Files
awesome-awesomeness/terminal/randomforest9
2024-04-20 19:22:54 +02:00

45 KiB

Awesome Random Forest
 
Random Forest - a curated list of resources regarding tree-based methods and more, including but not limited to random forest, bagging and boosting.
 
Contributing
Please feel free to pull requests (https://github.com/kjw0612/awesome-random-forest/pulls).
 
The project is not actively maintained.
 
!Join the chat at https://gitter.im/kjw0612/awesome-random-forest (https://badges.gitter.im/Join%20Chat.svg)
(https://gitter.im/kjw0612/awesome-random-forest?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
 
!randomforest (https://31.media.tumblr.com/79670eabe93cdd448c15f5bcb198d0fb/tumblr_inline_n8e398YbKv1s04rc3.png)
 
Table of Contents
 
- Codes (#codes)
- Theory (#theory)
- Lectures (#lectures)
- Books (#books)
- Papers (#papers)
- **Analysis / Understanding** (#analysis--understanding)
- **Model variants** (#model-variants)
- Thesis (#thesis)
- Applications (#applications)
- Image Classification (#image-classification)
- Object Detection (#object-detection)
- Object Tracking (#object-tracking)
- Edge Detection (#edge-detection)
- Semantic Segmentation (#semantic-segmentation)
- Human / Hand Pose Estimation (#human--hand-pose-estimation)
- 3D Localization (#3d-localization)
- Low-Level Vision (#low-level-vision)
- Facial Expression Recognition (#facial-expression-recognition)
- Interpretability, regularization, compression pruning and feature selection (#Interpretability, regularization, compression pruning and feature selection)

 
Codes
Matlab
Piotr Dollar's toolbox (http://vision.ucsd.edu/~pdollar/toolbox/doc/)
Andrej Karpathy's toolbox (https://github.com/karpathy/Random-Forest-Matlab)
M5PrimeLab by Gints Jekabsons (http://www.cs.rtu.lv/jekabsons/regression.html)
R
Breiman and Cutler's random forests (http://cran.r-project.org/web/packages/randomForest/)
Hothorn et al.'s party package with cforest function (http://cran.r-project.org/web/packages/party/)
C/C++
Sherwood library (http://research.microsoft.com/en-us/downloads/52d5b9c3-a638-42a1-94a5-d549e2251728/)
Regression tree package by Pierre Geurts (http://www.montefiore.ulg.ac.be/~geurts/Software.html)
ranger: A Fast Implementation of Random Forests (https://github.com/imbs-hl/ranger)
Python
Scikit-learn (http://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble)
JavaScript
Forestjs (https://github.com/karpathy/forestjs)
Go (golang)
CloudForest (https://github.com/ryanbressler/CloudForest)

Theory
Lectures
ICCV 2013 Tutorial : Decision Forests and Fields for Computer Vision (http://research.microsoft.com/en-us/um/cambridge/projects/iccv2013tutorial/) by Jamie Shotton and Sebastian Nowozin
Lecture 1 (http://techtalks.tv/talks/randomized-decision-forests-and-their-applications-in-computer-vision-jamie/59432/) : Randomized Decision Forests and their Applications in Computer
Vision I (Decision Forest, Classification Forest,
Lecture 2 (http://techtalks.tv/talks/decision-jungles-jamie-second-half-of-above/59434/) : Randomized Decision Forests and their Applications in Computer Vision II (Regression Forest,
Decision Jungle)
Lecture 3 (http://techtalks.tv/talks/entropy-estimation-and-streaming-data-sebastian/59433/) : Entropy estimation and streaming data
Lecture 4 (http://techtalks.tv/talks/decision-and-regression-tree-fields-sebastian/59435/) : Decision and Regression Tree Fields
UBC Machine Learning (http://www.cs.ubc.ca/~nando/540-2013/lectures.html) by Nando de Freitas
Lecture 8 slide (http://www.cs.ubc.ca/~nando/540-2013/lectures/l8.pdf) , Lecture 8 video (https://www.youtube.com/watch?v=-dCtJjlEEgM&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6&index=11) :
Decision trees
Lecture 9 slide (http://www.cs.ubc.ca/~nando/540-2013/lectures/l9.pdf) , Lecture 9 video (https://www.youtube.com/watch?v=3kYujfDgmNk&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6&index=12) :
Random forests
Lecture 10 video (https://www.youtube.com/watch?v=zFGPjRPwyFw&index=13&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6) : Random forest applications

Books
Antonio Criminisi, Jamie Shotton (2013)
Decision Forests for Computer Vision and Medical Image Analysis (http://link.springer.com/book/10.1007%2F978-1-4471-4929-3)
Trevor Hastie, Robert Tibshirani, Jerome Friedman (2008)
The Elements of Statistical Learning, (Chapter 10, 15, and 16) (http://web.stanford.edu/~hastie/local.ftp/Springer/OLD/ESLII_print4.pdf)
Luc Devroye, Laszlo Gyorfi, Gabor Lugosi (1996)
A Probabilistic Theory of Pattern Recognition (Chapter 20, 21) (http://www.szit.bme.hu/~gyorfi/pbook.pdf)

Papers
Analysis / Understanding
Consistency of random forests Paper (http://www.normalesup.org/~scornet/paper/article.pdf)
Scornet, E., Biau, G. and Vert, J.-P. (2015). Consistency of random forests, The Annals of Statistics, in press.
On the asymptotics of random forests Paper (http://arxiv.org/abs/1409.2090)
Scornet, E. (2015). On the asymptotics of random forests, Journal of Multivariate Analysis, in press.
Random Forests In Theory and In Practice Paper (http://jmlr.org/proceedings/papers/v32/denil14.pdf)
Misha Denil, David Matheson, Nando de Freitas, Narrowing the Gap: Random Forests In Theory and In Practice, ICML 2014
Explaining the Success of AdaBoost and Random Forests as Interpolating Classifiers Abraham J. Wyner, Matthew Olson, Justin Bleich, David Mease Paper (https://arxiv.org/abs/1504.07676)
 

Model variants
Deep Neural Decision Forests Paper (https://www.microsoft.com/en-us/research/publication/deep-neural-decision-forests/)
Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo, Deep Neural Decision Forests, ICCV 2015
Canonical Correlation Forests Paper (http://arxiv.org/pdf/1507.05444.pdf)
Tom Rainforth, and Frank Wood, Canonical Correlation Forests, arxiv 2015
Relating Cascaded Random Forests to Deep Convolutional Neural Networks Paper (http://arxiv.org/pdf/1507.07583.pdf)
David L Richmond, Dagmar Kainmueller, Michael Y Yang, Eugene W Myers, and Carsten Rother, Relating Cascaded Random Forests to Deep Convolutional Neural Networks for Semantic Segmentation,
arxiv 2015
Bayesian Forests Paper (http://jmlr.org/proceedings/papers/v37/matthew15.pdf)
Taddy Matthew, Chun-Sheng Chen, Jun Yu, Mitch Wyle, Bayesian and Empirical Bayesian Forests, ICML 2015
Mondrian Forests: Efficient Online Random Forests Paper (http://www.gatsby.ucl.ac.uk/~balaji/mondrian_forests_nips14.pdf) Code (http://www.gatsby.ucl.ac.uk/~balaji/mondrianforest/) Slides
(http://www.gatsby.ucl.ac.uk/~balaji/mondrian_forests_slides.pdf)
Balaji Lakshminarayanan, Daniel M. Roy and Yee Whye Teh, Mondrian Forests: Efficient Online Random Forests, NIPS 2014
Extremely randomized trees P Geurts, D Ernst, L Wehenkel - Machine learning, 2006 Paper (http://orbi.ulg.be/bitstream/2268/9357/1/geurts-mlj-advance.pdf) Code
(http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html)
Decision Jungles Paper (http://research.microsoft.com/pubs/205439/DecisionJunglesNIPS2013.pdf)
Jamie Shotton, Toby Sharp, Pushmeet Kohli, Sebastian Nowozin, John Winn, and Antonio Criminisi, Decision Jungles: Compact and Rich Models for Classification, NIPS 2013
Laptev, Dmitry, and Joachim M. Buhmann. Transformation-invariant convolutional jungles. CVPR 2015. Paper
(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Laptev_Transformation-Invariant_Convolutional_Jungles_2015_CVPR_paper.pdf)
Semi-supervised Node Splitting for Random Forest Construction Paper
(http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Liu_Semi-supervised_Node_Splitting_2013_CVPR_paper.pdf)
Xiao Liu, Mingli Song, Dacheng Tao, Zicheng Liu, Luming Zhang, Chun Chen and Jiajun Bu, Semi-supervised Node Splitting for Random Forest Construction, CVPR 2013
Improved Information Gain Estimates for Decision Tree Induction Paper (http://www.nowozin.net/sebastian/papers/nowozin2012infogain.pdf)
Sebastian Nowozin, Improved Information Gain Estimates for Decision Tree Induction, ICML 2012
MIForests: Multiple-Instance Learning with Randomized Trees Paper (http://lrs.icg.tugraz.at/pubs/leistner_eccv_10.pdf) Code (http://www.ymer.org/amir/software/milforests/)
Christian Leistner, Amir Saffari, and Horst Bischof, MIForests: Multiple-Instance Learning with Randomized Trees, ECCV 2010
Samuel Schulter, Paul Wohlhart, Christian Leistner, Amir Saffari, Peter M. Roth, Horst Bischof: Alternating Decision Forests. CVPR 2013 Paper
(http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Schulter_Alternating_Decision_Forests_2013_CVPR_paper.pdf)
Decision Forests, Convolutional Networks and the Models in-Between Paper (https://arxiv.org/abs/1603.01250)
Random Uniform Forests Saïp Ciss Paper (https://hal.archives-ouvertes.fr/hal-01104340/) Code R (https://cran.r-project.org/web/packages/randomUniformForest/index.html)
Autoencoder Trees, Ozan İrsoy, Ethem Alpaydın 2015 Paper (http://www.jmlr.org/proceedings/papers/v45/Irsoy15.pdf)

 
Thesis
Understanding Random Forests
PhD dissertation, Gilles Louppe, July 2014. Defended on October 9, 2014.
Repository (https://github.com/glouppe/phd-thesis) with thesis and related codes
 

Applications
 
Image classification
ETH Zurich Paper-CVPR15 (http://www.iai.uni-bonn.de/~gall/download/jgall_coarse2fine_cvpr15.pdf)
****Paper-CVPR14** (http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Ristin_Incremental_Learning_of_2014_CVPR_paper.pdf)**
****Paper-ECCV** (http://www.vision.ee.ethz.ch/~lbossard/bossard_eccv14_food-101.pdf)**
Marko Ristin, Juergen Gall, Matthieu Guillaumin, and Luc Van Gool, From Categories to Subcategories: Large-scale Image Classification with Partial Class Label Refinement, CVPR 2015
Marko Ristin, Matthieu Guillaumin, Juergen Gall, and Luc Van Gool, Incremental Learning of NCM Forests for Large-Scale Image Classification, CVPR 2014
Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool, Food-101 – Mining Discriminative Components with Random Forests, ECCV 2014
University of Girona & University of Oxford Paper (http://www.cs.huji.ac.il/~daphna/course/CoursePapers/bosch07a.pdf)
Anna Bosch, Andrew Zisserman, and Xavier Munoz, Image Classification using Random Forests and Ferns, ICCV 2007
 
Object Detection
Graz University of Technology Paper-CVPR (http://lrs.icg.tugraz.at/pubs/schulter_cvpr_14.pdf) Paper-ICCV (http://lrs.icg.tugraz.at/pubs/schulter_iccv_13.pdf)
Samuel Schulter, Christian Leistner, Paul Wohlhart, Peter M. Roth, and Horst Bischof, Accurate Object Detection with Joint Classification-Regression Random Forests, CVPR 2014
Samuel Schulter, Christian Leistner, Paul Wohlhart, Peter M. Roth, and Horst Bischof, Alternating Regression Forests for Object Detection and Pose Estimation, ICCV 2013
ETH Zurich + Microsoft Research Cambridge Paper (http://www.iai.uni-bonn.de/~gall/download/jgall_houghforest_cvpr09.pdf)
Juergen Gall, and Victor Lempitsky, Class-Specific Hough Forests for Object Detection, CVPR 2009
 
Object Tracking
Technische Universitat Munchen Paper (http://campar.in.tum.de/pub/tanda2014cvpr/tanda2014cvpr.pdf)
David Joseph Tan, and Slobodan Ilic, Multi-Forest Tracker: A Chameleon in Tracking, CVPR 2014
ETH Zurich + Leibniz University Hannover + Stanford University Paper (http://www.igp.ethz.ch/photogrammetry/publications/pdf_folder/LeaFenKuzRosSavCVPR14.pdf)
Laura Leal-Taixe, Michele Fenzi, Alina Kuznetsova, Bodo Rosenhahn, and Silvio Savarese, Learning an image-based motion context for multiple people tracking, CVPR 2014
Graz University of Technology Paper (https://lrs.icg.tugraz.at/pubs/godec_iccv_11.pdf)
Martin Godec, Peter M. Roth, and Horst Bischof, Hough-based Tracking of Non-Rigid Objects, ICCV 2011
 
Edge Detection
University of California, Irvine Paper (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Hallman_Oriented_Edge_Forests_2015_CVPR_paper.pdf) Code
(https://github.com/samhallman/oef)
Sam Hallman, and Charless C. Fowlkes, Oriented Edge Forests for Boundary Detection, CVPR 2015
Microsoft Research Paper (http://research-srv.microsoft.com/pubs/202540/DollarICCV13edges.pdf) Code (https://github.com/pdollar/edges)
Piotr Dollar, and C. Lawrence Zitnick, Structured Forests for Fast Edge Detection, ICCV 2013
Massachusetts Inst. of Technology + Microsoft Research Paper (http://research.microsoft.com/en-us/um/people/larryz/cvpr13sketchtokens.pdf) Code
(https://github.com/joelimlimit/SketchTokens)
Joseph J. Lim, C. Lawrence Zitnick, and Piotr Dollar, Sketch Tokens: A Learned Mid-level Representation for Contour and Object Detection, CVPR 2013
 
Semantic Segmentation
Fondazione Bruno Kessler, Microsoft Research Cambridge Paper (http://www.dsi.unive.it/~srotabul/files/publications/CVPR2014a.pdf)
Samuel Rota Bulo, and Peter Kontschieder, Neural Decision Forests for Semantic Image Labelling, CVPR 2014
INRIA + Microsoft Research Cambridge Paper (http://step.polymtl.ca/~rv101/MICCAI-Laplacian-Forest.pdf)
Herve Lombaert, Darko Zikic, Antonio Criminisi, and Nicholas Ayache, Laplacian Forests:Semantic Image Segmentation by Guided Bagging, MICCAI 2014
Microsoft Research Cambridge + GE Global Research Center + University of California + Rutgers Univeristy Paper (http://research.microsoft.com/pubs/146430/criminisi_ipmi_2011c.pdf)
Albert Montillo1, Jamie Shotton, John Winn, Juan Eugenio Iglesias, Dimitri Metaxas, and Antonio Criminisi, Entangled Decision Forests and their Application for Semantic Segmentation of CT
Images, IPMI 2011
University of Cambridge + Toshiba Corporate R&D Center Paper (http://mi.eng.cam.ac.uk/~cipolla/publications/inproceedings/2008-CVPR-semantic-texton-forests.pdf)
Jamie Shotton, Matthew Johnson, and Roberto Cipolla, Semantic Texton Forests for Image Categorization and Segmentation, CVPR 2008

Human / Hand Pose Estimation
Microsoft Research Cambridge Paper-CHI (http://research.microsoft.com/pubs/238453/pn362-sharp.pdf) Video-CHI (http://research.microsoft.com/pubs/238453/pn362-sharp-video.mp4)
****Paper-CVPR** (http://research.microsoft.com/pubs/162510/vm.pdf)**
Toby Sharp, Cem Keskin, Duncan Robertson, Jonathan Taylor, Jamie Shotton, David Kim, Christoph Rhemann, Ido Leichter, Alon Vinnikov, Yichen Wei, Daniel Freedman, Pushmeet Kohli, Eyal
Krupka, Andrew Fitzgibbon, and Shahram Izadi, Accurate, Robust, and Flexible Real-time Hand Tracking, CHI 2015
Jonathan Taylor, Jamie Shotton, Toby Sharp, and Andrew Fitzgibbon, The Vitruvian Manifold:Inferring Dense Correspondences for One-Shot Human Pose Estimation, CVPR 2012
Microsoft Research Haifa Paper (http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Krupka_Discriminative_Ferns_Ensemble_2014_CVPR_paper.pdf)
Eyal Krupka, Alon Vinnikov, Ben Klein, Aharon Bar Hillel, and Daniel Freedman, Discriminative Ferns Ensemble for Hand Pose Recognition, CVPR 2014
Microsoft Research Asia Paper (http://research.microsoft.com/en-us/people/yichenw/cvpr14_facealignment.pdf)
Shaoqing Ren, Xudong Cao, Yichen Wei, and Jian Sun, Face Alignment at 3000 FPS via Regressing Local Binary Features, CVPR 2014
Imperial College London Paper-CVPR-Face (http://www.iis.ee.ic.ac.uk/icvl/doc/cvpr14_xiaowei.pdf)
****Paper-CVPR-Hand** (http://www.iis.ee.ic.ac.uk/icvl/doc/cvpr14_danny.pdf)**
****Paper-ICCV** (http://www.iis.ee.ic.ac.uk/icvl/doc/ICCV13_danny.pdf)**
Xiaowei Zhao, Tae-Kyun Kim, and Wenhan Luo, Unified Face Analysis by Iterative Multi-Output Random Forests, CVPR 2014
Danhang Tang, Hyung Jin Chang, Alykhan Tejani, and Tae-Kyun Kim, Latent Regression Forest: Structured Estimation of 3D Articulated Hand Posture, CVPR 2014
Danhang Tang, Tsz-Ho Yu, and Tae-Kyun Kim, Real-time Articulated Hand Pose Estimation using Semi-supervised Transductive Regression Forests, ICCV 2013
ETH Zurich + Microsoft Paper (https://lirias.kuleuven.be/bitstream/123456789/398648/2/3601_open+access.pdf)
Matthias Dantone, Juergen Gall, Christian Leistner, and Luc Van Gool, Human Pose Estimation using Body Parts Dependent Joint Regressors, CVPR 2013

3D localization
Imperial College London Paper (http://www.iis.ee.ic.ac.uk/icvl/doc/ECCV2014_aly.pdf)
Alykhan Tejani, Danhang Tang, Rigas Kouskouridas, and Tae-Kyun Kim, Latent-Class Hough Forests for 3D Object Detection and Pose Estimation, ECCV 2014
Microsoft Research Cambridge + University of Illinois + Imperial College London Paper (http://abnerguzman.com/publications/gkgssfi_cvpr14.pdf)
Abner Guzman-Rivera, Pushmeet Kohli, Ben Glocker, Jamie Shotton, Toby Sharp, Andrew Fitzgibbon, and Shahram Izadi, Multi-Output Learning for Camera Relocalization, CVPR 2014
Microsoft Research Cambridge Paper (http://research.microsoft.com/pubs/184826/relocforests.pdf)
Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi, and Andrew Fitzgibbon, Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images, CVPR
2013
 
Low-Level vision
Super-Resolution
Technicolor R&I Hannover Paper
(https://technicolor-my.sharepoint.com/personal/jordi_salvador_technicolor_com/_layouts/15/guestaccess.aspx?guestaccesstoken=2z88Le9arMQ7tcGGYApHmdM9Pet2AqqoxMBDcu6eRbc%3d&docid=0e7f0b9ed
1d0f4497829ae6b2b0deeec3)
* Jordi Salvador, and Eduardo Pérez-Pellitero, Naive Bayes Super-Resolution Forest, ICCV 2015
Graz University of Technology Paper (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Schulter_Fast_and_Accurate_2015_CVPR_paper.pdf)
* Samuel Schulter, Christian Leistner, and Horst Bischof, Fast and Accurate Image Upscaling with Super-Resolution Forests, CVPR 2015
Denoising
Microsoft Research + iCub Facility - Istituto Italiano di Tecnologia Paper (http://research.microsoft.com/pubs/217099/CVPR2014ForestFiltering.pdf)
* Sean Ryan Fanello, Cem Keskin, Pushmeet Kohli, Shahram Izadi, Jamie Shotton, Antonio Criminisi, Ugo Pattacini, and Tim Paek, Filter Forests for Learning Data-Dependent Convolutional Kernels
, CVPR 2014
 
Facial expression recognition
Sorbonne Universites Paper (http://www.isir.upmc.fr/files/2015ACTI3549.pdf)
Arnaud Dapogny, Kevin Bailly, and Severine Dubuisson, Pairwise Conditional Random Forests for Facial Expression Recognition, ICCV 2015

Interpretability, regularization, compression pruning and feature selection
Global Refinement of Random Forest Paper (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ren_Global_Refinement_of_2015_CVPR_paper.pdf)
Shaoqing Ren, Xudong Cao, Yichen Wei, Jian Sun, Global Refinement of Random Forest, CVPR 2015
L1-based compression of random forest models Arnaud Joly, Fran¸cois Schnitzler, Pierre Geurts and Louis Wehenkel ESANN 2012 Paper
(https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2012-43.pdf)
Feature-Budgeted Random Forest Paper (http://jmlr.org/proceedings/papers/v37/nan15.pdf) Supp (http://jmlr.org/proceedings/papers/v37/nan15-supp.pdf)
Feng Nan, Joseph Wang, Venkatesh Saligrama, Feature-Budgeted Random Forest, ICML 2015
Pruning Random Forests for Prediction on a Budget Feng Nan, Joseph Wang, Venkatesh Saligrama NIPS 2016 Paper
(https://papers.nips.cc/paper/6250-pruning-random-forests-for-prediction-on-a-budget.pdf)
Meinshausen, Nicolai. "Node harvest." The Annals of Applied Statistics 4.4 (2010): 2049-2072. Paper (http://projecteuclid.org/download/pdfview_1/euclid.aoas/1294167809) Code R
(https://cran.r-project.org/web/packages/nodeHarvest/index.html) Code Python (https://github.com/mbillingr/NodeHarvest)
Making Tree Ensembles Interpretable: A Bayesian Model Selection Approach S. Hara, K. Hayashi, Paper (https://arxiv.org/abs/1606.09066) Code (https://github.com/sato9hara/defragTrees)
Cui, Zhicheng, et al. "Optimal action extraction for random forests and boosted trees." ACM SIGKDD 2015. Paper (http://www.cse.wustl.edu/~ychen/public/OAE.pdf)
DART: Dropouts meet Multiple Additive Regression Trees K. V. Rashmi, Ran Gilad-Bachrach Paper (http://www.jmlr.org/proceedings/papers/v38/korlakaivinayak15.pdf)
Begon, Jean-Michel, Arnaud Joly, and Pierre Geurts. Joint learning and pruning of decision forests. (2016). Paper (http://orbi.ulg.ac.be/bitstream/2268/202344/1/Begon_jlpdf_abstract.pdf)
 
 
 
Maintainers - Jiwon Kim (http://github.com/kjw0612), Jung Kwon Lee (http://github.com/deruci)