li><a href="https://github.com/torch/cunn">cunn</a> - Torch CUDA Neural
|
||
Network Implementation.</li>
|
||
<li><a
|
||
href="https://github.com/clementfarabet/lua---imgraph">imgraph</a> - An
|
||
image/graph library for Torch. This package provides routines to
|
||
construct graphs on images, segment them, build trees out of them, and
|
||
convert them back to images. <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/clementfarabet/videograph">videograph</a> - A
|
||
video/graph library for Torch. This package provides routines to
|
||
construct graphs on videos, segment them, build trees out of them, and
|
||
convert them back to videos. <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/marcoscoffier/torch-saliency">saliency</a> -
|
||
code and tools around integral images. A library for finding interest
|
||
points based on fast integral histograms.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/marcoscoffier/lua---stitch">stitch</a> -
|
||
allows us to use hugin to stitch images and apply same stitching to a
|
||
video sequence. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/marcoscoffier/lua---sfm">sfm</a> - A
|
||
bundle adjustment/structure from motion package.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/koraykv/fex">fex</a> - A package for
|
||
feature extraction in Torch. Provides SIFT and dSIFT modules.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/sermanet/OverFeat">OverFeat</a> - A
|
||
state-of-the-art generic dense feature extractor.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/facebookresearch/wav2letter">wav2letter</a> - a
|
||
simple and efficient end-to-end Automatic Speech Recognition (ASR)
|
||
system from Facebook AI Research.</li>
|
||
</ul></li>
|
||
<li><a href="http://numlua.luaforge.net/">Numeric Lua</a></li>
|
||
<li><a href="https://labix.org/lunatic-python">Lunatic Python</a></li>
|
||
<li><a href="http://scilua.org/">SciLua</a></li>
|
||
<li><a href="https://bitbucket.org/lucashnegri/lna">Lua - Numerical
|
||
Algorithms</a> <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/jzrake/lunum">Lunum</a>
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/fabprezja/keras-gpt-copilot">Keras GPT
|
||
Copilot</a> - A python package that integrates an LLM copilot inside the
|
||
keras model development workflow.</li>
|
||
</ul>
|
||
<p><a name="lua-demos-and-scripts"></a> #### Demos and Scripts * <a
|
||
href="https://github.com/e-lab/torch7-demos">Core torch7 demos
|
||
repository</a>. * linear-regression, logistic-regression * face detector
|
||
(training and detection as separate demos) * mst-based-segmenter *
|
||
train-a-digit-classifier * train-autoencoder * optical flow demo *
|
||
train-on-housenumbers * train-on-cifar * tracking with deep nets *
|
||
kinect demo * filter-bank visualization * saliency-networks * <a
|
||
href="https://github.com/soumith/galaxyzoo">Training a Convnet for the
|
||
Galaxy-Zoo Kaggle challenge(CUDA demo)</a> * <a
|
||
href="https://github.com/rosejn/torch-datasets">torch-datasets</a> -
|
||
Scripts to load several popular datasets including: * BSR 500 * CIFAR-10
|
||
* COIL * Street View House Numbers * MNIST * NORB * <a
|
||
href="https://github.com/fidlej/aledataset">Atari2600</a> - Scripts to
|
||
generate a dataset with static frames from the Arcade Learning
|
||
Environment.</p>
|
||
<p><a name="matlab"></a> ## Matlab</p>
|
||
<p><a name="matlab-computer-vision"></a> #### Computer Vision</p>
|
||
<ul>
|
||
<li><a
|
||
href="http://www.ifp.illinois.edu/~minhdo/software/contourlet_toolbox.tar">Contourlets</a>
|
||
- MATLAB source code that implements the contourlet transform and its
|
||
utility functions.</li>
|
||
<li><a
|
||
href="https://www3.math.tu-berlin.de/numerik/www.shearlab.org/software">Shearlets</a>
|
||
- MATLAB code for shearlet transform.</li>
|
||
<li><a href="http://www.curvelet.org/software.html">Curvelets</a> - The
|
||
Curvelet transform is a higher dimensional generalization of the Wavelet
|
||
transform designed to represent images at different scales and different
|
||
angles.</li>
|
||
<li><a
|
||
href="http://www.cmap.polytechnique.fr/~peyre/download/">Bandlets</a> -
|
||
MATLAB code for bandlet transform.</li>
|
||
<li><a href="https://kyamagu.github.io/mexopencv/">mexopencv</a> -
|
||
Collection and a development kit of MATLAB mex functions for OpenCV
|
||
library.</li>
|
||
</ul>
|
||
<p><a name="matlab-natural-language-processing"></a> #### Natural
|
||
Language Processing</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://amplab.cs.berkeley.edu/an-nlp-library-for-matlab/">NLP</a>
|
||
- A NLP library for Matlab.</li>
|
||
</ul>
|
||
<p><a name="matlab-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html">Training
|
||
a deep autoencoder or a classifier on MNIST digits</a> - Training a deep
|
||
autoencoder or a classifier on MNIST digits<a href="#deep-learning">DEEP
|
||
LEARNING</a>.</li>
|
||
<li><a
|
||
href="https://www.socher.org/index.php/Main/Convolutional-RecursiveDeepLearningFor3DObjectClassification">Convolutional-Recursive
|
||
Deep Learning for 3D Object Classification</a> - Convolutional-Recursive
|
||
Deep Learning for 3D Object Classification<a href="#deep-learning">DEEP
|
||
LEARNING</a>.</li>
|
||
<li><a href="https://people.kyb.tuebingen.mpg.de/spider/">Spider</a> -
|
||
The spider is intended to be a complete object orientated environment
|
||
for machine learning in Matlab.</li>
|
||
<li><a
|
||
href="https://www.csie.ntu.edu.tw/~cjlin/libsvm/#matlab">LibSVM</a> - A
|
||
Library for Support Vector Machines.</li>
|
||
<li><a
|
||
href="https://github.com/Xtra-Computing/thundersvm">ThunderSVM</a> - An
|
||
Open-Source SVM Library on GPUs and CPUs</li>
|
||
<li><a
|
||
href="https://www.csie.ntu.edu.tw/~cjlin/liblinear/#download">LibLinear</a>
|
||
- A Library for Large Linear Classification.</li>
|
||
<li><a
|
||
href="https://github.com/josephmisiti/machine-learning-module">Machine
|
||
Learning Module</a> - Class on machine w/ PDF, lectures, code</li>
|
||
<li><a href="https://github.com/BVLC/caffe">Caffe</a> - A deep learning
|
||
framework developed with cleanliness, readability, and speed in
|
||
mind.</li>
|
||
<li><a href="https://github.com/covartech/PRT">Pattern Recognition
|
||
Toolbox</a> - A complete object-oriented environment for machine
|
||
learning in Matlab.</li>
|
||
<li><a href="https://github.com/PRML/PRMLT">Pattern Recognition and
|
||
Machine Learning</a> - This package contains the matlab implementation
|
||
of the algorithms described in the book Pattern Recognition and Machine
|
||
Learning by C. Bishop.</li>
|
||
<li><a href="https://optunity.readthedocs.io/en/latest/">Optunity</a> -
|
||
A library dedicated to automated hyperparameter optimization with a
|
||
simple, lightweight API to facilitate drop-in replacement of grid
|
||
search. Optunity is written in Python but interfaces seamlessly with
|
||
MATLAB.</li>
|
||
<li><a href="https://github.com/apache/incubator-mxnet/">MXNet</a> -
|
||
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with
|
||
Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia,
|
||
Go, JavaScript and more.</li>
|
||
<li><a
|
||
href="https://github.com/trekhleb/machine-learning-octave">Machine
|
||
Learning in MatLab/Octave</a> - Examples of popular machine learning
|
||
algorithms (neural networks, linear/logistic regressions, K-Means, etc.)
|
||
with code examples and mathematics behind them being explained.</li>
|
||
<li><a href="https://github.com/clugen/MOCluGen/">MOCluGen</a> -
|
||
Multidimensional cluster generation in MATLAB/Octave.</li>
|
||
</ul>
|
||
<p><a name="matlab-data-analysis--data-visualization"></a> #### Data
|
||
Analysis / Data Visualization</p>
|
||
<ul>
|
||
<li><a href="https://github.com/cdslaborg/paramonte">ParaMonte</a> - A
|
||
general-purpose MATLAB library for Bayesian data analysis and
|
||
visualization via serial/parallel Monte Carlo and MCMC simulations.
|
||
Documentation can be found <a
|
||
href="https://www.cdslab.org/paramonte/">here</a>.</li>
|
||
<li><a
|
||
href="https://www.cs.purdue.edu/homes/dgleich/packages/matlab_bgl/">matlab_bgl</a>
|
||
- MatlabBGL is a Matlab package for working with graphs.</li>
|
||
<li><a
|
||
href="https://www.mathworks.com/matlabcentral/fileexchange/24134-gaimc---graph-algorithms-in-matlab-code">gaimc</a>
|
||
- Efficient pure-Matlab implementations of graph algorithms to
|
||
complement MatlabBGL’s mex functions.</li>
|
||
</ul>
|
||
<p><a name="net"></a> ## .NET</p>
|
||
<p><a name="net-computer-vision"></a> #### Computer Vision</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://code.google.com/archive/p/opencvdotnet">OpenCVDotNet</a> -
|
||
A wrapper for the OpenCV project to be used with .NET applications.</li>
|
||
<li><a href="http://www.emgu.com/wiki/index.php/Main_Page">Emgu CV</a> -
|
||
Cross platform wrapper of OpenCV which can be compiled in Mono to be run
|
||
on Windows, Linus, Mac OS X, iOS, and Android.</li>
|
||
<li><a href="http://www.aforgenet.com/framework/">AForge.NET</a> - Open
|
||
source C# framework for developers and researchers in the fields of
|
||
Computer Vision and Artificial Intelligence. Development has now shifted
|
||
to GitHub.</li>
|
||
<li><a href="http://accord-framework.net">Accord.NET</a> - Together with
|
||
AForge.NET, this library can provide image processing and computer
|
||
vision algorithms to Windows, Windows RT and Windows Phone. Some
|
||
components are also available for Java and Android.</li>
|
||
</ul>
|
||
<p><a name="net-natural-language-processing"></a> #### Natural Language
|
||
Processing</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/sergey-tihon/Stanford.NLP.NET/">Stanford.NLP
|
||
for .NET</a> - A full port of Stanford NLP packages to .NET and also
|
||
available precompiled as a NuGet package.</li>
|
||
</ul>
|
||
<p><a name="net-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a href="http://accord-framework.net/">Accord-Framework</a> -The
|
||
Accord.NET Framework is a complete framework for building machine
|
||
learning, computer vision, computer audition, signal processing and
|
||
statistical applications.</li>
|
||
<li><a
|
||
href="https://www.nuget.org/packages/Accord.MachineLearning/">Accord.MachineLearning</a>
|
||
- Support Vector Machines, Decision Trees, Naive Bayesian models,
|
||
K-means, Gaussian Mixture models and general algorithms such as Ransac,
|
||
Cross-validation and Grid-Search for machine-learning applications. This
|
||
package is part of the Accord.NET Framework.</li>
|
||
<li><a href="https://diffsharp.github.io/DiffSharp/">DiffSharp</a> - An
|
||
automatic differentiation (AD) library providing exact and efficient
|
||
derivatives (gradients, Hessians, Jacobians, directional derivatives,
|
||
and matrix-free Hessian- and Jacobian-vector products) for machine
|
||
learning and optimization applications. Operations can be nested to any
|
||
level, meaning that you can compute exact higher-order derivatives and
|
||
differentiate functions that are internally making use of
|
||
differentiation, for applications such as hyperparameter
|
||
optimization.</li>
|
||
<li><a
|
||
href="https://www.nuget.org/packages/encog-dotnet-core/">Encog</a> - An
|
||
advanced neural network and machine learning framework. Encog contains
|
||
classes to create a wide variety of networks, as well as support classes
|
||
to normalize and process data for these neural networks. Encog trains
|
||
using multithreaded resilient propagation. Encog can also make use of a
|
||
GPU to further speed processing time. A GUI based workbench is also
|
||
provided to help model and train neural networks.</li>
|
||
<li><a
|
||
href="https://github.com/giacomelli/GeneticSharp">GeneticSharp</a> -
|
||
Multi-platform genetic algorithm library for .NET Core and .NET
|
||
Framework. The library has several implementations of GA operators,
|
||
like: selection, crossover, mutation, reinsertion and termination.</li>
|
||
<li><a href="https://dotnet.github.io/infer/">Infer.NET</a> - Infer.NET
|
||
is a framework for running Bayesian inference in graphical models. One
|
||
can use Infer.NET to solve many different kinds of machine learning
|
||
problems, from standard problems like classification, recommendation or
|
||
clustering through customized solutions to domain-specific problems.
|
||
Infer.NET has been used in a wide variety of domains including
|
||
information retrieval, bioinformatics, epidemiology, vision, and many
|
||
others.</li>
|
||
<li><a href="https://github.com/dotnet/machinelearning">ML.NET</a> -
|
||
ML.NET is a cross-platform open-source machine learning framework which
|
||
makes machine learning accessible to .NET developers. ML.NET was
|
||
originally developed in Microsoft Research and evolved into a
|
||
significant framework over the last decade and is used across many
|
||
product groups in Microsoft like Windows, Bing, PowerPoint, Excel and
|
||
more.</li>
|
||
<li><a href="https://sourceforge.net/projects/nnd/">Neural Network
|
||
Designer</a> - DBMS management system and designer for neural networks.
|
||
The designer application is developed using WPF, and is a user interface
|
||
which allows you to design your neural network, query the network,
|
||
create and configure chat bots that are capable of asking questions and
|
||
learning from your feedback. The chat bots can even scrape the internet
|
||
for information to return in their output as well as to use for
|
||
learning.</li>
|
||
<li><a href="https://github.com/mrdimosthenis/Synapses">Synapses</a> -
|
||
Neural network library in F#.</li>
|
||
<li><a href="https://github.com/fsprojects/Vulpes">Vulpes</a> - Deep
|
||
belief and deep learning implementation written in F# and leverages CUDA
|
||
GPU execution with Alea.cuBase.</li>
|
||
<li><a
|
||
href="https://github.com/tech-quantum/MxNet.Sharp">MxNet.Sharp</a> -
|
||
.NET Standard bindings for Apache MxNet with Imperative, Symbolic and
|
||
Gluon Interface for developing, training and deploying Machine Learning
|
||
models in C#. https://mxnet.tech-quantum.com/</li>
|
||
</ul>
|
||
<p><a name="net-data-analysis--data-visualization"></a> #### Data
|
||
Analysis / Data Visualization</p>
|
||
<ul>
|
||
<li><a href="https://www.nuget.org/packages/numl/">numl</a> - numl is a
|
||
machine learning library intended to ease the use of using standard
|
||
modelling techniques for both prediction and clustering.</li>
|
||
<li><a href="https://www.nuget.org/packages/MathNet.Numerics/">Math.NET
|
||
Numerics</a> - Numerical foundation of the Math.NET project, aiming to
|
||
provide methods and algorithms for numerical computations in science,
|
||
engineering and everyday use. Supports .Net 4.0, .Net 3.5 and Mono on
|
||
Windows, Linux and Mac; Silverlight 5, WindowsPhone/SL 8, WindowsPhone
|
||
8.1 and Windows 8 with PCL Portable Profiles 47 and 344; Android/iOS
|
||
with Xamarin.</li>
|
||
<li><a
|
||
href="https://www.microsoft.com/en-us/research/project/sho-the-net-playground-for-data/">Sho</a>
|
||
- Sho is an interactive environment for data analysis and scientific
|
||
computing that lets you seamlessly connect scripts (in IronPython) with
|
||
compiled code (in .NET) to enable fast and flexible prototyping. The
|
||
environment includes powerful and efficient libraries for linear algebra
|
||
as well as data visualization that can be used from any .NET language,
|
||
as well as a feature-rich interactive shell for rapid development.</li>
|
||
</ul>
|
||
<p><a name="objective-c"></a> ## Objective C</p>
|
||
<p><a name="objective-c-general-purpose-machine-learning"></a> ###
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a href="https://github.com/yconst/YCML">YCML</a> - A Machine
|
||
Learning framework for Objective-C and Swift (OS X / iOS).</li>
|
||
<li><a
|
||
href="https://github.com/nikolaypavlov/MLPNeuralNet">MLPNeuralNet</a> -
|
||
Fast multilayer perceptron neural network library for iOS and Mac OS X.
|
||
MLPNeuralNet predicts new examples by trained neural networks. It is
|
||
built on top of the Apple’s Accelerate Framework, using vectorized
|
||
operations and hardware acceleration if available.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/gianlucabertani/MAChineLearning">MAChineLearning</a>
|
||
- An Objective-C multilayer perceptron library, with full support for
|
||
training through backpropagation. Implemented using vDSP and vecLib,
|
||
it’s 20 times faster than its Java equivalent. Includes sample code for
|
||
use from Swift.</li>
|
||
<li><a
|
||
href="https://github.com/Kalvar/ios-BPN-NeuralNetwork">BPN-NeuralNetwork</a>
|
||
- It implemented 3 layers of neural networks ( Input Layer, Hidden Layer
|
||
and Output Layer ) and it was named Back Propagation Neural Networks
|
||
(BPN). This network can be used in products recommendation, user
|
||
behavior analysis, data mining and data analysis.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/Kalvar/ios-Multi-Perceptron-NeuralNetwork">Multi-Perceptron-NeuralNetwork</a>
|
||
- It implemented multi-perceptrons neural network
|
||
(ニューラルネットワーク) based on Back Propagation Neural Networks (BPN)
|
||
and designed unlimited-hidden-layers.</li>
|
||
<li><a
|
||
href="https://github.com/Kalvar/ios-KRHebbian-Algorithm">KRHebbian-Algorithm</a>
|
||
- It is a non-supervisory and self-learning algorithm (adjust the
|
||
weights) in the neural network of Machine Learning.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/Kalvar/ios-KRKmeans-Algorithm">KRKmeans-Algorithm</a>
|
||
- It implemented K-Means clustering and classification algorithm. It
|
||
could be used in data mining and image compression.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/Kalvar/ios-KRFuzzyCMeans-Algorithm">KRFuzzyCMeans-Algorithm</a>
|
||
- It implemented Fuzzy C-Means (FCM) the fuzzy clustering /
|
||
classification algorithm on Machine Learning. It could be used in data
|
||
mining and image compression. <strong>[Deprecated]</strong></li>
|
||
</ul>
|
||
<p><a name="ocaml"></a> ## OCaml</p>
|
||
<p><a name="ocaml-general-purpose-machine-learning"></a> ###
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a href="https://github.com/rleonid/oml">Oml</a> - A general
|
||
statistics and machine learning library.</li>
|
||
<li><a href="https://mmottl.github.io/gpr/">GPR</a> - Efficient Gaussian
|
||
Process Regression in OCaml.</li>
|
||
<li><a href="https://libra.cs.uoregon.edu">Libra-Tk</a> - Algorithms for
|
||
learning and inference with discrete probabilistic models.</li>
|
||
<li><a
|
||
href="https://github.com/LaurentMazare/tensorflow-ocaml">TensorFlow</a>
|
||
- OCaml bindings for TensorFlow.</li>
|
||
</ul>
|
||
<p><a name="opencv"></a> ## OpenCV</p>
|
||
<p><a name="opencv-ComputerVision and Text Detection"></a> ###
|
||
OpenSource-Computer-Vision</p>
|
||
<ul>
|
||
<li><a href="https://github.com/opencv/opencv">OpenCV</a> - A OpenSource
|
||
Computer Vision Library</li>
|
||
</ul>
|
||
<p><a name="perl"></a> ## Perl</p>
|
||
<p><a name="perl-data-analysis--data-visualization"></a> ### Data
|
||
Analysis / Data Visualization</p>
|
||
<ul>
|
||
<li><a href="https://metacpan.org/pod/Paws::MachineLearning">Perl Data
|
||
Language</a>, a pluggable architecture for data and image processing,
|
||
which can be <a href="https://github.com/zenogantner/PDL-ML">used for
|
||
machine learning</a>.</li>
|
||
</ul>
|
||
<p><a name="perl-general-purpose-machine-learning"></a> ###
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/apache/incubator-mxnet/tree/master/perl-package">MXnet
|
||
for Deep Learning, in Perl</a>, also <a
|
||
href="https://metacpan.org/pod/AI::MXNet">released in CPAN</a>.</li>
|
||
<li><a href="https://metacpan.org/pod/Paws::MachineLearning">Perl Data
|
||
Language</a>, using AWS machine learning platform from Perl.</li>
|
||
<li><a
|
||
href="https://metacpan.org/pod/Algorithm::SVMLight">Algorithm::SVMLight</a>,
|
||
implementation of Support Vector Machines with SVMLight under it.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li>Several machine learning and artificial intelligence models are
|
||
included in the <a
|
||
href="https://metacpan.org/search?size=20&q=AI"><code>AI</code></a>
|
||
namespace. For instance, you can find <a
|
||
href="https://metacpan.org/pod/AI::NaiveBayes">Naïve Bayes</a>.</li>
|
||
</ul>
|
||
<p><a name="perl6"></a> ## Perl 6</p>
|
||
<ul>
|
||
<li><a href="https://github.com/titsuki/p6-Algorithm-LibSVM">Support
|
||
Vector Machines</a></li>
|
||
<li><a href="https://github.com/titsuki/p6-Algorithm-NaiveBayes">Naïve
|
||
Bayes</a></li>
|
||
</ul>
|
||
<p><a name="perl-6-data-analysis--data-visualization"></a> ### Data
|
||
Analysis / Data Visualization</p>
|
||
<ul>
|
||
<li><a href="https://metacpan.org/pod/Paws::MachineLearning">Perl Data
|
||
Language</a>, a pluggable architecture for data and image processing,
|
||
which can be <a href="https://github.com/zenogantner/PDL-ML">used for
|
||
machine learning</a>.</li>
|
||
</ul>
|
||
<p><a name="perl-6-general-purpose-machine-learning"></a> ###
|
||
General-Purpose Machine Learning</p>
|
||
<p><a name="php"></a> ## PHP</p>
|
||
<p><a name="php-natural-language-processing"></a> ### Natural Language
|
||
Processing</p>
|
||
<ul>
|
||
<li><a href="https://github.com/fukuball/jieba-php">jieba-php</a> -
|
||
Chinese Words Segmentation Utilities.</li>
|
||
</ul>
|
||
<p><a name="php-general-purpose-machine-learning"></a> ###
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a href="https://gitlab.com/php-ai/php-ml">PHP-ML</a> - Machine
|
||
Learning library for PHP. Algorithms, Cross Validation, Neural Network,
|
||
Preprocessing, Feature Extraction and much more in one library.</li>
|
||
<li><a
|
||
href="https://github.com/denissimon/prediction-builder">PredictionBuilder</a>
|
||
- A library for machine learning that builds predictions using a linear
|
||
regression.</li>
|
||
<li><a href="https://github.com/RubixML">Rubix ML</a> - A high-level
|
||
machine learning (ML) library that lets you build programs that learn
|
||
from data using the PHP language.</li>
|
||
<li><a href="https://github.com/fulldecent/19-questions">19
|
||
Questions</a> - A machine learning / bayesian inference assigning
|
||
attributes to objects.</li>
|
||
</ul>
|
||
<p><a name="python"></a> ## Python</p>
|
||
<p><a name="python-computer-vision"></a> #### Computer Vision</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/lightly-ai/lightly-train">LightlyTrain</a> -
|
||
Pretrain computer vision models on unlabeled data for industrial
|
||
applications</li>
|
||
<li><a
|
||
href="https://github.com/scikit-image/scikit-image">Scikit-Image</a> - A
|
||
collection of algorithms for image processing in Python.</li>
|
||
<li><a href="https://github.com/guofei9987/scikit-opt">Scikit-Opt</a> -
|
||
Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm
|
||
Optimization, Simulated Annealing, Ant Colony Algorithm, Immune
|
||
Algorithm, Artificial Fish Swarm Algorithm in Python)</li>
|
||
<li><a href="http://simplecv.org/">SimpleCV</a> - An open source
|
||
computer vision framework that gives access to several high-powered
|
||
computer vision libraries, such as OpenCV. Written on Python and runs on
|
||
Mac, Windows, and Ubuntu Linux.</li>
|
||
<li><a href="https://github.com/ukoethe/vigra">Vigranumpy</a> - Python
|
||
bindings for the VIGRA C++ computer vision library.</li>
|
||
<li><a href="https://cmusatyalab.github.io/openface/">OpenFace</a> -
|
||
Free and open source face recognition with deep neural networks.</li>
|
||
<li><a href="https://github.com/jesolem/PCV">PCV</a> - Open source
|
||
Python module for computer vision. <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/ageitgey/face_recognition">face_recognition</a>
|
||
- Face recognition library that recognizes and manipulates faces from
|
||
Python or from the command line.</li>
|
||
<li><a href="https://github.com/serengil/deepface">deepface</a> - A
|
||
lightweight face recognition and facial attribute analysis (age, gender,
|
||
emotion and race) framework for Python covering cutting-edge models such
|
||
as VGG-Face, FaceNet, OpenFace, DeepFace, DeepID, Dlib and ArcFace.</li>
|
||
<li><a href="https://github.com/serengil/retinaface">retinaface</a> -
|
||
deep learning based cutting-edge facial detector for Python coming with
|
||
facial landmarks</li>
|
||
<li><a href="https://github.com/natanielruiz/dockerface">dockerface</a>
|
||
- Easy to install and use deep learning Faster R-CNN face detection for
|
||
images and video in a docker container.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/facebookresearch/Detectron">Detectron</a> -
|
||
FAIR’s software system that implements state-of-the-art object detection
|
||
algorithms, including Mask R-CNN. It is written in Python and powered by
|
||
the Caffe2 deep learning framework. <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/facebookresearch/detectron2">detectron2</a> -
|
||
FAIR’s next-generation research platform for object detection and
|
||
segmentation. It is a ground-up rewrite of the previous version,
|
||
Detectron, and is powered by the PyTorch deep learning framework.</li>
|
||
<li><a href="https://github.com/albu/albumentations">albumentations</a>
|
||
- А fast and framework agnostic image augmentation library that
|
||
implements a diverse set of augmentation techniques. Supports
|
||
classification, segmentation, detection out of the box. Was used to win
|
||
a number of Deep Learning competitions at Kaggle, Topcoder and those
|
||
that were a part of the CVPR workshops.</li>
|
||
<li><a href="https://github.com/madmaze/pytesseract">pytessarct</a> -
|
||
Python-tesseract is an optical character recognition (OCR) tool for
|
||
python. That is, it will recognize and “read” the text embedded in
|
||
images. Python-tesseract is a wrapper for <a
|
||
href="https://github.com/tesseract-ocr/tesseract">Google’s Tesseract-OCR
|
||
Engine</a>.</li>
|
||
<li><a href="https://github.com/jrosebr1/imutils">imutils</a> - A
|
||
library containing Convenience functions to make basic image processing
|
||
operations such as translation, rotation, resizing, skeletonization, and
|
||
displaying Matplotlib images easier with OpenCV and Python.</li>
|
||
<li><a href="https://github.com/donnyyou/PyTorchCV">PyTorchCV</a> - A
|
||
PyTorch-Based Framework for Deep Learning in Computer Vision.</li>
|
||
<li><a href="https://github.com/jolibrain/joliGEN">joliGEN</a> -
|
||
Generative AI Image Toolset with GANs and Diffusion for Real-World
|
||
Applications.</li>
|
||
<li><a
|
||
href="https://pytorch-lightning-bolts.readthedocs.io/en/latest/self_supervised_models.html">Self-supervised
|
||
learning</a></li>
|
||
<li><a
|
||
href="https://github.com/ProGamerGov/neural-style-pt">neural-style-pt</a>
|
||
- A PyTorch implementation of Justin Johnson’s neural-style (neural
|
||
style transfer).</li>
|
||
<li><a href="https://github.com/alankbi/detecto">Detecto</a> - Train and
|
||
run a computer vision model with 5-10 lines of code.</li>
|
||
<li><a
|
||
href="https://github.com/ProGamerGov/neural-dream">neural-dream</a> - A
|
||
PyTorch implementation of DeepDream.</li>
|
||
<li><a
|
||
href="https://github.com/CMU-Perceptual-Computing-Lab/openpose">Openpose</a>
|
||
- A real-time multi-person keypoint detection library for body, face,
|
||
hands, and foot estimation</li>
|
||
<li><a
|
||
href="https://github.com/leoxiaobin/deep-high-resolution-net.pytorch">Deep
|
||
High-Resolution-Net</a> - A PyTorch implementation of CVPR2019 paper
|
||
“Deep High-Resolution Representation Learning for Human Pose
|
||
Estimation”</li>
|
||
<li><a href="https://github.com/tensorflow/gan">TF-GAN</a> - TF-GAN is a
|
||
lightweight library for training and evaluating Generative Adversarial
|
||
Networks (GANs).</li>
|
||
<li><a
|
||
href="https://github.com/ProGamerGov/dream-creator">dream-creator</a> -
|
||
A PyTorch implementation of DeepDream. Allows individuals to quickly and
|
||
easily train their own custom GoogleNet models with custom datasets for
|
||
DeepDream.</li>
|
||
<li><a href="https://github.com/greentfrapp/lucent">Lucent</a> -
|
||
Tensorflow and OpenAI Clarity’s Lucid adapted for PyTorch.</li>
|
||
<li><a href="https://github.com/lightly-ai/lightly">lightly</a> -
|
||
Lightly is a computer vision framework for self-supervised
|
||
learning.</li>
|
||
<li><a href="https://github.com/gugarosa/learnergy">Learnergy</a> -
|
||
Energy-based machine learning models built upon PyTorch.</li>
|
||
<li><a href="https://github.com/openvisionapi">OpenVisionAPI</a> - Open
|
||
source computer vision API based on open source models.</li>
|
||
<li><a href="https://github.com/Ret2Me/IoT-Owl">IoT Owl</a> - Light face
|
||
detection and recognition system with huge possibilities, based on
|
||
Microsoft Face API and TensorFlow made for small IoT devices like
|
||
raspberry pi.</li>
|
||
<li><a href="https://github.com/exadel-inc/CompreFace">Exadel
|
||
CompreFace</a> - face recognition system that can be easily integrated
|
||
into any system without prior machine learning skills. CompreFace
|
||
provides REST API for face recognition, face verification, face
|
||
detection, face mask detection, landmark detection, age, and gender
|
||
recognition and is easily deployed with docker.</li>
|
||
<li><a
|
||
href="https://github.com/Charmve/computer-vision-in-action">computer-vision-in-action</a>
|
||
- as known as <code>L0CV</code>, is a new generation of computer vision
|
||
open source online learning media, a cross-platform interactive learning
|
||
framework integrating graphics, source code and HTML. the L0CV ecosystem
|
||
— Notebook, Datasets, Source Code, and from Diving-in to Advanced — as
|
||
well as the L0CV Hub.</li>
|
||
<li><a href="https://github.com/rwightman/pytorch-image-models">timm</a>
|
||
- PyTorch image models, scripts, pretrained weights – ResNet, ResNeXT,
|
||
EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet,
|
||
MobileNet-V3/V2, RegNet, DPN, CSPNet, and more.</li>
|
||
<li><a
|
||
href="https://github.com/qubvel/segmentation_models.pytorch">segmentation_models.pytorch</a>
|
||
- A PyTorch-based toolkit that offers pre-trained segmentation models
|
||
for computer vision tasks. It simplifies the development of image
|
||
segmentation applications by providing a collection of popular
|
||
architecture implementations, such as UNet and PSPNet, along with
|
||
pre-trained weights, making it easier for researchers and developers to
|
||
achieve high-quality pixel-level object segmentation in images.</li>
|
||
<li><a
|
||
href="https://github.com/qubvel/segmentation_models">segmentation_models</a>
|
||
- A TensorFlow Keras-based toolkit that offers pre-trained segmentation
|
||
models for computer vision tasks. It simplifies the development of image
|
||
segmentation applications by providing a collection of popular
|
||
architecture implementations, such as UNet and PSPNet, along with
|
||
pre-trained weights, making it easier for researchers and developers to
|
||
achieve high-quality pixel-level object segmentation in images.</li>
|
||
<li><a href="https://github.com/ml-explore/mlx">MLX</a>- MLX is an array
|
||
framework for machine learning on Apple silicon, developed by Apple
|
||
machine learning research.</li>
|
||
</ul>
|
||
<p><a name="python-natural-language-processing"></a> #### Natural
|
||
Language Processing</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/lancopku/pkuseg-python">pkuseg-python</a> - A
|
||
better version of Jieba, developed by Peking University.</li>
|
||
<li><a href="https://www.nltk.org/">NLTK</a> - A leading platform for
|
||
building Python programs to work with human language data.</li>
|
||
<li><a href="https://github.com/clips/pattern">Pattern</a> - A web
|
||
mining module for the Python programming language. It has tools for
|
||
natural language processing, machine learning, among others.</li>
|
||
<li><a href="https://github.com/machinalis/quepy">Quepy</a> - A python
|
||
framework to transform natural language questions to queries in a
|
||
database query language.</li>
|
||
<li><a href="http://textblob.readthedocs.io/en/dev/">TextBlob</a> -
|
||
Providing a consistent API for diving into common natural language
|
||
processing (NLP) tasks. Stands on the giant shoulders of NLTK and
|
||
Pattern, and plays nicely with both.</li>
|
||
<li><a href="https://github.com/machinalis/yalign">YAlign</a> - A
|
||
sentence aligner, a friendly tool for extracting parallel sentences from
|
||
comparable corpora. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/fxsjy/jieba#jieba-1">jieba</a> - Chinese
|
||
Words Segmentation Utilities.</li>
|
||
<li><a href="https://github.com/isnowfy/snownlp">SnowNLP</a> - A library
|
||
for processing Chinese text.</li>
|
||
<li><a href="https://github.com/tasdikrahman/spammy">spammy</a> - A
|
||
library for email Spam filtering built on top of NLTK</li>
|
||
<li><a href="https://github.com/fangpenlin/loso">loso</a> - Another
|
||
Chinese segmentation library. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/duanhongyi/genius">genius</a> - A
|
||
Chinese segment based on Conditional Random Field.</li>
|
||
<li><a href="http://konlpy.org">KoNLPy</a> - A Python package for Korean
|
||
natural language processing.</li>
|
||
<li><a href="https://github.com/pprett/nut">nut</a> - Natural language
|
||
Understanding Toolkit. <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/columbia-applied-data-science/rosetta">Rosetta</a>
|
||
- Text processing tools and wrappers (e.g. Vowpal Wabbit)</li>
|
||
<li><a href="https://pypi.org/project/bllipparser/">BLLIP Parser</a> -
|
||
Python bindings for the BLLIP Natural Language Parser (also known as the
|
||
Charniak-Johnson parser). <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/proycon/pynlpl">PyNLPl</a> - Python
|
||
Natural Language Processing Library. General purpose NLP library for
|
||
Python. Also contains some specific modules for parsing common NLP
|
||
formats, most notably for <a
|
||
href="https://proycon.github.io/folia/">FoLiA</a>, but also ARPA
|
||
language models, Moses phrasetables, GIZA++ alignments.</li>
|
||
<li><a href="https://github.com/sergioburdisso/pyss3">PySS3</a> - Python
|
||
package that implements a novel white-box machine learning model for
|
||
text classification, called SS3. Since SS3 has the ability to visually
|
||
explain its rationale, this package also comes with easy-to-use
|
||
interactive visualizations tools (<a href="http://tworld.io/ss3/">online
|
||
demos</a>).</li>
|
||
<li><a href="https://github.com/proycon/python-ucto">python-ucto</a> -
|
||
Python binding to ucto (a unicode-aware rule-based tokenizer for various
|
||
languages).</li>
|
||
<li><a href="https://github.com/proycon/python-frog">python-frog</a> -
|
||
Python binding to Frog, an NLP suite for Dutch. (pos tagging,
|
||
lemmatisation, dependency parsing, NER)</li>
|
||
<li><a
|
||
href="https://github.com/EducationalTestingService/python-zpar">python-zpar</a>
|
||
- Python bindings for <a
|
||
href="https://github.com/frcchang/zpar">ZPar</a>, a statistical
|
||
part-of-speech-tagger, constituency parser, and dependency parser for
|
||
English.</li>
|
||
<li><a href="https://github.com/proycon/colibri-core">colibri-core</a> -
|
||
Python binding to C++ library for extracting and working with basic
|
||
linguistic constructions such as n-grams and skipgrams in a quick and
|
||
memory-efficient way.</li>
|
||
<li><a href="https://github.com/explosion/spaCy">spaCy</a> - Industrial
|
||
strength NLP with Python and Cython.</li>
|
||
<li><a
|
||
href="https://github.com/dmcc/PyStanfordDependencies">PyStanfordDependencies</a>
|
||
- Python interface for converting Penn Treebank trees to Stanford
|
||
Dependencies.</li>
|
||
<li><a href="https://github.com/doukremt/distance">Distance</a> -
|
||
Levenshtein and Hamming distance computation.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/seatgeek/fuzzywuzzy">Fuzzy Wuzzy</a> -
|
||
Fuzzy String Matching in Python.</li>
|
||
<li><a href="https://github.com/x-tabdeveloping/neofuzz">Neofuzz</a> -
|
||
Blazing fast, lightweight and customizable fuzzy and semantic text
|
||
search in Python with fuzzywuzzy/thefuzz compatible API.</li>
|
||
<li><a href="https://github.com/jamesturk/jellyfish">jellyfish</a> - a
|
||
python library for doing approximate and phonetic matching of
|
||
strings.</li>
|
||
<li><a href="https://pypi.org/project/editdistance/">editdistance</a> -
|
||
fast implementation of edit distance.</li>
|
||
<li><a href="https://github.com/chartbeat-labs/textacy">textacy</a> -
|
||
higher-level NLP built on Spacy.</li>
|
||
<li><a
|
||
href="https://github.com/dasmith/stanford-corenlp-python">stanford-corenlp-python</a>
|
||
- Python wrapper for <a
|
||
href="https://github.com/stanfordnlp/CoreNLP">Stanford CoreNLP</a>
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/cltk/cltk">CLTK</a> - The Classical
|
||
Language Toolkit.</li>
|
||
<li><a href="https://github.com/RasaHQ/rasa">Rasa</a> - A “machine
|
||
learning framework to automate text-and voice-based conversations.”</li>
|
||
<li><a href="https://github.com/PPACI/yase">yase</a> - Transcode
|
||
sentence (or other sequence) to list of word vector.</li>
|
||
<li><a href="https://github.com/aboSamoor/polyglot">Polyglot</a> -
|
||
Multilingual text (NLP) processing toolkit.</li>
|
||
<li><a href="https://github.com/facebookresearch/DrQA">DrQA</a> -
|
||
Reading Wikipedia to answer open-domain questions.</li>
|
||
<li><a href="https://github.com/dedupeio/dedupe">Dedupe</a> - A python
|
||
library for accurate and scalable fuzzy matching, record deduplication
|
||
and entity-resolution.</li>
|
||
<li><a href="https://github.com/snipsco/snips-nlu">Snips NLU</a> -
|
||
Natural Language Understanding library for intent classification and
|
||
entity extraction</li>
|
||
<li><a
|
||
href="https://github.com/Franck-Dernoncourt/NeuroNER">NeuroNER</a> -
|
||
Named-entity recognition using neural networks providing
|
||
state-of-the-art-results</li>
|
||
<li><a href="https://github.com/deepmipt/DeepPavlov/">DeepPavlov</a> -
|
||
conversational AI library with many pre-trained Russian NLP models.</li>
|
||
<li><a href="https://github.com/bigartm/bigartm">BigARTM</a> - topic
|
||
modelling platform.</li>
|
||
<li><a href="https://github.com/gugarosa/nalp">NALP</a> - A Natural
|
||
Adversarial Language Processing framework built over Tensorflow.</li>
|
||
<li><a href="https://github.com/xhlulu/dl-translate">DL Translate</a> -
|
||
A deep learning-based translation library between 50 languages, built
|
||
with <code>transformers</code>.</li>
|
||
<li><a href="https://github.com/deepset-ai/haystack">Haystack</a> - A
|
||
framework for building industrial-strength applications with Transformer
|
||
models and LLMs.</li>
|
||
<li><a href="https://github.com/comet-ml/comet-llm">CometLLM</a> -
|
||
Track, log, visualize and evaluate your LLM prompts and prompt
|
||
chains.</li>
|
||
<li><a
|
||
href="https://github.com/huggingface/transformers">Transformers</a> - A
|
||
deep learning library containing thousands of pre-trained models on
|
||
different tasks. The goto place for anything related to Large Language
|
||
Models.</li>
|
||
<li><a href="https://github.com/alinapetukhova/textcl">TextCL</a> - Text
|
||
preprocessing package for use in NLP tasks.</li>
|
||
</ul>
|
||
<p><a name="python-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a href="https://pypi.org/project/xad/">XAD</a> -> Fast and
|
||
easy-to-use backpropagation tool.</li>
|
||
<li><a href="https://github.com/aimhubio/aim">Aim</a> -> An
|
||
easy-to-use & supercharged open-source AI metadata tracker.</li>
|
||
<li><a href="https://github.com/AstraZeneca/rexmex">RexMex</a> -> A
|
||
general purpose recommender metrics library for fair evaluation.</li>
|
||
<li><a href="https://github.com/AstraZeneca/chemicalx">ChemicalX</a>
|
||
-> A PyTorch based deep learning library for drug pair scoring</li>
|
||
<li><a href="https://github.com/Azure/mmlspark">Microsoft ML for Apache
|
||
Spark</a> -> A distributed machine learning framework Apache
|
||
Spark</li>
|
||
<li><a href="https://github.com/benedekrozemberczki/shapley">Shapley</a>
|
||
-> A data-driven framework to quantify the value of classifiers in a
|
||
machine learning ensemble.</li>
|
||
<li><a href="https://github.com/nidhaloff/igel">igel</a> -> A
|
||
delightful machine learning tool that allows you to train/fit, test and
|
||
use models <strong>without writing code</strong></li>
|
||
<li><a href="https://github.com/Shanky-21/Machine_learning">ML Model
|
||
building</a> -> A Repository Containing Classification, Clustering,
|
||
Regression, Recommender Notebooks with illustration to make them.</li>
|
||
<li><a
|
||
href="https://github.com/PyTorchLightning/deep-learning-project-template">ML/DL
|
||
project template</a></li>
|
||
<li><a href="https://github.com/pyg-team/pytorch-frame">PyTorch
|
||
Frame</a> -> A Modular Framework for Multi-Modal Tabular
|
||
Learning.</li>
|
||
<li><a href="https://github.com/pyg-team/pytorch_geometric">PyTorch
|
||
Geometric</a> -> Graph Neural Network Library for PyTorch.</li>
|
||
<li><a
|
||
href="https://github.com/benedekrozemberczki/pytorch_geometric_temporal">PyTorch
|
||
Geometric Temporal</a> -> A temporal extension of PyTorch Geometric
|
||
for dynamic graph representation learning.</li>
|
||
<li><a
|
||
href="https://github.com/benedekrozemberczki/littleballoffur">Little
|
||
Ball of Fur</a> -> A graph sampling extension library for NetworkX
|
||
with a Scikit-Learn like API.</li>
|
||
<li><a href="https://github.com/benedekrozemberczki/karateclub">Karate
|
||
Club</a> -> An unsupervised machine learning extension library for
|
||
NetworkX with a Scikit-Learn like API.</li>
|
||
<li><a href="https://github.com/AutoViML/Auto_ViML">Auto_ViML</a> ->
|
||
Automatically Build Variant Interpretable ML models fast! Auto_ViML is
|
||
pronounced “auto vimal”, is a comprehensive and scalable Python AutoML
|
||
toolkit with imbalanced handling, ensembling, stacking and built-in
|
||
feature selection. Featured in
|
||
<a href="https://towardsdatascience.com/why-automl-is-an-essential-new-tool-for-data-scientists-2d9ab4e25e46?source=friends_link&sk=d03a0cc55c23deb497d546d6b9be0653">Medium
|
||
article</a>.</li>
|
||
<li><a href="https://github.com/yzhao062/pyod">PyOD</a> -> Python
|
||
Outlier Detection, comprehensive and scalable Python toolkit for
|
||
detecting outlying objects in multivariate data. Featured for Advanced
|
||
models, including Neural Networks/Deep Learning and Outlier
|
||
Ensembles.</li>
|
||
<li><a href="https://github.com/neptune-ml/steppy">steppy</a> ->
|
||
Lightweight, Python library for fast and reproducible machine learning
|
||
experimentation. Introduces a very simple interface that enables clean
|
||
machine learning pipeline design.</li>
|
||
<li><a
|
||
href="https://github.com/neptune-ml/steppy-toolkit">steppy-toolkit</a>
|
||
-> Curated collection of the neural networks, transformers and models
|
||
that make your machine learning work faster and more effective.</li>
|
||
<li><a href="https://github.com/Microsoft/CNTK">CNTK</a> - Microsoft
|
||
Cognitive Toolkit (CNTK), an open source deep-learning toolkit.
|
||
Documentation can be found <a
|
||
href="https://docs.microsoft.com/cognitive-toolkit/">here</a>.</li>
|
||
<li><a href="https://github.com/couler-proj/couler">Couler</a> - Unified
|
||
interface for constructing and managing machine learning workflows on
|
||
different workflow engines, such as Argo Workflows, Tekton Pipelines,
|
||
and Apache Airflow.</li>
|
||
<li><a href="https://github.com/ClimbsRocks/auto_ml">auto_ml</a> -
|
||
Automated machine learning for production and analytics. Lets you focus
|
||
on the fun parts of ML, while outputting production-ready code, and
|
||
detailed analytics of your dataset and results. Includes support for
|
||
NLP, XGBoost, CatBoost, LightGBM, and soon, deep learning.</li>
|
||
<li><a href="https://github.com/wannesm/dtaidistance">dtaidistance</a> -
|
||
High performance library for time series distances (DTW) and time series
|
||
clustering.</li>
|
||
<li><a href="https://github.com/arogozhnikov/einops">einops</a> - Deep
|
||
learning operations reinvented (for pytorch, tensorflow, jax and
|
||
others).</li>
|
||
<li><a href="https://github.com/jeff1evesque/machine-learning">machine
|
||
learning</a> - automated build consisting of a <a
|
||
href="https://github.com/jeff1evesque/machine-learning#web-interface">web-interface</a>,
|
||
and set of <a
|
||
href="https://github.com/jeff1evesque/machine-learning#programmatic-interface">programmatic-interface</a>
|
||
API, for support vector machines. Corresponding dataset(s) are stored
|
||
into a SQL database, then generated model(s) used for prediction(s), are
|
||
stored into a NoSQL datastore.</li>
|
||
<li><a href="https://github.com/dmlc/xgboost">XGBoost</a> - Python
|
||
bindings for eXtreme Gradient Boosting (Tree) Library.</li>
|
||
<li><a href="https://github.com/serengil/chefboost">ChefBoost</a> - a
|
||
lightweight decision tree framework for Python with categorical feature
|
||
support covering regular decision tree algorithms such as ID3, C4.5,
|
||
CART, CHAID and regression tree; also some advanced bagging and boosting
|
||
techniques such as gradient boosting, random forest and adaboost.</li>
|
||
<li><a href="https://singa.apache.org">Apache SINGA</a> - An Apache
|
||
Incubating project for developing an open source machine learning
|
||
library.</li>
|
||
<li><a
|
||
href="https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers">Bayesian
|
||
Methods for Hackers</a> - Book/iPython notebooks on Probabilistic
|
||
Programming in Python.</li>
|
||
<li><a
|
||
href="https://github.com/machinalis/featureforge">Featureforge</a> A set
|
||
of tools for creating and testing machine learning features, with a
|
||
scikit-learn compatible API.</li>
|
||
<li><a href="http://spark.apache.org/docs/latest/mllib-guide.html">MLlib
|
||
in Apache Spark</a> - Distributed machine learning library in Spark</li>
|
||
<li><a href="https://github.com/Hydrospheredata/mist">Hydrosphere
|
||
Mist</a> - A service for deployment Apache Spark MLLib machine learning
|
||
models as realtime, batch or reactive web services.</li>
|
||
<li><a href="https://towhee.io">Towhee</a> - A Python module that encode
|
||
unstructured data into embeddings.</li>
|
||
<li><a href="https://scikit-learn.org/">scikit-learn</a> - A Python
|
||
module for machine learning built on top of SciPy.</li>
|
||
<li><a
|
||
href="https://github.com/metric-learn/metric-learn">metric-learn</a> - A
|
||
Python module for metric learning.</li>
|
||
<li><a
|
||
href="https://github.com/OML-Team/open-metric-learning">OpenMetricLearning</a>
|
||
- A PyTorch-based framework to train and validate the models producing
|
||
high-quality embeddings.</li>
|
||
<li><a href="https://github.com/intel/scikit-learn-intelex">Intel(R)
|
||
Extension for Scikit-learn</a> - A seamless way to speed up your
|
||
Scikit-learn applications with no accuracy loss and code changes.</li>
|
||
<li><a href="https://github.com/simpleai-team/simpleai">SimpleAI</a>
|
||
Python implementation of many of the artificial intelligence algorithms
|
||
described in the book “Artificial Intelligence, a Modern Approach”. It
|
||
focuses on providing an easy to use, well documented and tested
|
||
library.</li>
|
||
<li><a href="https://www.astroml.org/">astroML</a> - Machine Learning
|
||
and Data Mining for Astronomy.</li>
|
||
<li><a href="https://turi.com/products/create/docs/">graphlab-create</a>
|
||
- A library with various machine learning models (regression,
|
||
clustering, recommender systems, graph analytics, etc.) implemented on
|
||
top of a disk-backed DataFrame.</li>
|
||
<li><a href="https://bigml.com">BigML</a> - A library that contacts
|
||
external servers.</li>
|
||
<li><a href="https://github.com/clips/pattern">pattern</a> - Web mining
|
||
module for Python.</li>
|
||
<li><a href="https://github.com/numenta/nupic">NuPIC</a> - Numenta
|
||
Platform for Intelligent Computing.</li>
|
||
<li><a href="https://github.com/lisa-lab/pylearn2">Pylearn2</a> - A
|
||
Machine Learning library based on <a
|
||
href="https://github.com/Theano/Theano">Theano</a>.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/keras-team/keras">keras</a> - High-level
|
||
neural networks frontend for <a
|
||
href="https://github.com/tensorflow/tensorflow">TensorFlow</a>, <a
|
||
href="https://github.com/Microsoft/CNTK">CNTK</a> and <a
|
||
href="https://github.com/Theano/Theano">Theano</a>.</li>
|
||
<li><a href="https://github.com/Lasagne/Lasagne">Lasagne</a> -
|
||
Lightweight library to build and train neural networks in Theano.</li>
|
||
<li><a href="https://github.com/hannes-brt/hebel">hebel</a> -
|
||
GPU-Accelerated Deep Learning Library in Python.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/chainer/chainer">Chainer</a> - Flexible
|
||
neural network framework.</li>
|
||
<li><a href="https://facebook.github.io/prophet/">prophet</a> - Fast and
|
||
automated time series forecasting framework by Facebook.</li>
|
||
<li><a href="https://github.com/skforecast/skforecast">skforecast</a> -
|
||
Python library for time series forecasting using machine learning
|
||
models. It works with any regressor compatible with the scikit-learn
|
||
API, including popular options like LightGBM, XGBoost, CatBoost, Keras,
|
||
and many others.</li>
|
||
<li><a
|
||
href="https://github.com/feature-engine/feature_engine">Feature-engine</a>
|
||
- Open source library with an exhaustive battery of feature engineering
|
||
and selection methods based on pandas and scikit-learn.</li>
|
||
<li><a href="https://github.com/RaRe-Technologies/gensim">gensim</a> -
|
||
Topic Modelling for Humans.</li>
|
||
<li><a
|
||
href="https://centre-for-humanities-computing.github.io/tweetopic/">tweetopic</a>
|
||
- Blazing fast short-text-topic-modelling for Python.</li>
|
||
<li><a
|
||
href="https://github.com/x-tabdeveloping/topic-wizard">topicwizard</a> -
|
||
Interactive topic model visualization/interpretation framework.</li>
|
||
<li><a href="https://github.com/ContinuumIO/topik">topik</a> - Topic
|
||
modelling toolkit. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/pybrain/pybrain">PyBrain</a> - Another
|
||
Python Machine Learning Library.</li>
|
||
<li><a href="https://github.com/IDSIA/brainstorm">Brainstorm</a> - Fast,
|
||
flexible and fun neural networks. This is the successor of PyBrain.</li>
|
||
<li><a href="https://surpriselib.com">Surprise</a> - A scikit for
|
||
building and analyzing recommender systems.</li>
|
||
<li><a
|
||
href="https://implicit.readthedocs.io/en/latest/quickstart.html">implicit</a>
|
||
- Fast Python Collaborative Filtering for Implicit Datasets.</li>
|
||
<li><a href="https://making.lyst.com/lightfm/docs/home.html">LightFM</a>
|
||
- A Python implementation of a number of popular recommendation
|
||
algorithms for both implicit and explicit feedback.</li>
|
||
<li><a href="https://github.com/muricoca/crab">Crab</a> - A flexible,
|
||
fast recommender engine. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/ocelma/python-recsys">python-recsys</a>
|
||
- A Python library for implementing a Recommender System.</li>
|
||
<li><a href="https://github.com/AllenDowney/ThinkBayes">thinking
|
||
bayes</a> - Book on Bayesian Analysis.</li>
|
||
<li><a
|
||
href="https://github.com/williamFalcon/pix2pix-keras">Image-to-Image
|
||
Translation with Conditional Adversarial Networks</a> - Implementation
|
||
of image to image (pix2pix) translation from the paper by <a
|
||
href="https://arxiv.org/pdf/1611.07004.pdf">isola et al</a>.<a
|
||
href="#deep-learning">DEEP LEARNING</a></li>
|
||
<li><a
|
||
href="https://github.com/echen/restricted-boltzmann-machines">Restricted
|
||
Boltzmann Machines</a> -Restricted Boltzmann Machines in Python. <a
|
||
href="#deep-learning">DEEP LEARNING</a></li>
|
||
<li><a href="https://github.com/pprett/bolt">Bolt</a> - Bolt Online
|
||
Learning Toolbox. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/patvarilly/CoverTree">CoverTree</a> -
|
||
Python implementation of cover trees, near-drop-in replacement for
|
||
scipy.spatial.kdtree <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/nilearn/nilearn">nilearn</a> - Machine
|
||
learning for NeuroImaging in Python.</li>
|
||
<li><a href="https://github.com/raamana/neuropredict">neuropredict</a> -
|
||
Aimed at novice machine learners and non-expert programmers, this
|
||
package offers easy (no coding needed) and comprehensive machine
|
||
learning (evaluation and full report of predictive performance WITHOUT
|
||
requiring you to code) in Python for NeuroImaging and any other type of
|
||
features. This is aimed at absorbing much of the ML workflow, unlike
|
||
other packages like nilearn and pymvpa, which require you to learn their
|
||
API and code to produce anything useful.</li>
|
||
<li><a href="https://imbalanced-learn.org/stable/">imbalanced-learn</a>
|
||
- Python module to perform under sampling and oversampling with various
|
||
techniques.</li>
|
||
<li><a
|
||
href="https://github.com/ZhiningLiu1998/imbalanced-ensemble">imbalanced-ensemble</a>
|
||
- Python toolbox for quick implementation, modification, evaluation, and
|
||
visualization of ensemble learning algorithms for class-imbalanced data.
|
||
Supports out-of-the-box multi-class imbalanced (long-tailed)
|
||
classification.</li>
|
||
<li><a href="https://github.com/shogun-toolbox/shogun">Shogun</a> - The
|
||
Shogun Machine Learning Toolbox.</li>
|
||
<li><a href="https://github.com/perone/Pyevolve">Pyevolve</a> - Genetic
|
||
algorithm framework. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/BVLC/caffe">Caffe</a> - A deep learning
|
||
framework developed with cleanliness, readability, and speed in
|
||
mind.</li>
|
||
<li><a href="https://github.com/breze-no-salt/breze">breze</a> - Theano
|
||
based library for deep and recurrent neural networks.</li>
|
||
<li><a href="https://github.com/cortexlabs/cortex">Cortex</a> - Open
|
||
source platform for deploying machine learning models in
|
||
production.</li>
|
||
<li><a href="https://github.com/mattjj/pyhsmm">pyhsmm</a> - library for
|
||
approximate unsupervised inference in Bayesian Hidden Markov Models
|
||
(HMMs) and explicit-duration Hidden semi-Markov Models (HSMMs), focusing
|
||
on the Bayesian Nonparametric extensions, the HDP-HMM and HDP-HSMM,
|
||
mostly with weak-limit approximations.</li>
|
||
<li><a href="https://github.com/EducationalTestingService/skll">SKLL</a>
|
||
- A wrapper around scikit-learn that makes it simpler to conduct
|
||
experiments.</li>
|
||
<li><a href="https://github.com/zueve/neurolab">neurolab</a></li>
|
||
<li><a href="https://github.com/HIPS/Spearmint">Spearmint</a> -
|
||
Spearmint is a package to perform Bayesian optimization according to the
|
||
algorithms outlined in the paper: Practical Bayesian Optimization of
|
||
Machine Learning Algorithms. Jasper Snoek, Hugo Larochelle and Ryan P.
|
||
Adams. Advances in Neural Information Processing Systems, 2012.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/abhik/pebl/">Pebl</a> - Python
|
||
Environment for Bayesian Learning. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/Theano/Theano/">Theano</a> - Optimizing
|
||
GPU-meta-programming code generating array oriented optimizing math
|
||
compiler in Python.</li>
|
||
<li><a href="https://github.com/tensorflow/tensorflow/">TensorFlow</a> -
|
||
Open source software library for numerical computation using data flow
|
||
graphs.</li>
|
||
<li><a href="https://github.com/jmschrei/pomegranate">pomegranate</a> -
|
||
Hidden Markov Models for Python, implemented in Cython for speed and
|
||
efficiency.</li>
|
||
<li><a href="https://github.com/proycon/python-timbl">python-timbl</a> -
|
||
A Python extension module wrapping the full TiMBL C++ programming
|
||
interface. Timbl is an elaborate k-Nearest Neighbours machine learning
|
||
toolkit.</li>
|
||
<li><a href="https://github.com/deap/deap">deap</a> - Evolutionary
|
||
algorithm framework.</li>
|
||
<li><a href="https://github.com/andersbll/deeppy">pydeep</a> - Deep
|
||
Learning In Python. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/rasbt/mlxtend">mlxtend</a> - A library
|
||
consisting of useful tools for data science and machine learning
|
||
tasks.</li>
|
||
<li><a href="https://github.com/NervanaSystems/neon">neon</a> -
|
||
Nervana’s <a
|
||
href="https://github.com/soumith/convnet-benchmarks">high-performance</a>
|
||
Python-based Deep Learning framework <a href="#deep-learning">DEEP
|
||
LEARNING</a>. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://optunity.readthedocs.io/en/latest/">Optunity</a> -
|
||
A library dedicated to automated hyperparameter optimization with a
|
||
simple, lightweight API to facilitate drop-in replacement of grid
|
||
search.</li>
|
||
<li><a
|
||
href="https://github.com/mnielsen/neural-networks-and-deep-learning">Neural
|
||
Networks and Deep Learning</a> - Code samples for my book “Neural
|
||
Networks and Deep Learning” <a href="#deep-learning">DEEP
|
||
LEARNING</a>.</li>
|
||
<li><a href="https://github.com/spotify/annoy">Annoy</a> - Approximate
|
||
nearest neighbours implementation.</li>
|
||
<li><a href="https://github.com/EpistasisLab/tpot">TPOT</a> - Tool that
|
||
automatically creates and optimizes machine learning pipelines using
|
||
genetic programming. Consider it your personal data science assistant,
|
||
automating a tedious part of machine learning.</li>
|
||
<li><a href="https://github.com/pgmpy/pgmpy">pgmpy</a> A python library
|
||
for working with Probabilistic Graphical Models.</li>
|
||
<li><a href="https://github.com/NVIDIA/DIGITS">DIGITS</a> - The Deep
|
||
Learning GPU Training System (DIGITS) is a web application for training
|
||
deep learning models.</li>
|
||
<li><a href="https://orange.biolab.si/">Orange</a> - Open source data
|
||
visualization and data analysis for novices and experts.</li>
|
||
<li><a href="https://github.com/apache/incubator-mxnet">MXNet</a> -
|
||
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with
|
||
Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia,
|
||
Go, JavaScript and more.</li>
|
||
<li><a href="https://github.com/luispedro/milk">milk</a> - Machine
|
||
learning toolkit focused on supervised classification.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/tflearn/tflearn">TFLearn</a> - Deep
|
||
learning library featuring a higher-level API for TensorFlow.</li>
|
||
<li><a href="https://github.com/yandex/rep">REP</a> - an IPython-based
|
||
environment for conducting data-driven research in a consistent and
|
||
reproducible way. REP is not trying to substitute scikit-learn, but
|
||
extends it and provides better user experience.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/RGF-team/rgf">rgf_python</a> - Python
|
||
bindings for Regularized Greedy Forest (Tree) Library.</li>
|
||
<li><a href="https://github.com/AmazaspShumik/sklearn-bayes">skbayes</a>
|
||
- Python package for Bayesian Machine Learning with scikit-learn
|
||
API.</li>
|
||
<li><a href="https://github.com/fukuball/fuku-ml">fuku-ml</a> - Simple
|
||
machine learning library, including Perceptron, Regression, Support
|
||
Vector Machine, Decision Tree and more, it’s easy to use and easy to
|
||
learn for beginners.</li>
|
||
<li><a href="https://github.com/reiinakano/xcessiv">Xcessiv</a> - A
|
||
web-based application for quick, scalable, and automated hyperparameter
|
||
tuning and stacked ensembling.</li>
|
||
<li><a href="https://github.com/pytorch/pytorch">PyTorch</a> - Tensors
|
||
and Dynamic neural networks in Python with strong GPU acceleration</li>
|
||
<li><a
|
||
href="https://github.com/PyTorchLightning/pytorch-lightning">PyTorch
|
||
Lightning</a> - The lightweight PyTorch wrapper for high-performance AI
|
||
research.</li>
|
||
<li><a
|
||
href="https://github.com/PyTorchLightning/pytorch-lightning-bolts">PyTorch
|
||
Lightning Bolts</a> - Toolbox of models, callbacks, and datasets for
|
||
AI/ML researchers.</li>
|
||
<li><a href="https://github.com/skorch-dev/skorch">skorch</a> - A
|
||
scikit-learn compatible neural network library that wraps PyTorch.</li>
|
||
<li><a
|
||
href="https://github.com/eriklindernoren/ML-From-Scratch">ML-From-Scratch</a>
|
||
- Implementations of Machine Learning models from scratch in Python with
|
||
a focus on transparency. Aims to showcase the nuts and bolts of ML in an
|
||
accessible way.</li>
|
||
<li><a href="http://edwardlib.org/">Edward</a> - A library for
|
||
probabilistic modelling, inference, and criticism. Built on top of
|
||
TensorFlow.</li>
|
||
<li><a href="https://github.com/omimo/xRBM">xRBM</a> - A library for
|
||
Restricted Boltzmann Machine (RBM) and its conditional variants in
|
||
Tensorflow.</li>
|
||
<li><a href="https://github.com/catboost/catboost">CatBoost</a> -
|
||
General purpose gradient boosting on decision trees library with
|
||
categorical features support out of the box. It is easy to install, well
|
||
documented and supports CPU and GPU (even multi-GPU) computation.</li>
|
||
<li><a
|
||
href="https://github.com/fukatani/stacked_generalization">stacked_generalization</a>
|
||
- Implementation of machine learning stacking technique as a handy
|
||
library in Python.</li>
|
||
<li><a href="https://github.com/modAL-python/modAL">modAL</a> - A
|
||
modular active learning framework for Python, built on top of
|
||
scikit-learn.</li>
|
||
<li><a href="https://github.com/cogitare-ai/cogitare">Cogitare</a>: A
|
||
Modern, Fast, and Modular Deep Learning and Machine Learning framework
|
||
for Python.</li>
|
||
<li><a href="https://github.com/jgreenemi/Parris">Parris</a> - Parris,
|
||
the automated infrastructure setup tool for machine learning
|
||
algorithms.</li>
|
||
<li><a href="https://github.com/siavashserver/neonrvm">neonrvm</a> -
|
||
neonrvm is an open source machine learning library based on RVM
|
||
technique. It’s written in C programming language and comes with Python
|
||
programming language bindings.</li>
|
||
<li><a href="https://github.com/apple/turicreate">Turi Create</a> -
|
||
Machine learning from Apple. Turi Create simplifies the development of
|
||
custom machine learning models. You don’t have to be a machine learning
|
||
expert to add recommendations, object detection, image classification,
|
||
image similarity or activity classification to your app.</li>
|
||
<li><a href="https://github.com/aksnzhy/xlearn">xLearn</a> - A high
|
||
performance, easy-to-use, and scalable machine learning package, which
|
||
can be used to solve large-scale machine learning problems. xLearn is
|
||
especially useful for solving machine learning problems on large-scale
|
||
sparse data, which is very common in Internet services such as online
|
||
advertisement and recommender systems.</li>
|
||
<li><a href="https://github.com/flennerhag/mlens">mlens</a> - A high
|
||
performance, memory efficient, maximally parallelized ensemble learning,
|
||
integrated with scikit-learn.</li>
|
||
<li><a href="https://github.com/scoremedia/thampi">Thampi</a> - Machine
|
||
Learning Prediction System on AWS Lambda</li>
|
||
<li><a href="https://github.com/mindsdb/mindsdb">MindsDB</a> - Open
|
||
Source framework to streamline use of neural networks.</li>
|
||
<li><a href="https://github.com/Microsoft/Recommenders">Microsoft
|
||
Recommenders</a>: Examples and best practices for building
|
||
recommendation systems, provided as Jupyter notebooks. The repo contains
|
||
some of the latest state of the art algorithms from Microsoft Research
|
||
as well as from other companies and institutions.</li>
|
||
<li><a
|
||
href="https://github.com/stellargraph/stellargraph">StellarGraph</a>:
|
||
Machine Learning on Graphs, a Python library for machine learning on
|
||
graph-structured (network-structured) data.</li>
|
||
<li><a href="https://github.com/bentoml/bentoml">BentoML</a>: Toolkit
|
||
for package and deploy machine learning models for serving in
|
||
production</li>
|
||
<li><a href="https://github.com/arthurpaulino/miraiml">MiraiML</a>: An
|
||
asynchronous engine for continuous & autonomous machine learning,
|
||
built for real-time usage.</li>
|
||
<li><a href="https://github.com/ddbourgin/numpy-ml">numpy-ML</a>:
|
||
Reference implementations of ML models written in numpy</li>
|
||
<li><a href="https://github.com/Neuraxio/Neuraxle">Neuraxle</a>: A
|
||
framework providing the right abstractions to ease research,
|
||
development, and deployment of your ML pipelines.</li>
|
||
<li><a href="https://github.com/PreferredAI/cornac">Cornac</a> - A
|
||
comparative framework for multimodal recommender systems with a focus on
|
||
models leveraging auxiliary data.</li>
|
||
<li><a href="https://github.com/google/jax">JAX</a> - JAX is Autograd
|
||
and XLA, brought together for high-performance machine learning
|
||
research.</li>
|
||
<li><a href="https://github.com/catalyst-team/catalyst">Catalyst</a> -
|
||
High-level utils for PyTorch DL & RL research. It was developed with
|
||
a focus on reproducibility, fast experimentation and code/ideas reusing.
|
||
Being able to research/develop something new, rather than write another
|
||
regular train loop.</li>
|
||
<li><a href="https://github.com/fastai/fastai">Fastai</a> - High-level
|
||
wrapper built on the top of Pytorch which supports vision, text, tabular
|
||
data and collaborative filtering.</li>
|
||
<li><a
|
||
href="https://github.com/scikit-multiflow/scikit-multiflow">scikit-multiflow</a>
|
||
- A machine learning framework for multi-output/multi-label and stream
|
||
data.</li>
|
||
<li><a href="https://github.com/mindsdb/lightwood">Lightwood</a> - A
|
||
Pytorch based framework that breaks down machine learning problems into
|
||
smaller blocks that can be glued together seamlessly with objective to
|
||
build predictive models with one line of code.</li>
|
||
<li><a href="https://github.com/jungtaekkim/bayeso">bayeso</a> - A
|
||
simple, but essential Bayesian optimization package, written in
|
||
Python.</li>
|
||
<li><a
|
||
href="https://github.com/mljar/mljar-supervised">mljar-supervised</a> -
|
||
An Automated Machine Learning (AutoML) python package for tabular data.
|
||
It can handle: Binary Classification, MultiClass Classification and
|
||
Regression. It provides explanations and markdown reports.</li>
|
||
<li><a href="https://github.com/alirezamika/evostra">evostra</a> - A
|
||
fast Evolution Strategy implementation in Python.</li>
|
||
<li><a href="https://github.com/determined-ai/determined">Determined</a>
|
||
- Scalable deep learning training platform, including integrated support
|
||
for distributed training, hyperparameter tuning, experiment tracking,
|
||
and model management.</li>
|
||
<li><a href="https://github.com/OpenMined/PySyft">PySyft</a> - A Python
|
||
library for secure and private Deep Learning built on PyTorch and
|
||
TensorFlow.</li>
|
||
<li><a href="https://github.com/OpenMined/PyGrid/">PyGrid</a> -
|
||
Peer-to-peer network of data owners and data scientists who can
|
||
collectively train AI models using PySyft</li>
|
||
<li><a href="https://github.com/alan-turing-institute/sktime">sktime</a>
|
||
- A unified framework for machine learning with time series</li>
|
||
<li><a href="https://github.com/gugarosa/opfython">OPFython</a> - A
|
||
Python-inspired implementation of the Optimum-Path Forest
|
||
classifier.</li>
|
||
<li><a href="https://github.com/gugarosa/opytimizer">Opytimizer</a> -
|
||
Python-based meta-heuristic optimization techniques.</li>
|
||
<li><a href="https://github.com/gradio-app/gradio">Gradio</a> - A Python
|
||
library for quickly creating and sharing demos of models. Debug models
|
||
interactively in your browser, get feedback from collaborators, and
|
||
generate public links without deploying anything.</li>
|
||
<li><a href="https://github.com/activeloopai/Hub">Hub</a> - Fastest
|
||
unstructured dataset management for TensorFlow/PyTorch. Stream &
|
||
version-control data. Store even petabyte-scale data in a single
|
||
numpy-like array on the cloud accessible on any machine. Visit <a
|
||
href="https://activeloop.ai">activeloop.ai</a> for more info.</li>
|
||
<li><a href="https://github.com/dmey/synthia">Synthia</a> -
|
||
Multidimensional synthetic data generation in Python.</li>
|
||
<li><a href="https://github.com/bytehub-ai/bytehub">ByteHub</a> - An
|
||
easy-to-use, Python-based feature store. Optimized for time-series
|
||
data.</li>
|
||
<li><a href="https://github.com/backprop-ai/backprop">Backprop</a> -
|
||
Backprop makes it simple to use, finetune, and deploy state-of-the-art
|
||
ML models.</li>
|
||
<li><a href="https://github.com/online-ml/river">River</a>: A framework
|
||
for general purpose online machine learning.</li>
|
||
<li><a href="https://github.com/nccr-itmo/FEDOT">FEDOT</a>: An AutoML
|
||
framework for the automated design of composite modelling pipelines. It
|
||
can handle classification, regression, and time series forecasting tasks
|
||
on different types of data (including multi-modal datasets).</li>
|
||
<li><a
|
||
href="https://github.com/rodrigo-arenas/Sklearn-genetic-opt">Sklearn-genetic-opt</a>:
|
||
An AutoML package for hyperparameters tuning using evolutionary
|
||
algorithms, with built-in callbacks, plotting, remote logging and
|
||
more.</li>
|
||
<li><a href="https://github.com/evidentlyai/evidently">Evidently</a>:
|
||
Interactive reports to analyze machine learning models during validation
|
||
or production monitoring.</li>
|
||
<li><a href="https://github.com/streamlit/streamlit">Streamlit</a>:
|
||
Streamlit is an framework to create beautiful data apps in hours, not
|
||
weeks.</li>
|
||
<li><a href="https://github.com/optuna/optuna">Optuna</a>: Optuna is an
|
||
automatic hyperparameter optimization software framework, particularly
|
||
designed for machine learning.</li>
|
||
<li><a href="https://github.com/deepchecks/deepchecks">Deepchecks</a>:
|
||
Validation & testing of machine learning models and data during
|
||
model development, deployment, and production. This includes checks and
|
||
suites related to various types of issues, such as model performance,
|
||
data integrity, distribution mismatches, and more.</li>
|
||
<li><a href="https://github.com/MAIF/shapash">Shapash</a> : Shapash is a
|
||
Python library that provides several types of visualization that display
|
||
explicit labels that everyone can understand.</li>
|
||
<li><a href="https://github.com/MAIF/eurybia">Eurybia</a>: Eurybia
|
||
monitors data and model drift over time and securizes model deployment
|
||
with data validation.</li>
|
||
<li><a href="https://github.com/hpcaitech/ColossalAI">Colossal-AI</a>:
|
||
An open-source deep learning system for large-scale model training and
|
||
inference with high efficiency and low cost.</li>
|
||
<li><a href="https://github.com/skrub-data/skrub">skrub</a> - Skrub is a
|
||
Python library that eases preprocessing and feature engineering for
|
||
machine learning on dataframes.</li>
|
||
<li><a href="https://github.com/upgini/upgini">Upgini</a>: Free
|
||
automated data & feature enrichment library for machine learning -
|
||
automatically searches through thousands of ready-to-use features from
|
||
public and community shared data sources and enriches your training
|
||
dataset with only the accuracy improving features.</li>
|
||
<li><a
|
||
href="https://github.com/Western-OC2-Lab/AutoML-Implementation-for-Static-and-Dynamic-Data-Analytics">AutoML-Implementation-for-Static-and-Dynamic-Data-Analytics</a>:
|
||
A tutorial to help machine learning researchers to automatically obtain
|
||
optimized machine learning models with the optimal learning performance
|
||
on any specific task.</li>
|
||
<li><a href="https://github.com/robinthibaut/skbel">SKBEL</a>: A Python
|
||
library for Bayesian Evidential Learning (BEL) in order to estimate the
|
||
uncertainty of a prediction.</li>
|
||
<li><a href="https://bit.ly/nannyml-github-machinelearning">NannyML</a>:
|
||
Python library capable of fully capturing the impact of data drift on
|
||
performance. Allows estimation of post-deployment model performance
|
||
without access to targets.</li>
|
||
<li><a href="https://github.com/cleanlab/cleanlab">cleanlab</a>: The
|
||
standard data-centric AI package for data quality and machine learning
|
||
with messy, real-world data and labels.</li>
|
||
<li><a href="https://github.com/awslabs/autogluon">AutoGluon</a>: AutoML
|
||
for Image, Text, Tabular, Time-Series, and MultiModal Data.</li>
|
||
<li><a href="https://github.com/edtechre/pybroker">PyBroker</a> -
|
||
Algorithmic Trading with Machine Learning.</li>
|
||
<li><a href="https://github.com/IFCA/frouros">Frouros</a>: Frouros is an
|
||
open source Python library for drift detection in machine learning
|
||
systems.</li>
|
||
<li><a href="https://github.com/comet-ml/comet-examples">CometML</a>:
|
||
The best-in-class MLOps platform with experiment tracking, model
|
||
production monitoring, a model registry, and data lineage from training
|
||
straight through to production.</li>
|
||
<li><a href="https://github.com/Okerew/okrolearn">Okrolearn</a>: A
|
||
python machine learning library created to combine powefull data
|
||
analasys features with tensors and machine learning components, while
|
||
maintaining support for other libraries.</li>
|
||
<li><a href="https://github.com/comet-ml/opik">Opik</a>: Evaluate,
|
||
trace, test, and ship LLM applications across your dev and production
|
||
lifecycles.</li>
|
||
<li><a href="https://github.com/clugen/pyclugen">pyclugen</a> -
|
||
Multidimensional cluster generation in Python.</li>
|
||
</ul>
|
||
<p><a name="python-data-analysis--data-visualization"></a> #### Data
|
||
Analysis / Data Visualization * <a
|
||
href="https://github.com/capitalone/datacompy">DataComPy</a> - A library
|
||
to compare Pandas, Polars, and Spark data frames. It provides stats and
|
||
lets users adjust for match accuracy. * <a
|
||
href="https://github.com/Shanky-21/Data_visualization">DataVisualization</a>
|
||
- A GitHub Repository Where you can Learn Datavisualizatoin Basics to
|
||
Intermediate level. * <a
|
||
href="https://scitools.org.uk/cartopy/docs/latest/">Cartopy</a> -
|
||
Cartopy is a Python package designed for geospatial data processing in
|
||
order to produce maps and other geospatial data analyses. * <a
|
||
href="https://www.scipy.org/">SciPy</a> - A Python-based ecosystem of
|
||
open-source software for mathematics, science, and engineering. * <a
|
||
href="https://www.numpy.org/">NumPy</a> - A fundamental package for
|
||
scientific computing with Python. * <a
|
||
href="https://github.com/AutoViML/AutoViz">AutoViz</a> AutoViz performs
|
||
automatic visualization of any dataset with a single line of Python
|
||
code. Give it any input file (CSV, txt or JSON) of any size and AutoViz
|
||
will visualize it. See
|
||
<a href="https://towardsdatascience.com/autoviz-a-new-tool-for-automated-visualization-ec9c1744a6ad?source=friends_link&sk=c9e9503ec424b191c6096d7e3f515d10">Medium
|
||
article</a>. * <a href="https://numba.pydata.org/">Numba</a> - Python
|
||
JIT (just in time) compiler to LLVM aimed at scientific Python by the
|
||
developers of Cython and NumPy. * <a
|
||
href="https://github.com/mars-project/mars">Mars</a> - A tensor-based
|
||
framework for large-scale data computation which is often regarded as a
|
||
parallel and distributed version of NumPy. * <a
|
||
href="https://networkx.github.io/">NetworkX</a> - A high-productivity
|
||
software for complex networks. * <a
|
||
href="https://igraph.org/python/">igraph</a> - binding to igraph library
|
||
- General purpose graph library. * <a
|
||
href="https://pandas.pydata.org/">Pandas</a> - A library providing
|
||
high-performance, easy-to-use data structures and data analysis tools. *
|
||
<a href="https://github.com/cdslaborg/paramonte">ParaMonte</a> - A
|
||
general-purpose Python library for Bayesian data analysis and
|
||
visualization via serial/parallel Monte Carlo and MCMC simulations.
|
||
Documentation can be found <a
|
||
href="https://www.cdslab.org/paramonte/">here</a>. * <a
|
||
href="https://github.com/vaexio/vaex">Vaex</a> - A high performance
|
||
Python library for lazy Out-of-Core DataFrames (similar to Pandas), to
|
||
visualize and explore big tabular datasets. Documentation can be found
|
||
<a href="https://vaex.io/docs/index.html">here</a>. * <a
|
||
href="https://github.com/mining/mining">Open Mining</a> - Business
|
||
Intelligence (BI) in Python (Pandas web interface)
|
||
<strong>[Deprecated]</strong> * <a
|
||
href="https://github.com/pymc-devs/pymc">PyMC</a> - Markov Chain Monte
|
||
Carlo sampling toolkit. * <a
|
||
href="https://github.com/quantopian/zipline">zipline</a> - A Pythonic
|
||
algorithmic trading library. * <a href="https://www.pydy.org/">PyDy</a>
|
||
- Short for Python Dynamics, used to assist with workflow in the
|
||
modelling of dynamic motion based around NumPy, SciPy, IPython, and
|
||
matplotlib. * <a href="https://github.com/sympy/sympy">SymPy</a> - A
|
||
Python library for symbolic mathematics. * <a
|
||
href="https://github.com/statsmodels/statsmodels">statsmodels</a> -
|
||
Statistical modelling and econometrics in Python. * <a
|
||
href="https://www.astropy.org/">astropy</a> - A community Python library
|
||
for Astronomy. * <a href="https://matplotlib.org/">matplotlib</a> - A
|
||
Python 2D plotting library. * <a
|
||
href="https://github.com/bokeh/bokeh">bokeh</a> - Interactive Web
|
||
Plotting for Python. * <a href="https://plot.ly/python/">plotly</a> -
|
||
Collaborative web plotting for Python and matplotlib. * <a
|
||
href="https://github.com/altair-viz/altair">altair</a> - A Python to
|
||
Vega translator. * <a href="https://github.com/mikedewar/d3py">d3py</a>
|
||
- A plotting library for Python, based on <a
|
||
href="https://d3js.org/">D3.js</a>. * <a
|
||
href="https://github.com/D3xterjs/pydexter">PyDexter</a> - Simple
|
||
plotting for Python. Wrapper for D3xterjs; easily render charts
|
||
in-browser. * <a href="https://github.com/yhat/ggpy">ggplot</a> - Same
|
||
API as ggplot2 for R. <strong>[Deprecated]</strong> * <a
|
||
href="https://github.com/sinhrks/ggfortify">ggfortify</a> - Unified
|
||
interface to ggplot2 popular R packages. * <a
|
||
href="https://github.com/kartograph/kartograph.py">Kartograph.py</a> -
|
||
Rendering beautiful SVG maps in Python. * <a
|
||
href="http://pygal.org/en/stable/">pygal</a> - A Python SVG Charts
|
||
Creator. * <a
|
||
href="https://github.com/pyqtgraph/pyqtgraph">PyQtGraph</a> - A
|
||
pure-python graphics and GUI library built on PyQt4 / PySide and NumPy.
|
||
* <a href="https://github.com/twitter/pycascading">pycascading</a>
|
||
<strong>[Deprecated]</strong> * <a
|
||
href="https://github.com/AirSage/Petrel">Petrel</a> - Tools for writing,
|
||
submitting, debugging, and monitoring Storm topologies in pure Python. *
|
||
<a href="https://github.com/blaze/blaze">Blaze</a> - NumPy and Pandas
|
||
interface to Big Data. * <a
|
||
href="https://github.com/dfm/emcee">emcee</a> - The Python ensemble
|
||
sampling toolkit for affine-invariant MCMC. * <a
|
||
href="https://github.com/cigroup-ol/windml">windML</a> - A Python
|
||
Framework for Wind Energy Analysis and Prediction. * <a
|
||
href="https://github.com/vispy/vispy">vispy</a> - GPU-based
|
||
high-performance interactive OpenGL 2D/3D data visualization library. *
|
||
<a href="https://github.com/numenta/nupic.cerebro2">cerebro2</a> A
|
||
web-based visualization and debugging platform for NuPIC.
|
||
<strong>[Deprecated]</strong> * <a
|
||
href="https://github.com/htm-community/nupic.studio">NuPIC Studio</a> An
|
||
all-in-one NuPIC Hierarchical Temporal Memory visualization and
|
||
debugging super-tool! <strong>[Deprecated]</strong> * <a
|
||
href="https://github.com/sparklingpandas/sparklingpandas">SparklingPandas</a>
|
||
Pandas on PySpark (POPS). * <a
|
||
href="https://seaborn.pydata.org/">Seaborn</a> - A python visualization
|
||
library based on matplotlib. * <a
|
||
href="https://github.com/nicohlr/ipychart">ipychart</a> - The power of
|
||
Chart.js in Jupyter Notebook. * <a
|
||
href="https://github.com/bloomberg/bqplot">bqplot</a> - An API for
|
||
plotting in Jupyter (IPython). * <a
|
||
href="https://github.com/rewonc/pastalog">pastalog</a> - Simple,
|
||
realtime visualization of neural network training performance. * <a
|
||
href="https://github.com/apache/incubator-superset">Superset</a> - A
|
||
data exploration platform designed to be visual, intuitive, and
|
||
interactive. * <a href="https://github.com/nathanepstein/dora">Dora</a>
|
||
- Tools for exploratory data analysis in Python. * <a
|
||
href="http://www.ruffus.org.uk">Ruffus</a> - Computation Pipeline
|
||
library for python. * <a
|
||
href="https://github.com/sevamoo/SOMPY">SOMPY</a> - Self Organizing Map
|
||
written in Python (Uses neural networks for data analysis). * <a
|
||
href="https://github.com/peterwittek/somoclu">somoclu</a> Massively
|
||
parallel self-organizing maps: accelerate training on multicore CPUs,
|
||
GPUs, and clusters, has python API. * <a
|
||
href="https://github.com/lmcinnes/hdbscan">HDBScan</a> - implementation
|
||
of the hdbscan algorithm in Python - used for clustering * <a
|
||
href="https://github.com/ayush1997/visualize_ML">visualize_ML</a> - A
|
||
python package for data exploration and data analysis.
|
||
<strong>[Deprecated]</strong> * <a
|
||
href="https://github.com/reiinakano/scikit-plot">scikit-plot</a> - A
|
||
visualization library for quick and easy generation of common plots in
|
||
data analysis and machine learning. * <a
|
||
href="https://github.com/jwkvam/bowtie">Bowtie</a> - A dashboard library
|
||
for interactive visualizations using flask socketio and react. * <a
|
||
href="https://github.com/marcotcr/lime">lime</a> - Lime is about
|
||
explaining what machine learning classifiers (or models) are doing. It
|
||
is able to explain any black box classifier, with two or more classes. *
|
||
<a href="https://github.com/sepandhaghighi/pycm">PyCM</a> - PyCM is a
|
||
multi-class confusion matrix library written in Python that supports
|
||
both input data vectors and direct matrix, and a proper tool for
|
||
post-classification model evaluation that supports most classes and
|
||
overall statistics parameters * <a
|
||
href="https://github.com/plotly/dash">Dash</a> - A framework for
|
||
creating analytical web applications built on top of Plotly.js, React,
|
||
and Flask * <a href="https://github.com/asavinov/lambdo">Lambdo</a> - A
|
||
workflow engine for solving machine learning problems by combining in
|
||
one analysis pipeline (i) feature engineering and machine learning (ii)
|
||
model training and prediction (iii) table population and column
|
||
evaluation via user-defined (Python) functions. * <a
|
||
href="https://github.com/microsoft/tensorwatch">TensorWatch</a> -
|
||
Debugging and visualization tool for machine learning and data science.
|
||
It extensively leverages Jupyter Notebook to show real-time
|
||
visualizations of data in running processes such as machine learning
|
||
training. * <a href="https://github.com/rlworkgroup/dowel">dowel</a> - A
|
||
little logger for machine learning research. Output any object to the
|
||
terminal, CSV, TensorBoard, text logs on disk, and more with just one
|
||
call to <code>logger.log()</code>. * <a
|
||
href="https://github.com/vortico/flama">Flama</a> - Ignite your models
|
||
into blazing-fast machine learning APIs with a modern framework.</p>
|
||
<p><a name="python-misc-scripts--ipython-notebooks--codebases"></a> ####
|
||
Misc Scripts / iPython Notebooks / Codebases * <a
|
||
href="https://github.com/kennysong/minigrad">MiniGrad</a> – A minimal,
|
||
educational, Pythonic implementation of autograd (~100 loc). * <a
|
||
href="https://github.com/Yannael/BigDataAnalytics_INFOH515">Map/Reduce
|
||
implementations of common ML algorithms</a>: Jupyter notebooks that
|
||
cover how to implement from scratch different ML algorithms (ordinary
|
||
least squares, gradient descent, k-means, alternating least squares),
|
||
using Python NumPy, and how to then make these implementations scalable
|
||
using Map/Reduce and Spark. * <a
|
||
href="https://github.com/jaredthecoder/BioPy">BioPy</a> -
|
||
Biologically-Inspired and Machine Learning Algorithms in Python.
|
||
<strong>[Deprecated]</strong> * <a
|
||
href="https://github.com/julianmack/Data_Assimilation">CAEs for Data
|
||
Assimilation</a> - Convolutional autoencoders for 3D image/field
|
||
compression applied to reduced order <a
|
||
href="https://en.wikipedia.org/wiki/Data_assimilation">Data
|
||
Assimilation</a>. * <a
|
||
href="https://github.com/ageron/handson-ml">handsonml</a> - Fundamentals
|
||
of machine learning in python. * <a
|
||
href="https://github.com/plotly/dash-svm">SVM Explorer</a> - Interactive
|
||
SVM Explorer, using Dash and scikit-learn * <a
|
||
href="https://github.com/rasbt/pattern_classification">pattern_classification</a>
|
||
* <a href="https://github.com/Wavelets/ThinkStats2">thinking stats 2</a>
|
||
* <a href="https://github.com/hyperopt/hyperopt-sklearn">hyperopt</a> *
|
||
<a href="https://github.com/numenta/nupic">numpic</a> * <a
|
||
href="https://github.com/dib-lab/2012-paper-diginorm">2012-paper-diginorm</a>
|
||
* <a
|
||
href="https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks">A
|
||
gallery of interesting IPython notebooks</a> * <a
|
||
href="https://github.com/ogrisel/notebooks">ipython-notebooks</a> * <a
|
||
href="https://github.com/donnemartin/data-science-ipython-notebooks">data-science-ipython-notebooks</a>
|
||
- Continually updated Data Science Python Notebooks: Spark, Hadoop
|
||
MapReduce, HDFS, AWS, Kaggle, scikit-learn, matplotlib, pandas, NumPy,
|
||
SciPy, and various command lines. * <a
|
||
href="https://github.com/CamDavidsonPilon/decision-weights">decision-weights</a>
|
||
* <a href="https://github.com/Wavelets/sarah-palin-lda">Sarah Palin
|
||
LDA</a> - Topic Modelling the Sarah Palin emails. * <a
|
||
href="https://github.com/Wavelets/diffusion-segmentation">Diffusion
|
||
Segmentation</a> - A collection of image segmentation algorithms based
|
||
on diffusion methods. * <a
|
||
href="https://github.com/Wavelets/scipy-tutorials">Scipy Tutorials</a> -
|
||
SciPy tutorials. This is outdated, check out scipy-lecture-notes. * <a
|
||
href="https://github.com/marcelcaraciolo/crab">Crab</a> - A
|
||
recommendation engine library for Python. * <a
|
||
href="https://github.com/maxsklar/BayesPy">BayesPy</a> - Bayesian
|
||
Inference Tools in Python. * <a
|
||
href="https://github.com/GaelVaroquaux/scikit-learn-tutorial">scikit-learn
|
||
tutorials</a> - Series of notebooks for learning scikit-learn. * <a
|
||
href="https://github.com/madhusudancs/sentiment-analyzer">sentiment-analyzer</a>
|
||
- Tweets Sentiment Analyzer * <a
|
||
href="https://github.com/kevincobain2000/sentiment_classifier">sentiment_classifier</a>
|
||
- Sentiment classifier using word sense disambiguation. * <a
|
||
href="https://github.com/fabianp/group_lasso">group-lasso</a> - Some
|
||
experiments with the coordinate descent algorithm used in the (Sparse)
|
||
Group Lasso model. * <a
|
||
href="https://github.com/kevincobain2000/jProcessing">jProcessing</a> -
|
||
Kanji / Hiragana / Katakana to Romaji Converter. Edict Dictionary &
|
||
parallel sentences Search. Sentence Similarity between two JP Sentences.
|
||
Sentiment Analysis of Japanese Text. Run Cabocha(ISO–8859-1 configured)
|
||
in Python. * <a
|
||
href="https://github.com/mne-tools/mne-python-notebooks">mne-python-notebooks</a>
|
||
- IPython notebooks for EEG/MEG data processing using mne-python. * <a
|
||
href="https://github.com/NervanaSystems/neon_course">Neon Course</a> -
|
||
IPython notebooks for a complete course around understanding Nervana’s
|
||
Neon. * <a href="https://github.com/jvns/pandas-cookbook">pandas
|
||
cookbook</a> - Recipes for using Python’s pandas library. * <a
|
||
href="https://github.com/BRML/climin">climin</a> - Optimization library
|
||
focused on machine learning, pythonic implementations of gradient
|
||
descent, LBFGS, rmsprop, adadelta and others. * <a
|
||
href="https://github.com/AllenDowney/DataScience">Allen Downey’s Data
|
||
Science Course</a> - Code for Data Science at Olin College, Spring 2014.
|
||
* <a href="https://github.com/AllenDowney/ThinkBayes">Allen Downey’s
|
||
Think Bayes Code</a> - Code repository for Think Bayes. * <a
|
||
href="https://github.com/AllenDowney/ThinkComplexity">Allen Downey’s
|
||
Think Complexity Code</a> - Code for Allen Downey’s book Think
|
||
Complexity. * <a href="https://github.com/AllenDowney/ThinkOS">Allen
|
||
Downey’s Think OS Code</a> - Text and supporting code for Think OS: A
|
||
Brief Introduction to Operating Systems. * <a
|
||
href="https://www.karsdorp.io/python-course/">Python Programming for the
|
||
Humanities</a> - Course for Python programming for the Humanities,
|
||
assuming no prior knowledge. Heavy focus on text processing / NLP. * <a
|
||
href="https://github.com/mwgg/GreatCircle">GreatCircle</a> - Library for
|
||
calculating great circle distance. * <a
|
||
href="http://optunity.readthedocs.io/en/latest/notebooks/index.html">Optunity
|
||
examples</a> - Examples demonstrating how to use Optunity in synergy
|
||
with machine learning libraries. * <a
|
||
href="https://github.com/hangtwenty/dive-into-machine-learning">Dive
|
||
into Machine Learning with Python Jupyter notebook and scikit-learn</a>
|
||
- “I learned Python by hacking first, and getting serious
|
||
<em>later.</em> I wanted to do this with Machine Learning. If this is
|
||
your style, join me in getting a bit ahead of yourself.” * <a
|
||
href="https://github.com/ericjang/tdb">TDB</a> - TensorDebugger (TDB) is
|
||
a visual debugger for deep learning. It features interactive,
|
||
node-by-node debugging and visualization for TensorFlow. * <a
|
||
href="https://github.com/kendricktan/suiron/">Suiron</a> - Machine
|
||
Learning for RC Cars. * <a
|
||
href="https://github.com/justmarkham/scikit-learn-videos">Introduction
|
||
to machine learning with scikit-learn</a> - IPython notebooks from Data
|
||
School’s video tutorials on scikit-learn. * <a
|
||
href="https://parrotprediction.teachable.com/p/practical-xgboost-in-python">Practical
|
||
XGBoost in Python</a> - comprehensive online course about using XGBoost
|
||
in Python. * <a
|
||
href="https://github.com/amueller/introduction_to_ml_with_python">Introduction
|
||
to Machine Learning with Python</a> - Notebooks and code for the book
|
||
“Introduction to Machine Learning with Python” * <a
|
||
href="https://github.com/wesm/pydata-book">Pydata book</a> - Materials
|
||
and IPython notebooks for “Python for Data Analysis” by Wes McKinney,
|
||
published by O’Reilly Media * <a
|
||
href="https://github.com/trekhleb/homemade-machine-learning">Homemade
|
||
Machine Learning</a> - Python examples of popular machine learning
|
||
algorithms with interactive Jupyter demos and math being explained * <a
|
||
href="https://github.com/prodmodel/prodmodel">Prodmodel</a> - Build tool
|
||
for data science pipelines. * <a
|
||
href="https://github.com/maitbayev/the-elements-of-statistical-learning">the-elements-of-statistical-learning</a>
|
||
- This repository contains Jupyter notebooks implementing the algorithms
|
||
found in the book and summary of the textbook. * <a
|
||
href="https://github.com/LiYangHart/Hyperparameter-Optimization-of-Machine-Learning-Algorithms">Hyperparameter-Optimization-of-Machine-Learning-Algorithms</a>
|
||
- Code for hyperparameter tuning/optimization of machine learning and
|
||
deep learning algorithms. * <a
|
||
href="https://github.com/ShivamChoudhary17/Heart_Disease">Heart_Disease-Prediction</a>
|
||
- Given clinical parameters about a patient, can we predict whether or
|
||
not they have heart disease? * <a
|
||
href="https://github.com/ShivamChoudhary17/Flight_Fare_Prediction">Flight
|
||
Fare Prediction</a> - This basically to gauge the understanding of
|
||
Machine Learning Workflow and Regression technique in specific. * <a
|
||
href="https://github.com/keras-team/keras-tuner">Keras Tuner</a> - An
|
||
easy-to-use, scalable hyperparameter optimization framework that solves
|
||
the pain points of hyperparameter search.</p>
|
||
<p><a name="python-neural-networks"></a> #### Neural Networks</p>
|
||
<ul>
|
||
<li><a href="https://github.com/kinhosz/Neural">Kinho</a> - Simple API
|
||
for Neural Network. Better for image processing with CPU/GPU + Transfer
|
||
Learning.</li>
|
||
<li><a href="https://github.com/p-christ/nn_builder">nn_builder</a> -
|
||
nn_builder is a python package that lets you build neural networks in 1
|
||
line</li>
|
||
<li><a href="https://github.com/karpathy/neuraltalk">NeuralTalk</a> -
|
||
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent
|
||
Neural Networks that describe images with sentences.</li>
|
||
<li><a href="https://github.com/karpathy/neuraltalk2">NeuralTalk</a> -
|
||
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent
|
||
Neural Networks that describe images with sentences.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/molcik/python-neuron">Neuron</a> -
|
||
Neuron is simple class for time series predictions. It’s utilize LNU
|
||
(Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis
|
||
Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron
|
||
- Extreme Learning Machine) neural networks learned with Gradient
|
||
descent or LeLevenberg–Marquardt algorithm.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/atmb4u/data-driven-code">Data Driven
|
||
Code</a> - Very simple implementation of neural networks for dummies in
|
||
python without using any libraries, with detailed comments.</li>
|
||
<li><a
|
||
href="https://www.manning.com/livevideo/machine-learning-data-science-and-deep-learning-with-python">Machine
|
||
Learning, Data Science and Deep Learning with Python</a> - LiveVideo
|
||
course that covers machine learning, Tensorflow, artificial
|
||
intelligence, and neural networks.</li>
|
||
<li><a href="https://github.com/mrT23/TResNet">TResNet: High Performance
|
||
GPU-Dedicated Architecture</a> - TResNet models were designed and
|
||
optimized to give the best speed-accuracy tradeoff out there on
|
||
GPUs.</li>
|
||
<li><a href="https://github.com/zueve/neurolab">TResNet: Simple and
|
||
powerful neural network library for python</a> - Variety of supported
|
||
types of Artificial Neural Network and learning algorithms.</li>
|
||
<li><a href="https://jina.ai/">Jina AI</a> An easier way to build neural
|
||
search in the cloud. Compatible with Jupyter Notebooks.</li>
|
||
<li><a href="https://github.com/shobrook/sequitur">sequitur</a> PyTorch
|
||
library for creating and training sequence autoencoders in just two
|
||
lines of code</li>
|
||
</ul>
|
||
<p><a name="python-spiking-neural-networks"></a> #### Spiking Neural
|
||
Networks</p>
|
||
<ul>
|
||
<li><a href="https://github.com/synsense/rockpool">Rockpool</a> - A
|
||
machine learning library for spiking neural networks. Supports training
|
||
with both torch and jax pipelines, and deployment to neuromorphic
|
||
hardware.</li>
|
||
<li><a href="https://github.com/synsense/sinabs">Sinabs</a> - A deep
|
||
learning library for spiking neural networks which is based on PyTorch,
|
||
focuses on fast training and supports inference on neuromorphic
|
||
hardware.</li>
|
||
<li><a href="https://github.com/neuromorphs/tonic">Tonic</a> - A library
|
||
that makes downloading publicly available neuromorphic datasets a breeze
|
||
and provides event-based data transformation/augmentation
|
||
pipelines.</li>
|
||
</ul>
|
||
<p><a name="python-survival-analysis"></a> #### Python Survival Analysis
|
||
* <a href="https://github.com/CamDavidsonPilon/lifelines">lifelines</a>
|
||
- lifelines is a complete survival analysis library, written in pure
|
||
Python * <a
|
||
href="https://github.com/sebp/scikit-survival">Scikit-Survival</a> -
|
||
scikit-survival is a Python module for survival analysis built on top of
|
||
scikit-learn. It allows doing survival analysis while utilizing the
|
||
power of scikit-learn, e.g., for pre-processing or doing
|
||
cross-validation.</p>
|
||
<p><a name="python-federated-learning"></a> #### Federated Learning * <a
|
||
href="https://flower.dev/">Flower</a> - A unified approach to federated
|
||
learning, analytics, and evaluation. Federate any workload, any ML
|
||
framework, and any programming language. * <a
|
||
href="https://github.com/OpenMined/PySyft">PySyft</a> - A Python library
|
||
for secure and private Deep Learning. * <a
|
||
href="https://www.tensorflow.org/federated">Tensorflow-Federated</a> A
|
||
federated learning framework for machine learning and other computations
|
||
on decentralized data.</p>
|
||
<p><a name="python-kaggle-competition-source-code"></a> #### Kaggle
|
||
Competition Source Code * <a
|
||
href="https://github.com/neptune-ml/open-solution-home-credit">open-solution-home-credit</a>
|
||
-> source code and <a
|
||
href="https://app.neptune.ml/neptune-ml/Home-Credit-Default-Risk">experiments
|
||
results</a> for <a
|
||
href="https://www.kaggle.com/c/home-credit-default-risk">Home Credit
|
||
Default Risk</a>. * <a
|
||
href="https://github.com/neptune-ml/open-solution-googleai-object-detection">open-solution-googleai-object-detection</a>
|
||
-> source code and <a
|
||
href="https://app.neptune.ml/neptune-ml/Google-AI-Object-Detection-Challenge">experiments
|
||
results</a> for <a
|
||
href="https://www.kaggle.com/c/google-ai-open-images-object-detection-track">Google
|
||
AI Open Images - Object Detection Track</a>. * <a
|
||
href="https://github.com/neptune-ml/open-solution-salt-identification">open-solution-salt-identification</a>
|
||
-> source code and <a
|
||
href="https://app.neptune.ml/neptune-ml/Salt-Detection">experiments
|
||
results</a> for <a
|
||
href="https://www.kaggle.com/c/tgs-salt-identification-challenge">TGS
|
||
Salt Identification Challenge</a>. * <a
|
||
href="https://github.com/neptune-ml/open-solution-ship-detection">open-solution-ship-detection</a>
|
||
-> source code and <a
|
||
href="https://app.neptune.ml/neptune-ml/Ships">experiments results</a>
|
||
for <a href="https://www.kaggle.com/c/airbus-ship-detection">Airbus Ship
|
||
Detection Challenge</a>. * <a
|
||
href="https://github.com/neptune-ml/open-solution-data-science-bowl-2018">open-solution-data-science-bowl-2018</a>
|
||
-> source code and <a
|
||
href="https://app.neptune.ml/neptune-ml/Data-Science-Bowl-2018">experiments
|
||
results</a> for <a
|
||
href="https://www.kaggle.com/c/data-science-bowl-2018">2018 Data Science
|
||
Bowl</a>. * <a
|
||
href="https://github.com/neptune-ml/open-solution-value-prediction">open-solution-value-prediction</a>
|
||
-> source code and <a
|
||
href="https://app.neptune.ml/neptune-ml/Santander-Value-Prediction-Challenge">experiments
|
||
results</a> for <a
|
||
href="https://www.kaggle.com/c/santander-value-prediction-challenge">Santander
|
||
Value Prediction Challenge</a>. * <a
|
||
href="https://github.com/neptune-ml/open-solution-toxic-comments">open-solution-toxic-comments</a>
|
||
-> source code for <a
|
||
href="https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge">Toxic
|
||
Comment Classification Challenge</a>. * <a
|
||
href="https://github.com/hammer/wikichallenge">wiki challenge</a> - An
|
||
implementation of Dell Zhang’s solution to Wikipedia’s Participation
|
||
Challenge on Kaggle. * <a
|
||
href="https://github.com/amueller/kaggle_insults">kaggle insults</a> -
|
||
Kaggle Submission for “Detecting Insults in Social Commentary”. * <a
|
||
href="https://github.com/MLWave/kaggle_acquire-valued-shoppers-challenge">kaggle_acquire-valued-shoppers-challenge</a>
|
||
- Code for the Kaggle acquire valued shoppers challenge. * <a
|
||
href="https://github.com/zygmuntz/kaggle-cifar">kaggle-cifar</a> - Code
|
||
for the CIFAR-10 competition at Kaggle, uses cuda-convnet. * <a
|
||
href="https://github.com/zygmuntz/kaggle-blackbox">kaggle-blackbox</a> -
|
||
Deep learning made easy. * <a
|
||
href="https://github.com/zygmuntz/kaggle-accelerometer">kaggle-accelerometer</a>
|
||
- Code for Accelerometer Biometric Competition at Kaggle. * <a
|
||
href="https://github.com/zygmuntz/kaggle-advertised-salaries">kaggle-advertised-salaries</a>
|
||
- Predicting job salaries from ads - a Kaggle competition. * <a
|
||
href="https://github.com/zygmuntz/kaggle-amazon">kaggle amazon</a> -
|
||
Amazon access control challenge. * <a
|
||
href="https://github.com/zygmuntz/kaggle-bestbuy_big">kaggle-bestbuy_big</a>
|
||
- Code for the Best Buy competition at Kaggle. * <a
|
||
href="https://github.com/zygmuntz/kaggle-bestbuy_small">kaggle-bestbuy_small</a>
|
||
* <a href="https://github.com/kastnerkyle/kaggle-dogs-vs-cats">Kaggle
|
||
Dogs vs. Cats</a> - Code for Kaggle Dogs vs. Cats competition. * <a
|
||
href="https://github.com/benanne/kaggle-galaxies">Kaggle Galaxy
|
||
Challenge</a> - Winning solution for the Galaxy Challenge on Kaggle. *
|
||
<a href="https://github.com/zygmuntz/kaggle-gender">Kaggle Gender</a> -
|
||
A Kaggle competition: discriminate gender based on handwriting. * <a
|
||
href="https://github.com/zygmuntz/kaggle-merck">Kaggle Merck</a> - Merck
|
||
challenge at Kaggle. * <a
|
||
href="https://github.com/zygmuntz/kaggle-stackoverflow">Kaggle
|
||
Stackoverflow</a> - Predicting closed questions on Stack Overflow. * <a
|
||
href="https://github.com/MLWave/kaggle_acquire-valued-shoppers-challenge">kaggle_acquire-valued-shoppers-challenge</a>
|
||
- Code for the Kaggle acquire valued shoppers challenge. * <a
|
||
href="https://github.com/zygmuntz/wine-quality">wine-quality</a> -
|
||
Predicting wine quality.</p>
|
||
<p><a name="python-reinforcement-learning"></a> #### Reinforcement
|
||
Learning * <a href="https://github.com/deepmind/lab">DeepMind Lab</a> -
|
||
DeepMind Lab is a 3D learning environment based on id Software’s Quake
|
||
III Arena via ioquake3 and other open source software. Its primary
|
||
purpose is to act as a testbed for research in artificial intelligence,
|
||
especially deep reinforcement learning. * <a
|
||
href="https://github.com/Farama-Foundation/Gymnasium">Gymnasium</a> - A
|
||
library for developing and comparing reinforcement learning algorithms
|
||
(successor of [gym])(https://github.com/openai/gym). * <a
|
||
href="https://github.com/SerpentAI/SerpentAI">Serpent.AI</a> -
|
||
Serpent.AI is a game agent framework that allows you to turn any video
|
||
game you own into a sandbox to develop AI and machine learning
|
||
experiments. For both researchers and hobbyists. * <a
|
||
href="https://github.com/mwydmuch/ViZDoom">ViZDoom</a> - ViZDoom allows
|
||
developing AI bots that play Doom using only the visual information (the
|
||
screen buffer). It is primarily intended for research in machine visual
|
||
learning, and deep reinforcement learning, in particular. * <a
|
||
href="https://github.com/openai/roboschool">Roboschool</a> - Open-source
|
||
software for robot simulation, integrated with OpenAI Gym. * <a
|
||
href="https://github.com/openai/retro">Retro</a> - Retro Games in Gym *
|
||
<a href="https://github.com/kengz/SLM-Lab">SLM Lab</a> - Modular Deep
|
||
Reinforcement Learning framework in PyTorch. * <a
|
||
href="https://github.com/NervanaSystems/coach">Coach</a> - Reinforcement
|
||
Learning Coach by Intel® AI Lab enables easy experimentation with state
|
||
of the art Reinforcement Learning algorithms * <a
|
||
href="https://github.com/rlworkgroup/garage">garage</a> - A toolkit for
|
||
reproducible reinforcement learning research * <a
|
||
href="https://github.com/rlworkgroup/metaworld">metaworld</a> - An open
|
||
source robotics benchmark for meta- and multi-task reinforcement
|
||
learning * <a
|
||
href="https://deepmind.com/research/publications/Acme">acme</a> - An
|
||
Open Source Distributed Framework for Reinforcement Learning that makes
|
||
build and train your agents easily. * <a
|
||
href="https://spinningup.openai.com">Spinning Up</a> - An educational
|
||
resource designed to let anyone learn to become a skilled practitioner
|
||
in deep reinforcement learning * <a
|
||
href="https://github.com/enlite-ai/maze">Maze</a> - Application-oriented
|
||
deep reinforcement learning framework addressing real-world decision
|
||
problems. * <a href="https://github.com/ray-project/ray">RLlib</a> -
|
||
RLlib is an industry level, highly scalable RL library for tf and torch,
|
||
based on Ray. It’s used by companies like Amazon and Microsoft to solve
|
||
real-world decision making problems at scale. * <a
|
||
href="https://github.com/opendilab/DI-engine">DI-engine</a> - DI-engine
|
||
is a generalized Decision Intelligence engine. It supports most basic
|
||
deep reinforcement learning (DRL) algorithms, such as DQN, PPO, SAC, and
|
||
domain-specific algorithms like QMIX in multi-agent RL, GAIL in inverse
|
||
RL, and RND in exploration problems. * <a
|
||
href="https://github.com/Daveonwave/gym4ReaL">Gym4ReaL</a> - Gym4ReaL is
|
||
a comprehensive suite of realistic environments designed to support the
|
||
development and evaluation of RL algorithms that can operate in
|
||
real-world scenarios. The suite includes a diverse set of tasks exposing
|
||
RL algorithms to a variety of practical challenges.</p>
|
||
<p><a name="python-speech-recognition"></a> #### Speech Recognition * <a
|
||
href="https://github.com/espnet/espnet">EspNet</a> - ESPnet is an
|
||
end-to-end speech processing toolkit for tasks like speech recognition,
|
||
translation, and enhancement, using PyTorch and Kaldi-style data
|
||
processing.</p>
|
||
<p><a name="ruby"></a> ## Ruby</p>
|
||
<p><a name="ruby-natural-language-processing"></a> #### Natural Language
|
||
Processing</p>
|
||
<ul>
|
||
<li><a href="https://github.com/arbox/nlp-with-ruby">Awesome NLP with
|
||
Ruby</a> - Curated link list for practical natural language processing
|
||
in Ruby.</li>
|
||
<li><a href="https://github.com/louismullie/treat">Treat</a> - Text
|
||
Retrieval and Annotation Toolkit, definitely the most comprehensive
|
||
toolkit I’ve encountered so far for Ruby.</li>
|
||
<li><a href="https://github.com/aurelian/ruby-stemmer">Stemmer</a> -
|
||
Expose libstemmer_c to Ruby. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://sourceforge.net/projects/raspell/">Raspell</a> -
|
||
raspell is an interface binding for ruby.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/ealdent/uea-stemmer">UEA Stemmer</a> -
|
||
Ruby port of UEALite Stemmer - a conservative stemmer for search and
|
||
indexing.</li>
|
||
<li><a
|
||
href="https://github.com/twitter/twitter-text/tree/master/rb">Twitter-text-rb</a>
|
||
- A library that does auto linking and extraction of usernames, lists
|
||
and hashtags in tweets.</li>
|
||
</ul>
|
||
<p><a name="ruby-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/arbox/machine-learning-with-ruby">Awesome
|
||
Machine Learning with Ruby</a> - Curated list of ML related resources
|
||
for Ruby.</li>
|
||
<li><a href="https://github.com/tsycho/ruby-machine-learning">Ruby
|
||
Machine Learning</a> - Some Machine Learning algorithms, implemented in
|
||
Ruby. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/mizoR/machine-learning-ruby">Machine
|
||
Learning Ruby</a> <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/vasinov/jruby_mahout">jRuby Mahout</a> -
|
||
JRuby Mahout is a gem that unleashes the power of Apache Mahout in the
|
||
world of JRuby. <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://github.com/cardmagic/classifier">CardMagic-Classifier</a>
|
||
- A general classifier module to allow Bayesian and other types of
|
||
classifications.</li>
|
||
<li><a href="https://github.com/febeling/rb-libsvm">rb-libsvm</a> - Ruby
|
||
language bindings for LIBSVM which is a Library for Support Vector
|
||
Machines.</li>
|
||
<li><a href="https://github.com/asafschers/scoruby">Scoruby</a> -
|
||
Creates Random Forest classifiers from PMML files.</li>
|
||
<li><a href="https://github.com/yoshoku/rumale">rumale</a> - Rumale is a
|
||
machine learning library in Ruby</li>
|
||
</ul>
|
||
<p><a name="ruby-data-analysis--data-visualization"></a> #### Data
|
||
Analysis / Data Visualization</p>
|
||
<ul>
|
||
<li><a href="https://github.com/alexgutteridge/rsruby">rsruby</a> - Ruby
|
||
- R bridge.</li>
|
||
<li><a
|
||
href="https://github.com/chrislo/data_visualisation_ruby">data-visualization-ruby</a>
|
||
- Source code and supporting content for my Ruby Manor presentation on
|
||
Data Visualisation with Ruby. <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://www.ruby-toolbox.com/projects/ruby-plot">ruby-plot</a> -
|
||
gnuplot wrapper for Ruby, especially for plotting ROC curves into SVG
|
||
files. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/zuhao/plotrb">plot-rb</a> - A plotting
|
||
library in Ruby built on top of Vega and D3.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/delano/scruffy">scruffy</a> - A
|
||
beautiful graphing toolkit for Ruby.</li>
|
||
<li><a href="http://sciruby.com/">SciRuby</a></li>
|
||
<li><a href="https://github.com/glean/glean">Glean</a> - A data
|
||
management tool for humans. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/bioruby/bioruby">Bioruby</a></li>
|
||
<li><a href="https://github.com/nkallen/arel">Arel</a>
|
||
<strong>[Deprecated]</strong></li>
|
||
</ul>
|
||
<p><a name="ruby-misc"></a> #### Misc</p>
|
||
<ul>
|
||
<li><a href="https://github.com/infochimps-labs/big_data_for_chimps">Big
|
||
Data For Chimps</a></li>
|
||
<li><a href="https://github.com/kevincobain2000/listof">Listof</a> -
|
||
Community based data collection, packed in gem. Get list of pretty much
|
||
anything (stop words, countries, non words) in txt, JSON or hash. <a
|
||
href="http://kevincobain2000.github.io/listof/">Demo/Search for a
|
||
list</a></li>
|
||
</ul>
|
||
<p><a name="rust"></a> ## Rust</p>
|
||
<p><a name="rust-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning * <a
|
||
href="https://github.com/smartcorelib/smartcore">smartcore</a> - “The
|
||
Most Advanced Machine Learning Library In Rust.” * <a
|
||
href="https://github.com/rust-ml/linfa">linfa</a> - a comprehensive
|
||
toolkit to build Machine Learning applications with Rust * <a
|
||
href="https://github.com/tedsta/deeplearn-rs">deeplearn-rs</a> -
|
||
deeplearn-rs provides simple networks that use matrix multiplication,
|
||
addition, and ReLU under the MIT license. * <a
|
||
href="https://github.com/maciejkula/rustlearn">rustlearn</a> - a machine
|
||
learning framework featuring logistic regression, support vector
|
||
machines, decision trees and random forests. * <a
|
||
href="https://github.com/AtheMathmo/rusty-machine">rusty-machine</a> - a
|
||
pure-rust machine learning library. * <a
|
||
href="https://github.com/autumnai/leaf">leaf</a> - open source framework
|
||
for machine intelligence, sharing concepts from TensorFlow and Caffe.
|
||
Available under the MIT license. <a
|
||
href="https://medium.com/@mjhirn/tensorflow-wins-89b78b29aafb#.s0a3uy4cc"><strong>[Deprecated]</strong></a>
|
||
* <a href="https://github.com/jackm321/RustNN">RustNN</a> - RustNN is a
|
||
feedforward neural network library. <strong>[Deprecated]</strong> * <a
|
||
href="https://github.com/avinashshenoy97/RusticSOM">RusticSOM</a> - A
|
||
Rust library for Self Organising Maps (SOM). * <a
|
||
href="https://github.com/huggingface/candle">candle</a> - Candle is a
|
||
minimalist ML framework for Rust with a focus on performance (including
|
||
GPU support) and ease of use. * <a
|
||
href="https://github.com/rust-ml/linfa">linfa</a> - <code>linfa</code>
|
||
aims to provide a comprehensive toolkit to build Machine Learning
|
||
applications with Rust * <a
|
||
href="https://github.com/delta-rs/delta">delta</a> - An open source
|
||
machine learning framework in Rust Δ</p>
|
||
<h4 id="deep-learning">Deep Learning</h4>
|
||
<ul>
|
||
<li><a href="https://github.com/LaurentMazare/tch-rs">tch-rs</a> - Rust
|
||
bindings for the C++ API of PyTorch</li>
|
||
<li><a href="https://github.com/coreylowman/dfdx">dfdx</a> - Deep
|
||
learning in Rust, with shape checked tensors and neural networks</li>
|
||
<li><a href="https://github.com/tracel-ai/burn">burn</a> - Burn is a new
|
||
comprehensive dynamic Deep Learning Framework built using Rust with
|
||
extreme flexibility, compute efficiency and portability as its primary
|
||
goals</li>
|
||
</ul>
|
||
<h4 id="natural-language-processing">Natural Language Processing</h4>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/huggingface/tokenizers">huggingface/tokenizers</a>
|
||
- Fast State-of-the-Art Tokenizers optimized for Research and
|
||
Production</li>
|
||
<li><a href="https://github.com/guillaume-be/rust-bert">rust-bert</a> -
|
||
Rust native ready-to-use NLP pipelines and transformer-based models
|
||
(BERT, DistilBERT, GPT2,…)</li>
|
||
</ul>
|
||
<p><a name="r"></a> ## R</p>
|
||
<p><a name="r-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/ahaz/index.html">ahaz</a>
|
||
- ahaz: Regularization for semiparametric additive hazards regression.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/arules/index.html">arules</a>
|
||
- arules: Mining Association Rules and Frequent Itemsets</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/biglasso/index.html">biglasso</a>
|
||
- biglasso: Extending Lasso Model Fitting to Big Data in R.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/bmrm/index.html">bmrm</a>
|
||
- bmrm: Bundle Methods for Regularized Risk Minimization Package.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/Boruta/index.html">Boruta</a>
|
||
- Boruta: A wrapper algorithm for all-relevant feature selection.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/bst/index.html">bst</a> -
|
||
bst: Gradient Boosting.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/C50/index.html">C50</a> -
|
||
C50: C5.0 Decision Trees and Rule-Based Models.</li>
|
||
<li><a href="https://topepo.github.io/caret/index.html">caret</a> -
|
||
Classification and Regression Training: Unified interface to ~150 ML
|
||
algorithms in R.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/caretEnsemble/index.html">caretEnsemble</a>
|
||
- caretEnsemble: Framework for fitting multiple caret models as well as
|
||
creating ensembles of such models. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/catboost/catboost">CatBoost</a> -
|
||
General purpose gradient boosting on decision trees library with
|
||
categorical features support out of the box for R.</li>
|
||
<li><a href="https://machinelearningmastery.com/">Clever Algorithms For
|
||
Machine Learning</a></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/CORElearn/index.html">CORElearn</a>
|
||
- CORElearn: Classification, regression, feature evaluation and ordinal
|
||
evaluation. -* <a
|
||
href="https://cran.r-project.org/web/packages/CoxBoost/index.html">CoxBoost</a>
|
||
- CoxBoost: Cox models by likelihood based boosting for a single
|
||
survival endpoint or competing risks <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/Cubist/index.html">Cubist</a>
|
||
- Cubist: Rule- and Instance-Based Regression Modelling.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/e1071/index.html">e1071</a>
|
||
- e1071: Misc Functions of the Department of Statistics (e1071), TU
|
||
Wien</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/earth/index.html">earth</a>
|
||
- earth: Multivariate Adaptive Regression Spline Models</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/elasticnet/index.html">elasticnet</a>
|
||
- elasticnet: Elastic-Net for Sparse Estimation and Sparse PCA.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/ElemStatLearn/index.html">ElemStatLearn</a>
|
||
- ElemStatLearn: Data sets, functions and examples from the book: “The
|
||
Elements of Statistical Learning, Data Mining, Inference, and
|
||
Prediction” by Trevor Hastie, Robert Tibshirani and Jerome Friedman
|
||
Prediction” by Trevor Hastie, Robert Tibshirani and Jerome
|
||
Friedman.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/evtree/index.html">evtree</a>
|
||
- evtree: Evolutionary Learning of Globally Optimal Trees.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/forecast/index.html">forecast</a>
|
||
- forecast: Timeseries forecasting using ARIMA, ETS, STLM, TBATS, and
|
||
neural network models.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/forecastHybrid/index.html">forecastHybrid</a>
|
||
- forecastHybrid: Automatic ensemble and cross validation of ARIMA, ETS,
|
||
STLM, TBATS, and neural network models from the “forecast” package.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/fpc/index.html">fpc</a> -
|
||
fpc: Flexible procedures for clustering.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/frbs/index.html">frbs</a>
|
||
- frbs: Fuzzy Rule-based Systems for Classification and Regression
|
||
Tasks. <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/GAMBoost/index.html">GAMBoost</a>
|
||
- GAMBoost: Generalized linear and additive models by likelihood based
|
||
boosting. <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/gamboostLSS/index.html">gamboostLSS</a>
|
||
- gamboostLSS: Boosting Methods for GAMLSS.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/gbm/index.html">gbm</a> -
|
||
gbm: Generalized Boosted Regression Models.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/glmnet/index.html">glmnet</a>
|
||
- glmnet: Lasso and elastic-net regularized generalized linear
|
||
models.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/glmpath/index.html">glmpath</a>
|
||
- glmpath: L1 Regularization Path for Generalized Linear Models and Cox
|
||
Proportional Hazards Model.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/GMMBoost/index.html">GMMBoost</a>
|
||
- GMMBoost: Likelihood-based Boosting for Generalized mixed models.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/grplasso/index.html">grplasso</a>
|
||
- grplasso: Fitting user specified models with Group Lasso penalty.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/grpreg/index.html">grpreg</a>
|
||
- grpreg: Regularization paths for regression models with grouped
|
||
covariates.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/h2o/index.html">h2o</a> -
|
||
A framework for fast, parallel, and distributed machine learning
|
||
algorithms at scale – Deeplearning, Random forests, GBM, KMeans, PCA,
|
||
GLM.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/hda/index.html">hda</a> -
|
||
hda: Heteroscedastic Discriminant Analysis.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a href="https://www-bcf.usc.edu/~gareth/ISL/">Introduction to
|
||
Statistical Learning</a></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/ipred/index.html">ipred</a>
|
||
- ipred: Improved Predictors.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/kernlab/index.html">kernlab</a>
|
||
- kernlab: Kernel-based Machine Learning Lab.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/klaR/index.html">klaR</a>
|
||
- klaR: Classification and visualization.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/L0Learn/index.html">L0Learn</a>
|
||
- L0Learn: Fast algorithms for best subset selection.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/lars/index.html">lars</a>
|
||
- lars: Least Angle Regression, Lasso and Forward Stagewise.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/lasso2/index.html">lasso2</a>
|
||
- lasso2: L1 constrained estimation aka ‘lasso’.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/LiblineaR/index.html">LiblineaR</a>
|
||
- LiblineaR: Linear Predictive Models Based On The Liblinear C/C++
|
||
Library.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/LogicReg/index.html">LogicReg</a>
|
||
- LogicReg: Logic Regression.</li>
|
||
<li><a href="https://github.com/johnmyleswhite/ML_for_Hackers">Machine
|
||
Learning For Hackers</a></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/maptree/index.html">maptree</a>
|
||
- maptree: Mapping, pruning, and graphing tree models.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/mboost/index.html">mboost</a>
|
||
- mboost: Model-Based Boosting.</li>
|
||
<li><a href="https://www.kaggle.com/general/3661">medley</a> - medley:
|
||
Blending regression models, using a greedy stepwise approach.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/mlr/index.html">mlr</a> -
|
||
mlr: Machine Learning in R.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/ncvreg/index.html">ncvreg</a>
|
||
- ncvreg: Regularization paths for SCAD- and MCP-penalized regression
|
||
models.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/nnet/index.html">nnet</a>
|
||
- nnet: Feed-forward Neural Networks and Multinomial Log-Linear Models.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/pamr/index.html">pamr</a>
|
||
- pamr: Pam: prediction analysis for microarrays.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/party/index.html">party</a>
|
||
- party: A Laboratory for Recursive Partitioning</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/partykit/index.html">partykit</a>
|
||
- partykit: A Toolkit for Recursive Partitioning.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/penalized/index.html">penalized</a>
|
||
- penalized: L1 (lasso and fused lasso) and L2 (ridge) penalized
|
||
estimation in GLMs and in the Cox model.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/penalizedLDA/index.html">penalizedLDA</a>
|
||
- penalizedLDA: Penalized classification using Fisher’s linear
|
||
discriminant. <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/penalizedSVM/index.html">penalizedSVM</a>
|
||
- penalizedSVM: Feature Selection SVM using penalty functions.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/quantregForest/index.html">quantregForest</a>
|
||
- quantregForest: Quantile Regression Forests.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/randomForest/index.html">randomForest</a>
|
||
- randomForest: Breiman and Cutler’s random forests for classification
|
||
and regression.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/randomForestSRC/index.html">randomForestSRC</a>
|
||
- randomForestSRC: Random Forests for Survival, Regression and
|
||
Classification (RF-SRC).</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/rattle/index.html">rattle</a>
|
||
- rattle: Graphical user interface for data mining in R.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/rda/index.html">rda</a> -
|
||
rda: Shrunken Centroids Regularized Discriminant Analysis.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/rdetools/index.html">rdetools</a>
|
||
- rdetools: Relevant Dimension Estimation (RDE) in Feature Spaces.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/REEMtree/index.html">REEMtree</a>
|
||
- REEMtree: Regression Trees with Random Effects for Longitudinal
|
||
(Panel) Data. <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/relaxo/index.html">relaxo</a>
|
||
- relaxo: Relaxed Lasso. <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/rgenoud/index.html">rgenoud</a>
|
||
- rgenoud: R version of GENetic Optimization Using Derivatives</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/Rmalschains/index.html">Rmalschains</a>
|
||
- Rmalschains: Continuous Optimization using Memetic Algorithms with
|
||
Local Search Chains (MA-LS-Chains) in R.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/rminer/index.html">rminer</a>
|
||
- rminer: Simpler use of data mining methods (e.g. NN and SVM) in
|
||
classification and regression. <strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/ROCR/index.html">ROCR</a>
|
||
- ROCR: Visualizing the performance of scoring classifiers.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/RoughSets/index.html">RoughSets</a>
|
||
- RoughSets: Data Analysis Using Rough Set and Fuzzy Rough Set Theories.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/rpart/index.html">rpart</a>
|
||
- rpart: Recursive Partitioning and Regression Trees.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/RPMM/index.html">RPMM</a>
|
||
- RPMM: Recursively Partitioned Mixture Model.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/RSNNS/index.html">RSNNS</a>
|
||
- RSNNS: Neural Networks in R using the Stuttgart Neural Network
|
||
Simulator (SNNS).</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/RWeka/index.html">RWeka</a>
|
||
- RWeka: R/Weka interface.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/RXshrink/index.html">RXshrink</a>
|
||
- RXshrink: Maximum Likelihood Shrinkage via Generalized Ridge or Least
|
||
Angle Regression.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/sda/index.html">sda</a> -
|
||
sda: Shrinkage Discriminant Analysis and CAT Score Variable Selection.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/spectralGraphTopology/index.html">spectralGraphTopology</a>
|
||
- spectralGraphTopology: Learning Graphs from Data via Spectral
|
||
Constraints.</li>
|
||
<li><a href="https://github.com/ecpolley/SuperLearner">SuperLearner</a>
|
||
- Multi-algorithm ensemble learning packages.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/svmpath/index.html">svmpath</a>
|
||
- svmpath: svmpath: the SVM Path algorithm.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/tgp/index.html">tgp</a> -
|
||
tgp: Bayesian treed Gaussian process models.
|
||
<strong>[Deprecated]</strong></li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/tree/index.html">tree</a>
|
||
- tree: Classification and regression trees.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/varSelRF/index.html">varSelRF</a>
|
||
- varSelRF: Variable selection using random forests.</li>
|
||
<li><a
|
||
href="https://github.com/tqchen/xgboost/tree/master/R-package">XGBoost.R</a>
|
||
- R binding for eXtreme Gradient Boosting (Tree) Library.</li>
|
||
<li><a href="https://optunity.readthedocs.io/en/latest/">Optunity</a> -
|
||
A library dedicated to automated hyperparameter optimization with a
|
||
simple, lightweight API to facilitate drop-in replacement of grid
|
||
search. Optunity is written in Python but interfaces seamlessly to
|
||
R.</li>
|
||
<li><a href="https://igraph.org/r/">igraph</a> - binding to igraph
|
||
library - General purpose graph library.</li>
|
||
<li><a href="https://github.com/apache/incubator-mxnet">MXNet</a> -
|
||
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with
|
||
Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia,
|
||
Go, JavaScript and more.</li>
|
||
<li><a
|
||
href="https://github.com/Azure/Azure-TDSP-Utilities">TDSP-Utilities</a>
|
||
- Two data science utilities in R from Microsoft: 1) Interactive Data
|
||
Exploration, Analysis, and Reporting (IDEAR) ; 2) Automated Modelling
|
||
and Reporting (AMR).</li>
|
||
<li><a href="https://github.com/clugen/clugenr/">clugenr</a> -
|
||
Multidimensional cluster generation in R.</li>
|
||
</ul>
|
||
<p><a name="r-data-analysis--data-visualization"></a> #### Data
|
||
Manipulation | Data Analysis | Data Visualization</p>
|
||
<ul>
|
||
<li><a href="https://rdatatable.gitlab.io/data.table/">data.table</a> -
|
||
<code>data.table</code> provides a high-performance version of base R’s
|
||
<code>data.frame</code> with syntax and feature enhancements for ease of
|
||
use, convenience and programming speed.</li>
|
||
<li><a
|
||
href="https://www.rdocumentation.org/packages/dplyr/versions/0.7.8">dplyr</a>
|
||
- A data manipulation package that helps to solve the most common data
|
||
manipulation problems.</li>
|
||
<li><a href="https://ggplot2.tidyverse.org/">ggplot2</a> - A data
|
||
visualization package based on the grammar of graphics.</li>
|
||
<li><a
|
||
href="https://cran.r-project.org/web/packages/tmap/vignettes/tmap-getstarted.html">tmap</a>
|
||
for visualizing geospatial data with static maps and <a
|
||
href="https://rstudio.github.io/leaflet/">leaflet</a> for interactive
|
||
maps</li>
|
||
<li><a href="https://www.rdocumentation.org/packages/tm/">tm</a> and <a
|
||
href="https://quanteda.io/">quanteda</a> are the main packages for
|
||
managing, analyzing, and visualizing textual data.</li>
|
||
<li><a href="https://shiny.rstudio.com/">shiny</a> is the basis for
|
||
truly interactive displays and dashboards in R. However, some measure of
|
||
interactivity can be achieved with <a
|
||
href="https://www.htmlwidgets.org/">htmlwidgets</a> bringing javascript
|
||
libraries to R. These include, <a href="https://plot.ly/r/">plotly</a>,
|
||
<a href="http://rstudio.github.io/dygraphs">dygraphs</a>, <a
|
||
href="http://jkunst.com/highcharter/">highcharter</a>, and several
|
||
others.</li>
|
||
</ul>
|
||
<p><a name="sas"></a> ## SAS</p>
|
||
<p><a name="sas-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://www.sas.com/en_us/software/visual-data-mining-machine-learning.html">Visual
|
||
Data Mining and Machine Learning</a> - Interactive, automated, and
|
||
programmatic modelling with the latest machine learning algorithms in
|
||
and end-to-end analytics environment, from data prep to deployment. Free
|
||
trial available.</li>
|
||
<li><a
|
||
href="https://www.sas.com/en_us/software/enterprise-miner.html">Enterprise
|
||
Miner</a> - Data mining and machine learning that creates deployable
|
||
models using a GUI or code.</li>
|
||
<li><a
|
||
href="https://www.sas.com/en_us/software/factory-miner.html">Factory
|
||
Miner</a> - Automatically creates deployable machine learning models
|
||
across numerous market or customer segments using a GUI.</li>
|
||
</ul>
|
||
<p><a name="sas-data-analysis--data-visualization"></a> #### Data
|
||
Analysis / Data Visualization</p>
|
||
<ul>
|
||
<li><a href="https://www.sas.com/en_us/software/stat.html">SAS/STAT</a>
|
||
- For conducting advanced statistical analysis.</li>
|
||
<li><a
|
||
href="https://www.sas.com/en_us/software/university-edition.html">University
|
||
Edition</a> - FREE! Includes all SAS packages necessary for data
|
||
analysis and visualization, and includes online SAS courses.</li>
|
||
</ul>
|
||
<p><a name="sas-natural-language-processing"></a> #### Natural Language
|
||
Processing</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://www.sas.com/en_us/software/contextual-analysis.html">Contextual
|
||
Analysis</a> - Add structure to unstructured text using a GUI.</li>
|
||
<li><a
|
||
href="https://www.sas.com/en_us/software/sentiment-analysis.html">Sentiment
|
||
Analysis</a> - Extract sentiment from text using a GUI.</li>
|
||
<li><a href="https://www.sas.com/en_us/software/text-miner.html">Text
|
||
Miner</a> - Text mining using a GUI or code.</li>
|
||
</ul>
|
||
<p><a name="sas-demos-and-scripts"></a> #### Demos and Scripts</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/sassoftware/enlighten-apply/tree/master/ML_tables">ML_Tables</a>
|
||
- Concise cheat sheets containing machine learning best practices.</li>
|
||
<li><a
|
||
href="https://github.com/sassoftware/enlighten-apply">enlighten-apply</a>
|
||
- Example code and materials that illustrate applications of SAS machine
|
||
learning techniques.</li>
|
||
<li><a
|
||
href="https://github.com/sassoftware/enlighten-integration">enlighten-integration</a>
|
||
- Example code and materials that illustrate techniques for integrating
|
||
SAS with other analytics technologies in Java, PMML, Python and R.</li>
|
||
<li><a
|
||
href="https://github.com/sassoftware/enlighten-deep">enlighten-deep</a>
|
||
- Example code and materials that illustrate using neural networks with
|
||
several hidden layers in SAS.</li>
|
||
<li><a href="https://github.com/sassoftware/dm-flow">dm-flow</a> -
|
||
Library of SAS Enterprise Miner process flow diagrams to help you learn
|
||
by example about specific data mining topics.</li>
|
||
</ul>
|
||
<p><a name="scala"></a> ## Scala</p>
|
||
<p><a name="scala-natural-language-processing"></a> #### Natural
|
||
Language Processing</p>
|
||
<ul>
|
||
<li><a href="http://www.scalanlp.org/">ScalaNLP</a> - ScalaNLP is a
|
||
suite of machine learning and numerical computing libraries.</li>
|
||
<li><a href="https://github.com/scalanlp/breeze">Breeze</a> - Breeze is
|
||
a numerical processing library for Scala.</li>
|
||
<li><a href="https://github.com/scalanlp/chalk">Chalk</a> - Chalk is a
|
||
natural language processing library. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/factorie/factorie">FACTORIE</a> -
|
||
FACTORIE is a toolkit for deployable probabilistic modelling,
|
||
implemented as a software library in Scala. It provides its users with a
|
||
succinct language for creating relational factor graphs, estimating
|
||
parameters and performing inference.</li>
|
||
<li><a href="https://github.com/Workday/upshot-montague">Montague</a> -
|
||
Montague is a semantic parsing library for Scala with an easy-to-use
|
||
DSL.</li>
|
||
<li><a href="https://github.com/JohnSnowLabs/spark-nlp">Spark NLP</a> -
|
||
Natural language processing library built on top of Apache Spark ML to
|
||
provide simple, performant, and accurate NLP annotations for machine
|
||
learning pipelines, that scale easily in a distributed environment.</li>
|
||
</ul>
|
||
<p><a name="scala-data-analysis--data-visualization"></a> #### Data
|
||
Analysis / Data Visualization</p>
|
||
<ul>
|
||
<li><a href="https://github.com/SciScala/NDScala">NDScala</a> -
|
||
N-dimensional arrays in Scala 3. Think NumPy ndarray, but with
|
||
compile-time type-checking/inference over shapes, tensor/axis labels
|
||
& numeric data types</li>
|
||
<li><a
|
||
href="https://spark.apache.org/docs/latest/mllib-guide.html">MLlib in
|
||
Apache Spark</a> - Distributed machine learning library in Spark</li>
|
||
<li><a href="https://github.com/Hydrospheredata/mist">Hydrosphere
|
||
Mist</a> - a service for deployment Apache Spark MLLib machine learning
|
||
models as realtime, batch or reactive web services.</li>
|
||
<li><a href="https://github.com/twitter/scalding">Scalding</a> - A Scala
|
||
API for Cascading.</li>
|
||
<li><a href="https://github.com/twitter/summingbird">Summing Bird</a> -
|
||
Streaming MapReduce with Scalding and Storm.</li>
|
||
<li><a href="https://github.com/twitter/algebird">Algebird</a> -
|
||
Abstract Algebra for Scala.</li>
|
||
<li><a href="https://github.com/xerial/xerial">xerial</a> - Data
|
||
management utilities for Scala. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/apache/predictionio">PredictionIO</a> -
|
||
PredictionIO, a machine learning server for software developers and data
|
||
engineers.</li>
|
||
<li><a href="https://github.com/BIDData/BIDMat">BIDMat</a> - CPU and
|
||
GPU-accelerated matrix library intended to support large-scale
|
||
exploratory data analysis.</li>
|
||
<li><a href="https://flink.apache.org/">Flink</a> - Open source platform
|
||
for distributed stream and batch data processing.</li>
|
||
<li><a href="http://spark-notebook.io">Spark Notebook</a> - Interactive
|
||
and Reactive Data Science using Scala and Spark.</li>
|
||
</ul>
|
||
<p><a name="scala-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a href="https://github.com/Azure/mmlspark">Microsoft ML for Apache
|
||
Spark</a> -> A distributed machine learning framework Apache
|
||
Spark</li>
|
||
<li><a href="https://github.com/EmergentOrder/onnx-scala">ONNX-Scala</a>
|
||
- An ONNX (Open Neural Network eXchange) API and backend for typeful,
|
||
functional deep learning in Scala (3).</li>
|
||
<li><a
|
||
href="https://deeplearning.thoughtworks.school/">DeepLearning.scala</a>
|
||
- Creating statically typed dynamic neural networks from object-oriented
|
||
& functional programming constructs.</li>
|
||
<li><a href="https://github.com/etsy/Conjecture">Conjecture</a> -
|
||
Scalable Machine Learning in Scalding.</li>
|
||
<li><a href="https://github.com/stripe/brushfire">brushfire</a> -
|
||
Distributed decision tree ensemble learning in Scala.</li>
|
||
<li><a href="https://github.com/tresata/ganitha">ganitha</a> - Scalding
|
||
powered machine learning. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/bigdatagenomics/adam">adam</a> - A
|
||
genomics processing engine and specialized file format built using
|
||
Apache Avro, Apache Spark and Parquet. Apache 2 licensed.</li>
|
||
<li><a href="https://github.com/bioscala/bioscala">bioscala</a> -
|
||
Bioinformatics for the Scala programming language</li>
|
||
<li><a href="https://github.com/BIDData/BIDMach">BIDMach</a> - CPU and
|
||
GPU-accelerated Machine Learning Library.</li>
|
||
<li><a href="https://github.com/p2t2/figaro">Figaro</a> - a Scala
|
||
library for constructing probabilistic models.</li>
|
||
<li><a href="https://github.com/h2oai/sparkling-water">H2O Sparkling
|
||
Water</a> - H2O and Spark interoperability.</li>
|
||
<li><a
|
||
href="https://ci.apache.org/projects/flink/flink-docs-master/dev/libs/ml/index.html">FlinkML
|
||
in Apache Flink</a> - Distributed machine learning library in
|
||
Flink.</li>
|
||
<li><a href="https://github.com/transcendent-ai-labs/DynaML">DynaML</a>
|
||
- Scala Library/REPL for Machine Learning Research.</li>
|
||
<li><a href="https://github.com/CogComp/saul">Saul</a> - Flexible
|
||
Declarative Learning-Based Programming.</li>
|
||
<li><a
|
||
href="https://github.com/valdanylchuk/swiftlearner/">SwiftLearner</a> -
|
||
Simply written algorithms to help study ML or write your own
|
||
implementations.</li>
|
||
<li><a href="https://haifengl.github.io/">Smile</a> - Statistical
|
||
Machine Intelligence and Learning Engine.</li>
|
||
<li><a href="https://github.com/picnicml/doddle-model">doddle-model</a>
|
||
- An in-memory machine learning library built on top of Breeze. It
|
||
provides immutable objects and exposes its functionality through a
|
||
scikit-learn-like API.</li>
|
||
<li><a href="https://github.com/eaplatanios/tensorflow_scala">TensorFlow
|
||
Scala</a> - Strongly-typed Scala API for TensorFlow.</li>
|
||
<li><a
|
||
href="https://github.com/linkedin/isolation-forest">isolation-forest</a>
|
||
- A distributed Spark/Scala implementation of the isolation forest
|
||
algorithm for unsupervised outlier detection, featuring support for
|
||
scalable training and ONNX export for easy cross-platform
|
||
inference.</li>
|
||
</ul>
|
||
<p><a name="scheme"></a> ## Scheme</p>
|
||
<p><a name="scheme-neural-networks"></a> #### Neural Networks</p>
|
||
<ul>
|
||
<li><a href="https://github.com/cloudkj/layer">layer</a> - Neural
|
||
network inference from the command line, implemented in <a
|
||
href="https://www.call-cc.org/">CHICKEN Scheme</a>.</li>
|
||
</ul>
|
||
<p><a name="swift"></a> ## Swift</p>
|
||
<p><a name="swift-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning</p>
|
||
<ul>
|
||
<li><a href="https://github.com/xmartlabs/Bender">Bender</a> - Fast
|
||
Neural Networks framework built on top of Metal. Supports TensorFlow
|
||
models.</li>
|
||
<li><a href="https://github.com/Swift-AI/Swift-AI">Swift AI</a> - Highly
|
||
optimized artificial intelligence and machine learning library written
|
||
in Swift.</li>
|
||
<li><a href="https://github.com/tensorflow/swift">Swift for
|
||
Tensorflow</a> - a next-generation platform for machine learning,
|
||
incorporating the latest research across machine learning, compilers,
|
||
differentiable programming, systems design, and beyond.</li>
|
||
<li><a href="https://github.com/alejandro-isaza/BrainCore">BrainCore</a>
|
||
- The iOS and OS X neural network framework.</li>
|
||
<li><a href="https://github.com/stsievert/swix">swix</a> - A bare bones
|
||
library that includes a general matrix language and wraps some OpenCV
|
||
for iOS development. <strong>[Deprecated]</strong></li>
|
||
<li><a href="https://github.com/KevinCoble/AIToolbox">AIToolbox</a> - A
|
||
toolbox framework of AI modules written in Swift: Graphs/Trees, Linear
|
||
Regression, Support Vector Machines, Neural Networks, PCA, KMeans,
|
||
Genetic Algorithms, MDP, Mixture of Gaussians.</li>
|
||
<li><a href="https://github.com/Somnibyte/MLKit">MLKit</a> - A simple
|
||
Machine Learning Framework written in Swift. Currently features Simple
|
||
Linear Regression, Polynomial Regression, and Ridge Regression.</li>
|
||
<li><a href="https://github.com/vlall/Swift-Brain">Swift Brain</a> - The
|
||
first neural network / machine learning library written in Swift. This
|
||
is a project for AI algorithms in Swift for iOS and OS X development.
|
||
This project includes algorithms focused on Bayes theorem, neural
|
||
networks, SVMs, Matrices, etc…</li>
|
||
<li><a
|
||
href="https://github.com/PerfectlySoft/Perfect-TensorFlow">Perfect
|
||
TensorFlow</a> - Swift Language Bindings of TensorFlow. Using native
|
||
TensorFlow models on both macOS / Linux.</li>
|
||
<li><a
|
||
href="https://github.com/denissimon/prediction-builder-swift">PredictionBuilder</a>
|
||
- A library for machine learning that builds predictions using a linear
|
||
regression.</li>
|
||
<li><a
|
||
href="https://github.com/SwiftBrain/awesome-CoreML-models">Awesome
|
||
CoreML</a> - A curated list of pretrained CoreML models.</li>
|
||
<li><a href="https://github.com/likedan/Awesome-CoreML-Models">Awesome
|
||
Core ML Models</a> - A curated list of machine learning models in CoreML
|
||
format.</li>
|
||
</ul>
|
||
<p><a name="tensorflow"></a> ## TensorFlow</p>
|
||
<p><a name="tensorflow-general-purpose-machine-learning"></a> ####
|
||
General-Purpose Machine Learning * <a
|
||
href="https://github.com/markusschanta/awesome-keras">Awesome Keras</a>
|
||
- A curated list of awesome Keras projects, libraries and resources. *
|
||
<a href="https://github.com/jtoy/awesome-tensorflow">Awesome
|
||
TensorFlow</a> - A list of all things related to TensorFlow. * <a
|
||
href="https://golden.com/wiki/TensorFlow">Golden TensorFlow</a> - A page
|
||
of content on TensorFlow, including academic papers and links to related
|
||
topics.</p>
|
||
<p><a name="tools"></a> ## Tools</p>
|
||
<p><a name="tools-neural-networks"></a> #### Neural Networks * <a
|
||
href="https://github.com/cloudkj/layer">layer</a> - Neural network
|
||
inference from the command line</p>
|
||
<p><a name="tools-misc"></a> #### Misc</p>
|
||
<ul>
|
||
<li><a href="https://wallaroo.ai/">Wallaroo.AI</a> - Production AI
|
||
plaftorm for deploying, managing, and observing any model at scale
|
||
across any environment from cloud to edge. Let’s go from python notebook
|
||
to inferencing in minutes.</li>
|
||
<li><a href="https://github.com/infiniflow/infinity">Infinity</a> - The
|
||
AI-native database built for LLM applications, providing incredibly fast
|
||
vector and full-text search. Developed using C++20</li>
|
||
<li><a href="https://synthical.com">Synthical</a> - AI-powered
|
||
collaborative research environment. You can use it to get
|
||
recommendations of articles based on reading history, simplify papers,
|
||
find out what articles are trending, search articles by meaning (not
|
||
just keywords), create and share folders of articles, see lists of
|
||
articles from specific companies and universities, and add
|
||
highlights.</li>
|
||
<li><a href="https://humanloop.com">Humanloop</a> – Humanloop is a
|
||
platform for prompt experimentation, finetuning models for better
|
||
performance, cost optimization, and collecting model generated data and
|
||
user feedback.</li>
|
||
<li><a href="https://qdrant.tech">Qdrant</a> – Qdrant is <a
|
||
href="https://github.com/qdrant/qdrant">open source</a> vector
|
||
similarity search engine with extended filtering support, written in
|
||
Rust.</li>
|
||
<li><a href="https://localforge.dev/">Localforge</a> – Is an <a
|
||
href="https://github.com/rockbite/localforge">open source</a> on-prem AI
|
||
coding autonomous assistant that lives inside your repo, edits and tests
|
||
files at SSD speed. Think Claude Code but with UI. plug in any LLM
|
||
(OpenAI, Gemini, Ollama, etc.) and let it work for you.</li>
|
||
<li><a href="https://milvus.io">milvus</a> – Milvus is <a
|
||
href="https://github.com/milvus-io/milvus">open source</a> vector
|
||
database for production AI, written in Go and C++, scalable and blazing
|
||
fast for billions of embedding vectors.</li>
|
||
<li><a
|
||
href="https://www.semi.technology/developers/weaviate/current/">Weaviate</a>
|
||
– Weaviate is an <a
|
||
href="https://github.com/semi-technologies/weaviate">open source</a>
|
||
vector search engine and vector database. Weaviate uses machine learning
|
||
to vectorize and store data, and to find answers to natural language
|
||
queries. With Weaviate you can also bring your custom ML models to
|
||
production scale.</li>
|
||
<li><a href="https://github.com/neuml/txtai">txtai</a> - Build semantic
|
||
search applications and workflows.</li>
|
||
<li><a href="https://about.mlreef.com/">MLReef</a> - MLReef is an
|
||
end-to-end development platform using the power of git to give structure
|
||
and deep collaboration possibilities to the ML development process.</li>
|
||
<li><a href="https://www.trychroma.com/">Chroma</a> - Chroma - the
|
||
AI-native open-source embedding database</li>
|
||
<li><a href="https://www.pinecone.io/">Pinecone</a> - Vector database
|
||
for applications that require real-time, scalable vector embedding and
|
||
similarity search.</li>
|
||
<li><a
|
||
href="https://chrome.google.com/webstore/detail/code-finder-for-research/aikkeehnlfpamidigaffhfmgbkdeheil">CatalyzeX</a>
|
||
- Browser extension (<a
|
||
href="https://chrome.google.com/webstore/detail/code-finder-for-research/aikkeehnlfpamidigaffhfmgbkdeheil">Chrome</a>
|
||
and <a
|
||
href="https://addons.mozilla.org/en-US/firefox/addon/code-finder-catalyzex/">Firefox</a>)
|
||
that automatically finds and shows code implementations for machine
|
||
learning papers anywhere: Google, Twitter, Arxiv, Scholar, etc.</li>
|
||
<li><a href="https://github.com/ml-tooling/ml-workspace">ML
|
||
Workspace</a> - All-in-one web-based IDE for machine learning and data
|
||
science. The workspace is deployed as a docker container and is
|
||
preloaded with a variety of popular data science libraries (e.g.,
|
||
Tensorflow, PyTorch) and dev tools (e.g., Jupyter, VS Code).</li>
|
||
<li><a href="https://github.com/rlan/notebooks">Notebooks</a> - A
|
||
starter kit for Jupyter notebooks and machine learning. Companion docker
|
||
images consist of all combinations of python versions, machine learning
|
||
frameworks (Keras, PyTorch and Tensorflow) and CPU/CUDA versions.</li>
|
||
<li><a href="https://github.com/iterative/dvc">DVC</a> - Data Science
|
||
Version Control is an open-source version control system for machine
|
||
learning projects with pipelines support. It makes ML projects
|
||
reproducible and shareable.</li>
|
||
<li><a href="https://github.com/iterative/dvclive">DVClive</a> - Python
|
||
library for experiment metrics logging into simply formatted local
|
||
files.</li>
|
||
<li><a href="https://github.com/instill-ai/vdp">VDP</a> - open source
|
||
visual data ETL to streamline the end-to-end visual data processing
|
||
pipeline: extract unstructured visual data from pre-built data sources,
|
||
transform it into analysable structured insights by Vision AI models
|
||
imported from various ML platforms, and load the insights into
|
||
warehouses or applications.</li>
|
||
<li><a href="https://github.com/quantumblacklabs/kedro/">Kedro</a> -
|
||
Kedro is a data and development workflow framework that implements best
|
||
practices for data pipelines with an eye towards productionizing machine
|
||
learning models.</li>
|
||
<li><a href="https://github.com/dagworks-inc/hamilton">Hamilton</a> - a
|
||
lightweight library to define data transformations as a directed-acyclic
|
||
graph (DAG). It helps author reliable feature engineering and machine
|
||
learning pipelines, and more.</li>
|
||
<li><a href="https://guild.ai/">guild.ai</a> - Tool to log, analyze,
|
||
compare and “optimize” experiments. It’s cross-platform and framework
|
||
independent, and provided integrated visualizers such as
|
||
tensorboard.</li>
|
||
<li><a href="https://github.com/IDSIA/sacred">Sacred</a> - Python tool
|
||
to help you configure, organize, log and reproduce experiments. Like a
|
||
notebook lab in the context of Chemistry/Biology. The community has
|
||
built multiple add-ons leveraging the proposed standard.</li>
|
||
<li><a href="https://www.comet.com/">Comet</a> - ML platform for
|
||
tracking experiments, hyper-parameters, artifacts and more. It’s deeply
|
||
integrated with over 15+ deep learning frameworks and orchestration
|
||
tools. Users can also use the platform to monitor their models in
|
||
production.</li>
|
||
<li><a href="https://mlflow.org/">MLFlow</a> - platform to manage the ML
|
||
lifecycle, including experimentation, reproducibility and deployment.
|
||
Framework and language agnostic, take a look at all the built-in
|
||
integrations.</li>
|
||
<li><a href="https://www.wandb.com/">Weights & Biases</a> - Machine
|
||
learning experiment tracking, dataset versioning, hyperparameter search,
|
||
visualization, and collaboration</li>
|
||
<li>More tools to improve the ML lifecycle: <a
|
||
href="https://github.com/catalyst-team/catalyst">Catalyst</a>, <a
|
||
href="https://www.pachyderm.io/">PachydermIO</a>. The following are
|
||
GitHub-alike and targeting teams <a
|
||
href="https://www.wandb.com/">Weights & Biases</a>, <a
|
||
href="https://neptune.ai/">Neptune.ai</a>, <a
|
||
href="https://www.comet.ml/">Comet.ml</a>, <a
|
||
href="https://valohai.com/">Valohai.ai</a>, <a
|
||
href="https://DAGsHub.com/">DAGsHub</a>.</li>
|
||
<li><a href="https://www.arize.com">Arize AI</a> - Model validation and
|
||
performance monitoring, drift detection, explainability, visualization
|
||
across structured and unstructured data</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/machine-learning-with-tensorflow-second-edition">MachineLearningWithTensorFlow2ed</a>
|
||
- a book on general purpose machine learning techniques regression,
|
||
classification, unsupervised clustering, reinforcement learning, auto
|
||
encoders, convolutional neural networks, RNNs, LSTMs, using TensorFlow
|
||
1.14.1.</li>
|
||
<li><a href="https://github.com/BayesWitnesses/m2cgen">m2cgen</a> - A
|
||
tool that allows the conversion of ML models into native code (Java, C,
|
||
Python, Go, JavaScript, Visual Basic, C#, R, PowerShell, PHP, Dart) with
|
||
zero dependencies.</li>
|
||
<li><a href="https://github.com/iterative/cml">CML</a> - A library for
|
||
doing continuous integration with ML projects. Use GitHub Actions &
|
||
GitLab CI to train and evaluate models in production like environments
|
||
and automatically generate visual reports with metrics and graphs in
|
||
pull/merge requests. Framework & language agnostic.</li>
|
||
<li><a href="https://pythonizr.com">Pythonizr</a> - An online tool to
|
||
generate boilerplate machine learning code that uses scikit-learn.</li>
|
||
<li><a href="https://flyte.org/">Flyte</a> - Flyte makes it easy to
|
||
create concurrent, scalable, and maintainable workflows for machine
|
||
learning and data processing.</li>
|
||
<li><a href="https://github.com/chaos-genius/chaos_genius/">Chaos
|
||
Genius</a> - ML powered analytics engine for outlier/anomaly detection
|
||
and root cause analysis.</li>
|
||
<li><a href="https://github.com/iterative/mlem">MLEM</a> - Version and
|
||
deploy your ML models following GitOps principles</li>
|
||
<li><a href="https://github.com/matifali/dockerdl">DockerDL</a> - Ready
|
||
to use deeplearning docker images.</li>
|
||
<li><a href="https://github.com/aqueducthq/aqueduct">Aqueduct</a> -
|
||
Aqueduct enables you to easily define, run, and manage AI & ML tasks
|
||
on any cloud infrastructure.</li>
|
||
<li><a href="https://github.com/reactorsh/ambrosia">Ambrosia</a> -
|
||
Ambrosia helps you clean up your LLM datasets using <em>other</em>
|
||
LLMs.</li>
|
||
<li><a href="https://www.fiddler.ai">Fiddler AI</a> - The all-in-one AI
|
||
Observability and Security platform for responsible AI. It provides
|
||
monitoring, analytics, and centralized controls to operationalize ML,
|
||
GenAI, and LLM applications with trust. Fiddler helps enterprises scale
|
||
LLM and ML deployments to deliver high performance AI, reduce costs, and
|
||
be responsible in governance.</li>
|
||
<li><a href="https://getmaxim.ai">Maxim AI</a> - The agent simulation,
|
||
evaluation, and observability platform helping product teams ship their
|
||
AI applications with the quality and speed needed for real-world
|
||
use.</li>
|
||
<li><a href="https://github.com/splx-ai/agentic-radar">Agentic Radar</a>
|
||
- Open-source CLI security scanner for agentic workflows. Scans your
|
||
workflow’s source code, detects vulnerabilities, and generates an
|
||
interactive visualization along with a detailed security report.
|
||
Supports LangGraph, CrewAI, n8n, OpenAI Agents, and more.</li>
|
||
</ul>
|
||
<p><a name="books"></a> ## Books</p>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/terrytangyuan/distributed-ml-patterns">Distributed
|
||
Machine Learning Patterns</a> - This book teaches you how to take
|
||
machine learning models from your personal laptop to large distributed
|
||
clusters. You’ll explore key concepts and patterns behind successful
|
||
distributed machine learning systems, and learn technologies like
|
||
TensorFlow, Kubernetes, Kubeflow, and Argo Workflows directly from a key
|
||
maintainer and contributor, with real-world scenarios and hands-on
|
||
projects.</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/grokking-machine-learning">Grokking
|
||
Machine Learning</a> - Grokking Machine Learning teaches you how to
|
||
apply ML to your projects using only standard Python code and high
|
||
school-level math.</li>
|
||
<li><a
|
||
href="https://www.manning.com/books/machine-learning-bookcamp">Machine
|
||
Learning Bookcamp</a> - Learn the essentials of machine learning by
|
||
completing a carefully designed set of real-world projects.</li>
|
||
<li><a
|
||
href="https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1098125975">Hands-On
|
||
Machine Learning with Scikit-Learn, Keras, and TensorFlow</a> - Through
|
||
a recent series of breakthroughs, deep learning has boosted the entire
|
||
field of machine learning. Now, even programmers who know close to
|
||
nothing about this technology can use simple, efficient tools to
|
||
implement programs capable of learning from data. This bestselling book
|
||
uses concrete examples, minimal theory, and production-ready Python
|
||
frameworks (Scikit-Learn, Keras, and TensorFlow) to help you gain an
|
||
intuitive understanding of the concepts and tools for building
|
||
intelligent systems.</li>
|
||
<li><a
|
||
href="https://www.appliedaicourse.com/blog/machine-learning-books/">Machine
|
||
Learning Books for Beginners</a> - This blog provides a curated list of
|
||
introductory books to help aspiring ML professionals to grasp
|
||
foundational machine learning concepts and techniques.</li>
|
||
</ul>
|
||
<p><a name="credits"></a> * <a href="https://netron.app/">Netron</a> -
|
||
An opensource viewer for neural network, deep learning and machine
|
||
learning models * <a
|
||
href="https://teachablemachine.withgoogle.com/">Teachable Machine</a> -
|
||
Train Machine Learning models on the fly to recognize your own images,
|
||
sounds, & poses. * <a
|
||
href="https://pollinations.ai">Pollinations.AI</a> - Free, no-signup
|
||
APIs for text, image, and audio generation with no API keys required.
|
||
Offers OpenAI-compatible interfaces and React hooks for easy
|
||
integration. * <a href="https://modelzoo.co/">Model Zoo</a> - Discover
|
||
open source deep learning code and pretrained models.</p>
|
||
<h2 id="credits">Credits</h2>
|
||
<ul>
|
||
<li>Some of the python libraries were cut-and-pasted from <a
|
||
href="https://github.com/vinta/awesome-python">vinta</a></li>
|
||
<li>References for Go were mostly cut-and-pasted from <a
|
||
href="https://github.com/gopherdata/resources/tree/master/tooling">gopherdata</a></li>
|
||
</ul>
|
||
<p><a
|
||
href="https://github.com/josephmisiti/awesome-machine-learning">machinelearning.md
|
||
Github</a></p>
|