Files
awesome-awesomeness/terminal/tensorflowlite9
2024-04-20 19:22:54 +02:00

119 KiB

 
 
 
 
 
Awesome TensorFlow Lite !Awesome (https://awesome.re/badge.svg) (https://awesome.re) !PRs Welcome (https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)
(http://makeapullrequest.com) !Twitter (https://img.shields.io/badge/Twitter-%40margaretmz-blue) (https://twitter.com/margaretmz)
 
TensorFlow Lite (https://www.tensorflow.org/lite) is a set of tools that help convert and optimize TensorFlow models to run on mobile and edge devices. It's currently running on more than 4
billion devices! With TensorFlow 2.x, you can train a model with tf.Keras, easily convert a model to .tflite and deploy it; or you can download a pretrained TensorFlow Lite model from the
model zoo.
 
This is an awesome list of TensorFlow Lite models with sample apps, helpful tools and learning resources -
Showcase what the community has built with TensorFlow Lite
Put all the samples side-by-side for easy reference
Share knowledge and learning resources
 
Please submit a PR if you would like to contribute and follow the guidelines here (CONTRIBUTING.md).
 
 
## Contents
- Past announcements: (#past-announcements)
- Models with samples (#models-with-samples)
- Computer vision (#computer-vision)
- **Classification** (#classification)
- **Detection** (#detection)
- **Segmentation** (#segmentation)
- **Style Transfer** (#style-transfer)
- **Generative** (#generative)
- **Post estimation** (#post-estimation)
- **Other** (#other)
- Text (#text)
- Speech (#speech)
- Recommendation (#recommendation)
- Game (#game)
- Model zoo (#model-zoo)
- TensorFlow Lite models (#tensorflow-lite-models)
- TensorFlow models (#tensorflow-models)
- Ideas and Inspiration (#ideas-and-inspiration)
- ML Kit examples (#ml-kit-examples)
- Plugins and SDKs (#plugins-and-sdks)
- Helpful links (#helpful-links)
- Learning resources (#learning-resources)
- Blog posts (#blog-posts)
- Books (#books)
- Videos (#videos)
- Podcasts (#podcasts)
- MOOCs (#moocs)
 
Past announcements:
Here are some past feature annoucements of TensorFlow Lite:
Announcement of the new converter (https://groups.google.com/a/tensorflow.org/d/msg/tflite/Z_h7706dt8Q/sNrjPj4yGgAJ) - MLIR
(https://medium.com/tensorflow/mlir-a-new-intermediate-representation-and-compiler-framework-beba999ed18d)-based and enables conversion of new classes of models such as Mask R-CNN and Mobile
BERT etc., supports functional control flow and better error handling during conversion. Enabled by default in the nightly builds\.
Android Support Library (https://github.com/tensorflow/tflite-support/tree/master/tensorflow_lite_support/java) - Makes mobile development easier (Android
(https://github.com/tensorflow/examples/blob/master/lite/examples/image_classification/android/EXPLORE_THE_CODE.md) sample code).
Model Maker (https://www.tensorflow.org/lite/guide/model_maker) - Create your custom image & text (https://github.com/tensorflow/examples/tree/master/tensorflow_examples/lite/model_maker)
classification models easily in a few lines of code. See below the Icon Classifier for a tutorial by the community.
On-device training (https://blog.tensorflow.org/2019/12/example-on-device-model-personalization.html) - It is finally here! Currently limited to transfer learning for image classification
only but it's a great start. See the official Android (https://github.com/tensorflow/examples/blob/master/lite/examples/model_personalization/README.md) sample code and another one from the
community (Blog (https://aqibsaeed.github.io/on-device-activity-recognition) | Android (https://github.com/aqibsaeed/on-device-activity-recognition)).
Hexagon delegate (https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/performance/hexagon_delegate.md) - How to use the Hexagon Delegate to speed up model inference
on mobile and edge devices. Also see blog post Accelerating TensorFlow Lite on Qualcomm Hexagon DSPs (https://blog.tensorflow.org/2019/12/accelerating-tensorflow-lite-on-qualcomm.html).
Model Metadata (https://www.tensorflow.org/lite/convert/metadata) - Provides a standard for model descriptions which also enables Code Gen and Android Studio ML Model Binding
(https://www.tensorflow.org/lite/inference_with_metadata/codegen).
 
Models with samples
Here are the TensorFlow Lite models with app / device implementations, and references.
Note: pretrained TensorFlow Lite models from MediaPipe are included, which you can implement with or without MediaPipe.
 
Computer vision
 
Classification
 
Task Model App | Reference Source
├─────────────┼──────────────────────────────────────────────┼────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┼───────────┤
ClassificatioMobileNetV1 (download Android (https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android) | iOS tensorflow.
n (https://storage.googleapis.com/download.tenso(https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/ios) | Raspberry Pi org
rflow.org/models/tflite/mobilenet_v1_1.0_224_q(https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/raspberry_pi) | Overview
uant_and_labels.zip)) (https://www.tensorflow.org/lite/models/image_classification/overview)
ClassificatioMobileNetV2 Recognize Flowers on Android Codelab TensorFlow
n (https://codelabs.developers.google.com/codelabs/recognize-flowers-with-tensorflow-on-android/#0) | Android team
(https://github.com/tensorflow/examples/tree/master/lite/codelabs/flower_classification/android)
ClassificatioMobileNetV2 Skin Lesion Detection Android (https://github.com/AakashKumarNain/skin_cancer_detection/tree/master/demo) Community
n
ClassificatioMobileNetV2 American Sign Language Detection | Colab Notebook Community
n (https://colab.research.google.com/drive/1xsunX7Qj_XWBZwcZLyjsKBg4RI0DNo2-?usp=sharing) | Android
(https://github.com/sayannath/American-Sign-Language-Detection)
ClassificatioCNN + Quantisation Aware Training Stone Paper Scissor Detection Colab Notebook Community
n (https://colab.research.google.com/drive/1Wdso2N_76E8Xxniqd4C6T1sV5BuhKN1o?usp=sharing) | Flutter
(https://github.com/sayannath/American-Sign-Language-Detection)
ClassificatioEfficientNet-Lite0 (download Icon Classifier Colab & Android (https://github.com/margaretmz/icon-classifier) | tutorial 1 Community
n (https://github.com/margaretmz/icon-classifier(https://medium.com/swlh/icon-classifier-with-tflite-model-maker-9263c0021f72) | tutorial 2
/blob/master/ml-code/icons-50.tflite)) (https://medium.com/@margaretmz/icon-classifier-android-app-1fc0b727f761)
 
Detection
Task Model App | Reference Source
├─────────────────┼───────────────────────────────────────────────────────────────────────────────────┼──────────────────────────────────────────────────────────────────┼────────────────────┤
Object detection Quantized COCO SSD MobileNet v1 (download Android tensorflow.org
(https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobi(https://github.com/tensorflow/examples/tree/master/lite/examples/
lenet_v1_1.0_quant_2018_06_29.zip)) object_detection/android) | iOS
(https://github.com/tensorflow/examples/tree/master/lite/examples/
object_detection/ios) | Overview
(https://www.tensorflow.org/lite/models/object_detection/overview#
starter_model)
Object detection YOLO Flutter Community
(https://blog.francium.tech/real-time-object-detection-on-mobile-w
ith-flutter-tensorflow-lite-and-yolo-android-part-a0042c9b62c6) |
Paper (https://arxiv.org/abs/1506.02640)
Object detection YOLOv5 (https://tfhub.dev/neso613/lite-model/yolo-v5-tflite/tflite_model/1) Yolov5 Inference Community
(https://github.com/neso613/yolo-v5-tflite-model)
Object detection MobileNetV2 SSD (download Reference MediaPipe
(https://github.com/google/mediapipe/tree/master/mediapipe/models/ssdlite_object_de(https://github.com/google/mediapipe/blob/master/mediapipe/models/
tection.tflite)) object_detection_saved_model/README.md)
Object detection MobileDet (Paper (https://arxiv.org/abs/2004.14525)) Blog post (includes the TFLite conversion process) MobileDet is from
(https://sayak.dev/mobiledet-optimization/) University of
Wisconsin-Madison
and Google and the
blog post is from
the Community
License Plate SSD MobileNet (download) Flutter (https://github.com/ariG23498/Flutter-License) Community
detection (https://github.com/ariG23498/Flutter-License/blob/master/assets/detect.tflite)
Face detection BlazeFace (download Paper MediaPipe
(https://github.com/google/mediapipe/tree/master/mediapipe/models/face_detection_fr (https://sites.google.com/corp/view/perception-cv4arvr/blazeface)
ont.tflite))
Face FaceNet (https://arxiv.org/pdf/1503.03832.pdf) Flutter (https://github.com/sayannath/Face-Authentication-App) Community
Authentication
Hand detection & Palm detection & hand landmarks (download Blog post (https://mediapipe.page.link/handgoogleaiblog) | Model MediaPipe &
tracking (https://github.com/google/mediapipe/tree/master/mediapipe/models#hand-detection-ancard (https://mediapipe.page.link/handmc) | Android Community
d-tracking)) (https://github.com/supremetech/mediapipe-demo-hand-detection)
 
Segmentation
Task Model App | Reference Source
├────────────┼───────────────────────────────────────────────────────────────────────────────────────────┼────────────────────────────────────────────────────────────────────────┼───────────┤
SegmentationDeepLab V3 (download Android & iOS tf.org &
(https://storage.googleapis.com/download.tensorflow.org/models/tflite/gpu/deeplabv3_257_mv_(https://github.com/tensorflow/examples/tree/master/lite/examples/image_Community
gpu.tflite)) segmentation/) | Overview
(https://www.tensorflow.org/lite/models/segmentation/overview) | Flutter
Image
(https://github.com/kshitizrimal/Flutter-TFLite-Image-Segmentation) |
Realtime (https://github.com/kshitizrimal/tflite-realtime-flutter) |
Paper (https://arxiv.org/abs/1706.05587)
SegmentationDifferent variants of DeepLab V3 models Models on TF Hub Community
(https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md) (https://tfhub.dev/s?module-type=image-segmentation&publisher=sayakpaul)
with Colab Notebooks
SegmentationDeepLab V3 model Android (https://github.com/farmaker47/Update_image_segmentation) | Community
(https://tfhub.dev/tensorflow/lite-model/deeplabv3/1/metadata/2?lite-format=tflite) Tutorial
(https://farmaker47.medium.com/use-camerax-with-image-segmentation-andro
id-project-d8656f35cea3)
Hair Download Paper MediaPipe
Segmentation(https://github.com/google/mediapipe/tree/master/mediapipe/models/hair_segmentation.tflite)(https://sites.google.com/corp/view/perception-cv4arvr/hair-segmentation
)
 
Style Transfer
Task Model App | Reference Source
├─────────────────┼─────────────────────────────────────────────────────────────────────────────────────┼─────────────────────────────────────────────────────────────────────────┼───────────┤
Style transfer Arbitrary image stylization Overview (https://www.tensorflow.org/lite/models/style_transfer/overview)tf.org &
(https://github.com/tensorflow/magenta/tree/master/magenta/models/arbitrary_image_sty| Android Community
lization) (https://github.com/tensorflow/examples/tree/master/lite/examples/style_t
ransfer/android) | Flutter
(https://github.com/PuzzleLeaf/flutter_tflite_style_transfer)
Style transfer Better-quality style transfer models in .tflite Models on TF Hub Community
(https://tfhub.dev/sayakpaul/lite-model/arbitrary-image-stylization-incep
tionv3/dr/predict/1) with Colab Notebooks
Video Style Download: Dynamic range models Android (https://github.com/farmaker47/video_style_transfer) | Tutorial Community
Transfer (https://tfhub.dev/sayakpaul/lite-model/arbitrary-image-stylization-inceptionv3-dynam(https://medium.com/@farmaker47/android-implementation-of-video-style-tra
ic-shapes/dr/transfer/1)) nsfer-with-tensorflow-lite-models-9338a6d2a3ea)
Segmentation & DeepLabV3 & Style Transfer models Project repo (https://github.com/margaretmz/segmentation-style-transfer)|Community
Style transfer (https://github.com/margaretmz/segmentation-style-transfer/tree/master/ml) Android
(https://github.com/margaretmz/segmentation-style-transfer/tree/master/an
droid) | Tutorial
(https://medium.com/google-developer-experts/image-background-stylizer-pa
rt-1-project-intro-d68c4547e7e3)
Generative
Task Model App | Reference Source
├──────────┼───────────────────────────────────────────────────────────────────────────┼────────────────────────────────────────────────────────────────────────────────────────────┼─────────┤
GANs U-GAT-IT (https://github.com/taki0112/UGATIT) (Selfie2Anime) Project repo (https://github.com/margaretmz/selfie2anime-with-tflite) | Android Community
(https://github.com/margaretmz/selfie2anime-with-tflite/tree/master/android) | Tutorial
(https://medium.com/google-developer-experts/selfie2anime-with-tflite-part-1-overview-f97500
800ffe)
GANs White-box CartoonGAN Project repo (https://github.com/margaretmz/Cartoonizer-with-TFLite) | Android Community
(https://github.com/SystemErrorWang/White-box-Cartoonization) (download (https://github.com/margaretmz/Cartoonizer-with-TFLite/tree/master/android) | Tutorial
(https://tfhub.dev/sayakpaul/lite-model/cartoongan/dr/1)) (https://blog.tensorflow.org/2020/09/how-to-create-cartoonizer-with-tf-lite.html)
GANs - Boundless on TF Hub Colab Notebook Community
Image (https://tfhub.dev/sayakpaul/lite-model/boundless-quarter/dr/1) (https://colab.research.google.com/github/sayakpaul/Adventures-in-TensorFlow-Lite/blob/maste
Extrapolat r/Boundless_TFLite.ipynb) | Original Paper (https://arxiv.org/pdf/2003.06792v2.pdf)
ion
Post estimation
Task Model App | Reference Source
├─────────────────────┼────────────────────────────────────────────────────────────────────────────────────────────────────────┼───────────────────────────────────────────────────┼──────────┤
Pose estimation Posenet (download Android tensorflow
(https://storage.googleapis.com/download.tensorflow.org/models/tflite/posenet_mobilenet_v1_100_257x257_m(https://github.com/tensorflow/examples/tree/master.org
ulti_kpt_stripped.tflite)) /lite/examples/posenet/android) | iOS
(https://github.com/tensorflow/examples/tree/master
/lite/examples/posenet/ios) | Overview
(https://www.tensorflow.org/lite/models/pose_estima
tion/overview)
Pose Classification MoveNet Lightning (download Project Repository Community
based Video Game (https://github.com/NSTiwari/Video-Game-Control-using-Pose-Classification-and-TensorFlow-Lite/blob/main/(https://github.com/NSTiwari/Video-Game-Control-usi
Control movenet_lightning.tflite)) ng-Pose-Classification-and-TensorFlow-Lite)
 
 
Other
Task Model App | Reference Source
├───────────────────────────┼────────────────────────────────────────────────────────┼────────────────────────────────────────────────────────────────────────────────────┼─────────┼─────────┤
Low-light image enhancementModels on TF Hub Project repo (https://github.com/sayakpaul/MIRNet-TFLite) | Original Paper Community
(https://tfhub.dev/sayakpaul/mirnet-fixed/1) (https://arxiv.org/pdf/2003.06792v2.pdf) | Flutter
(https://github.com/sayannath/MIRNet-Flutter)
OCR Models on TF Hub Project Repository (https://github.com/tulasiram58827/ocr_tflite) Community
(https://tfhub.dev/tulasiram58827/lite-model/keras-ocr/d
r/2)
 
 
Text
Task Model Sample apps Source
├──────────────┼───────────────────────────────────────────────┼──────────────────────────────────────────────────────────────────────────────────────────────────────────────────┼───────────┤
Question & DistilBERT Android (https://github.com/huggingface/tflite-android-transformers/blob/master/bert) Hugging
Answer Face
Text GPT-2 / DistilGPT2 Android (https://github.com/huggingface/tflite-android-transformers/blob/master/gpt2) Hugging
Generation Face
Text Download Android (https://github.com/tensorflow/examples/tree/master/lite/examples/text_classification/android) |iOS tf.org &
Classification(https://storage.googleapis.com/download.tensor(https://github.com/khurram18/TextClassafication) | Flutter Community
flow.org/models/tflite/text_classification/text(https://github.com/am15h/tflite_flutter_plugin/tree/master/example)
_classification.tflite)
Text DetectionCRAFT Text Detector (Paper Download (https://github.com/tulasiram58827/craft_tflite/blob/main/models/craft_float_800.tflite?raw=true) | Community
(https://arxiv.org/pdf/1904.01941)) Project Repository (https://github.com/tulasiram58827/craft_tflite/) | Blog1-Conversion to TFLite
(https://tulasi.dev/craft-in-tflite) | Blog2-EAST vs CRAFT (https://sayak.dev/optimizing-text-detectors/) | Models
on TF Hub (https://tfhub.dev/tulasiram58827/lite-model/craft-text-detector/dr/1) | Android (Coming Soon)
Text DetectionEAST Text Detector (Paper Models on TF Hub (https://tfhub.dev/sayakpaul/lite-model/east-text-detector/dr/1) | Conversion and Inference Community
(https://arxiv.org/abs/1704.03155)) Notebook
(https://colab.research.google.com/github/sayakpaul/Adventures-in-TensorFlow-Lite/blob/master/EAST_TFLite.ipynb)
 
Speech
Task Model App | Reference Source
├─────────────────────┼───────────────────────────────────────────────────────────────┼──────────────────────────────────────────────────────────────────────────────────────────┼────────────┤
Speech Recognition DeepSpeech Reference (https://github.com/mozilla/DeepSpeech/tree/master/native_client/java) Mozilla
Speech Recognition CONFORMER Inference (https://github.com/neso613/ASR_TFLite) Android Community
(https://github.com/windmaple/tflite-asr)
Speech Synthesis Tacotron-2, FastSpeech2, MB-Melgan Android (https://github.com/TensorSpeech/TensorflowTTS/tree/master/examples/android) TensorSpeech
Speech Synthesis(TTS)Tacotron2, FastSpeech2, MelGAN, MB-MelGAN, HiFi-GAN, Parallel Inference Notebook Community
WaveGAN (https://github.com/tulasiram58827/TTS_TFLite/blob/main/End_to_End_TTS.ipynb) |
Project Repository (https://github.com/tulasiram58827/TTS_TFLite/)
 
Recommendation
Task Model App | Reference Source
├──────────────┼───────────────────────────────────────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────────┼────────────┤
On-device Dual-Encoder Android (https://github.com/tensorflow/examples/tree/master/lite/examples/recommendation/android) | iOS tf.org &
Recommendation(https://github.com/tensorflow/examples/tree/master(https://github.com/zhuzilin/on-device_recommendation_tflite) | Reference Community
/lite/examples/recommendation/ml) (https://blog.tensorflow.org/2020/09/introduction-to-tflite-on-device-recommendation.html)
 
Game
Task Model App | Reference Source
├──────────┼──────────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────┼─────────┤
Game agentReinforcement learningFlutter (https://github.com/windmaple/planestrike-flutter) | Tutorial (https://windmaple.medium.com/)Community
 
 
 
Model zoo
 
TensorFlow Lite models
These are the TensorFlow Lite models that could be implemented in apps and things:
MobileNet (https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/README.md) - Pretrained MobileNet v2 and v3 models.
TensorFlow Lite models
TensorFlow Lite models (https://www.tensorflow.org/lite/models) - With official Android and iOS examples.
Pretrained models (https://www.tensorflow.org/lite/guide/hosted_models) - Quantized and floating point variants.
TensorFlow Hub (https://tfhub.dev/) - Set "Model format = TFLite" to find TensorFlow Lite models.
 
TensorFlow models
These are TensorFlow models that could be converted to .tflite and then implemented in apps and things:
TensorFlow models (https://github.com/tensorflow/models/tree/master/official) - Official TensorFlow models.
Tensorflow detection model zoo
(https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md) - Pre-trained on COCO, KITTI, AVA v2.1, iNaturalist Species datasets.
 
Ideas and Inspiration
E2E TFLite Tutorials (https://github.com/ml-gde/e2e-tflite-tutorials) - Checkout this repo for sample app ideas and seeking help for your tutorial projects. Once a project gets completed,
the links of the TensorFlow Lite model(s), sample code and tutorial will be added to this awesome list.
 
ML Kit examples
ML Kit (https://developers.google.com/ml-kit) is a mobile SDK that brings Google's ML expertise to mobile developers.
2019-10-01 ML Kit Translate demo (https://codelabs.developers.google.com/codelabs/mlkit-android-translate/#0) - A tutorial with material design Android
(https://github.com/googlecodelabs/mlkit-android/tree/master/translate) (Kotlin) sample - recognize, identify Language and translate text from live camera with ML Kit for Firebase.
2019-03-13 Computer Vision with ML Kit - Flutter In Focus (https://youtu.be/ymyYUCrJnxU).
2019-02-09 Flutter + MLKit: Business Card Mail Extractor (https://medium.com/flutter-community/flutter-mlkit-8039ec66b6a) - A blog post with a Flutter
(https://github.com/DaemonLoki/Business-Card-Mail-Extractor) sample code.
2019-02-08 From TensorFlow to ML Kit: Power your Android application with machine learning
(https://speakerdeck.com/jinqian/from-tensorflow-to-ml-kit-power-your-android-application-with-machine-learning) - A talk with Android (https://github.com/xebia-france/magritte) (Kotlin)
sample code.
2018-08-07 Building a Custom Machine Learning Model on Android with TensorFlow Lite
(https://medium.com/over-engineering/building-a-custom-machine-learning-model-on-android-with-tensorflow-lite-26447e53abf2).
2018-07-20 ML Kit and Face Detection in Flutter (https://flatteredwithflutter.com/ml-kit-and-face-detection-in-flutter/).
2018-07-27 ML Kit on Android 4: Landmark Detection (https://medium.com/google-developer-experts/exploring-firebase-mlkit-on-android-landmark-detection-part-four-5e86b8deac3a).
2018-07-28 ML Kit on Android 3: Barcode Scanning (https://medium.com/google-developer-experts/exploring-firebase-mlkit-on-android-barcode-scanning-part-three-cc6f5921a108).
2018-05-31 ML Kit on Android 2: Face Detection (https://medium.com/google-developer-experts/exploring-firebase-mlkit-on-android-face-detection-part-two-de7e307c52e0).
2018-05-22 ML Kit on Android 1: Intro (https://medium.com/google-developer-experts/exploring-firebase-mlkit-on-android-introducing-mlkit-part-one-98fcfedbeee0).
 
Plugins and SDKs
Edge Impulse (https://www.edgeimpulse.com/) - Created by @EdgeImpulse (https://twitter.com/EdgeImpulse) to help you to train TensorFlow Lite models for embedded devices in the cloud.
MediaPipe (https://github.com/google/mediapipe) - A cross platform (mobile, desktop and Edge TPUs) AI pipeline by Google AI. (PM Ming Yong (https://twitter.com/realmgyong)) | MediaPipe
examples (https://mediapipe.readthedocs.io/en/latest/examples.html).
Coral Edge TPU (https://coral.ai/) - Edge hardware by Google. Coral Edge TPU examples (https://coral.ai/examples/).
TensorFlow Lite Flutter Plugin (https://github.com/am15h/tflite_flutter_plugin/) - Provides a dart API similar to the TensorFlow Lite Java API for accessing TensorFlow Lite interpreter and
performing inference in flutter apps. tflite_flutter on pub.dev (https://pub.dev/packages/tflite_flutter).
 
Helpful links
Netron (https://github.com/lutzroeder/netron) - A tool for visualizing models.
AI benchmark (http://ai-benchmark.com/tests.html) - A website for benchmarking computer vision models on smartphones.
Performance measurement (https://www.tensorflow.org/lite/performance/measurement) - How to measure model performance on Android and iOS.
Material design guidelines for ML (https://material.io/collections/machine-learning/patterns-for-machine-learning-powered-features.html) - How to design machine learning powered features. A
good example: ML Kit Showcase App (https://github.com/firebase/mlkit-material-android).
The People + AI Guide book (https://pair.withgoogle.com/) - Learn how to design human-centered AI products.
Adventures in TensorFlow Lite
(https://github.com/sayakpaul/Adventures-in-TensorFlow-Lite) - A repository showing non-trivial conversion processes and general explorations in TensorFlow Lite.
TFProfiler (https://github.com/iglaweb/TFProfiler) - An Android-based app to profile TensorFlow Lite models and measure its performance on smartphone.
TensorFlow Lite for Microcontrollers (https://www.tensorflow.org/lite/microcontrollers)
TensorFlow Lite Examples - Android (https://github.com/dailystudio/tensorflow-lite-examples-android) - A repository refactors and rewrites all the TensorFlow Lite Android examples which are
included in the TensorFlow official website.
Tensorflow-lite-kotlin-samples (https://github.com/SunitRoy2703/Tensorflow-lite-kotlin-samples) - A collection of Tensorflow Lite Android example Apps in Kotlin, to show different kinds of
kotlin implementation of the example apps (https://www.tensorflow.org/lite/examples)
 
 
Learning resources
Interested but not sure how to get started? Here are some learning resources that will help you whether you are a beginner or a practitioner in the field for a while.
 
Blog posts
 
2021-11-09 On-device training in TensorFlow Lite (https://blog.tensorflow.org/2021/11/on-device-training-in-tensorflow-lite.html)
2021-09-27 Optical character recognition with TensorFlow Lite: A new example app (https://blog.tensorflow.org/2021/09/blog.tensorflow.org202109optical-character-recognition.html)
2021-06-16 https://blog.tensorflow.org/2021/06/easier-object-detection-on-mobile-with-tf-lite.html (https://blog.tensorflow.org/2021/11/on-device-training-in-tensorflow-lite.html)
2020-12-29 YOLOv3 to TensorFlow Lite Conversion (https://medium.com/analytics-vidhya/yolov3-to-tensorflow-lite-conversion-4602cec5c239) - By Nitin Tiwari.
2020-04-20 What is new in TensorFlow Lite (https://blog.tensorflow.org/2020/04/whats-new-in-tensorflow-lite-from-devsummit-2020.html) - By Khanh LeViet.
2020-04-17 Optimizing style transfer to run on mobile with TFLite (https://blog.tensorflow.org/2020/04/optimizing-style-transfer-to-run-on-mobile-with-tflite.html) - By Khanh LeViet and
Luiz Gustavo Martins.
2020-04-14 How TensorFlow Lite helps you from prototype to product (https://blog.tensorflow.org/2020/04/how-tensorflow-lite-helps-you-from-prototype-to-product.html) - By Khanh LeViet.
2019-11-08 Getting Started with ML on MCUs with TensorFlow (https://blog.particle.io/2019/11/08/particle-machine-learning-101/) - By Brandon Satrom.
2019-08-05 TensorFlow Model Optimization Toolkit — float16 quantization halves model size (https://blog.tensorflow.org/2019/08/tensorflow-model-optimization-toolkit_5.html) - By the
TensorFlow team.
2018-07-13 Training and serving a real-time mobile object detector in 30 minutes with Cloud TPUs
(https://blog.tensorflow.org/2018/07/training-and-serving-realtime-mobile-object-detector-cloud-tpus.html) - By Sara Robinson, Aakanksha Chowdhery, and Jonathan Huang.
2018-06-11 - Why the Future of Machine Learning is Tiny (https://petewarden.com/2018/06/11/why-the-future-of-machine-learning-is-tiny/) - By Pete Warden.
2018-03-30 - Using TensorFlow Lite on Android (https://blog.tensorflow.org/2018/03/using-tensorflow-lite-on-android.html)) - By Laurence Moroney.
 
Books
2021-12-01 AI and Machine Learning On-Device Development (https://learning.oreilly.com/library/view/ai-and-machine/9781098101732/) (early access) - By Laurence Moroney (@lmoroney
(https://twitter.com/lmoroney)).
2020-10-01 AI and Machine Learning for Coders (https://learning.oreilly.com/library/view/ai-and-machine/9781492078180/) - By Laurence Moroney (@lmoroney (https://twitter.com/lmoroney)).
2020-04-06 Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter (https://www.packtpub.com/product/mobile-deep-learning-with-tensorflow-lite-ml-kit-and-flutter/9781789611212): Build
scalable real-world projects to implement end-to-end neural networks on Android and iOS (GitHub (https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects)) - By Anubhav Singh (
@xprilion (https://github.com/xprilion)) and Rimjhim Bhadani (@Rimjhim28 (https://github.com/Rimjhim28)).
2020-03-01 Raspberry Pi for Computer Vision (Complete Bundle (https://www.pyimagesearch.com/raspberry-pi-for-computer-vision) | TOC
(https://www.pyimagesearch.com/2019/04/05/table-of-contents-raspberry-pi-for-computer-vision/)) - By the PyImageSearch Team: Adrian Rosebrock (@PyImageSearch
(https://twitter.com/PyImageSearch)), David Hoffman, Asbhishek Thanki, Sayak Paul (@RisingSayak (https://twitter.com/RisingSayak)), and David Mcduffee.
2019-12-01 TinyML (http://shop.oreilly.com/product/0636920254508.do) - By Pete Warden (@petewarden (https://twitter.com/petewarden)) and Daniel Situnayake (@dansitu
(https://twitter.com/dansitu)).
2019-10-01 Practical Deep Learning for Cloud, Mobile, and Edge (https://www.practicaldeeplearning.ai/) - By Anirudh Koul (@AnirudhKoul (https://twitter.com/AnirudhKoul)), Siddha Ganju (
@SiddhaGanju (https://twitter.com/SiddhaGanju)), and Meher Kasam (@MeherKasam (https://twitter.com/MeherKasam)).
 
Videos
2021-10-06 Contributing to TensorFlow Lite with Sunit Roy (https://youtu.be/sZayUoWW6nE) (Hacktoberfest 2021)
2020-07-25 Android ML by Hoi Lam (https://youtu.be/m_bEh8YifnQ) (GDG Kolkata meetup).
2020-04-01 Easy on-device ML from prototype to production (https://youtu.be/ALxWJoh_BHw) (TF Dev Summit 2020).
2020-03-11 TensorFlow Lite: ML for mobile and IoT devices (https://youtu.be/27Zx-4GOQA8) (TF Dev Summit 2020).
2019-10-31 Keynote - TensorFlow Lite: ML for mobile and IoT devices (https://youtu.be/zjDGAiLqGk8).
2019-10-31 TensorFlow Lite: Solution for running ML on-device (https://youtu.be/0SpZy7iouFU).
2019-10-31 TensorFlow model optimization: Quantization and pruning (https://youtu.be/3JWRVx1OKQQ).
2019-10-29 Inside TensorFlow: TensorFlow Lite (https://youtu.be/gHN0jDbJz8E).
2018-04-18 TensorFlow Lite for Android (Coding TensorFlow) (https://youtu.be/JnhW5tQ_7Vo).
 
Podcasts
2020-08-08 Talking Machine Learning with Hoi Lam (https://anchor.fm/talkingwithapples/episodes/Talking-Machine-Learning-with-Hoi-Lam-eiaj7v).
 
MOOCs
Introduction to TensorFlow Lite (https://www.udacity.com/course/intro-to-tensorflow-lite--ud190) - Udacity course by Daniel Situnayake (@dansitu), Paige Bailey (@DynamicWebPaige
(https://twitter.com/DynamicWebPaige)), and Juan Delgado.
Device-based Models with TensorFlow Lite (https://www.coursera.org/learn/device-based-models-tensorflow) - Coursera course by Laurence Moroney (@lmoroney (https://twitter.com/lmoroney)).
The Future of ML is Tiny and Bright (https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning) - A series of edX courses created by Harvard in collaboration with Google.
Instructors - Vijay Janapa Reddi, Laurence Moroney, and Pete Warden.