168 lines
7.5 KiB
HTML
168 lines
7.5 KiB
HTML
<h1 id="awesome-software-for-image-coloring-awesome">Awesome Software
|
||
for Image Coloring <a
|
||
href="https://github.com/sindresorhus/awesome"><img
|
||
src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg"
|
||
alt="Awesome" /></a></h1>
|
||
<p>A curated list of awesome AI-powered image coloring frameworks,
|
||
libraries and software. Inspired by
|
||
<code>josephmisiti/awesome-machine-learning</code>. It’s a good idea to
|
||
explore the GitHub topic as well - <a
|
||
href="https://github.com/topics/image-colorization">Topic “Image
|
||
colorization”</a>. In comparison to the awesome list
|
||
<code>MarkMoHR/Awesome-Image-Colorization</code> (which focuses on
|
||
research papers), I focus on practical open-source software.</p>
|
||
<h2 id="considerations">Considerations</h2>
|
||
<p>Most of the software runs in <code>Python</code>, and requires some
|
||
kind of an AI frameworks (e.g. <code>Tensorflow</code>) - which means
|
||
you may need a GPU with a configured <code>CUDA</code> toolkit to run it
|
||
in a reasonable time.</p>
|
||
<h2 id="frameworks-and-libraries">Frameworks and libraries</h2>
|
||
<h3 id="snake-python">:snake: Python</h3>
|
||
<h4 id="tensorflow">Tensorflow</h4>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/Armour/Automatic-Image-Colorization">Automatic
|
||
Image Colorization</a> - Automatic Image Colorization using TensorFlow
|
||
based on Residual Encoder Network http://tinyclouds.org/colorize/</li>
|
||
<li><a href="https://github.com/shekkizh/Colorization.tensorflow">Image
|
||
Colorization using Convolutional Networks</a> - Image colorization using
|
||
CNNs in tensorflow.</li>
|
||
<li><a href="https://github.com/PrimozGodec/ImageColorization">Image and
|
||
video colorizer</a> - Image and video colorizer is package for automatic
|
||
image and video colorization. Models are already trained.</li>
|
||
<li><a href="https://github.com/ameroyer/PIC">PIC - Probabilistic Image
|
||
Colorization</a> - Probabilistic Image Colorization
|
||
https://arxiv.org/abs/1705.04258</li>
|
||
<li><a href="https://github.com/AbdelrahmanRadwan/photo-coloring">Photo
|
||
Coloring Using End2end CNN based Model!</a> - A Deep Learning based
|
||
coloring tool, which can color a black-white or gray picture.</li>
|
||
</ul>
|
||
<h4 id="tensorflow-with-gans">Tensorflow with GANs</h4>
|
||
<ul>
|
||
<li><a href="https://github.com/ImagingLab/Colorizing-with-GANs">Image
|
||
Colorization with Generative Adversarial Networks</a> - Grayscale Image
|
||
Colorization with Generative Adversarial Networks.
|
||
https://arxiv.org/abs/1803.05400</li>
|
||
<li><a
|
||
href="https://github.com/ArkaJU/Image-Colorization-CycleGAN">Image-colorization-using-CycleGAN</a>
|
||
- Colorization of grayscale images using CycleGAN in TensorFlow.</li>
|
||
</ul>
|
||
<h4 id="keras">Keras</h4>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/emilwallner/Coloring-greyscale-images">Coloring
|
||
Black and White photos with Neural Networks</a> - Coloring black and
|
||
white images with deep learning.</li>
|
||
<li><a
|
||
href="https://github.com/JadeBlue96/Image-Colorization-of-Historical-Paintings">JadeBlue96</a>
|
||
- Recolorizing grayscaled historical paintings and photos with Deep
|
||
Learning using an Autoencoder CNN.</li>
|
||
<li><a
|
||
href="https://github.com/aman-chauhan/Image-Coloring">Image-Coloring</a>
|
||
- Deep Neural Net for coloring grayscale images using local and global
|
||
image features</li>
|
||
<li><a
|
||
href="https://github.com/thevarunsharma/Image-Colorization">Image-Colorization</a>
|
||
- Automatic Image Colorization using a Convolutional Network
|
||
(U-Net)</li>
|
||
</ul>
|
||
<h4 id="fast.ai">Fast.AI</h4>
|
||
<ul>
|
||
<li><a href="https://github.com/jantic/DeOldify">DeOldify</a> - A Deep
|
||
Learning based project for colorizing and restoring old images.</li>
|
||
</ul>
|
||
<h4 id="caffee">Caffee</h4>
|
||
<ul>
|
||
<li><a href="https://github.com/richzhang/colorization">Colorful Image
|
||
Colorization</a> - Automatic colorization using deep neural networks.
|
||
“Colorful Image Colorization.” In ECCV, 2016.
|
||
http://richzhang.github.io/colorization/</li>
|
||
<li><a
|
||
href="https://github.com/junyanz/interactive-deep-colorization">Interactive
|
||
Deep Colorization</a> - Deep learning software for colorizing black and
|
||
white images with a few clicks.
|
||
https://richzhang.github.io/ideepcolor/</li>
|
||
</ul>
|
||
<h4 id="pytorch">PyTorch</h4>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/richzhang/colorization-pytorch">Interactive
|
||
Deep Colorization in PyTorch</a> - PyTorch reimplementation of
|
||
Interactive Deep Colorization
|
||
https://richzhang.github.io/ideepcolor/</li>
|
||
<li><a href="https://github.com/kainoj/colnet">Automatic Image
|
||
Colorization</a> - Automatic Image Colorization with Simultaneous
|
||
Classification – based on “Let there be Color!”.</li>
|
||
<li><a href="https://github.com/karoly-hars/GAN_image_colorizing">Image
|
||
colorization with GANs</a> - Image colorization with generative
|
||
adversarial networks on the CIFAR10 dataset.</li>
|
||
<li><a
|
||
href="https://github.com/Time0o/pytorch-colorful-colorization">Colorful
|
||
Image Colorization PyTorch</a> - A from-scratch PyTorch implementation
|
||
of “Colorful Image Colorization” by Zhang et al. created for the Deep
|
||
Learning in Data Science course at KTH Stockholm.</li>
|
||
<li><a href="https://github.com/Epiphqny/Colorization">Colorful Image
|
||
Colorization</a> - Pytorch implementation of the paper Colorful Image
|
||
Colorization https://arxiv.org/abs/1603.08511</li>
|
||
<li><a
|
||
href="https://github.com/done1892/Square-Images-Colorization">Square-Images-Colorization</a>
|
||
- Colorization algorithms for images depicting cities squares</li>
|
||
</ul>
|
||
<h3 id="c">C++</h3>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/saulo-p/Exemplar-Image-Colorization">Beyond
|
||
Landscapes: An Exemplar-based Image colorization method</a> -
|
||
Exemplar-based Image Colorization method based on superpixel
|
||
segmentation and classification.</li>
|
||
</ul>
|
||
<h3 id="c-1">C</h3>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/ColorfulSoft/StyleTransfer-Colorization-SuperResolution">StyleTransfer-Colorization-SuperResolution</a>
|
||
- Demonstration implementations of neural network image processing
|
||
algorithms.</li>
|
||
</ul>
|
||
<h2 id="language-based-colorization">Language-based colorization</h2>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/SketchyScene/SketchySceneColorization">SketchySceneColorization</a>
|
||
- Language-based Colorization of Scene Sketches. (SIGGRAPH Asia 2019)
|
||
https://sketchyscene.github.io/SketchySceneColorization/</li>
|
||
</ul>
|
||
<h2 id="implementations-apps">Implementations / apps</h2>
|
||
<h3 id="ios">iOS</h3>
|
||
<ul>
|
||
<li><a href="https://github.com/alex011235/Colorizer-iOS">Colorizer
|
||
iOS</a> - Transform grayscale photos to color photos in iOS</li>
|
||
</ul>
|
||
<h2 id="books-relevant-knowledge-books-and-papers">:books: Relevant
|
||
knowledge, books and papers</h2>
|
||
<ul>
|
||
<li><p><a
|
||
href="https://github.com/MarkMoHR/Awesome-Image-Colorization">Awesome-Image-Colorization</a>
|
||
- A collection of Deep Learning based Image Colorization and Video
|
||
Colorization papers.</p></li>
|
||
<li><p><a href="https://www.youtube.com/watch?v=xgQpalRRW3A">Build a
|
||
Photo Restoration App with Python</a> - YouTube tutorial from AssemblyAI
|
||
on how to build a photo restoration app with Python and Flask.</p></li>
|
||
</ul>
|
||
<h2 id="dark_sunglasses-related-awesome-lists">:dark_sunglasses: Related
|
||
awesome lists</h2>
|
||
<ul>
|
||
<li><a
|
||
href="https://github.com/josephmisiti/awesome-machine-learning">Awesome
|
||
Machine Learning</a> - A curated list of awesome Machine Learning
|
||
frameworks, libraries and software.</li>
|
||
<li><a
|
||
href="https://github.com/ChristosChristofidis/awesome-deep-learning">Awesome
|
||
Deep Learning</a> - A curated list of awesome Deep Learning tutorials,
|
||
projects and communities.</li>
|
||
<li><a href="https://github.com/kjw0612/awesome-deep-vision">Awesome
|
||
Deep Vision</a> - A curated list of deep learning resources for computer
|
||
vision.</li>
|
||
</ul>
|
||
<p><a
|
||
href="https://github.com/oskar-j/awesome-image-coloring">imagecoloring.md
|
||
Github</a></p>
|