132 KiB
132 KiB
Awesome Decision, Classification, and Regression Tree Research Papers
!Awesome (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg) (https://github.com/sindresorhus/awesome)
!PRs Welcome (https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square) (http://makeapullrequest.com)
!repo size (https://img.shields.io/github/repo-size/benedekrozemberczki/awesome-decision-tree-papers.svg) (https://github.com/benedekrozemberczki/awesome-decision-tree-papers/archive/master.zip)
!License (https://img.shields.io/github/license/benedekrozemberczki/awesome-decision-tree-papers.svg?color=blue) !benedekrozemberczki (https://img.shields.io/twitter/follow/benrozemberczki?style=social&logo=twitter)
(https://twitter.com/intent/follow?screen_name=benrozemberczki)
A curated list of classification and regression tree research papers with implementations from the following conferences:
- Machine learning
⟡ NeurIPS (https://nips.cc/)
⟡ ICML (https://icml.cc/)
⟡ ICLR (https://iclr.cc/)
- Computer vision
⟡ CVPR (http://cvpr2019.thecvf.com/)
⟡ ICCV (http://iccv2019.thecvf.com/)
⟡ ECCV (https://eccv2018.org/)
- Natural language processing
⟡ ACL (http://www.acl2019.org/EN/index.xhtml)
⟡ NAACL (https://naacl2019.org/)
⟡ EMNLP (https://www.emnlp-ijcnlp2019.org/)
- Data
⟡ KDD (https://www.kdd.org/)
⟡ CIKM (http://www.cikmconference.org/)
⟡ ICDM (http://icdm2019.bigke.org/)
⟡ SDM (https://www.siam.org/Conferences/CM/Conference/sdm19)
⟡ PAKDD (http://pakdd2019.medmeeting.org)
⟡ PKDD/ECML (http://ecmlpkdd2019.org)
⟡ SIGIR (https://sigir.org/)
⟡ WWW (https://www2019.thewebconf.org/)
⟡ WSDM (www.wsdm-conference.org)
- Artificial intelligence
⟡ AAAI (https://www.aaai.org/)
⟡ AISTATS (https://www.aistats.org/)
⟡ ICANN (https://e-nns.org/icann2019/)
⟡ IJCAI (https://www.ijcai.org/)
⟡ UAI (http://www.auai.org/)
Similar collections about graph classification (https://github.com/benedekrozemberczki/awesome-graph-classification), gradient boosting (https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers), fraud detection
(https://github.com/benedekrozemberczki/awesome-fraud-detection-papers), Monte Carlo tree search (https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers), and community detection
(https://github.com/benedekrozemberczki/awesome-community-detection) papers with implementations.
2022
- Using MaxSAT for Efficient Explanations of Tree Ensembles (AAAI 2022)
- Alexey Ignatiev, Yacine Izza, Peter J. Stuckey, João Marques-Silva
- Paper (https://alexeyignatiev.github.io/assets/pdf/iisms-aaai22-preprint.pdf)
- FOCUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles (AAAI 2022)
- Ana Lucic, Harrie Oosterhuis, Hinda Haned, Maarten de Rijke
- Paper (https://a-lucic.github.io/talks/ICML_SMRL_focus.pdf)
- Explainable and Local Correction of Classification Models Using Decision Trees (AAAI 2022)
- Hirofumi Suzuki, Hiroaki Iwashita, Takuya Takagi, Keisuke Goto, Yuta Fujishige, Satoshi Hara
- Paper (https://ojs.aaai.org/index.php/AAAI/article/view/20816)
- Robust Optimal Classification Trees against Adversarial Examples (AAAI 2022)
- Daniël Vos, Sicco Verwer
- Paper (https://arxiv.org/abs/2109.03857)
- Fairness without Imputation: A Decision Tree Approach for Fair Prediction with Missing Values (AAAI 2022)
- Haewon Jeong, Hao Wang, Flávio P. Calmon
- Paper (https://arxiv.org/abs/2109.10431)
- Fast Sparse Decision Tree Optimization via Reference Ensembles (AAAI 2022)
- Hayden McTavish, Chudi Zhong, Reto Achermann, Ilias Karimalis, Jacques Chen, Cynthia Rudin, Margo I. Seltzer
- Paper (https://arxiv.org/abs/2112.00798)
- Code (https://pypi.org/project/gosdt/)
- TransBoost: A Boosting-Tree Kernel Transfer Learning Algorithm for Improving Financial Inclusion (AAAI 2022)
- Yiheng Sun, Tian Lu, Cong Wang, Yuan Li, Huaiyu Fu, Jingran Dong, Yunjie Xu
- Paper (https://arxiv.org/abs/2112.02365)
- Code (https://github.com/yihengsun/TransBoost)
- Counterfactual Explanation Trees: Transparent and Consistent Actionable Recourse with Decision Trees (AISTATS 2022)
- Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike
- Paper (https://proceedings.mlr.press/v151/kanamori22a.html)
- Accurate Shapley Values for explaining tree-based models (AISTATS 2022)
- Salim I. Amoukou, Tangi Salaün, Nicolas J.-B. Brunel
- Paper (https://arxiv.org/abs/2106.03820)
- A cautionary tale on fitting decision trees to data from additive models: generalization lower bounds (AISTATS 2022)
- Yan Shuo Tan, Abhineet Agarwal, Bin Yu
- Paper (https://arxiv.org/abs/2110.09626)
- Code (https://github.com/aagarwal1996/additive_trees)
- Enterprise-Scale Search: Accelerating Inference for Sparse Extreme Multi-Label Ranking Trees (WWW 2022)
- Philip A. Etter, Kai Zhong, Hsiang-Fu Yu, Lexing Ying, Inderjit S. Dhillon
- Paper (https://arxiv.org/abs/2106.02697)
- MBCT: Tree-Based Feature-Aware Binning for Individual Uncertainty Calibration (WWW 2022)
- Siguang Huang, Yunli Wang, Lili Mou, Huayue Zhang, Han Zhu, Chuan Yu, Bo Zheng
- Paper (https://arxiv.org/abs/2202.04348)
- Rethinking Conversational Recommendations: Is Decision Tree All You Need (CIKM 2022)
- A S. M. Ahsan-Ul-Haque, Hongning Wang
- Paper (https://arxiv.org/abs/2208.14614)
- A Neural Tangent Kernel Perspective of Infinite Tree Ensembles (ICLR 2022)
- Ryuichi Kanoh, Mahito Sugiyama
- Paper (https://openreview.net/forum?id=vUH85MOXO7h)
- POETREE: Interpretable Policy Learning with Adaptive Decision Trees (ICLR 2022)
- Alizée Pace, Alex Chan, Mihaela van der Schaar
- Paper (https://arxiv.org/abs/2203.08057)
- Hierarchical Shrinkage: Improving the accuracy and interpretability of tree-based models (ICML 2022)
- Abhineet Agarwal, Yan Shuo Tan, Omer Ronen, Chandan Singh, Bin Yu
- Paper (https://arxiv.org/abs/2202.00858)
- Popular decision tree algorithms are provably noise tolerant (ICML 2022)
- Guy Blanc, Jane Lange, Ali Malik, Li-Yang Tan
- Paper (https://arxiv.org/abs/2206.08899)
- Robust Counterfactual Explanations for Tree-Based Ensembles (ICML 2022)
- Sanghamitra Dutta, Jason Long, Saumitra Mishra, Cecilia Tilli, Daniele Magazzeni
- Paper (https://proceedings.mlr.press/v162/dutta22a.html)
- Fast Provably Robust Decision Trees and Boosting (ICML 2022)
- Jun-Qi Guo, Ming-Zhuo Teng, Wei Gao, Zhi-Hua Zhou
- Paper (https://proceedings.mlr.press/v162/guo22h.html)
- BAMDT: Bayesian Additive Semi-Multivariate Decision Trees for Nonparametric Regression (ICML 2022)
- Zhao Tang Luo, Huiyan Sang, Bani K. Mallick
- Paper (https://proceedings.mlr.press/v162/luo22a.html)
- Quant-BnB: A Scalable Branch-and-Bound Method for Optimal Decision Trees with Continuous Features (ICML 2022)
- Rahul Mazumder, Xiang Meng, Haoyue Wang
- Paper (https://arxiv.org/abs/2206.11844)
- A Tree-based Model Averaging Approach for Personalized Treatment Effect Estimation from Heterogeneous Data Sources (ICML 2022)
- Xiaoqing Tan, Chung-Chou H. Chang, Ling Zhou, Lu Tang
- Paper (https://arxiv.org/abs/2103.06261)
- On Preferred Abductive Explanations for Decision Trees and Random Forests (IJCAI 2022)
- Gilles Audemard, Steve Bellart, Louenas Bounia, Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis
- Paper (https://www.ijcai.org/proceedings/2022/0091.pdf)
- Extending Decision Tree to Handle Multiple Fairness Criteria (IJCAI 2022)
- Alessandro Castelnovo
- Paper (https://www.ijcai.org/proceedings/2022/0822.pdf)
- Flexible Modeling and Multitask Learning using Differentiable Tree Ensembles (KDD 2022)
- Shibal Ibrahim, Hussein Hazimeh, Rahul Mazumder
- Paper (https://arxiv.org/abs/2205.09717)
- Integrity Authentication in Tree Models (KDD 2022)
- Weijie Zhao, Yingjie Lao, Ping Li
- Paper (https://dl.acm.org/doi/abs/10.1145/3534678.3539428)
- Retrieval-Based Gradient Boosting Decision Trees for Disease Risk Assessment (KDD 2022)
- Handong Ma, Jiahang Cao, Yuchen Fang, Weinan Zhang, Wenbo Sheng, Shaodian Zhang, Yong Yu
- Paper (https://dl.acm.org/doi/abs/10.1145/3534678.3539052)
- Improved feature importance computation for tree models based on the Banzhaf value (UAI 2022)
- Adam Karczmarz, Tomasz Michalak, Anish Mukherjee, Piotr Sankowski, Piotr Wygocki
- Paper (https://proceedings.mlr.press/v180/karczmarz22a.html)
- Learning linear non-Gaussian polytree models (UAI 2022)
- Daniele Tramontano, Anthea Monod, Mathias Drton
- Paper (https://arxiv.org/abs/2208.06701)
2021
- Online Probabilistic Label Trees (AISTATS 2021)
- Kalina Jasinska-Kobus, Marek Wydmuch, Devanathan Thiruvenkatachari, Krzysztof Dembczyński
- Paper (https://arxiv.org/abs/2007.04451)
- Code (https://github.com/mwydmuch/napkinXC)
- Optimal Decision Trees for Nonlinear Metrics (AAAI 2021)
- Emir Demirovic, Peter J. Stuckey
- Paper (https://arxiv.org/abs/2009.06921)
- SAT-based Decision Tree Learning for Large Data Sets (AAAI 2021)
- André Schidler, Stefan Szeider
- Paper (https://ojs.aaai.org/index.php/AAAI/article/view/16509)
- Parameterized Complexity of Small Decision Tree Learning (AAAI 2021)
- Sebastian Ordyniak, Stefan Szeider
- Paper (https://www.ac.tuwien.ac.at/files/tr/ac-tr-21-002.pdf)
- Counterfactual Explanations for Oblique Decision Trees: Exact - Efficient Algorithms (AAAI 2021)
- Miguel Á. Carreira-Perpiñán, Suryabhan Singh Hada
- Paper (https://arxiv.org/abs/2103.01096)
- Geometric Heuristics for Transfer Learning in Decision Trees (CIKM 2021)
- Siddhesh Chaubal, Mateusz Rzepecki, Patrick K. Nicholson, Guangyuan Piao, Alessandra Sala
- Paper (https://dl.acm.org/doi/abs/10.1145/3459637.3482259)
- Fairness-Aware Training of Decision Trees by Abstract Interpretation (CIKM 2021)
- Francesco Ranzato, Caterina Urban, Marco Zanella
- Paper (https://dl.acm.org/doi/abs/10.1145/3459637.3482342)
- Enabling Efficiency-Precision Trade-offs for Label Trees in Extreme Classification (CIKM 2021)
- Tavor Z. Baharav, Daniel L. Jiang, Kedarnath Kolluri, Sujay Sanghavi, Inderjit S. Dhillon
- Paper (https://arxiv.org/abs/2106.00730)
- Are Neural Rankers still Outperformed by Gradient Boosted Decision Trees (ICLR 2021)
- Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui Wang, Michael Bendersky, Marc Najork
- Paper (https://openreview.net/forum?id=Ut1vF_q_vC)
- NBDT: Neural-Backed Decision Tree (ICLR 2021)
- Alvin Wan, Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee, Suzanne Petryk, Sarah Adel Bargal, Joseph E. Gonzalez
- Paper (https://arxiv.org/abs/2004.00221)
- Versatile Verification of Tree Ensembles (ICML 2021)
- Laurens Devos, Wannes Meert, Jesse Davis
- Paper (https://arxiv.org/abs/2010.13880)
- Connecting Interpretability and Robustness in Decision Trees through Separation (ICML 2021)
- Michal Moshkovitz, Yao-Yuan Yang, Kamalika Chaudhuri
- Paper (https://arxiv.org/abs/2102.07048)
- Optimal Counterfactual Explanations in Tree Ensembles (ICML 2021)
- Axel Parmentier, Thibaut Vidal
- Paper (https://arxiv.org/abs/2106.06631)
- Efficient Training of Robust Decision Trees Against Adversarial Examples (ICML 2021)
- Daniël Vos, Sicco Verwer
- Paper (https://arxiv.org/abs/2012.10438)
- Learning Binary Decision Trees by Argmin Differentiation (ICML 2021)
- Valentina Zantedeschi, Matt J. Kusner, Vlad Niculae
- Paper (https://arxiv.org/pdf/2010.04627.pdf)
- BLOCKSET (Block-Aligned Serialized Trees): Reducing Inference Latency for Tree ensemble Deployment (KDD 2021)
- Meghana Madhyastha, Kunal Lillaney, James Browne, Joshua T. Vogelstein, Randal Burns
- Paper (https://dl.acm.org/doi/abs/10.1145/3447548.3467368)
- ControlBurn: Feature Selection by Sparse Forests (KDD 2021)
- Brian Liu, Miaolan Xie, Madeleine Udell
- Paper (https://dl.acm.org/doi/abs/10.1145/3447548.3467387?sid=SCITRUS)
- Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression (KDD 2021)
- Olivier Sprangers, Sebastian Schelter, Maarten de Rijke
- Paper (https://dl.acm.org/doi/10.1145/3447548.3467278)
- Verifying Tree Ensembles by Reasoning about Potential Instances (SDM 2021)
- Laurens Devos, Wannes Meert, Jesse Davis
- Paper (https://arxiv.org/abs/2001.11905)
2020
- DTCA: Decision Tree-based Co-Attention Networks for Explainable Claim Verification (ACL 2020)
- Lianwei Wu, Yuan Rao, Yongqiang Zhao, Hao Liang, Ambreen Nazir
- Paper (https://arxiv.org/abs/2004.13455)
- Privacy-Preserving Gradient Boosting Decision Trees (AAAI 2020)
- Qinbin Li, Zhaomin Wu, Zeyi Wen, Bingsheng He
- Paper (https://arxiv.org/abs/1911.04209)
- Practical Federated Gradient Boosting Decision Trees (AAAI 2020)
- Qinbin Li, Zeyi Wen, Bingsheng He
- Paper (https://arxiv.org/abs/1911.04206)
- Efficient Inference of Optimal Decision Trees (AAAI 2020)
- Florent Avellaneda
- Paper (http://florent.avellaneda.free.fr/dl/AAAI20.pdf)
- Code (https://github.com/FlorentAvellaneda/InferDT)
- Learning Optimal Decision Trees Using Caching Branch-and-Bound Search (AAAI 2020)
- Gael Aglin, Siegfried Nijssen, Pierre Schaus
- Paper (https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A223390/datastream/PDF_01/view)
- Code (https://pypi.org/project/dl8.5/)
- Abstract Interpretation of Decision Tree Ensemble Classifiers (AAAI 2020)
- Francesco Ranzato, Marco Zanella
- Paper (https://www.math.unipd.it/~ranzato/papers/aaai20.pdf)
- Code (https://github.com/abstract-machine-learning/silva)
- Scalable Feature Selection for (Multitask) Gradient Boosted Trees (AISTATS 2020)
- Cuize Han, Nikhil Rao, Daria Sorokina, Karthik Subbian
- Paper (http://proceedings.mlr.press/v108/han20a.html)
- Optimization Methods for Interpretable Differentiable Decision Trees Applied to Reinforcement Learning (AISTATS 2020)
- Andrew Silva, Matthew C. Gombolay, Taylor W. Killian, Ivan Dario Jimenez Jimenez, Sung-Hyun Son
- Paper (https://arxiv.org/abs/1903.09338)
- Exploiting Categorical Structure Using Tree-Based Methods (AISTATS 2020)
- Brian Lucena
- Paper (https://arxiv.org/abs/2004.07383)
- LdSM: Logarithm-depth Streaming Multi-label Decision Trees (AISTATS 2020)
- Maryam Majzoubi, Anna Choromanska
- Paper (https://arxiv.org/abs/1905.10428)
- Oblique Decision Trees from Derivatives of ReLU Networks (ICLR 2020)
- Guang-He Lee, Tommi S. Jaakkola
- Paper (https://openreview.net/pdf?id=Bke8UR4FPB)
- Code (https://github.com/guanghelee/iclr20-lcn)
- Provable Guarantees for Decision Tree Induction: the Agnostic Setting (ICML 2020)
- Guy Blanc, Jane Lange, Li-Yang Tan
- Paper (https://arxiv.org/abs/2006.00743v1)
- Decision Trees for Decision-Making under the Predict-then-Optimize Framework (ICML 2020)
- Adam N. Elmachtoub, Jason Cheuk Nam Liang, Ryan McNellis
- Paper (https://arxiv.org/abs/2003.00360)
- The Tree Ensemble Layer: Differentiability meets Conditional Computation (ICML 2020)
- Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, Rahul Mazumder
- Paper (https://arxiv.org/abs/2002.07772)
- Code (https://github.com/google-research/google-research/tree/master/tf_trees)
- Generalized and Scalable Optimal Sparse Decision Trees (ICML 2020)
- Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, Margo I. Seltzer
- Paper (https://arxiv.org/abs/2006.08690)
- Code (https://github.com/xiyanghu/OSDT)
- Born-Again Tree Ensembles (ICML 2020)
- Thibaut Vidal, Maximilian Schiffer
- Paper (https://arxiv.org/abs/2003.11132)
- Code (https://github.com/vidalt/BA-Trees)
- On Lp-norm Robustness of Ensemble Decision Stumps and Trees (ICML 2020)
- Yihan Wang, Huan Zhang, Hongge Chen, Duane S. Boning, Cho-Jui Hsieh
- Paper (https://arxiv.org/abs/2008.08755)
- Smaller, More Accurate Regression Forests Using Tree Alternating Optimization (ICML 2020)
- Arman Zharmagambetov, Miguel Á. Carreira-Perpinan
- Paper (http://proceedings.mlr.press/v119/zharmagambetov20a.html)
- Learning Optimal Decision Trees with MaxSAT and its Integration in AdaBoost (IJCAI 2020)
- Hao Hu, Mohamed Siala, Emmanuel Hebrard, Marie-José Huguet
- Paper (https://www.ijcai.org/Proceedings/2020/163)
- Speeding up Very Fast Decision Tree with Low Computational Cost (IJCAI 2020)
- Jian Sun, Hongyu Jia, Bo Hu, Xiao Huang, Hao Zhang, Hai Wan, Xibin Zhao
- Paper (https://www.ijcai.org/Proceedings/2020/0177.pdf)
- PyDL8.5: a Library for Learning Optimal Decision Trees (IJCAI 2020)
- Gaël Aglin, Siegfried Nijssen, Pierre Schaus
- Paper (https://www.ijcai.org/Proceedings/2020/0750.pdf)
- Code (https://github.com/aia-uclouvain/pydl8.5)
- Geodesic Forests (KDD 2020)
- Meghana Madhyastha, Gongkai Li, Veronika Strnadova-Neeley, James Browne, Joshua T. Vogelstein, Randal Burns
- Paper (https://dl.acm.org/doi/pdf/10.1145/3394486.3403094)
- A Scalable MIP-based Method for Learning Optimal Multivariate Decision Trees (NeurIPS 2020)
- Haoran Zhu, Pavankumar Murali, Dzung T. Phan, Lam M. Nguyen, Jayant Kalagnanam
- Paper (https://arxiv.org/abs/2011.03375)
- Estimating Decision Tree Learnability with Polylogarithmic Sample Complexity (NeurIPS 2020)
- Guy Blanc, Neha Gupta, Jane Lange, Li-Yang Tan
- Paper (https://arxiv.org/abs/2011.01584)
- Universal Guarantees for Decision Tree Induction via a Higher-Order Splitting Criterion (NeurIPS 2020)
- Guy Blanc, Neha Gupta, Jane Lange, Li-Yang Tan
- Paper (https://arxiv.org/abs/2010.08633)
- Smooth And Consistent Probabilistic Regression Trees (NeurIPS 2020)
- Sami Alkhoury, Emilie Devijver, Marianne Clausel, Myriam Tami, Éric Gaussier, Georges Oppenheim
- Paper (https://papers.nips.cc/paper/2020/file/8289889263db4a40463e3f358bb7c7a1-Paper.pdf)
- An Efficient Adversarial Attack for Tree Ensembles (NeurIPS 2020)
- Chong Zhang, Huan Zhang, Cho-Jui Hsieh
- Paper (https://arxiv.org/abs/2010.11598)
- Code (https://github.com/chong-z/tree-ensemble-attack)
- Decision Trees as Partitioning Machines to Characterize their Generalization Properties (NeurIPS 2020)
- Jean-Samuel Leboeuf, Frédéric Leblanc, Mario Marchand
- Paper (https://papers.nips.cc/paper/2020/file/d2a10b0bd670e442b1d3caa3fbf9e695-Paper.pdf)
- Evidence Weighted Tree Ensembles for Text Classification (SIGIR 2020)
- Md. Zahidul Islam, Jixue Liu, Jiuyong Li, Lin Liu, Wei Kang
- Paper (https://dl.acm.org/doi/abs/10.1145/3397271.3401229)
2019
- Multi Level Deep Cascade Trees for Conversion Rate Prediction in Recommendation System (AAAI 2019)
- Hong Wen, Jing Zhang, Quan Lin, Keping Yang, Pipei Huang
- Paper (https://arxiv.org/pdf/1805.09484.pdf)
- Induction of Non-Monotonic Logic Programs to Explain Boosted Tree Models Using LIME (AAAI 2019)
- Farhad Shakerin, Gopal Gupta
- Paper (https://arxiv.org/abs/1808.00629)
- Learning Optimal and Fair Decision Trees for Non-Discriminative Decision-Making (AAAI 2019)
- Sina Aghaei, Mohammad Javad Azizi, Phebe Vayanos
- Paper (https://arxiv.org/abs/1903.10598)
- Desiderata for Interpretability: Explaining Decision Tree Predictions with Counterfactuals (AAAI 2019)
- Kacper Sokol, Peter A. Flach
- Paper (https://aaai.org/ojs/index.php/AAAI/article/view/5154)
- Weighted Oblique Decision Trees (AAAI 2019)
- Bin-Bin Yang, Song-Qing Shen, Wei Gao
- Paper (https://aaai.org/ojs/index.php/AAAI/article/view/4505)
- Learning Optimal Classification Trees Using a Binary Linear Program Formulation (AAAI 2019)
- Sicco Verwer, Yingqian Zhang
- Paper (https://yingqianzhang.net/wp-content/uploads/2018/12/VerwerZhangAAAI-final.pdf)
- Optimization of Hierarchical Regression Model with Application to Optimizing Multi-Response Regression K-ary Trees (AAAI 2019)
- Pooya Tavallali, Peyman Tavallali, Mukesh Singhal
- Paper (https://aaai.org/ojs/index.php/AAAI/article/view/4447/4325)
- XBART: Accelerated Bayesian Additive Regression Trees (AISTATS 2019)
- Jingyu He, Saar Yalov, P. Richard Hahn
- Paper (https://arxiv.org/abs/1810.02215)
- Interaction Detection with Bayesian Decision Tree Ensembles (AISTATS 2019)
- Junliang Du, Antonio R. Linero
- Paper (https://arxiv.org/abs/1809.08524)
- Adversarial Training of Gradient-Boosted Decision Trees (CIKM 2019)
- Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei
- Paper (https://www.dais.unive.it/~calzavara/papers/cikm19.pdf)
- Interpretable MTL from Heterogeneous Domains using Boosted Tree (CIKM 2019)
- Ya-Lin Zhang, Longfei Li
- Paper (https://dl.acm.org/citation.cfm?id=3357384.3358072)
- Interpreting CNNs via Decision Trees (CVPR 2019)
- Quanshi Zhang, Yu Yang, Haotian Ma, Ying Nian Wu
- Paper (https://arxiv.org/abs/1802.00121)
- EDiT: Interpreting Ensemble Models via Compact Soft Decision Trees (ICDM 2019)
- Jaemin Yoo, Lee Sael
- Paper (https://github.com/leesael/EDiT/blob/master/docs/YooS19.pdf)
- Code (https://github.com/leesael/EDiT)
- Fair Adversarial Gradient Tree Boosting (ICDM 2019)
- Vincent Grari, Boris Ruf, Sylvain Lamprier, Marcin Detyniecki
- Paper (https://arxiv.org/abs/1911.05369)
- Functional Transparency for Structured Data: a Game-Theoretic Approach (ICML 2019)
- Guang-He Lee, Wengong Jin, David Alvarez-Melis, Tommi S. Jaakkola
- Paper (http://proceedings.mlr.press/v97/lee19b/lee19b.pdf)
- Incorporating Grouping Information into Bayesian Decision Tree Ensembles (ICML 2019)
- Junliang Du, Antonio R. Linero
- Paper (http://proceedings.mlr.press/v97/du19d.html)
- Adaptive Neural Trees (ICML 2019)
- Ryutaro Tanno, Kai Arulkumaran, Daniel C. Alexander, Antonio Criminisi, Aditya V. Nori
- Paper (https://arxiv.org/abs/1807.06699)
- Code (https://github.com/rtanno21609/AdaptiveNeuralTrees)
- Robust Decision Trees Against Adversarial Examples (ICML 2019)
- Hongge Chen, Huan Zhang, Duane S. Boning, Cho-Jui Hsieh
- Paper (https://arxiv.org/abs/1902.10660)
- Code (https://github.com/chenhongge/RobustTrees)
- Learn Smart with Less: Building Better Online Decision Trees with Fewer Training Examples (IJCAI 2019)
- Ariyam Das, Jin Wang, Sahil M. Gandhi, Jae Lee, Wei Wang, Carlo Zaniolo
- Paper (https://www.ijcai.org/proceedings/2019/0306.pdf)
- FAHT: An Adaptive Fairness-aware Decision Tree Classifier (IJCAI 2019)
- Wenbin Zhang, Eirini Ntoutsi
- Paper (https://arxiv.org/abs/1907.07237)
- Code (https://github.com/vanbanTruong/FAHT)
- Inter-node Hellinger Distance based Decision Tree (IJCAI 2019)
- Pritom Saha Akash, Md. Eusha Kadir, Amin Ahsan Ali, Mohammad Shoyaib
- Paper (https://www.ijcai.org/proceedings/2019/0272.pdf)
- Matlab Code (https://github.com/ZDanielsResearch/HellingerTreesMatlab)
- R Code (https://github.com/kaustubhrpatil/HDDT)
- Gradient Boosting with Piece-Wise Linear Regression Trees (IJCAI 2019)
- Yu Shi, Jian Li, Zhize Li
- Paper (https://arxiv.org/abs/1802.05640)
- Code (https://github.com/GBDT-PL/GBDT-PL)
- A Gradient-Based Split Criterion for Highly Accurate and Transparent Model Trees (IJCAI 2019)
- Klaus Broelemann, Gjergji Kasneci
- Paper (https://arxiv.org/abs/1809.09703)
- Combining Decision Trees and Neural Networks for Learning-to-Rank in Personal Search (KDD 2019)
- Pan Li, Zhen Qin, Xuanhui Wang, Donald Metzler
- Paper (https://ai.google/research/pubs/pub48133/)
- Tight Certificates of Adversarial Robustness for Randomly Smoothed Classifiers (NeurIPS 2019)
- Guang-He Lee, Yang Yuan, Shiyu Chang, Tommi S. Jaakkola
- Paper (https://papers.nips.cc/paper/8737-tight-certificates-of-adversarial-robustness-for-randomly-smoothed-classifiers.pdf)
- Code (https://github.com/guanghelee/Randomized_Smoothing)
- Partitioning Structure Learning for Segmented Linear Regression Trees (NeurIPS 2019)
- Xiangyu Zheng, Song Xi Chen
- Paper (https://papers.nips.cc/paper/8494-partitioning-structure-learning-for-segmented-linear-regression-trees)
- Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks (NeurIPS 2019)
- Maksym Andriushchenko, Matthias Hein
- Paper (https://arxiv.org/abs/1906.03526)
- Code (https://github.com/max-andr/provably-robust-boosting)
- Optimal Decision Tree with Noisy Outcomes (NeurIPS 2019)
- Su Jia, Viswanath Nagarajan, Fatemeh Navidi, R. Ravi
- Paper (https://papers.nips.cc/paper/8592-optimal-decision-tree-with-noisy-outcomes.pdf)
- Code (https://github.com/sjia1/ODT-with-noisy-outcomes)
- Regularized Gradient Boosting (NeurIPS 2019)
- Corinna Cortes, Mehryar Mohri, Dmitry Storcheus
- Paper (https://papers.nips.cc/paper/8784-regularized-gradient-boosting.pdf)
- Optimal Sparse Decision Trees (NeurIPS 2019)
- Xiyang Hu, Cynthia Rudin, Margo Seltzer
- Paper (https://papers.nips.cc/paper/8947-optimal-sparse-decision-trees.pdf)
- Code (https://github.com/xiyanghu/OSDT)
- MonoForest framework for tree ensemble analysis (NeurIPS 2019)
- Igor Kuralenok, Vasilii Ershov, Igor Labutin
- Paper (https://papers.nips.cc/paper/9530-monoforest-framework-for-tree-ensemble-analysis)
- Code (https://github.com/xiyanghu/OSDT)
- Calibrating Probability Estimation Trees using Venn-Abers Predictors (SDM 2019)
- Ulf Johansson, Tuwe Löfström, Henrik Boström
- Paper (https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.4)
- Fast Training for Large-Scale One-versus-All Linear Classifiers using Tree-Structured Initialization (SDM 2019)
- Huang Fang, Minhao Cheng, Cho-Jui Hsieh, Michael P. Friedlander
- Paper (https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.32)
- Forest Packing: Fast Parallel, Decision Forests (SDM 2019)
- James Browne, Disa Mhembere, Tyler M. Tomita, Joshua T. Vogelstein, Randal Burns
- Paper (https://epubs.siam.org/doi/abs/10.1137/1.9781611975673.6)
- Block-distributed Gradient Boosted Trees (SIGIR 2019)
- Theodore Vasiloudis, Hyunsu Cho, Henrik Boström
- Paper (https://arxiv.org/abs/1904.10522)
- Entity Personalized Talent Search Models with Tree Interaction Features (WWW 2019)
- Cagri Ozcaglar, Sahin Cem Geyik, Brian Schmitz, Prakhar Sharma, Alex Shelkovnykov, Yiming Ma, Erik Buchanan
- Paper (https://arxiv.org/abs/1902.09041)
2018
- Adapting to Concept Drift in Credit Card Transaction Data Streams Using Contextual Bandits and Decision Trees (AAAI 2018)
- Dennis J. N. J. Soemers, Tim Brys, Kurt Driessens, Mark H. M. Winands, Ann Nowé
- Paper (https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16183/16394)
- MERCS: Multi-Directional Ensembles of Regression and Classification Trees (AAAI 2018)
- Elia Van Wolputte, Evgeniya Korneva, Hendrik Blockeel
- Paper (https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16875/16735)
- Code (https://github.com/eliavw/mercs-v5)
- Differential Performance Debugging With Discriminant Regression Trees (AAAI 2018)
- Saeid Tizpaz-Niari, Pavol Cerný, Bor-Yuh Evan Chang, Ashutosh Trivedi
- Paper (https://arxiv.org/abs/1711.04076)
- Code (https://github.com/cuplv/DPDEBUGGER)
- Estimating the Class Prior in Positive and Unlabeled Data Through Decision Tree Induction (AAAI 2018)
- Jessa Bekker, Jesse Davis
- Paper (https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16776)
- MDP-Based Cost Sensitive Classification Using Decision Trees (AAAI 2018)
- Shlomi Maliah, Guy Shani
- Paper (https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17128)
- Generative Adversarial Image Synthesis With Decision Tree Latent Controller (CVPR 2018)
- Takuhiro Kaneko, Kaoru Hiramatsu, Kunio Kashino
- Paper (https://arxiv.org/abs/1805.10603)
- Code (https://github.com/LynnHo/DTLC-GAN-Tensorflow)
- Enhancing Very Fast Decision Trees with Local Split-Time Predictions (ICDM 2018)
- Viktor Losing, Heiko Wersing, Barbara Hammer
- Paper (https://www.techfak.uni-bielefeld.de/~hwersing/LosingHammerWersing_ICDM2018.pdf)
- Code (https://github.com/ICDM2018Submission/VFDT-split-time-prediction)
- Realization of Random Forest for Real-Time Evaluation through Tree Framing (ICDM 2018)
- Sebastian Buschjäger, Kuan-Hsun Chen, Jian-Jia Chen, Katharina Morik
- Paper (https://sfb876.tu-dortmund.de/PublicPublicationFiles/buschjaeger_2018a.pdf)
- Finding Influential Training Samples for Gradient Boosted Decision Trees (ICML 2018)
- Boris Sharchilev, Yury Ustinovskiy, Pavel Serdyukov, Maarten de Rijke
- Paper (https://arxiv.org/abs/1802.06640)
- Code (https://github.com/bsharchilev/influence_boosting)
- Learning Optimal Decision Trees with SAT (IJCAI 2018)
- Nina Narodytska, Alexey Ignatiev, Filipe Pereira, João Marques-Silva
- Paper (https://www.ijcai.org/proceedings/2018/0189.pdf)
- Extremely Fast Decision Tree (KDD 2018)
- Chaitanya Manapragada, Geoffrey I. Webb, Mahsa Salehi
- Paper (https://arxiv.org/abs/1802.08780)
- Code (https://github.com/doubleplusplus/incremental_decision_tree-CART-Random_Forest_python)
- RapidScorer: Fast Tree Ensemble Evaluation by Maximizing Compactness in Data Level Parallelization (KDD 2018)
- Ting Ye, Hucheng Zhou, Will Y. Zou, Bin Gao, Ruofei Zhang
- Paper (http://ai.stanford.edu/~wzou/kdd_rapidscorer.pdf)
- CatBoost: Unbiased Boosting with Categorical Features (NIPS 2018)
- Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, Andrey Gulin
- Paper (https://papers.nips.cc/paper/7898-catboost-unbiased-boosting-with-categorical-features.pdf)
- Code (https://catboost.ai/)
- Active Learning for Non-Parametric Regression Using Purely Random Trees (NIPS 2018)
- Jack Goetz, Ambuj Tewari, Paul Zimmerman
- Paper (https://papers.nips.cc/paper/7520-active-learning-for-non-parametric-regression-using-purely-random-trees.pdf)
- Alternating Optimization of Decision Trees with Application to Learning Sparse Oblique Trees (NIPS 2018)
- Miguel Á. Carreira-Perpiñán, Pooya Tavallali
- Paper (https://papers.nips.cc/paper/7397-alternating-optimization-of-decision-trees-with-application-to-learning-sparse-oblique-trees)
- Multi-Layered Gradient Boosting Decision Trees (NIPS 2018)
- Ji Feng, Yang Yu, Zhi-Hua Zhou
- Paper (https://papers.nips.cc/paper/7614-multi-layered-gradient-boosting-decision-trees.pdf)
- Code (https://github.com/kingfengji/mGBDT)
- Transparent Tree Ensembles (SIGIR 2018)
- Alexander Moore, Vanessa Murdock, Yaxiong Cai, Kristine Jones
- Paper
(http://delivery.acm.org/10.1145/3220000/3210151/p1241-moore.pdf?ip=129.215.164.203&id=3210151&acc=ACTIVE%20SERVICE&key=C2D842D97AC95F7A%2EEB9E991028F4E1F1%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1559054892_a29816c683aa83a0ce0fbb777c68daba)
- Privacy-aware Ranking with Tree Ensembles on the Cloud (SIGIR 2018)
- Shiyu Ji, Jinjin Shao, Daniel Agun, Tao Yang
- Paper (https://sites.cs.ucsb.edu/projects/ds/sigir18.pdf)
2017
- Strategic Sequences of Arguments for Persuasion Using Decision Trees (AAAI 2017)
- Emmanuel Hadoux, Anthony Hunter
- Paper (http://www0.cs.ucl.ac.uk/staff/a.hunter/papers/aaai17.pdf)
- BoostVHT: Boosting Distributed Streaming Decision Trees (CIKM 2017)
- Theodore Vasiloudis, Foteini Beligianni, Gianmarco De Francisci Morales
- Paper (https://melmeric.files.wordpress.com/2010/05/boostvht-boosting-distributed-streaming-decision-trees.pdf)
- Latency Reduction via Decision Tree Based Query Construction (CIKM 2017)
- Aman Grover, Dhruv Arya, Ganesh Venkataraman
- Paper (https://dl.acm.org/citation.cfm?id=3132865)
- Enumerating Distinct Decision Trees (ICML 2017)
- Salvatore Ruggieri
- Paper (http://proceedings.mlr.press/v70/ruggieri17a/ruggieri17a.pdf)
- Gradient Boosted Decision Trees for High Dimensional Sparse Output (ICML 2017)
- Si Si, Huan Zhang, S. Sathiya Keerthi, Dhruv Mahajan, Inderjit S. Dhillon, Cho-Jui Hsieh
- Paper (http://proceedings.mlr.press/v70/si17a.html)
- Code (https://github.com/springdaisy/GBDT)
- Consistent Feature Attribution for Tree Ensembles (ICML 2017)
- Scott M. Lundberg, Su-In Lee
- Paper (https://arxiv.org/abs/1706.06060)
- Code (https://github.com/slundberg/shap)
- Extremely Fast Decision Tree Mining for Evolving Data Streams (KDD 2017)
- Albert Bifet, Jiajin Zhang, Wei Fan, Cheng He, Jianfeng Zhang, Jianfeng Qian, Geoff Holmes, Bernhard Pfahringer
- Paper (https://core.ac.uk/download/pdf/151040580.pdf)
- CatBoost: Gradient Boosting with Categorical Features Support (NIPS 2017)
- Anna Veronika Dorogush, Vasily Ershov, Andrey Gulin
- Paper (https://arxiv.org/abs/1810.11363)
- Code (https://catboost.ai/)
- LightGBM: A Highly Efficient Gradient Boosting Decision Tree (NIPS 2017)
- Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, Tie-Yan Liu
- Paper (https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree)
- Code (https://lightgbm.readthedocs.io/en/latest/)
- Variable Importance Using Decision Trees (NIPS 2017)
- Jalil Kazemitabar, Arash Amini, Adam Bloniarz, Ameet S. Talwalkar
- Paper (https://papers.nips.cc/paper/6646-variable-importance-using-decision-trees)
- A Unified Approach to Interpreting Model Predictions (NIPS 2017)
- Scott M. Lundberg, Su-In Lee
- Paper (https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions)
- Code (https://github.com/slundberg/shap)
- Pruning Decision Trees via Max-Heap Projection (SDM 2017)
- Zhi Nie, Binbin Lin, Shuai Huang, Naren Ramakrishnan, Wei Fan, Jieping Ye
- Paper (https://www.researchgate.net/publication/317485748_Pruning_Decision_Trees_via_Max-Heap_Projection)
- A Practical Method for Solving Contextual Bandit Problems Using Decision Trees (UAI 2017)
- Adam N. Elmachtoub, Ryan McNellis, Sechan Oh, Marek Petrik
- Paper (https://arxiv.org/abs/1706.04687)
- Complexity of Solving Decision Trees with Skew-Symmetric Bilinear Utility (UAI 2017)
- Hugo Gilbert, Olivier Spanjaard
- Paper (http://auai.org/uai2017/proceedings/papers/64.pdf)
- GB-CENT: Gradient Boosted Categorical Embedding and Numerical Trees (WWW 2017)
- Qian Zhao, Yue Shi, Liangjie Hong
- Paper (http://papers.www2017.com.au.s3-website-ap-southeast-2.amazonaws.com/proceedings/p1311.pdf)
2016
- Sparse Perceptron Decision Tree for Millions of Dimensions (AAAI 2016)
- Weiwei Liu, Ivor W. Tsang
- Paper (https://aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12111)
- Learning Online Smooth Predictors for Realtime Camera Planning Using Recurrent Decision Trees (CVPR 2016)
- Jianhui Chen, Hoang Minh Le, Peter Carr, Yisong Yue, James J. Little
- Paper (http://hoangle.info/papers/cvpr2016_online_smooth_long.pdf)
- Online Learning with Bayesian Classification Trees (CVPR 2016)
- Samuel Rota Bulò, Peter Kontschieder
- Paper (http://www.dsi.unive.it/~srotabul/files/publications/CVPR2016.pdf)
- Accurate Robust and Efficient Error Estimation for Decision Trees (ICML 2016)
- Lixin Fan
- Paper (http://proceedings.mlr.press/v48/fan16.pdf)
- Meta-Gradient Boosted Decision Tree Model for Weight and Target Learning (ICML 2016)
- Yury Ustinovskiy, Valentina Fedorova, Gleb Gusev, Pavel Serdyukov
- Paper (http://proceedings.mlr.press/v48/ustinovskiy16.html)
- Boosted Decision Tree Regression Adjustment for Variance Reduction in Online Controlled Experiments (KDD 2016)
- Alexey Poyarkov, Alexey Drutsa, Andrey Khalyavin, Gleb Gusev, Pavel Serdyukov
- Paper (https://www.kdd.org/kdd2016/papers/files/adf0653-poyarkovA.pdf)
- XGBoost: A Scalable Tree Boosting System (KDD 2016)
- Tianqi Chen, Carlos Guestrin
- Paper (https://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf)
- Code (https://xgboost.readthedocs.io/en/latest/)
- Yggdrasil: An Optimized System for Training Deep Decision Trees at Scale (NIPS 2016)
- Firas Abuzaid, Joseph K. Bradley, Feynman T. Liang, Andrew Feng, Lee Yang, Matei Zaharia, Ameet S. Talwalkar
- Paper (https://papers.nips.cc/paper/6366-yggdrasil-an-optimized-system-for-training-deep-decision-trees-at-scale)
- A Communication-Efficient Parallel Algorithm for Decision Tree (NIPS 2016)
- Qi Meng, Guolin Ke, Taifeng Wang, Wei Chen, Qiwei Ye, Zhiming Ma, Tie-Yan Liu
- Paper (https://arxiv.org/abs/1611.01276)
- Code (https://github.com/microsoft/LightGBM/blob/master/docs/Features.rst)
- Exploiting CPU SIMD Extensions to Speed-up Document Scoring with Tree Ensembles (SIGIR 2016)
- Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Nicola Tonellotto, Rossano Venturini
- Paper (http://pages.di.unipi.it/rossano/wp-content/uploads/sites/7/2016/07/SIGIR16a.pdf)
- Code (https://github.com/hpclab/vectorized-quickscorer)
- Post-Learning Optimization of Tree Ensembles for Efficient Ranking (SIGIR 2016)
- Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Fabrizio Silvestri, Salvatore Trani
- Paper (https://www.researchgate.net/publication/305081572_Post-Learning_Optimization_of_Tree_Ensembles_for_Efficient_Ranking)
- Code (https://github.com/hpclab/quickrank)
2015
- Particle Gibbs for Bayesian Additive Regression Trees (AISTATS 2015)
- Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh
- Paper (https://arxiv.org/abs/1502.04622)
- DART: Dropouts Meet Multiple Additive Regression Trees (AISTATS 2015)
- Korlakai Vinayak Rashmi, Ran Gilad-Bachrach
- Paper (https://arxiv.org/abs/1505.01866)
- Code (https://xgboost.readthedocs.io/en/latest/)
- Single Target Tracking Using Adaptive Clustered Decision Trees and Dynamic Multi-level Appearance Models (CVPR 2015)
- Jingjing Xiao, Rustam Stolkin, Ales Leonardis
- Paper (https://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_058.pdf)
- Face Alignment Using Cascade Gaussian Process Regression Trees (CVPR 2015)
- Donghoon Lee, Hyunsin Park, Chang Dong Yoo
- Paper (https://slsp.kaist.ac.kr/paperdata/Face_Alignment_Using.pdf)
- Code (https://github.com/donghoonlee04/cGPRT)
- Tracking-by-Segmentation with Online Gradient Boosting Decision Tree (ICCV 2015)
- Jeany Son, Ilchae Jung, Kayoung Park, Bohyung Han
- Paper (https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Son_Tracking-by-Segmentation_With_Online_ICCV_2015_paper.pdf)
- Entropy Evaluation Based on Confidence Intervals of Frequency Estimates : Application to the Learning of Decision Trees (ICML 2015)
- Mathieu Serrurier, Henri Prade
- Paper (http://proceedings.mlr.press/v37/serrurier15.pdf)
- Large-scale Distributed Dependent Nonparametric Trees (ICML 2015)
- Zhiting Hu, Qirong Ho, Avinava Dubey, Eric P. Xing
- Paper (https://www.cs.cmu.edu/~zhitingh/data/icml15hu.pdf)
- Optimal Action Extraction for Random Forests and Boosted Trees (KDD 2015)
- Zhicheng Cui, Wenlin Chen, Yujie He, Yixin Chen
- Paper (https://www.cse.wustl.edu/~ychen/public/OAE.pdf)
- A Decision Tree Framework for Spatiotemporal Sequence Prediction (KDD 2015)
- Taehwan Kim, Yisong Yue, Sarah L. Taylor, Iain A. Matthews
- Paper (http://www.yisongyue.com/publications/kdd2015_ssw_dt.pdf)
- Efficient Non-greedy Optimization of Decision Trees (NIPS 2015)
- Mohammad Norouzi, Maxwell D. Collins, Matthew Johnson, David J. Fleet, Pushmeet Kohli
- Paper (https://arxiv.org/abs/1511.04056)
- QuickScorer: A Fast Algorithm to Rank Documents with Additive Ensembles of Regression Trees (SIGIR 2015)
- Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Nicola Tonellotto, Rossano Venturini
- Paper (http://pages.di.unipi.it/rossano/wp-content/uploads/sites/7/2015/11/sigir15.pdf)
- Code (https://github.com/hpclab/quickrank)
2014
- A Mixtures-of-Trees Framework for Multi-Label Classification (CIKM 2014)
- Charmgil Hong, Iyad Batal, Milos Hauskrecht
- Paper (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410801/)
- On Building Decision Trees from Large-scale Data in Applications of On-line Advertising (CIKM 2014)
- Shivaram Kalyanakrishnan, Deepthi Singh, Ravi Kant
- Paper (https://www.cse.iitb.ac.in/~shivaram/papers/ksk_cikm_2014.pdf)
- Fast Supervised Hashing with Decision Trees for High-Dimensional Data (CVPR 2014)
- Guosheng Lin, Chunhua Shen, Qinfeng Shi, Anton van den Hengel, David Suter
- Paper (https://arxiv.org/abs/1404.1561)
- One Millisecond Face Alignment with an Ensemble of Regression Trees (CVPR 2014)
- Vahid Kazemi, Josephine Sullivan
- Paper (https://www.researchgate.net/publication/264419855_One_Millisecond_Face_Alignment_with_an_Ensemble_of_Regression_Trees)
- The return of AdaBoost.MH: multi-class Hamming trees (ICLR 2014)
- Balázs Kégl
- Paper (https://arxiv.org/pdf/1312.6086.pdf)
- Diagnosis Determination: Decision Trees Optimizing Simultaneously Worst and Expected Testing Cost (ICML 2014)
- Ferdinando Cicalese, Eduardo Sany Laber, Aline Medeiros Saettler
- Paper (https://pdfs.semanticscholar.org/47ae/852f83b76f95b27ab00308d04f6020bdf71f.pdf)
- Learning Multiple-Question Decision Trees for Cold-Start Recommendation (WSDM 2013)
- Mingxuan Sun, Fuxin Li, Joonseok Lee, Ke Zhou, Guy Lebanon, Hongyuan Zha
- Paper (http://www.joonseok.net/papers/coldstart.pdf)
2013
- Weakly Supervised Learning of Image Partitioning Using Decision Trees with Structured Split Criteria (ICCV 2013)
- Christoph N. Straehle, Ullrich Köthe, Fred A. Hamprecht
- Paper (https://ieeexplore.ieee.org/document/6751340)
- Revisiting Example Dependent Cost-Sensitive Learning with Decision Trees (ICCV 2013)
- Oisin Mac Aodha, Gabriel J. Brostow
- Paper (https://ieeexplore.ieee.org/document/6751133)
- Conformal Prediction Using Decision Trees (ICDM 2013)
- Ulf Johansson, Henrik Boström, Tuve Löfström
- Paper (https://ieeexplore.ieee.org/abstract/document/6729517)
- Focal-Test-Based Spatial Decision Tree Learning: A Summary of Results (ICDM 2013)
- Zhe Jiang, Shashi Shekhar, Xun Zhou, Joseph K. Knight, Jennifer Corcoran
- Paper (https://pdfs.semanticscholar.org/f28e/df8d9eed76e4ce97cb6bd4182d590547be5e.pdf)
- Top-down Particle Filtering for Bayesian Decision Trees (ICML 2013)
- Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh
- Paper (https://arxiv.org/abs/1303.0561)
- Quickly Boosting Decision Trees - Pruning Underachieving Features Early (ICML 2013)
- Ron Appel, Thomas J. Fuchs, Piotr Dollár, Pietro Perona
- Paper (http://proceedings.mlr.press/v28/appel13.pdf)
- Knowledge Compilation for Model Counting: Affine Decision Trees (IJCAI 2013)
- Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis, Samuel Thomas
- Paper (https://www.researchgate.net/publication/262398921_Knowledge_Compilation_for_Model_Counting_Affine_Decision_Trees)
- Understanding Variable Importances in Forests of Randomized Trees (NIPS 2013)
- Gilles Louppe, Louis Wehenkel, Antonio Sutera, Pierre Geurts
- Paper (https://papers.nips.cc/paper/4928-understanding-variable-importances-in-forests-of-randomized-trees)
- Regression-tree Tuning in a Streaming Setting (NIPS 2013)
- Samory Kpotufe, Francesco Orabona
- Paper (https://papers.nips.cc/paper/4898-regression-tree-tuning-in-a-streaming-setting)
- Learning Max-Margin Tree Predictors (UAI 2013)
- Ofer Meshi, Elad Eban, Gal Elidan, Amir Globerson
- Paper (https://ttic.uchicago.edu/~meshi/papers/mtreen.pdf)
2012
- Regression Tree Fields - An Efficient, Non-parametric Approach to Image Labeling Problems (CVPR 2012)
- Jeremy Jancsary, Sebastian Nowozin, Toby Sharp, Carsten Rother
- Paper (http://www.nowozin.net/sebastian/papers/jancsary2012rtf.pdf)
- ConfDTree: Improving Decision Trees Using Confidence Intervals (ICDM 2012)
- Gilad Katz, Asaf Shabtai, Lior Rokach, Nir Ofek
- Paper (https://ieeexplore.ieee.org/document/6413889)
- Improved Information Gain Estimates for Decision Tree Induction (ICML 2012)
- Sebastian Nowozin
- Paper (https://arxiv.org/abs/1206.4620)
- Learning Partially Observable Models Using Temporally Abstract Decision Trees (NIPS 2012)
- Erik Talvitie
- Paper (https://papers.nips.cc/paper/4662-learning-partially-observable-models-using-temporally-abstract-decision-trees)
- Subtree Replacement in Decision Tree Simplification (SDM 2012)
- Salvatore Ruggieri
- Paper (http://pages.di.unipi.it/ruggieri/Papers/sdm2012.pdf)
2011
- Incorporating Boosted Regression Trees into Ecological Latent Variable Models (AAAI 2011)
- Rebecca A. Hutchinson, Li-Ping Liu, Thomas G. Dietterich
- Paper (https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/viewFile/3711/4086)
- Syntactic Decision Tree LMs: Random Selection or Intelligent Design (EMNLP 2011)
- Denis Filimonov, Mary P. Harper
- Paper (https://www.aclweb.org/anthology/D11-1064)
- Decision Tree Fields (ICCV 2011)
- Sebastian Nowozin, Carsten Rother, Shai Bagon, Toby Sharp, Bangpeng Yao, Pushmeet Kohli
- Paper (https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/nrbsyk_iccv11.pdf)
- Confidence in Predictions from Random Tree Ensembles (ICDM 2011)
- Siddhartha Bhattacharyya
- Paper (https://link.springer.com/article/10.1007/s10115-012-0600-z)
- Speeding-Up Hoeffding-Based Regression Trees With Options (ICML 2011)
- Elena Ikonomovska, João Gama, Bernard Zenko, Saso Dzeroski
- Paper (https://icml.cc/Conferences/2011/papers/349_icmlpaper.pdf)
- Density Estimation Trees (KDD 2011)
- Parikshit Ram, Alexander G. Gray
- Paper (https://mlpack.org/papers/det.pdf)
- Bagging Gradient-Boosted Trees for High Precision, Low Variance Ranking Models (SIGIR 2011)
- Yasser Ganjisaffar, Rich Caruana, Cristina Videira Lopes
- Paper (http://www.ccs.neu.edu/home/vip/teach/MLcourse/4_boosting/materials/bagging_lmbamart_jforests.pdf)
- On the Complexity of Decision Making in Possibilistic Decision Trees (UAI 2011)
- Hélène Fargier, Nahla Ben Amor, Wided Guezguez
- Paper (https://dslpitt.org/uai/papers/11/p203-fargier.pdf)
- Adaptive Bootstrapping of Recommender Systems Using Decision Trees (WSDM 2011)
- Nadav Golbandi, Yehuda Koren, Ronny Lempel
- Paper (https://dl.acm.org/citation.cfm?id=1935910)
- Parallel Boosted Regression Trees for Web Search Ranking (WWW 2011)
- Stephen Tyree, Kilian Q. Weinberger, Kunal Agrawal, Jennifer Paykin
- Paper (http://www.cs.cornell.edu/~kilian/papers/fr819-tyreeA.pdf)
2010
- Discrimination Aware Decision Tree Learning (ICDM 2010)
- Faisal Kamiran, Toon Calders, Mykola Pechenizkiy
- Paper (https://www.win.tue.nl/~mpechen/publications/pubs/KamiranICDM2010.pdf)
- Decision Trees for Uplift Modeling (ICDM 2010)
- Piotr Rzepakowski, Szymon Jaroszewicz
- Paper (https://core.ac.uk/download/pdf/81899141.pdf)
- Learning Markov Network Structure with Decision Trees (ICDM 2010)
- Daniel Lowd, Jesse Davis
- Paper (https://ix.cs.uoregon.edu/~lowd/icdm10lowd.pdf)
- Multivariate Dyadic Regression Trees for Sparse Learning Problems (NIPS 2010)
- Han Liu, Xi Chen
- Paper (https://papers.nips.cc/paper/4178-multivariate-dyadic-regression-trees-for-sparse-learning-problems.pdf)
- Fast and Accurate Gene Prediction by Decision Tree Classification (SDM 2010)
- Rong She, Jeffrey Shih-Chieh Chu, Ke Wang, Nansheng Chen
- Paper (http://www.sfu.ca/~chenn/genBlastDT_sdm.pdf)
- A Robust Decision Tree Algorithm for Imbalanced Data Sets (SDM 2010)
- Wei Liu, Sanjay Chawla, David A. Cieslak, Nitesh V. Chawla
- Paper (https://www3.nd.edu/~nchawla/papers/SDM10.pdf)
2009
- Stochastic Gradient Boosted Distributed Decision Trees (CIKM 2009)
- Jerry Ye, Jyh-Herng Chow, Jiang Chen, Zhaohui Zheng
- Paper (https://dl.acm.org/citation.cfm?id=1646301)
- Feature Selection for Ranking Using Boosted Trees (CIKM 2009)
- Feng Pan, Tim Converse, David Ahn, Franco Salvetti, Gianluca Donato
- Paper (http://www.francosalvetti.com/cikm09_camera2.pdf)
- Thai Word Segmentation with Hidden Markov Model and Decision Tree (PAKDD 2009)
- Poramin Bheganan, Richi Nayak, Yue Xu
- Paper (https://link.springer.com/chapter/10.1007/978-3-642-01307-2_10)
- Parameter Estimdation in Semi-Random Decision Tree Ensembling on Streaming Data (PAKDD 2009)
- Pei-Pei Li, Qianhui Liang, Xindong Wu, Xuegang Hu
- Paper (https://link.springer.com/chapter/10.1007/978-3-642-01307-2_35)
- DTU: A Decision Tree for Uncertain Data (PAKDD 2009)
- Biao Qin, Yuni Xia, Fang Li
- Paper (https://link.springer.com/chapter/10.1007/978-3-642-01307-2_4)
2008
- Predicting Future Decision Trees from Evolving Data (ICDM 2008)
- Mirko Böttcher, Martin Spott, Rudolf Kruse
- Paper (https://ieeexplore.ieee.org/document/4781098)
- Bayes Optimal Classification for Decision Trees (ICML 2008)
- Siegfried Nijssen
- Paper (http://icml2008.cs.helsinki.fi/papers/455.pdf)
- A New Credit Scoring Method Based on Rough Sets and Decision Tree (PAKDD 2008)
- XiYue Zhou, Defu Zhang, Yi Jiang
- Paper (https://link.springer.com/chapter/10.1007/978-3-540-68125-0_117)
- A Comparison of Different Off-Centered Entropies to Deal with Class Imbalance for Decision Trees (PAKDD 2008)
- Philippe Lenca, Stéphane Lallich, Thanh-Nghi Do, Nguyen-Khang Pham
- Paper (https://link.springer.com/chapter/10.1007/978-3-540-68125-0_59)
- BOAI: Fast Alternating Decision Tree Induction Based on Bottom-Up Evaluation (PAKDD 2008)
- Bishan Yang, Tengjiao Wang, Dongqing Yang, Lei Chang
- Paper (https://link.springer.com/chapter/10.1007/978-3-540-68125-0_36)
- A General Framework for Estimating Similarity of Datasets and Decision Trees: Exploring Semantic Similarity of Decision Trees (SDM 2008)
- Irene Ntoutsi, Alexandros Kalousis, Yannis Theodoridis
- Paper (https://www.researchgate.net/publication/220907047_A_general_framework_for_estimating_similarity_of_datasets_and_decision_trees_exploring_semantic_similarity_of_decision_trees)
- ROC-tree: A Novel Decision Tree Induction Algorithm Based on Receiver Operating Characteristics to Classify Gene Expression Data (SDM 2008)
- M. Maruf Hossain, Md. Rafiul Hassan, James Bailey
- Paper (https://pdfs.semanticscholar.org/bd80/db2f0903169b7611d34b2cc85f60a736375d.pdf)
2007
- Tree-based Classifiers for Bilayer Video Segmentation (CVPR 2007)
- Pei Yin, Antonio Criminisi, John M. Winn, Irfan A. Essa
- Paper (https://ieeexplore.ieee.org/document/4270033)
- Additive Groves of Regression Trees (ECML 2007)
- Daria Sorokina, Rich Caruana, Mirek Riedewald
- Paper (http://additivegroves.net/papers/groves.pdf)
- Decision Tree Instability and Active Learning (ECML 2007)
- Kenneth Dwyer, Robert Holte
- Paper (https://webdocs.cs.ualberta.ca/~holte/Publications/ecml07.pdf)
- Ensembles of Multi-Objective Decision Trees (ECML 2007)
- Dragi Kocev, Celine Vens, Jan Struyf, Saso Dzeroski
- Paper (https://link.springer.com/chapter/10.1007/978-3-540-74958-5_61)
- Seeing the Forest Through the Trees: Learning a Comprehensible Model from an Ensemble (ECML 2007)
- Anneleen Van Assche, Hendrik Blockeel
- Paper (http://ftp.cs.wisc.edu/machine-learning/shavlik-group/ilp07wip/ilp07_assche.pdf)
- Sample Compression Bounds for Decision Trees (ICML 2007)
- Mohak Shah
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.9136&rep=rep1&type=pdf)
- A Tighter Error Bound for Decision Tree Learning Using PAC Learnability (IJCAI 2007)
- Chaithanya Pichuka, Raju S. Bapi, Chakravarthy Bhagvati, Arun K. Pujari, Bulusu Lakshmana Deekshatulu
- Paper (https://www.ijcai.org/Proceedings/07/Papers/163.pdf)
- Keep the Decision Tree and Estimate the Class Probabilities Using its Decision Boundary (IJCAI 2007)
- Isabelle Alvarez, Stephan Bernard, Guillaume Deffuant
- Paper (https://www.ijcai.org/Proceedings/07/Papers/104.pdf)
- Real Boosting a la Carte with an Application to Boosting Oblique Decision Tree (IJCAI 2007)
- Claudia Henry, Richard Nock, Frank Nielsen
- Paper (https://www.ijcai.org/Proceedings/07/Papers/135.pdf)
- Scalable Look-ahead Linear Regression Trees (KDD 2007)
- David S. Vogel, Ognian Asparouhov, Tobias Scheffer
- Paper (https://www.cs.uni-potsdam.de/ml/publications/kdd2007.pdf)
- Mining Optimal Decision Trees from Itemset Lattices (KDD 2007)
- Siegfried Nijssen, Élisa Fromont
- Paper (https://hal.archives-ouvertes.fr/hal-00372011/document)
- A Hybrid Multi-group Privacy-Preserving Approach for Building Decision Trees (PAKDD 2007)
- Zhouxuan Teng, Wenliang Du
- Paper (https://link.springer.com/chapter/10.1007/978-3-540-71701-0_30)
2006
- Decision Tree Methods for Finding Reusable MDP Homomorphisms (AAAI 2006)
- Alicia P. Wolfe, Andrew G. Barto
- Paper (https://www.aaai.org/Papers/AAAI/2006/AAAI06-085.pdf)
- A Fast Decision Tree Learning Algorithm (AAAI 2006)
- Jiang Su, Harry Zhang
- Paper (http://www.cs.unb.ca/~hzhang/publications/AAAI06.pdf)
- Anytime Induction of Decision Trees: An Iterative Improvement Approach (AAAI 2006)
- Saher Esmeir, Shaul Markovitch
- Paper (https://www.aaai.org/Papers/AAAI/2006/AAAI06-056.pdf)
- When a Decision Tree Learner Has Plenty of Time (AAAI 2006)
- Saher Esmeir, Shaul Markovitch
- Paper (https://www.aaai.org/Papers/AAAI/2006/AAAI06-259.pdf)
- Decision Trees for Functional Variables (ICDM 2006)
- Suhrid Balakrishnan, David Madigan
- Paper (http://archive.dimacs.rutgers.edu/Research/MMS/PAPERS/fdt17.pdf)
- Cost-Sensitive Decision Tree Learning for Forensic Classification (ECML 2006)
- Jason V. Davis, Jungwoo Ha, Christopher J. Rossbach, Hany E. Ramadan, Emmett Witchel
- Paper (https://www.cs.utexas.edu/users/witchel/pubs/davis-ecml06.pdf)
- Improving the Ranking Performance of Decision Trees (ECML 2006)
- Bin Wang, Harry Zhang
- Paper (https://link.springer.com/chapter/10.1007/11871842_44)
- A General Framework for Accurate and Fast Regression by Data Summarization in Random Decision Trees (KDD 2006)
- Wei Fan, Joe McCloskey, Philip S. Yu
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.442.2004&rep=rep1&type=pdf)
- Constructing Decision Trees for Graph-Structured Data by Chunkingless Graph-Based Induction (PAKDD 2006)
- Phu Chien Nguyen, Kouzou Ohara, Akira Mogi, Hiroshi Motoda, Takashi Washio
- Paper (http://www.ar.sanken.osaka-u.ac.jp/~motoda/papers/pakdd06.pdf)
- Variable Randomness in Decision Tree Ensembles (PAKDD 2006)
- Fei Tony Liu, Kai Ming Ting
- Paper (https://link.springer.com/chapter/10.1007/11731139_12)
- Generalized Conditional Entropy and a Metric Splitting Criterion for Decision Trees (PAKDD 2006)
- Dan A. Simovici, Szymon Jaroszewicz
- Paper
(https://www.researchgate.net/profile/Szymon_Jaroszewicz/publication/220895184_Generalized_Conditional_Entropy_and_a_Metric_Splitting_Criterion_for_Decision_Trees/links/0fcfd50b1267f7b868000000/Generalized-Conditional-Entropy-and-a-Metric-Splitti
ng-Criterion-for-Decision-Trees.pdf)
- Decision Trees for Hierarchical Multilabel Classification: A Case Study in Functional Genomics (PKDD 2006)
- Hendrik Blockeel, Leander Schietgat, Jan Struyf, Saso Dzeroski, Amanda Clare
- Paper (https://link.springer.com/chapter/10.1007/11871637_7)
- k-Anonymous Decision Tree Induction (PKDD 2006)
- Arik Friedman, Assaf Schuster, Ran Wolff
- Paper (http://www.cs.technion.ac.il/~arikf/online-publications/kADET06.pdf)
2005
- Representing Conditional Independence Using Decision Trees (AAAI 2005)
- Jiang Su, Harry Zhang
- Paper (http://www.cs.unb.ca/~hzhang/publications/AAAI051SuJ.pdf)
- Use of Expert Knowledge for Decision Tree Pruning (AAAI 2005)
- Jingfeng Cai, John Durkin
- Paper (http://www.aaai.org/Papers/AAAI/2005/SA05-009.pdf)
- Model Selection in Omnivariate Decision Trees (ECML 2005)
- Olcay Taner Yildiz, Ethem Alpaydin
- Paper (https://www.cmpe.boun.edu.tr/~ethem/files/papers/yildiz_ecml05.pdf)
- Combining Bias and Variance Reduction Techniques for Regression Trees (ECML 2005)
- Yuk Lai Suen, Prem Melville, Raymond J. Mooney
- Paper (http://www.cs.utexas.edu/users/ml/papers/bv-ecml-05.pdf)
- Simple Test Strategies for Cost-Sensitive Decision Trees (ECML 2005)
- Shengli Sheng, Charles X. Ling, Qiang Yang
- Paper (https://www.researchgate.net/publication/3297582_Test_strategies_for_cost-sensitive_decision_trees)
- Effective Estimation of Posterior Probabilities: Explaining the Accuracy of Randomized Decision Tree Approaches (ICDM 2005)
- Wei Fan, Ed Greengrass, Joe McCloskey, Philip S. Yu, Kevin Drummey
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.218.9713&rep=rep1&type=pdf)
- Exploiting Informative Priors for Bayesian Classification and Regression Trees (IJCAI 2005)
- Nicos Angelopoulos, James Cussens
- Paper (https://www.ijcai.org/Proceedings/05/Papers/1013.pdf)
- Ranking Cases with Decision Trees: a Geometric Method that Preserves Intelligibility (IJCAI 2005)
- Isabelle Alvarez, Stephan Bernard
- Paper (https://www.ijcai.org/Proceedings/05/Papers/1502.pdf)
- Maximizing Tree Diversity by Building Complete-Random Decision Trees (PAKDD 2005)
- Fei Tony Liu, Kai Ming Ting, Wei Fan
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.218.7805&rep=rep1&type=pdf)
- Hybrid Cost-Sensitive Decision Tree (PKDD 2005)
- Shengli Sheng, Charles X. Ling
- Paper (https://cling.csd.uwo.ca/papers/pkdd05a.pdf)
- Tree2 - Decision Trees for Tree Structured Data (PKDD 2005)
- Björn Bringmann, Albrecht Zimmermann
- Paper (https://link.springer.com/chapter/10.1007/11564126_10)
- Building Decision Trees on Records Linked through Key References (SDM 2005)
- Ke Wang, Yabo Xu, Philip S. Yu, Rong She
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.215.7181&rep=rep1&type=pdf)
- Decision Tree Induction in High Dimensional, Hierarchically Distributed Databases (SDM 2005)
- Amir Bar-Or, Ran Wolff, Assaf Schuster, Daniel Keren
- Paper (https://www.semanticscholar.org/paper/Decision-Tree-Induction-in-High-Dimensional%2C-Bar-Or-Wolff/90235fc35c27dae273681f7847c2b20ff37928a9)
- Boosted Decision Trees for Word Recognition in Handwritten Document Retrieval (SIGIR 2005)
- Nicholas R. Howe, Toni M. Rath, R. Manmatha
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.152.1551&rep=rep1&type=pdf)
2004
- On the Optimality of Probability Estimation by Random Decision Trees (AAAI 2004)
- Wei Fan
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.447.2128&rep=rep1&type=pdf)
- Occam's Razor and a Non-Syntactic Measure of Decision Tree Complexity (AAAI 2004)
- Goutam Paul
- Paper (https://www.aaai.org/Papers/AAAI/2004/AAAI04-130.pdf)
- Using Emerging Patterns and Decision Trees in Rare-Class Classification (ICDM 2004)
- Hamad Alhammady, Kotagiri Ramamohanarao
- Paper (https://ieeexplore.ieee.org/abstract/document/1410299)
- Orthogonal Decision Trees (ICDM 2004)
- Hillol Kargupta, Haimonti Dutta
- Paper (https://www.csee.umbc.edu/~hillol/PUBS/odtree.pdf)
- Improving the Reliability of Decision Tree and Naive Bayes Learners (ICDM 2004)
- David George Lindsay, Siân Cox
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.521.3127&rep=rep1&type=pdf)
- Communication Efficient Construction of Decision Trees Over Heterogeneously Distributed Data (ICDM 2004)
- Chris Giannella, Kun Liu, Todd Olsen, Hillol Kargupta
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.7119&rep=rep1&type=pdf)
- Decision Tree Evolution Using Limited Number of Labeled Data Items from Drifting Data Streams (ICDM 2004)
- Wei Fan, Yi-an Huang, Philip S. Yu
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.218.9450&rep=rep1&type=pdf)
- Lookahead-based Algorithms for Anytime Induction of Decision Trees (ICML 2004)
- Saher Esmeir, Shaul Markovitch
- Paper (http://www.cs.technion.ac.il/~shaulm/papers/pdf/Esmeir-Markovitch-icml2004.pdf)
- Decision Trees with Minimal Costs (ICML 2004)
- Charles X. Ling, Qiang Yang, Jianning Wang, Shichao Zhang
- Paper (https://icml.cc/Conferences/2004/proceedings/papers/136.pdf)
- Training Conditional Random Fields via Gradient Tree Boosting (ICML 2004)
- Thomas G. Dietterich, Adam Ashenfelter, Yaroslav Bulatov
- Paper (http://web.engr.oregonstate.edu/~tgd/publications/ml2004-treecrf.pdf)
- Detecting Structural Metadata with Decision Trees and Transformation-Based Learning (NAACL 2004)
- Joungbum Kim, Sarah E. Schwarm, Mari Ostendorf
- Paper (https://www.aclweb.org/anthology/N04-1018)
- On the Adaptive Properties of Decision Trees (NIPS 2004)
- Clayton D. Scott, Robert D. Nowak
- Paper (https://papers.nips.cc/paper/2625-on-the-adaptive-properties-of-decision-trees.pdf)
- A Metric Approach to Building Decision Trees Based on Goodman-Kruskal Association Index (PAKDD 2004)
- Dan A. Simovici, Szymon Jaroszewicz
- Paper (https://www.researchgate.net/publication/2906289_A_Metric_Approach_to_Building_Decision_Trees_Based_on_Goodman-Kruskal_Association_Index)
2003
- Rademacher Penalization over Decision Tree Prunings (ECML 2003)
- Matti Kääriäinen, Tapio Elomaa
- Paper (https://www.researchgate.net/publication/221112653_Rademacher_Penalization_over_Decision_Tree_Prunings)
- Ensembles of Cascading Trees (ICDM 2003)
- Jinyan Li, Huiqing Liu
- Paper (https://www.researchgate.net/publication/4047523_Ensembles_of_cascading_trees)
- Postprocessing Decision Trees to Extract Actionable Knowledge (ICDM 2003)
- Qiang Yang, Jie Yin, Charles X. Ling, Tielin Chen
- Paper (https://pdfs.semanticscholar.org/b2c6/ff54c7aeefc70820ff04a8fc8b804012c504.pdf)
- K-D Decision Tree: An Accelerated and Memory Efficient Nearest Neighbor Classifier (ICDM 2003)
- Tomoyuki Shibata, Takekazu Kato, Toshikazu Wada
- Paper (https://ieeexplore.ieee.org/abstract/document/1250997)
- Identifying Markov Blankets with Decision Tree Induction (ICDM 2003)
- Lewis J. Frey, Douglas H. Fisher, Ioannis Tsamardinos, Constantin F. Aliferis, Alexander R. Statnikov
- Paper (https://www.semanticscholar.org/paper/Identifying-Markov-Blankets-with-Decision-Tree-Frey-Fisher/1aa0b0ede22f3963c923ea320a8bed91ac5aafbf)
- Comparing Naive Bayes, Decision Trees, and SVM with AUC and Accuracy (ICDM 2003)
- Jin Huang, Jingjing Lu, Charles X. Ling
- Paper (https://pdfs.semanticscholar.org/8a73/74b98a9d94b8c01e996e72340f86a4327869.pdf)
- Boosting Lazy Decision Trees (ICML 2003)
- Xiaoli Zhang Fern, Carla E. Brodley
- Paper (https://www.aaai.org/Papers/ICML/2003/ICML03-026.pdf)
- Decision Tree with Better Ranking (ICML 2003)
- Charles X. Ling, Robert J. Yan
- Paper (https://www.aaai.org/Papers/ICML/2003/ICML03-064.pdf)
- Skewing: An Efficient Alternative to Lookahead for Decision Tree Induction (IJCAI 2003)
- David Page, Soumya Ray
- Paper (http://pages.cs.wisc.edu/~dpage/ijcai3.pdf)
- Efficient Decision Tree Construction on Streaming Data (KDD 2003)
- Ruoming Jin, Gagan Agrawal
- Paper (http://web.cse.ohio-state.edu/~agrawal.28/p/sigkdd03.pdf)
- PaintingClass: Interactive Construction Visualization and Exploration of Decision Trees (KDD 2003)
- Soon Tee Teoh, Kwan-Liu Ma
- Paper (https://www.researchgate.net/publication/220272011_PaintingClass_interactive_construction_visualization_and_exploration_of_decision_trees)
- Accurate Decision Trees for Mining High-Speed Data Streams (KDD 2003)
- João Gama, Ricardo Rocha, Pedro Medas
- Paper (http://staff.icar.cnr.it/manco/Teaching/2006/datamining/Esami2006/ArticoliSelezionatiDM/SEMINARI/Mining%20Data%20Streams/kdd03.pdf)
- Near-Minimax Optimal Classification with Dyadic Classification Trees (NIPS 2003)
- Clayton D. Scott, Robert D. Nowak
- Paper (http://nowak.ece.wisc.edu/nips03.pdf)
- Improving Performance of Decision Tree Algorithms with Multi-edited Nearest Neighbor Rule (PAKDD 2003)
- Chenzhou Ye, Jie Yang, Lixiu Yao, Nian-yi Chen
- Paper (https://www.researchgate.net/publication/220895462_Improving_Performance_of_Decision_Tree_Algorithms_with_Multi-edited_Nearest_Neighbor_Rule)
- Arbogodai: a New Approach for Decision Trees (PKDD 2003)
- Djamel A. Zighed, Gilbert Ritschard, Walid Erray, Vasile-Marian Scuturici
- Paper (http://mephisto.unige.ch/pub/publications/gr/zig_rit_arbo_pkdd03.pdf)
- Communication and Memory Efficient Parallel Decision Tree Construction (SDM 2003)
- Ruoming Jin, Gagan Agrawal
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.3059&rep=rep1&type=pdf)
- Decision Tree Classification of Spatial Data Patterns from Videokeratography using Zernicke Polynomials (SDM 2003)
- Michael D. Twa, Srinivasan Parthasarathy, Thomas W. Raasch, Mark Bullimore
- Paper (https://www.researchgate.net/publication/220907147_Decision_Tree_Classification_of_Spatial_Data_Patterns_From_Videokeratography_Using_Zernike_Polynomials)
2002
- Multiclass Alternating Decision Trees (ECML 2002)
- Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby, Eibe Frank, Mark A. Hall
- Paper (https://www.cs.waikato.ac.nz/~bernhard/papers/ecml2002.pdf)
- Heterogeneous Forests of Decision Trees (ICANN 2002)
- Krzysztof Grabczewski, Wlodzislaw Duch
- Paper (https://fizyka.umk.pl/publications/kmk/02forest.pdf)
- Solving the Fragmentation Problem of Decision Trees by Discovering Boundary Emerging Patterns (ICDM 2002)
- Jinyan Li, Limsoon Wong
- Paper (https://ieeexplore.ieee.org/document/1184021)
- Solving the Fragmentation Problem of Decision Trees by Discovering Boundary Emerging Patterns (ICDM 2002)
- Jinyan Li, Limsoon Wong
- Paper (https://www.comp.nus.edu.sg/~wongls/psZ/decisionTreeandEP-2.ps)
- Learning Decision Trees Using the Area Under the ROC Curve (ICML 2002)
- César Ferri, Peter A. Flach, José Hernández-Orallo
- Paper (http://dmip.webs.upv.es/papers/ICML2002.pdf)
- Finding an Optimal Gain-Ratio Subset-Split Test for a Set-Valued Attribute in Decision Tree Induction (ICML 2002)
- Fumio Takechi, Einoshin Suzuki
- Paper (https://www.researchgate.net/publication/221346121_Finding_an_Optimal_Gain-Ratio_Subset-Split_Test_for_a_Set-Valued_Attribute_in_Decision_Tree_Induction)
- Efficiently Mining Frequent Trees in a Forest (KDD 2002)
- Mohammed Javeed Zaki
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.8511&rep=rep1&type=pdf)
- SECRET: a Scalable Linear Regression Tree Algorithm (KDD 2002)
- Alin Dobra, Johannes Gehrke
- Paper (http://www.cs.cornell.edu/people/dobra/papers/secret-extended.pdf)
- Instability of Decision Tree Classification Algorithms (KDD 2002)
- Ruey-Hsia Li, Geneva G. Belford
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.8094&rep=rep1&type=pdf)
- Extracting Decision Trees From Trained Neural Networks (KDD 2002)
- Olcay Boz
- Paper (http://dspace.library.iitb.ac.in/jspui/bitstream/10054/1285/1/5664.pdf)
- Dyadic Classification Trees via Structural Risk Minimization (NIPS 2002)
- Clayton D. Scott, Robert D. Nowak
- Paper (https://papers.nips.cc/paper/2198-dyadic-classification-trees-via-structural-risk-minimization.pdf)
- Approximate Splitting for Ensembles of Trees using Histograms (SDM 2002)
- Chandrika Kamath, Erick Cantú-Paz, David Littau
- Paper (https://pdfs.semanticscholar.org/0855/0a94993a268e4e3e99c41e7e0ee43eabd993.pdf)
2001
- Japanese Named Entity Recognition based on a Simple Rule Generator and Decision Tree Learning (ACL 2001)
- Hideki Isozaki
- Paper (https://www.aclweb.org/anthology/P01-1041)
- Message Length as an Effective Ockham's Razor in Decision Tree Induction (AISTATS 2001)
- Scott Needham, David L. Dowe
- Paper (www.gatsby.ucl.ac.uk/aistats/aistats2001/files/needham122.ps)
- SQL Database Primitives for Decision Tree Classifiers (CIKM 2001)
- Kai-Uwe Sattler, Oliver Dunemann
- Paper (http://fusion.cs.uni-magdeburg.de/pubs/classprim.pdf)
- A Unified Framework for Evaluation Metrics in Classification Using Decision Trees (ECML 2001)
- Ricardo Vilalta, Mark Brodie, Daniel Oblinger, Irina Rish
- Paper (https://scholar.harvard.edu/files/nkc/files/2015_framework_for_benefit_risk_assessment_value_in_health.pdf)
- Backpropagation in Decision Trees for Regression (ECML 2001)
- Victor Medina-Chico, Alberto Suárez, James F. Lutsko
- Paper (https://link.springer.com/chapter/10.1007/3-540-44795-4_30)
- Consensus Decision Trees: Using Consensus Hierarchical Clustering for Data Relabelling and Reduction (ECML 2001)
- Branko Kavsek, Nada Lavrac, Anuska Ferligoj
- Paper (https://link.springer.com/content/pdf/10.1007/3-540-44795-4_22.pdf)
- Mining Decision Trees from Data Streams in a Mobile Environment (ICDM 2001)
- Hillol Kargupta, Byung-Hoon Park
- Paper (https://ieeexplore.ieee.org/document/989530)
- Efficient Determination of Dynamic Split Points in a Decision Tree (ICDM 2001)
- David Maxwell Chickering, Christopher Meek, Robert Rounthwaite
- Paper (https://pdfs.semanticscholar.org/3587/a245c34ea415b205a903bde3220eb533d1a7.pdf)
- A Comparison of Stacking with Meta Decision Trees to Bagging, Boosting, and Stacking with other Methods (ICDM 2001)
- Bernard Zenko, Ljupco Todorovski, Saso Dzeroski
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.3118&rep=rep1&type=pdf)
- Efficient Algorithms for Decision Tree Cross-Validation (ICML 2001)
- Hendrik Blockeel, Jan Struyf
- Paper (http://www.jmlr.org/papers/volume3/blockeel02a/blockeel02a.pdf)
- Bias Correction in Classification Tree Construction (ICML 2001)
- Alin Dobra, Johannes Gehrke
- Paper (http://www.cs.cornell.edu/people/dobra/papers/icml2001-bias.pdf)
- Breeding Decision Trees Using Evolutionary Techniques (ICML 2001)
- Athanassios Papagelis, Dimitrios Kalles
- Paper (http://www.gatree.com/data/BreedinDecisioTreeUsinEvo.pdf)
- Obtaining Calibrated Probability Estimates from Decision Trees and Naive Bayesian Classifiers (ICML 2001)
- Bianca Zadrozny, Charles Elkan
- Paper (http://cseweb.ucsd.edu/~elkan/calibrated.pdf)
- Temporal Decision Trees or the lazy ECU vindicated (IJCAI 2001)
- Luca Console, Claudia Picardi, Daniele Theseider Dupré
- Paper (https://www.researchgate.net/publication/220815333_Temporal_Decision_Trees_or_the_lazy_ECU_vindicated)
- Data Mining Criteria for Tree-based Regression and Classification (KDD 2001)
- Andreas Buja, Yung-Seop Lee
- Paper (https://repository.upenn.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1406&context=statistics_papers)
- A Decision Tree of Bigrams is an Accurate Predictor of Word Sense (NAACL 2001)
- Ted Pedersen
- Paper (https://www.aclweb.org/anthology/N01-1011)
- Rule Reduction over Numerical Attributes in Decision Tree Using Multilayer Perceptron (PAKDD 2001)
- DaeEun Kim, Jaeho Lee
- Paper (https://dl.acm.org/citation.cfm?id=693490)
- A Scalable Algorithm for Rule Post-pruning of Large Decision Trees (PAKDD 2001)
- Trong Dung Nguyen, Tu Bao Ho, Hiroshi Shimodaira
- Paper (https://link.springer.com/chapter/10.1007/3-540-45357-1_49)
- Optimizing the Induction of Alternating Decision Trees (PAKDD 2001)
- Bernhard Pfahringer, Geoffrey Holmes, Richard Kirkby
- Paper (https://www.researchgate.net/publication/33051701_Optimizing_the_Induction_of_Alternating_Decision_Trees)
- Interactive Construction of Decision Trees (PAKDD 2001)
- Jianchao Han, Nick Cercone
- Paper (https://pure.tue.nl/ws/files/3522084/672434611234867.pdf)
- Bloomy Decision Tree for Multi-objective Classification (PKDD 2001)
- Einoshin Suzuki, Masafumi Gotoh, Yuta Choki
- Paper (https://link.springer.com/chapter/10.1007/3-540-44794-6_36)
- A Fourier Analysis Based Approach to Learning Decision Trees in a Distributed Environment (SDM 2001)
- Byung-Hoon Park, Rajeev Ayyagari, Hillol Kargupta
- Paper (https://archive.siam.org/meetings/sdm01/pdf/sdm01_19.pdf)
2000
- Intuitive Representation of Decision Trees Using General Rules and Exceptions (AAAI 2000)
- Bing Liu, Minqing Hu, Wynne Hsu
- Paper (https://pdfs.semanticscholar.org/e284/96551e595f1850a53f93affa98919147712f.pdf)
- Tagging Unknown Proper Names Using Decision Trees (ACL 2000)
- Frédéric Béchet, Alexis Nasr, Franck Genet
- Paper (https://www.aclweb.org/anthology/P00-1011)
- Clustering Through Decision Tree Construction (CIKM 2000)
- Bing Liu, Yiyuan Xia, Philip S. Yu
- Paper (https://dl.acm.org/citation.cfm?id=354775)
- Handling Continuous-Valued Attributes in Decision Tree with Neural Network Modelling (ECML 2000)
- DaeEun Kim, Jaeho Lee
- Paper (https://link.springer.com/content/pdf/10.1007/3-540-45164-1_22.pdf)
- Investigation and Reduction of Discretization Variance in Decision Tree Induction (ECML 2000)
- Pierre Geurts, Louis Wehenkel
- Paper (https://link.springer.com/chapter/10.1007/3-540-45164-1_17)
- Nonparametric Regularization of Decision Trees (ECML 2000)
- Tobias Scheffer
- Paper (https://link.springer.com/chapter/10.1007/3-540-45164-1_36)
- Exploiting the Cost (In)sensitivity of Decision Tree Splitting Criteria (ICML 2000)
- Chris Drummond, Robert C. Holte
- Paper (https://pdfs.semanticscholar.org/160e/21c3acc925b60dc040cb1705e58bb166b045.pdf)
- Multi-agent Q-learning and Regression Trees for Automated Pricing Decisions (ICML 2000)
- Manu Sridharan, Gerald Tesauro
- Paper (https://manu.sridharan.net/files/icml00.pdf)
- Growing Decision Trees on Support-less Association Rules (KDD 2000)
- Ke Wang, Senqiang Zhou, Yu He
- Paper (https://www2.cs.sfu.ca/~wangk/pub/kdd002.pdf)
- Efficient Algorithms for Constructing Decision Trees with Constraints (KDD 2000)
- Minos N. Garofalakis, Dongjoon Hyun, Rajeev Rastogi, Kyuseok Shim
- Paper (http://www.softnet.tuc.gr/~minos/Papers/kdd00-cam.pdf)
- Interactive Visualization in Mining Large Decision Trees (PAKDD 2000)
- Trong Dung Nguyen, Tu Bao Ho, Hiroshi Shimodaira
- Paper (https://link.springer.com/content/pdf/10.1007/3-540-45571-X_40.pdf)
- VQTree: Vector Quantization for Decision Tree Induction (PAKDD 2000)
- Shlomo Geva, Lawrence Buckingham
- Paper (https://link.springer.com/chapter/10.1007%2F3-540-45571-X_41)
- Some Enhencements of Decision Tree Bagging (PKDD 2000)
- Pierre Geurts
- Paper (https://link.springer.com/chapter/10.1007/3-540-45372-5_14)
- Combining Multiple Models with Meta Decision Trees (PKDD 2000)
- Ljupco Todorovski, Saso Dzeroski
- Paper (http://kt.ijs.si/bernard/mdts/pub01.pdf)
- Induction of Multivariate Decision Trees by Using Dipolar Criteria (PKDD 2000)
- Leon Bobrowski, Marek Kretowski
- Paper (https://link.springer.com/chapter/10.1007/3-540-45372-5_33)
- Decision Tree Toolkit: A Component-Based Library of Decision Tree Algorithms (PKDD 2000)
- Nikos Drossos, Athanassios Papagelis, Dimitrios Kalles
- Paper (https://link.springer.com/chapter/10.1007/3-540-45372-5_40)
1999
- Modeling Decision Tree Performance with the Power Law (AISTATS 1999)
- Lewis J. Frey, Douglas H. Fisher
- Paper (https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/ModelingTree.pdf)
- Causal Mechanisms and Classification Trees for Predicting Chemical Carcinogens (AISTATS 1999)
- Louis Anthony Cox Jr.
- Paper (https://pdfs.semanticscholar.org/0d7b/1d55c5abfd024aacf645c66d0c90c283814e.pdf)
- POS Tags and Decision Trees for Language Modeling (EMNLP 1999)
- Peter A. Heeman
- Paper (https://www.aclweb.org/anthology/W99-0617)
- Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees (ICML 1999)
- Zijian Zheng, Geoffrey I. Webb, Kai Ming Ting
- Paper (https://pdfs.semanticscholar.org/067e/86836ddbcb5e2844e955c16e058366a18c77.pdf)
- The Alternating Decision Tree Learning Algorithm (ICML 1999)
- Yoav Freund, Llew Mason
- Paper (https://cseweb.ucsd.edu/~yfreund/papers/atrees.pdf)
- Code (https://github.com/rajanil/mkboost)
- Boosting with Multi-Way Branching in Decision Trees (NIPS 1999)
- Yishay Mansour, David A. McAllester
- Paper (https://papers.nips.cc/paper/1659-boosting-with-multi-way-branching-in-decision-trees.pdf)
1998
- Learning Sorting and Decision Trees with POMDPs (ICML 1998)
- Blai Bonet, Hector Geffner
- Paper (https://bonetblai.github.io/reports/icml98-learning.pdf)
- Using a Permutation Test for Attribute Selection in Decision Trees (ICML 1998)
- Eibe Frank, Ian H. Witten
- Paper (https://pdfs.semanticscholar.org/9aa9/21b0203e06e98b49bf726a33e124f4310ea3.pdf)
- A Fast and Bottom-Up Decision Tree Pruning Algorithm with Near-Optimal Generalization (ICML 1998)
- Michael J. Kearns, Yishay Mansour
- Paper (https://www.cis.upenn.edu/~mkearns/papers/pruning.pdf)
1997
- Pessimistic Decision Tree Pruning Based Continuous-Time (ICML 1997)
- Yishay Mansour
- Paper (https://pdfs.semanticscholar.org/b6fc/e37612db10a9756b904b5e79e1144ca12574.pdf)
- PAC Learning with Constant-Partition Classification Noise and Applications to Decision Tree Induction (ICML 1997)
- Scott E. Decatur
- Paper (https://www.semanticscholar.org/paper/PAC-Learning-with-Constant-Partition-Classification-Decatur/dd205073aeb512ecd1e823b35f556058fdeea5e0)
- Option Decision Trees with Majority Votes (ICML 1997)
- Ron Kohavi, Clayton Kunz
- Paper (https://pdfs.semanticscholar.org/383b/381d1ac0bb41ec595e0d1603ed642809eb86.pdf)
- Integrating Feature Construction with Multiple Classifiers in Decision Tree Induction (ICML 1997)
- Ricardo Vilalta, Larry A. Rendell
- Paper (https://pdfs.semanticscholar.org/1f73/d9d409a75d16871cfa1182ac72b37c839d86.pdf)
- Functional Models for Regression Tree Leaves (ICML 1997)
- Luís Torgo
- Paper (https://pdfs.semanticscholar.org/48e4/b3187ca234308e97e1ac0cab84222c603bdd.pdf)
- The Effects of Training Set Size on Decision Tree Complexity (ICML 1997)
- Tim Oates, David D. Jensen
- Paper (https://pdfs.semanticscholar.org/e003/9dbdec3bd4cfbb3273b623fbed2d6b2f0cc9.pdf)
- Unsupervised On-line Learning of Decision Trees for Hierarchical Data Analysis (NIPS 1997)
- Marcus Held, Joachim M. Buhmann
- Paper (https://papers.nips.cc/paper/1479-unsupervised-on-line-learning-of-decision-trees-for-hierarchical-data-analysis.pdf)
- Data-Dependent Structural Risk Minimization for Perceptron Decision Trees (NIPS 1997)
- John Shawe-Taylor, Nello Cristianini
- Paper (https://papers.nips.cc/paper/1359-data-dependent-structural-risk-minimization-for-perceptron-decision-trees)
- Generalization in Decision Trees and DNF: Does Size Matter (NIPS 1997)
- Mostefa Golea, Peter L. Bartlett, Wee Sun Lee, Llew Mason
- Paper (https://papers.nips.cc/paper/1340-generalization-in-decision-trees-and-dnf-does-size-matter.pdf)
1996
- Second Tier for Decision Trees (ICML 1996)
- Miroslav Kubat
- Paper (https://pdfs.semanticscholar.org/b619/7c531b1c83dfaa52563449f9b8248cc68c5a.pdf)
- Non-Linear Decision Trees - NDT (ICML 1996)
- Andreas Ittner, Michael Schlosser
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.2133&rep=rep1&type=pdf)
- Learning Relational Concepts with Decision Trees (ICML 1996)
- Peter Geibel, Fritz Wysotzki
- Paper (https://pdfs.semanticscholar.org/32f1/78d7266fee779257b87ac8f948951db57d1e.pdf)
1995
- A Hill-Climbing Approach for Optimizing Classification Trees (AISTATS 1995)
- Xiaorong Sun, Steve Y. Chiu, Louis Anthony Cox Jr.
- Paper (https://link.springer.com/chapter/10.1007%2F978-1-4612-2404-4_11)
- An Exact Probability Metric for Decision Tree Splitting (AISTATS 1995)
- J. Kent Martin
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.6378&rep=rep1&type=pdf)
- On Pruning and Averaging Decision Trees (ICML 1995)
- Jonathan J. Oliver, David J. Hand
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.6733&rep=rep1&type=pdf)
- On Handling Tree-Structured Attributed in Decision Tree Learning (ICML 1995)
- Hussein Almuallim, Yasuhiro Akiba, Shigeo Kaneda
- Paper (https://www.sciencedirect.com/science/article/pii/B9781558603776500116)
- Retrofitting Decision Tree Classifiers Using Kernel Density Estimation (ICML 1995)
- Padhraic Smyth, Alexander G. Gray, Usama M. Fayyad
- Paper (https://pdfs.semanticscholar.org/3a05/8ab505f096b23962591bb14e495a543aa2a1.pdf)
- Increasing the Performance and Consistency of Classification Trees by Using the Accuracy Criterion at the Leaves (ICML 1995)
- David J. Lubinsky
- Paper (https://www.sciencedirect.com/science/article/pii/B9781558603776500530)
- Efficient Algorithms for Finding Multi-way Splits for Decision Trees (ICML 1995)
- Truxton Fulton, Simon Kasif, Steven Salzberg
- Paper (https://www.sciencedirect.com/science/article/pii/B9781558603776500384)
- Theory and Applications of Agnostic PAC-Learning with Small Decision Trees (ICML 1995)
- Peter Auer, Robert C. Holte, Wolfgang Maass
- Paper (https://igi-web.tugraz.at/PDF/77.pdf)
- Boosting Decision Trees (NIPS 1995)
- Harris Drucker, Corinna Cortes
- Paper (http://papers.nips.cc/paper/1059-boosting-decision-trees.pdf)
- Using Pairs of Data-Points to Define Splits for Decision Trees (NIPS 1995)
- Geoffrey E. Hinton, Michael Revow
- Paper (https://www.cs.toronto.edu/~hinton/absps/bcart.pdf)
- A New Pruning Method for Solving Decision Trees and Game Trees (UAI 1995)
- Prakash P. Shenoy
- Paper (https://arxiv.org/abs/1302.4981)
1994
- A Statistical Approach to Decision Tree Modeling (ICML 1994)
- Michael I. Jordan
- Paper (https://www.sciencedirect.com/science/article/pii/B9781558603356500519)
- In Defense of C4.5: Notes Learning One-Level Decision Trees (ICML 1994)
- Tapio Elomaa
- Paper (http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.9386)
- An Improved Algorithm for Incremental Induction of Decision Trees (ICML 1994)
- Paul E. Utgoff
- Paper (https://www.sciencedirect.com/science/article/pii/B9781558603356500465)
- Decision Tree Parsing using a Hidden Derivation Model (NAACL 1994)
- Frederick Jelinek, John D. Lafferty, David M. Magerman, Robert L. Mercer, Adwait Ratnaparkhi, Salim Roukos
- Paper (http://acl-arc.comp.nus.edu.sg/archives/acl-arc-090501d3/data/pdf/anthology-PDF/H/H94/H94-1052.pdf)
1993
- Using Decision Trees to Improve Case-Based Learning (ICML 1993)
- Claire Cardie
- Paper (https://www.cs.cornell.edu/home/cardie/papers/ml-93.ps)
1991
- Context Dependent Modeling of Phones in Continuous Speech Using Decision Trees (NAACL 1991)
- Lalit R. Bahl, Peter V. de Souza, P. S. Gopalakrishnan, David Nahamoo, Michael Picheny
- Paper (https://www.aclweb.org/anthology/H91-1051.pdf)
1989
- Performance Comparisons Between Backpropagation Networks and Classification Trees on Three Real-World Applications (NIPS 1989)
- Les E. Atlas, Ronald A. Cole, Jerome T. Connor, Mohamed A. El-Sharkawi, Robert J. Marks II, Yeshwant K. Muthusamy, Etienne Barnard
- Paper (https://papers.nips.cc/paper/203-performance-comparisons-between-backpropagation-networks-and-classification-trees-on-three-real-world-applications)
1988
- Multiple Decision Trees (UAI 1988)
- Suk Wah Kwok, Chris Carter
- Paper (https://arxiv.org/abs/1304.2363)
1987
- Decision Tree Induction Systems: A Bayesian Analysis (UAI 1987)
- Wray L. Buntine
- Paper (https://arxiv.org/abs/1304.2732)
――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――
License
- CC0 Universal (https://github.com/benedekrozemberczki/awesome-decision-tree-papers/blob/master/LICENSE)
decisiontreepapers Github: https://github.com/benedekrozemberczki/awesome-decision-tree-papers
!Awesome (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg) (https://github.com/sindresorhus/awesome)
!PRs Welcome (https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square) (http://makeapullrequest.com)
!repo size (https://img.shields.io/github/repo-size/benedekrozemberczki/awesome-decision-tree-papers.svg) (https://github.com/benedekrozemberczki/awesome-decision-tree-papers/archive/master.zip)
!License (https://img.shields.io/github/license/benedekrozemberczki/awesome-decision-tree-papers.svg?color=blue) !benedekrozemberczki (https://img.shields.io/twitter/follow/benrozemberczki?style=social&logo=twitter)
(https://twitter.com/intent/follow?screen_name=benrozemberczki)
A curated list of classification and regression tree research papers with implementations from the following conferences:
- Machine learning
⟡ NeurIPS (https://nips.cc/)
⟡ ICML (https://icml.cc/)
⟡ ICLR (https://iclr.cc/)
- Computer vision
⟡ CVPR (http://cvpr2019.thecvf.com/)
⟡ ICCV (http://iccv2019.thecvf.com/)
⟡ ECCV (https://eccv2018.org/)
- Natural language processing
⟡ ACL (http://www.acl2019.org/EN/index.xhtml)
⟡ NAACL (https://naacl2019.org/)
⟡ EMNLP (https://www.emnlp-ijcnlp2019.org/)
- Data
⟡ KDD (https://www.kdd.org/)
⟡ CIKM (http://www.cikmconference.org/)
⟡ ICDM (http://icdm2019.bigke.org/)
⟡ SDM (https://www.siam.org/Conferences/CM/Conference/sdm19)
⟡ PAKDD (http://pakdd2019.medmeeting.org)
⟡ PKDD/ECML (http://ecmlpkdd2019.org)
⟡ SIGIR (https://sigir.org/)
⟡ WWW (https://www2019.thewebconf.org/)
⟡ WSDM (www.wsdm-conference.org)
- Artificial intelligence
⟡ AAAI (https://www.aaai.org/)
⟡ AISTATS (https://www.aistats.org/)
⟡ ICANN (https://e-nns.org/icann2019/)
⟡ IJCAI (https://www.ijcai.org/)
⟡ UAI (http://www.auai.org/)
Similar collections about graph classification (https://github.com/benedekrozemberczki/awesome-graph-classification), gradient boosting (https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers), fraud detection
(https://github.com/benedekrozemberczki/awesome-fraud-detection-papers), Monte Carlo tree search (https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers), and community detection
(https://github.com/benedekrozemberczki/awesome-community-detection) papers with implementations.
2022
- Using MaxSAT for Efficient Explanations of Tree Ensembles (AAAI 2022)
- Alexey Ignatiev, Yacine Izza, Peter J. Stuckey, João Marques-Silva
- Paper (https://alexeyignatiev.github.io/assets/pdf/iisms-aaai22-preprint.pdf)
- FOCUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles (AAAI 2022)
- Ana Lucic, Harrie Oosterhuis, Hinda Haned, Maarten de Rijke
- Paper (https://a-lucic.github.io/talks/ICML_SMRL_focus.pdf)
- Explainable and Local Correction of Classification Models Using Decision Trees (AAAI 2022)
- Hirofumi Suzuki, Hiroaki Iwashita, Takuya Takagi, Keisuke Goto, Yuta Fujishige, Satoshi Hara
- Paper (https://ojs.aaai.org/index.php/AAAI/article/view/20816)
- Robust Optimal Classification Trees against Adversarial Examples (AAAI 2022)
- Daniël Vos, Sicco Verwer
- Paper (https://arxiv.org/abs/2109.03857)
- Fairness without Imputation: A Decision Tree Approach for Fair Prediction with Missing Values (AAAI 2022)
- Haewon Jeong, Hao Wang, Flávio P. Calmon
- Paper (https://arxiv.org/abs/2109.10431)
- Fast Sparse Decision Tree Optimization via Reference Ensembles (AAAI 2022)
- Hayden McTavish, Chudi Zhong, Reto Achermann, Ilias Karimalis, Jacques Chen, Cynthia Rudin, Margo I. Seltzer
- Paper (https://arxiv.org/abs/2112.00798)
- Code (https://pypi.org/project/gosdt/)
- TransBoost: A Boosting-Tree Kernel Transfer Learning Algorithm for Improving Financial Inclusion (AAAI 2022)
- Yiheng Sun, Tian Lu, Cong Wang, Yuan Li, Huaiyu Fu, Jingran Dong, Yunjie Xu
- Paper (https://arxiv.org/abs/2112.02365)
- Code (https://github.com/yihengsun/TransBoost)
- Counterfactual Explanation Trees: Transparent and Consistent Actionable Recourse with Decision Trees (AISTATS 2022)
- Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike
- Paper (https://proceedings.mlr.press/v151/kanamori22a.html)
- Accurate Shapley Values for explaining tree-based models (AISTATS 2022)
- Salim I. Amoukou, Tangi Salaün, Nicolas J.-B. Brunel
- Paper (https://arxiv.org/abs/2106.03820)
- A cautionary tale on fitting decision trees to data from additive models: generalization lower bounds (AISTATS 2022)
- Yan Shuo Tan, Abhineet Agarwal, Bin Yu
- Paper (https://arxiv.org/abs/2110.09626)
- Code (https://github.com/aagarwal1996/additive_trees)
- Enterprise-Scale Search: Accelerating Inference for Sparse Extreme Multi-Label Ranking Trees (WWW 2022)
- Philip A. Etter, Kai Zhong, Hsiang-Fu Yu, Lexing Ying, Inderjit S. Dhillon
- Paper (https://arxiv.org/abs/2106.02697)
- MBCT: Tree-Based Feature-Aware Binning for Individual Uncertainty Calibration (WWW 2022)
- Siguang Huang, Yunli Wang, Lili Mou, Huayue Zhang, Han Zhu, Chuan Yu, Bo Zheng
- Paper (https://arxiv.org/abs/2202.04348)
- Rethinking Conversational Recommendations: Is Decision Tree All You Need (CIKM 2022)
- A S. M. Ahsan-Ul-Haque, Hongning Wang
- Paper (https://arxiv.org/abs/2208.14614)
- A Neural Tangent Kernel Perspective of Infinite Tree Ensembles (ICLR 2022)
- Ryuichi Kanoh, Mahito Sugiyama
- Paper (https://openreview.net/forum?id=vUH85MOXO7h)
- POETREE: Interpretable Policy Learning with Adaptive Decision Trees (ICLR 2022)
- Alizée Pace, Alex Chan, Mihaela van der Schaar
- Paper (https://arxiv.org/abs/2203.08057)
- Hierarchical Shrinkage: Improving the accuracy and interpretability of tree-based models (ICML 2022)
- Abhineet Agarwal, Yan Shuo Tan, Omer Ronen, Chandan Singh, Bin Yu
- Paper (https://arxiv.org/abs/2202.00858)
- Popular decision tree algorithms are provably noise tolerant (ICML 2022)
- Guy Blanc, Jane Lange, Ali Malik, Li-Yang Tan
- Paper (https://arxiv.org/abs/2206.08899)
- Robust Counterfactual Explanations for Tree-Based Ensembles (ICML 2022)
- Sanghamitra Dutta, Jason Long, Saumitra Mishra, Cecilia Tilli, Daniele Magazzeni
- Paper (https://proceedings.mlr.press/v162/dutta22a.html)
- Fast Provably Robust Decision Trees and Boosting (ICML 2022)
- Jun-Qi Guo, Ming-Zhuo Teng, Wei Gao, Zhi-Hua Zhou
- Paper (https://proceedings.mlr.press/v162/guo22h.html)
- BAMDT: Bayesian Additive Semi-Multivariate Decision Trees for Nonparametric Regression (ICML 2022)
- Zhao Tang Luo, Huiyan Sang, Bani K. Mallick
- Paper (https://proceedings.mlr.press/v162/luo22a.html)
- Quant-BnB: A Scalable Branch-and-Bound Method for Optimal Decision Trees with Continuous Features (ICML 2022)
- Rahul Mazumder, Xiang Meng, Haoyue Wang
- Paper (https://arxiv.org/abs/2206.11844)
- A Tree-based Model Averaging Approach for Personalized Treatment Effect Estimation from Heterogeneous Data Sources (ICML 2022)
- Xiaoqing Tan, Chung-Chou H. Chang, Ling Zhou, Lu Tang
- Paper (https://arxiv.org/abs/2103.06261)
- On Preferred Abductive Explanations for Decision Trees and Random Forests (IJCAI 2022)
- Gilles Audemard, Steve Bellart, Louenas Bounia, Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis
- Paper (https://www.ijcai.org/proceedings/2022/0091.pdf)
- Extending Decision Tree to Handle Multiple Fairness Criteria (IJCAI 2022)
- Alessandro Castelnovo
- Paper (https://www.ijcai.org/proceedings/2022/0822.pdf)
- Flexible Modeling and Multitask Learning using Differentiable Tree Ensembles (KDD 2022)
- Shibal Ibrahim, Hussein Hazimeh, Rahul Mazumder
- Paper (https://arxiv.org/abs/2205.09717)
- Integrity Authentication in Tree Models (KDD 2022)
- Weijie Zhao, Yingjie Lao, Ping Li
- Paper (https://dl.acm.org/doi/abs/10.1145/3534678.3539428)
- Retrieval-Based Gradient Boosting Decision Trees for Disease Risk Assessment (KDD 2022)
- Handong Ma, Jiahang Cao, Yuchen Fang, Weinan Zhang, Wenbo Sheng, Shaodian Zhang, Yong Yu
- Paper (https://dl.acm.org/doi/abs/10.1145/3534678.3539052)
- Improved feature importance computation for tree models based on the Banzhaf value (UAI 2022)
- Adam Karczmarz, Tomasz Michalak, Anish Mukherjee, Piotr Sankowski, Piotr Wygocki
- Paper (https://proceedings.mlr.press/v180/karczmarz22a.html)
- Learning linear non-Gaussian polytree models (UAI 2022)
- Daniele Tramontano, Anthea Monod, Mathias Drton
- Paper (https://arxiv.org/abs/2208.06701)
2021
- Online Probabilistic Label Trees (AISTATS 2021)
- Kalina Jasinska-Kobus, Marek Wydmuch, Devanathan Thiruvenkatachari, Krzysztof Dembczyński
- Paper (https://arxiv.org/abs/2007.04451)
- Code (https://github.com/mwydmuch/napkinXC)
- Optimal Decision Trees for Nonlinear Metrics (AAAI 2021)
- Emir Demirovic, Peter J. Stuckey
- Paper (https://arxiv.org/abs/2009.06921)
- SAT-based Decision Tree Learning for Large Data Sets (AAAI 2021)
- André Schidler, Stefan Szeider
- Paper (https://ojs.aaai.org/index.php/AAAI/article/view/16509)
- Parameterized Complexity of Small Decision Tree Learning (AAAI 2021)
- Sebastian Ordyniak, Stefan Szeider
- Paper (https://www.ac.tuwien.ac.at/files/tr/ac-tr-21-002.pdf)
- Counterfactual Explanations for Oblique Decision Trees: Exact - Efficient Algorithms (AAAI 2021)
- Miguel Á. Carreira-Perpiñán, Suryabhan Singh Hada
- Paper (https://arxiv.org/abs/2103.01096)
- Geometric Heuristics for Transfer Learning in Decision Trees (CIKM 2021)
- Siddhesh Chaubal, Mateusz Rzepecki, Patrick K. Nicholson, Guangyuan Piao, Alessandra Sala
- Paper (https://dl.acm.org/doi/abs/10.1145/3459637.3482259)
- Fairness-Aware Training of Decision Trees by Abstract Interpretation (CIKM 2021)
- Francesco Ranzato, Caterina Urban, Marco Zanella
- Paper (https://dl.acm.org/doi/abs/10.1145/3459637.3482342)
- Enabling Efficiency-Precision Trade-offs for Label Trees in Extreme Classification (CIKM 2021)
- Tavor Z. Baharav, Daniel L. Jiang, Kedarnath Kolluri, Sujay Sanghavi, Inderjit S. Dhillon
- Paper (https://arxiv.org/abs/2106.00730)
- Are Neural Rankers still Outperformed by Gradient Boosted Decision Trees (ICLR 2021)
- Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui Wang, Michael Bendersky, Marc Najork
- Paper (https://openreview.net/forum?id=Ut1vF_q_vC)
- NBDT: Neural-Backed Decision Tree (ICLR 2021)
- Alvin Wan, Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee, Suzanne Petryk, Sarah Adel Bargal, Joseph E. Gonzalez
- Paper (https://arxiv.org/abs/2004.00221)
- Versatile Verification of Tree Ensembles (ICML 2021)
- Laurens Devos, Wannes Meert, Jesse Davis
- Paper (https://arxiv.org/abs/2010.13880)
- Connecting Interpretability and Robustness in Decision Trees through Separation (ICML 2021)
- Michal Moshkovitz, Yao-Yuan Yang, Kamalika Chaudhuri
- Paper (https://arxiv.org/abs/2102.07048)
- Optimal Counterfactual Explanations in Tree Ensembles (ICML 2021)
- Axel Parmentier, Thibaut Vidal
- Paper (https://arxiv.org/abs/2106.06631)
- Efficient Training of Robust Decision Trees Against Adversarial Examples (ICML 2021)
- Daniël Vos, Sicco Verwer
- Paper (https://arxiv.org/abs/2012.10438)
- Learning Binary Decision Trees by Argmin Differentiation (ICML 2021)
- Valentina Zantedeschi, Matt J. Kusner, Vlad Niculae
- Paper (https://arxiv.org/pdf/2010.04627.pdf)
- BLOCKSET (Block-Aligned Serialized Trees): Reducing Inference Latency for Tree ensemble Deployment (KDD 2021)
- Meghana Madhyastha, Kunal Lillaney, James Browne, Joshua T. Vogelstein, Randal Burns
- Paper (https://dl.acm.org/doi/abs/10.1145/3447548.3467368)
- ControlBurn: Feature Selection by Sparse Forests (KDD 2021)
- Brian Liu, Miaolan Xie, Madeleine Udell
- Paper (https://dl.acm.org/doi/abs/10.1145/3447548.3467387?sid=SCITRUS)
- Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression (KDD 2021)
- Olivier Sprangers, Sebastian Schelter, Maarten de Rijke
- Paper (https://dl.acm.org/doi/10.1145/3447548.3467278)
- Verifying Tree Ensembles by Reasoning about Potential Instances (SDM 2021)
- Laurens Devos, Wannes Meert, Jesse Davis
- Paper (https://arxiv.org/abs/2001.11905)
2020
- DTCA: Decision Tree-based Co-Attention Networks for Explainable Claim Verification (ACL 2020)
- Lianwei Wu, Yuan Rao, Yongqiang Zhao, Hao Liang, Ambreen Nazir
- Paper (https://arxiv.org/abs/2004.13455)
- Privacy-Preserving Gradient Boosting Decision Trees (AAAI 2020)
- Qinbin Li, Zhaomin Wu, Zeyi Wen, Bingsheng He
- Paper (https://arxiv.org/abs/1911.04209)
- Practical Federated Gradient Boosting Decision Trees (AAAI 2020)
- Qinbin Li, Zeyi Wen, Bingsheng He
- Paper (https://arxiv.org/abs/1911.04206)
- Efficient Inference of Optimal Decision Trees (AAAI 2020)
- Florent Avellaneda
- Paper (http://florent.avellaneda.free.fr/dl/AAAI20.pdf)
- Code (https://github.com/FlorentAvellaneda/InferDT)
- Learning Optimal Decision Trees Using Caching Branch-and-Bound Search (AAAI 2020)
- Gael Aglin, Siegfried Nijssen, Pierre Schaus
- Paper (https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A223390/datastream/PDF_01/view)
- Code (https://pypi.org/project/dl8.5/)
- Abstract Interpretation of Decision Tree Ensemble Classifiers (AAAI 2020)
- Francesco Ranzato, Marco Zanella
- Paper (https://www.math.unipd.it/~ranzato/papers/aaai20.pdf)
- Code (https://github.com/abstract-machine-learning/silva)
- Scalable Feature Selection for (Multitask) Gradient Boosted Trees (AISTATS 2020)
- Cuize Han, Nikhil Rao, Daria Sorokina, Karthik Subbian
- Paper (http://proceedings.mlr.press/v108/han20a.html)
- Optimization Methods for Interpretable Differentiable Decision Trees Applied to Reinforcement Learning (AISTATS 2020)
- Andrew Silva, Matthew C. Gombolay, Taylor W. Killian, Ivan Dario Jimenez Jimenez, Sung-Hyun Son
- Paper (https://arxiv.org/abs/1903.09338)
- Exploiting Categorical Structure Using Tree-Based Methods (AISTATS 2020)
- Brian Lucena
- Paper (https://arxiv.org/abs/2004.07383)
- LdSM: Logarithm-depth Streaming Multi-label Decision Trees (AISTATS 2020)
- Maryam Majzoubi, Anna Choromanska
- Paper (https://arxiv.org/abs/1905.10428)
- Oblique Decision Trees from Derivatives of ReLU Networks (ICLR 2020)
- Guang-He Lee, Tommi S. Jaakkola
- Paper (https://openreview.net/pdf?id=Bke8UR4FPB)
- Code (https://github.com/guanghelee/iclr20-lcn)
- Provable Guarantees for Decision Tree Induction: the Agnostic Setting (ICML 2020)
- Guy Blanc, Jane Lange, Li-Yang Tan
- Paper (https://arxiv.org/abs/2006.00743v1)
- Decision Trees for Decision-Making under the Predict-then-Optimize Framework (ICML 2020)
- Adam N. Elmachtoub, Jason Cheuk Nam Liang, Ryan McNellis
- Paper (https://arxiv.org/abs/2003.00360)
- The Tree Ensemble Layer: Differentiability meets Conditional Computation (ICML 2020)
- Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, Rahul Mazumder
- Paper (https://arxiv.org/abs/2002.07772)
- Code (https://github.com/google-research/google-research/tree/master/tf_trees)
- Generalized and Scalable Optimal Sparse Decision Trees (ICML 2020)
- Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, Margo I. Seltzer
- Paper (https://arxiv.org/abs/2006.08690)
- Code (https://github.com/xiyanghu/OSDT)
- Born-Again Tree Ensembles (ICML 2020)
- Thibaut Vidal, Maximilian Schiffer
- Paper (https://arxiv.org/abs/2003.11132)
- Code (https://github.com/vidalt/BA-Trees)
- On Lp-norm Robustness of Ensemble Decision Stumps and Trees (ICML 2020)
- Yihan Wang, Huan Zhang, Hongge Chen, Duane S. Boning, Cho-Jui Hsieh
- Paper (https://arxiv.org/abs/2008.08755)
- Smaller, More Accurate Regression Forests Using Tree Alternating Optimization (ICML 2020)
- Arman Zharmagambetov, Miguel Á. Carreira-Perpinan
- Paper (http://proceedings.mlr.press/v119/zharmagambetov20a.html)
- Learning Optimal Decision Trees with MaxSAT and its Integration in AdaBoost (IJCAI 2020)
- Hao Hu, Mohamed Siala, Emmanuel Hebrard, Marie-José Huguet
- Paper (https://www.ijcai.org/Proceedings/2020/163)
- Speeding up Very Fast Decision Tree with Low Computational Cost (IJCAI 2020)
- Jian Sun, Hongyu Jia, Bo Hu, Xiao Huang, Hao Zhang, Hai Wan, Xibin Zhao
- Paper (https://www.ijcai.org/Proceedings/2020/0177.pdf)
- PyDL8.5: a Library for Learning Optimal Decision Trees (IJCAI 2020)
- Gaël Aglin, Siegfried Nijssen, Pierre Schaus
- Paper (https://www.ijcai.org/Proceedings/2020/0750.pdf)
- Code (https://github.com/aia-uclouvain/pydl8.5)
- Geodesic Forests (KDD 2020)
- Meghana Madhyastha, Gongkai Li, Veronika Strnadova-Neeley, James Browne, Joshua T. Vogelstein, Randal Burns
- Paper (https://dl.acm.org/doi/pdf/10.1145/3394486.3403094)
- A Scalable MIP-based Method for Learning Optimal Multivariate Decision Trees (NeurIPS 2020)
- Haoran Zhu, Pavankumar Murali, Dzung T. Phan, Lam M. Nguyen, Jayant Kalagnanam
- Paper (https://arxiv.org/abs/2011.03375)
- Estimating Decision Tree Learnability with Polylogarithmic Sample Complexity (NeurIPS 2020)
- Guy Blanc, Neha Gupta, Jane Lange, Li-Yang Tan
- Paper (https://arxiv.org/abs/2011.01584)
- Universal Guarantees for Decision Tree Induction via a Higher-Order Splitting Criterion (NeurIPS 2020)
- Guy Blanc, Neha Gupta, Jane Lange, Li-Yang Tan
- Paper (https://arxiv.org/abs/2010.08633)
- Smooth And Consistent Probabilistic Regression Trees (NeurIPS 2020)
- Sami Alkhoury, Emilie Devijver, Marianne Clausel, Myriam Tami, Éric Gaussier, Georges Oppenheim
- Paper (https://papers.nips.cc/paper/2020/file/8289889263db4a40463e3f358bb7c7a1-Paper.pdf)
- An Efficient Adversarial Attack for Tree Ensembles (NeurIPS 2020)
- Chong Zhang, Huan Zhang, Cho-Jui Hsieh
- Paper (https://arxiv.org/abs/2010.11598)
- Code (https://github.com/chong-z/tree-ensemble-attack)
- Decision Trees as Partitioning Machines to Characterize their Generalization Properties (NeurIPS 2020)
- Jean-Samuel Leboeuf, Frédéric Leblanc, Mario Marchand
- Paper (https://papers.nips.cc/paper/2020/file/d2a10b0bd670e442b1d3caa3fbf9e695-Paper.pdf)
- Evidence Weighted Tree Ensembles for Text Classification (SIGIR 2020)
- Md. Zahidul Islam, Jixue Liu, Jiuyong Li, Lin Liu, Wei Kang
- Paper (https://dl.acm.org/doi/abs/10.1145/3397271.3401229)
2019
- Multi Level Deep Cascade Trees for Conversion Rate Prediction in Recommendation System (AAAI 2019)
- Hong Wen, Jing Zhang, Quan Lin, Keping Yang, Pipei Huang
- Paper (https://arxiv.org/pdf/1805.09484.pdf)
- Induction of Non-Monotonic Logic Programs to Explain Boosted Tree Models Using LIME (AAAI 2019)
- Farhad Shakerin, Gopal Gupta
- Paper (https://arxiv.org/abs/1808.00629)
- Learning Optimal and Fair Decision Trees for Non-Discriminative Decision-Making (AAAI 2019)
- Sina Aghaei, Mohammad Javad Azizi, Phebe Vayanos
- Paper (https://arxiv.org/abs/1903.10598)
- Desiderata for Interpretability: Explaining Decision Tree Predictions with Counterfactuals (AAAI 2019)
- Kacper Sokol, Peter A. Flach
- Paper (https://aaai.org/ojs/index.php/AAAI/article/view/5154)
- Weighted Oblique Decision Trees (AAAI 2019)
- Bin-Bin Yang, Song-Qing Shen, Wei Gao
- Paper (https://aaai.org/ojs/index.php/AAAI/article/view/4505)
- Learning Optimal Classification Trees Using a Binary Linear Program Formulation (AAAI 2019)
- Sicco Verwer, Yingqian Zhang
- Paper (https://yingqianzhang.net/wp-content/uploads/2018/12/VerwerZhangAAAI-final.pdf)
- Optimization of Hierarchical Regression Model with Application to Optimizing Multi-Response Regression K-ary Trees (AAAI 2019)
- Pooya Tavallali, Peyman Tavallali, Mukesh Singhal
- Paper (https://aaai.org/ojs/index.php/AAAI/article/view/4447/4325)
- XBART: Accelerated Bayesian Additive Regression Trees (AISTATS 2019)
- Jingyu He, Saar Yalov, P. Richard Hahn
- Paper (https://arxiv.org/abs/1810.02215)
- Interaction Detection with Bayesian Decision Tree Ensembles (AISTATS 2019)
- Junliang Du, Antonio R. Linero
- Paper (https://arxiv.org/abs/1809.08524)
- Adversarial Training of Gradient-Boosted Decision Trees (CIKM 2019)
- Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei
- Paper (https://www.dais.unive.it/~calzavara/papers/cikm19.pdf)
- Interpretable MTL from Heterogeneous Domains using Boosted Tree (CIKM 2019)
- Ya-Lin Zhang, Longfei Li
- Paper (https://dl.acm.org/citation.cfm?id=3357384.3358072)
- Interpreting CNNs via Decision Trees (CVPR 2019)
- Quanshi Zhang, Yu Yang, Haotian Ma, Ying Nian Wu
- Paper (https://arxiv.org/abs/1802.00121)
- EDiT: Interpreting Ensemble Models via Compact Soft Decision Trees (ICDM 2019)
- Jaemin Yoo, Lee Sael
- Paper (https://github.com/leesael/EDiT/blob/master/docs/YooS19.pdf)
- Code (https://github.com/leesael/EDiT)
- Fair Adversarial Gradient Tree Boosting (ICDM 2019)
- Vincent Grari, Boris Ruf, Sylvain Lamprier, Marcin Detyniecki
- Paper (https://arxiv.org/abs/1911.05369)
- Functional Transparency for Structured Data: a Game-Theoretic Approach (ICML 2019)
- Guang-He Lee, Wengong Jin, David Alvarez-Melis, Tommi S. Jaakkola
- Paper (http://proceedings.mlr.press/v97/lee19b/lee19b.pdf)
- Incorporating Grouping Information into Bayesian Decision Tree Ensembles (ICML 2019)
- Junliang Du, Antonio R. Linero
- Paper (http://proceedings.mlr.press/v97/du19d.html)
- Adaptive Neural Trees (ICML 2019)
- Ryutaro Tanno, Kai Arulkumaran, Daniel C. Alexander, Antonio Criminisi, Aditya V. Nori
- Paper (https://arxiv.org/abs/1807.06699)
- Code (https://github.com/rtanno21609/AdaptiveNeuralTrees)
- Robust Decision Trees Against Adversarial Examples (ICML 2019)
- Hongge Chen, Huan Zhang, Duane S. Boning, Cho-Jui Hsieh
- Paper (https://arxiv.org/abs/1902.10660)
- Code (https://github.com/chenhongge/RobustTrees)
- Learn Smart with Less: Building Better Online Decision Trees with Fewer Training Examples (IJCAI 2019)
- Ariyam Das, Jin Wang, Sahil M. Gandhi, Jae Lee, Wei Wang, Carlo Zaniolo
- Paper (https://www.ijcai.org/proceedings/2019/0306.pdf)
- FAHT: An Adaptive Fairness-aware Decision Tree Classifier (IJCAI 2019)
- Wenbin Zhang, Eirini Ntoutsi
- Paper (https://arxiv.org/abs/1907.07237)
- Code (https://github.com/vanbanTruong/FAHT)
- Inter-node Hellinger Distance based Decision Tree (IJCAI 2019)
- Pritom Saha Akash, Md. Eusha Kadir, Amin Ahsan Ali, Mohammad Shoyaib
- Paper (https://www.ijcai.org/proceedings/2019/0272.pdf)
- Matlab Code (https://github.com/ZDanielsResearch/HellingerTreesMatlab)
- R Code (https://github.com/kaustubhrpatil/HDDT)
- Gradient Boosting with Piece-Wise Linear Regression Trees (IJCAI 2019)
- Yu Shi, Jian Li, Zhize Li
- Paper (https://arxiv.org/abs/1802.05640)
- Code (https://github.com/GBDT-PL/GBDT-PL)
- A Gradient-Based Split Criterion for Highly Accurate and Transparent Model Trees (IJCAI 2019)
- Klaus Broelemann, Gjergji Kasneci
- Paper (https://arxiv.org/abs/1809.09703)
- Combining Decision Trees and Neural Networks for Learning-to-Rank in Personal Search (KDD 2019)
- Pan Li, Zhen Qin, Xuanhui Wang, Donald Metzler
- Paper (https://ai.google/research/pubs/pub48133/)
- Tight Certificates of Adversarial Robustness for Randomly Smoothed Classifiers (NeurIPS 2019)
- Guang-He Lee, Yang Yuan, Shiyu Chang, Tommi S. Jaakkola
- Paper (https://papers.nips.cc/paper/8737-tight-certificates-of-adversarial-robustness-for-randomly-smoothed-classifiers.pdf)
- Code (https://github.com/guanghelee/Randomized_Smoothing)
- Partitioning Structure Learning for Segmented Linear Regression Trees (NeurIPS 2019)
- Xiangyu Zheng, Song Xi Chen
- Paper (https://papers.nips.cc/paper/8494-partitioning-structure-learning-for-segmented-linear-regression-trees)
- Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks (NeurIPS 2019)
- Maksym Andriushchenko, Matthias Hein
- Paper (https://arxiv.org/abs/1906.03526)
- Code (https://github.com/max-andr/provably-robust-boosting)
- Optimal Decision Tree with Noisy Outcomes (NeurIPS 2019)
- Su Jia, Viswanath Nagarajan, Fatemeh Navidi, R. Ravi
- Paper (https://papers.nips.cc/paper/8592-optimal-decision-tree-with-noisy-outcomes.pdf)
- Code (https://github.com/sjia1/ODT-with-noisy-outcomes)
- Regularized Gradient Boosting (NeurIPS 2019)
- Corinna Cortes, Mehryar Mohri, Dmitry Storcheus
- Paper (https://papers.nips.cc/paper/8784-regularized-gradient-boosting.pdf)
- Optimal Sparse Decision Trees (NeurIPS 2019)
- Xiyang Hu, Cynthia Rudin, Margo Seltzer
- Paper (https://papers.nips.cc/paper/8947-optimal-sparse-decision-trees.pdf)
- Code (https://github.com/xiyanghu/OSDT)
- MonoForest framework for tree ensemble analysis (NeurIPS 2019)
- Igor Kuralenok, Vasilii Ershov, Igor Labutin
- Paper (https://papers.nips.cc/paper/9530-monoforest-framework-for-tree-ensemble-analysis)
- Code (https://github.com/xiyanghu/OSDT)
- Calibrating Probability Estimation Trees using Venn-Abers Predictors (SDM 2019)
- Ulf Johansson, Tuwe Löfström, Henrik Boström
- Paper (https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.4)
- Fast Training for Large-Scale One-versus-All Linear Classifiers using Tree-Structured Initialization (SDM 2019)
- Huang Fang, Minhao Cheng, Cho-Jui Hsieh, Michael P. Friedlander
- Paper (https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.32)
- Forest Packing: Fast Parallel, Decision Forests (SDM 2019)
- James Browne, Disa Mhembere, Tyler M. Tomita, Joshua T. Vogelstein, Randal Burns
- Paper (https://epubs.siam.org/doi/abs/10.1137/1.9781611975673.6)
- Block-distributed Gradient Boosted Trees (SIGIR 2019)
- Theodore Vasiloudis, Hyunsu Cho, Henrik Boström
- Paper (https://arxiv.org/abs/1904.10522)
- Entity Personalized Talent Search Models with Tree Interaction Features (WWW 2019)
- Cagri Ozcaglar, Sahin Cem Geyik, Brian Schmitz, Prakhar Sharma, Alex Shelkovnykov, Yiming Ma, Erik Buchanan
- Paper (https://arxiv.org/abs/1902.09041)
2018
- Adapting to Concept Drift in Credit Card Transaction Data Streams Using Contextual Bandits and Decision Trees (AAAI 2018)
- Dennis J. N. J. Soemers, Tim Brys, Kurt Driessens, Mark H. M. Winands, Ann Nowé
- Paper (https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16183/16394)
- MERCS: Multi-Directional Ensembles of Regression and Classification Trees (AAAI 2018)
- Elia Van Wolputte, Evgeniya Korneva, Hendrik Blockeel
- Paper (https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16875/16735)
- Code (https://github.com/eliavw/mercs-v5)
- Differential Performance Debugging With Discriminant Regression Trees (AAAI 2018)
- Saeid Tizpaz-Niari, Pavol Cerný, Bor-Yuh Evan Chang, Ashutosh Trivedi
- Paper (https://arxiv.org/abs/1711.04076)
- Code (https://github.com/cuplv/DPDEBUGGER)
- Estimating the Class Prior in Positive and Unlabeled Data Through Decision Tree Induction (AAAI 2018)
- Jessa Bekker, Jesse Davis
- Paper (https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16776)
- MDP-Based Cost Sensitive Classification Using Decision Trees (AAAI 2018)
- Shlomi Maliah, Guy Shani
- Paper (https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17128)
- Generative Adversarial Image Synthesis With Decision Tree Latent Controller (CVPR 2018)
- Takuhiro Kaneko, Kaoru Hiramatsu, Kunio Kashino
- Paper (https://arxiv.org/abs/1805.10603)
- Code (https://github.com/LynnHo/DTLC-GAN-Tensorflow)
- Enhancing Very Fast Decision Trees with Local Split-Time Predictions (ICDM 2018)
- Viktor Losing, Heiko Wersing, Barbara Hammer
- Paper (https://www.techfak.uni-bielefeld.de/~hwersing/LosingHammerWersing_ICDM2018.pdf)
- Code (https://github.com/ICDM2018Submission/VFDT-split-time-prediction)
- Realization of Random Forest for Real-Time Evaluation through Tree Framing (ICDM 2018)
- Sebastian Buschjäger, Kuan-Hsun Chen, Jian-Jia Chen, Katharina Morik
- Paper (https://sfb876.tu-dortmund.de/PublicPublicationFiles/buschjaeger_2018a.pdf)
- Finding Influential Training Samples for Gradient Boosted Decision Trees (ICML 2018)
- Boris Sharchilev, Yury Ustinovskiy, Pavel Serdyukov, Maarten de Rijke
- Paper (https://arxiv.org/abs/1802.06640)
- Code (https://github.com/bsharchilev/influence_boosting)
- Learning Optimal Decision Trees with SAT (IJCAI 2018)
- Nina Narodytska, Alexey Ignatiev, Filipe Pereira, João Marques-Silva
- Paper (https://www.ijcai.org/proceedings/2018/0189.pdf)
- Extremely Fast Decision Tree (KDD 2018)
- Chaitanya Manapragada, Geoffrey I. Webb, Mahsa Salehi
- Paper (https://arxiv.org/abs/1802.08780)
- Code (https://github.com/doubleplusplus/incremental_decision_tree-CART-Random_Forest_python)
- RapidScorer: Fast Tree Ensemble Evaluation by Maximizing Compactness in Data Level Parallelization (KDD 2018)
- Ting Ye, Hucheng Zhou, Will Y. Zou, Bin Gao, Ruofei Zhang
- Paper (http://ai.stanford.edu/~wzou/kdd_rapidscorer.pdf)
- CatBoost: Unbiased Boosting with Categorical Features (NIPS 2018)
- Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, Andrey Gulin
- Paper (https://papers.nips.cc/paper/7898-catboost-unbiased-boosting-with-categorical-features.pdf)
- Code (https://catboost.ai/)
- Active Learning for Non-Parametric Regression Using Purely Random Trees (NIPS 2018)
- Jack Goetz, Ambuj Tewari, Paul Zimmerman
- Paper (https://papers.nips.cc/paper/7520-active-learning-for-non-parametric-regression-using-purely-random-trees.pdf)
- Alternating Optimization of Decision Trees with Application to Learning Sparse Oblique Trees (NIPS 2018)
- Miguel Á. Carreira-Perpiñán, Pooya Tavallali
- Paper (https://papers.nips.cc/paper/7397-alternating-optimization-of-decision-trees-with-application-to-learning-sparse-oblique-trees)
- Multi-Layered Gradient Boosting Decision Trees (NIPS 2018)
- Ji Feng, Yang Yu, Zhi-Hua Zhou
- Paper (https://papers.nips.cc/paper/7614-multi-layered-gradient-boosting-decision-trees.pdf)
- Code (https://github.com/kingfengji/mGBDT)
- Transparent Tree Ensembles (SIGIR 2018)
- Alexander Moore, Vanessa Murdock, Yaxiong Cai, Kristine Jones
- Paper
(http://delivery.acm.org/10.1145/3220000/3210151/p1241-moore.pdf?ip=129.215.164.203&id=3210151&acc=ACTIVE%20SERVICE&key=C2D842D97AC95F7A%2EEB9E991028F4E1F1%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1559054892_a29816c683aa83a0ce0fbb777c68daba)
- Privacy-aware Ranking with Tree Ensembles on the Cloud (SIGIR 2018)
- Shiyu Ji, Jinjin Shao, Daniel Agun, Tao Yang
- Paper (https://sites.cs.ucsb.edu/projects/ds/sigir18.pdf)
2017
- Strategic Sequences of Arguments for Persuasion Using Decision Trees (AAAI 2017)
- Emmanuel Hadoux, Anthony Hunter
- Paper (http://www0.cs.ucl.ac.uk/staff/a.hunter/papers/aaai17.pdf)
- BoostVHT: Boosting Distributed Streaming Decision Trees (CIKM 2017)
- Theodore Vasiloudis, Foteini Beligianni, Gianmarco De Francisci Morales
- Paper (https://melmeric.files.wordpress.com/2010/05/boostvht-boosting-distributed-streaming-decision-trees.pdf)
- Latency Reduction via Decision Tree Based Query Construction (CIKM 2017)
- Aman Grover, Dhruv Arya, Ganesh Venkataraman
- Paper (https://dl.acm.org/citation.cfm?id=3132865)
- Enumerating Distinct Decision Trees (ICML 2017)
- Salvatore Ruggieri
- Paper (http://proceedings.mlr.press/v70/ruggieri17a/ruggieri17a.pdf)
- Gradient Boosted Decision Trees for High Dimensional Sparse Output (ICML 2017)
- Si Si, Huan Zhang, S. Sathiya Keerthi, Dhruv Mahajan, Inderjit S. Dhillon, Cho-Jui Hsieh
- Paper (http://proceedings.mlr.press/v70/si17a.html)
- Code (https://github.com/springdaisy/GBDT)
- Consistent Feature Attribution for Tree Ensembles (ICML 2017)
- Scott M. Lundberg, Su-In Lee
- Paper (https://arxiv.org/abs/1706.06060)
- Code (https://github.com/slundberg/shap)
- Extremely Fast Decision Tree Mining for Evolving Data Streams (KDD 2017)
- Albert Bifet, Jiajin Zhang, Wei Fan, Cheng He, Jianfeng Zhang, Jianfeng Qian, Geoff Holmes, Bernhard Pfahringer
- Paper (https://core.ac.uk/download/pdf/151040580.pdf)
- CatBoost: Gradient Boosting with Categorical Features Support (NIPS 2017)
- Anna Veronika Dorogush, Vasily Ershov, Andrey Gulin
- Paper (https://arxiv.org/abs/1810.11363)
- Code (https://catboost.ai/)
- LightGBM: A Highly Efficient Gradient Boosting Decision Tree (NIPS 2017)
- Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, Tie-Yan Liu
- Paper (https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree)
- Code (https://lightgbm.readthedocs.io/en/latest/)
- Variable Importance Using Decision Trees (NIPS 2017)
- Jalil Kazemitabar, Arash Amini, Adam Bloniarz, Ameet S. Talwalkar
- Paper (https://papers.nips.cc/paper/6646-variable-importance-using-decision-trees)
- A Unified Approach to Interpreting Model Predictions (NIPS 2017)
- Scott M. Lundberg, Su-In Lee
- Paper (https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions)
- Code (https://github.com/slundberg/shap)
- Pruning Decision Trees via Max-Heap Projection (SDM 2017)
- Zhi Nie, Binbin Lin, Shuai Huang, Naren Ramakrishnan, Wei Fan, Jieping Ye
- Paper (https://www.researchgate.net/publication/317485748_Pruning_Decision_Trees_via_Max-Heap_Projection)
- A Practical Method for Solving Contextual Bandit Problems Using Decision Trees (UAI 2017)
- Adam N. Elmachtoub, Ryan McNellis, Sechan Oh, Marek Petrik
- Paper (https://arxiv.org/abs/1706.04687)
- Complexity of Solving Decision Trees with Skew-Symmetric Bilinear Utility (UAI 2017)
- Hugo Gilbert, Olivier Spanjaard
- Paper (http://auai.org/uai2017/proceedings/papers/64.pdf)
- GB-CENT: Gradient Boosted Categorical Embedding and Numerical Trees (WWW 2017)
- Qian Zhao, Yue Shi, Liangjie Hong
- Paper (http://papers.www2017.com.au.s3-website-ap-southeast-2.amazonaws.com/proceedings/p1311.pdf)
2016
- Sparse Perceptron Decision Tree for Millions of Dimensions (AAAI 2016)
- Weiwei Liu, Ivor W. Tsang
- Paper (https://aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12111)
- Learning Online Smooth Predictors for Realtime Camera Planning Using Recurrent Decision Trees (CVPR 2016)
- Jianhui Chen, Hoang Minh Le, Peter Carr, Yisong Yue, James J. Little
- Paper (http://hoangle.info/papers/cvpr2016_online_smooth_long.pdf)
- Online Learning with Bayesian Classification Trees (CVPR 2016)
- Samuel Rota Bulò, Peter Kontschieder
- Paper (http://www.dsi.unive.it/~srotabul/files/publications/CVPR2016.pdf)
- Accurate Robust and Efficient Error Estimation for Decision Trees (ICML 2016)
- Lixin Fan
- Paper (http://proceedings.mlr.press/v48/fan16.pdf)
- Meta-Gradient Boosted Decision Tree Model for Weight and Target Learning (ICML 2016)
- Yury Ustinovskiy, Valentina Fedorova, Gleb Gusev, Pavel Serdyukov
- Paper (http://proceedings.mlr.press/v48/ustinovskiy16.html)
- Boosted Decision Tree Regression Adjustment for Variance Reduction in Online Controlled Experiments (KDD 2016)
- Alexey Poyarkov, Alexey Drutsa, Andrey Khalyavin, Gleb Gusev, Pavel Serdyukov
- Paper (https://www.kdd.org/kdd2016/papers/files/adf0653-poyarkovA.pdf)
- XGBoost: A Scalable Tree Boosting System (KDD 2016)
- Tianqi Chen, Carlos Guestrin
- Paper (https://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf)
- Code (https://xgboost.readthedocs.io/en/latest/)
- Yggdrasil: An Optimized System for Training Deep Decision Trees at Scale (NIPS 2016)
- Firas Abuzaid, Joseph K. Bradley, Feynman T. Liang, Andrew Feng, Lee Yang, Matei Zaharia, Ameet S. Talwalkar
- Paper (https://papers.nips.cc/paper/6366-yggdrasil-an-optimized-system-for-training-deep-decision-trees-at-scale)
- A Communication-Efficient Parallel Algorithm for Decision Tree (NIPS 2016)
- Qi Meng, Guolin Ke, Taifeng Wang, Wei Chen, Qiwei Ye, Zhiming Ma, Tie-Yan Liu
- Paper (https://arxiv.org/abs/1611.01276)
- Code (https://github.com/microsoft/LightGBM/blob/master/docs/Features.rst)
- Exploiting CPU SIMD Extensions to Speed-up Document Scoring with Tree Ensembles (SIGIR 2016)
- Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Nicola Tonellotto, Rossano Venturini
- Paper (http://pages.di.unipi.it/rossano/wp-content/uploads/sites/7/2016/07/SIGIR16a.pdf)
- Code (https://github.com/hpclab/vectorized-quickscorer)
- Post-Learning Optimization of Tree Ensembles for Efficient Ranking (SIGIR 2016)
- Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Fabrizio Silvestri, Salvatore Trani
- Paper (https://www.researchgate.net/publication/305081572_Post-Learning_Optimization_of_Tree_Ensembles_for_Efficient_Ranking)
- Code (https://github.com/hpclab/quickrank)
2015
- Particle Gibbs for Bayesian Additive Regression Trees (AISTATS 2015)
- Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh
- Paper (https://arxiv.org/abs/1502.04622)
- DART: Dropouts Meet Multiple Additive Regression Trees (AISTATS 2015)
- Korlakai Vinayak Rashmi, Ran Gilad-Bachrach
- Paper (https://arxiv.org/abs/1505.01866)
- Code (https://xgboost.readthedocs.io/en/latest/)
- Single Target Tracking Using Adaptive Clustered Decision Trees and Dynamic Multi-level Appearance Models (CVPR 2015)
- Jingjing Xiao, Rustam Stolkin, Ales Leonardis
- Paper (https://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_058.pdf)
- Face Alignment Using Cascade Gaussian Process Regression Trees (CVPR 2015)
- Donghoon Lee, Hyunsin Park, Chang Dong Yoo
- Paper (https://slsp.kaist.ac.kr/paperdata/Face_Alignment_Using.pdf)
- Code (https://github.com/donghoonlee04/cGPRT)
- Tracking-by-Segmentation with Online Gradient Boosting Decision Tree (ICCV 2015)
- Jeany Son, Ilchae Jung, Kayoung Park, Bohyung Han
- Paper (https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Son_Tracking-by-Segmentation_With_Online_ICCV_2015_paper.pdf)
- Entropy Evaluation Based on Confidence Intervals of Frequency Estimates : Application to the Learning of Decision Trees (ICML 2015)
- Mathieu Serrurier, Henri Prade
- Paper (http://proceedings.mlr.press/v37/serrurier15.pdf)
- Large-scale Distributed Dependent Nonparametric Trees (ICML 2015)
- Zhiting Hu, Qirong Ho, Avinava Dubey, Eric P. Xing
- Paper (https://www.cs.cmu.edu/~zhitingh/data/icml15hu.pdf)
- Optimal Action Extraction for Random Forests and Boosted Trees (KDD 2015)
- Zhicheng Cui, Wenlin Chen, Yujie He, Yixin Chen
- Paper (https://www.cse.wustl.edu/~ychen/public/OAE.pdf)
- A Decision Tree Framework for Spatiotemporal Sequence Prediction (KDD 2015)
- Taehwan Kim, Yisong Yue, Sarah L. Taylor, Iain A. Matthews
- Paper (http://www.yisongyue.com/publications/kdd2015_ssw_dt.pdf)
- Efficient Non-greedy Optimization of Decision Trees (NIPS 2015)
- Mohammad Norouzi, Maxwell D. Collins, Matthew Johnson, David J. Fleet, Pushmeet Kohli
- Paper (https://arxiv.org/abs/1511.04056)
- QuickScorer: A Fast Algorithm to Rank Documents with Additive Ensembles of Regression Trees (SIGIR 2015)
- Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Nicola Tonellotto, Rossano Venturini
- Paper (http://pages.di.unipi.it/rossano/wp-content/uploads/sites/7/2015/11/sigir15.pdf)
- Code (https://github.com/hpclab/quickrank)
2014
- A Mixtures-of-Trees Framework for Multi-Label Classification (CIKM 2014)
- Charmgil Hong, Iyad Batal, Milos Hauskrecht
- Paper (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410801/)
- On Building Decision Trees from Large-scale Data in Applications of On-line Advertising (CIKM 2014)
- Shivaram Kalyanakrishnan, Deepthi Singh, Ravi Kant
- Paper (https://www.cse.iitb.ac.in/~shivaram/papers/ksk_cikm_2014.pdf)
- Fast Supervised Hashing with Decision Trees for High-Dimensional Data (CVPR 2014)
- Guosheng Lin, Chunhua Shen, Qinfeng Shi, Anton van den Hengel, David Suter
- Paper (https://arxiv.org/abs/1404.1561)
- One Millisecond Face Alignment with an Ensemble of Regression Trees (CVPR 2014)
- Vahid Kazemi, Josephine Sullivan
- Paper (https://www.researchgate.net/publication/264419855_One_Millisecond_Face_Alignment_with_an_Ensemble_of_Regression_Trees)
- The return of AdaBoost.MH: multi-class Hamming trees (ICLR 2014)
- Balázs Kégl
- Paper (https://arxiv.org/pdf/1312.6086.pdf)
- Diagnosis Determination: Decision Trees Optimizing Simultaneously Worst and Expected Testing Cost (ICML 2014)
- Ferdinando Cicalese, Eduardo Sany Laber, Aline Medeiros Saettler
- Paper (https://pdfs.semanticscholar.org/47ae/852f83b76f95b27ab00308d04f6020bdf71f.pdf)
- Learning Multiple-Question Decision Trees for Cold-Start Recommendation (WSDM 2013)
- Mingxuan Sun, Fuxin Li, Joonseok Lee, Ke Zhou, Guy Lebanon, Hongyuan Zha
- Paper (http://www.joonseok.net/papers/coldstart.pdf)
2013
- Weakly Supervised Learning of Image Partitioning Using Decision Trees with Structured Split Criteria (ICCV 2013)
- Christoph N. Straehle, Ullrich Köthe, Fred A. Hamprecht
- Paper (https://ieeexplore.ieee.org/document/6751340)
- Revisiting Example Dependent Cost-Sensitive Learning with Decision Trees (ICCV 2013)
- Oisin Mac Aodha, Gabriel J. Brostow
- Paper (https://ieeexplore.ieee.org/document/6751133)
- Conformal Prediction Using Decision Trees (ICDM 2013)
- Ulf Johansson, Henrik Boström, Tuve Löfström
- Paper (https://ieeexplore.ieee.org/abstract/document/6729517)
- Focal-Test-Based Spatial Decision Tree Learning: A Summary of Results (ICDM 2013)
- Zhe Jiang, Shashi Shekhar, Xun Zhou, Joseph K. Knight, Jennifer Corcoran
- Paper (https://pdfs.semanticscholar.org/f28e/df8d9eed76e4ce97cb6bd4182d590547be5e.pdf)
- Top-down Particle Filtering for Bayesian Decision Trees (ICML 2013)
- Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh
- Paper (https://arxiv.org/abs/1303.0561)
- Quickly Boosting Decision Trees - Pruning Underachieving Features Early (ICML 2013)
- Ron Appel, Thomas J. Fuchs, Piotr Dollár, Pietro Perona
- Paper (http://proceedings.mlr.press/v28/appel13.pdf)
- Knowledge Compilation for Model Counting: Affine Decision Trees (IJCAI 2013)
- Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis, Samuel Thomas
- Paper (https://www.researchgate.net/publication/262398921_Knowledge_Compilation_for_Model_Counting_Affine_Decision_Trees)
- Understanding Variable Importances in Forests of Randomized Trees (NIPS 2013)
- Gilles Louppe, Louis Wehenkel, Antonio Sutera, Pierre Geurts
- Paper (https://papers.nips.cc/paper/4928-understanding-variable-importances-in-forests-of-randomized-trees)
- Regression-tree Tuning in a Streaming Setting (NIPS 2013)
- Samory Kpotufe, Francesco Orabona
- Paper (https://papers.nips.cc/paper/4898-regression-tree-tuning-in-a-streaming-setting)
- Learning Max-Margin Tree Predictors (UAI 2013)
- Ofer Meshi, Elad Eban, Gal Elidan, Amir Globerson
- Paper (https://ttic.uchicago.edu/~meshi/papers/mtreen.pdf)
2012
- Regression Tree Fields - An Efficient, Non-parametric Approach to Image Labeling Problems (CVPR 2012)
- Jeremy Jancsary, Sebastian Nowozin, Toby Sharp, Carsten Rother
- Paper (http://www.nowozin.net/sebastian/papers/jancsary2012rtf.pdf)
- ConfDTree: Improving Decision Trees Using Confidence Intervals (ICDM 2012)
- Gilad Katz, Asaf Shabtai, Lior Rokach, Nir Ofek
- Paper (https://ieeexplore.ieee.org/document/6413889)
- Improved Information Gain Estimates for Decision Tree Induction (ICML 2012)
- Sebastian Nowozin
- Paper (https://arxiv.org/abs/1206.4620)
- Learning Partially Observable Models Using Temporally Abstract Decision Trees (NIPS 2012)
- Erik Talvitie
- Paper (https://papers.nips.cc/paper/4662-learning-partially-observable-models-using-temporally-abstract-decision-trees)
- Subtree Replacement in Decision Tree Simplification (SDM 2012)
- Salvatore Ruggieri
- Paper (http://pages.di.unipi.it/ruggieri/Papers/sdm2012.pdf)
2011
- Incorporating Boosted Regression Trees into Ecological Latent Variable Models (AAAI 2011)
- Rebecca A. Hutchinson, Li-Ping Liu, Thomas G. Dietterich
- Paper (https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/viewFile/3711/4086)
- Syntactic Decision Tree LMs: Random Selection or Intelligent Design (EMNLP 2011)
- Denis Filimonov, Mary P. Harper
- Paper (https://www.aclweb.org/anthology/D11-1064)
- Decision Tree Fields (ICCV 2011)
- Sebastian Nowozin, Carsten Rother, Shai Bagon, Toby Sharp, Bangpeng Yao, Pushmeet Kohli
- Paper (https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/nrbsyk_iccv11.pdf)
- Confidence in Predictions from Random Tree Ensembles (ICDM 2011)
- Siddhartha Bhattacharyya
- Paper (https://link.springer.com/article/10.1007/s10115-012-0600-z)
- Speeding-Up Hoeffding-Based Regression Trees With Options (ICML 2011)
- Elena Ikonomovska, João Gama, Bernard Zenko, Saso Dzeroski
- Paper (https://icml.cc/Conferences/2011/papers/349_icmlpaper.pdf)
- Density Estimation Trees (KDD 2011)
- Parikshit Ram, Alexander G. Gray
- Paper (https://mlpack.org/papers/det.pdf)
- Bagging Gradient-Boosted Trees for High Precision, Low Variance Ranking Models (SIGIR 2011)
- Yasser Ganjisaffar, Rich Caruana, Cristina Videira Lopes
- Paper (http://www.ccs.neu.edu/home/vip/teach/MLcourse/4_boosting/materials/bagging_lmbamart_jforests.pdf)
- On the Complexity of Decision Making in Possibilistic Decision Trees (UAI 2011)
- Hélène Fargier, Nahla Ben Amor, Wided Guezguez
- Paper (https://dslpitt.org/uai/papers/11/p203-fargier.pdf)
- Adaptive Bootstrapping of Recommender Systems Using Decision Trees (WSDM 2011)
- Nadav Golbandi, Yehuda Koren, Ronny Lempel
- Paper (https://dl.acm.org/citation.cfm?id=1935910)
- Parallel Boosted Regression Trees for Web Search Ranking (WWW 2011)
- Stephen Tyree, Kilian Q. Weinberger, Kunal Agrawal, Jennifer Paykin
- Paper (http://www.cs.cornell.edu/~kilian/papers/fr819-tyreeA.pdf)
2010
- Discrimination Aware Decision Tree Learning (ICDM 2010)
- Faisal Kamiran, Toon Calders, Mykola Pechenizkiy
- Paper (https://www.win.tue.nl/~mpechen/publications/pubs/KamiranICDM2010.pdf)
- Decision Trees for Uplift Modeling (ICDM 2010)
- Piotr Rzepakowski, Szymon Jaroszewicz
- Paper (https://core.ac.uk/download/pdf/81899141.pdf)
- Learning Markov Network Structure with Decision Trees (ICDM 2010)
- Daniel Lowd, Jesse Davis
- Paper (https://ix.cs.uoregon.edu/~lowd/icdm10lowd.pdf)
- Multivariate Dyadic Regression Trees for Sparse Learning Problems (NIPS 2010)
- Han Liu, Xi Chen
- Paper (https://papers.nips.cc/paper/4178-multivariate-dyadic-regression-trees-for-sparse-learning-problems.pdf)
- Fast and Accurate Gene Prediction by Decision Tree Classification (SDM 2010)
- Rong She, Jeffrey Shih-Chieh Chu, Ke Wang, Nansheng Chen
- Paper (http://www.sfu.ca/~chenn/genBlastDT_sdm.pdf)
- A Robust Decision Tree Algorithm for Imbalanced Data Sets (SDM 2010)
- Wei Liu, Sanjay Chawla, David A. Cieslak, Nitesh V. Chawla
- Paper (https://www3.nd.edu/~nchawla/papers/SDM10.pdf)
2009
- Stochastic Gradient Boosted Distributed Decision Trees (CIKM 2009)
- Jerry Ye, Jyh-Herng Chow, Jiang Chen, Zhaohui Zheng
- Paper (https://dl.acm.org/citation.cfm?id=1646301)
- Feature Selection for Ranking Using Boosted Trees (CIKM 2009)
- Feng Pan, Tim Converse, David Ahn, Franco Salvetti, Gianluca Donato
- Paper (http://www.francosalvetti.com/cikm09_camera2.pdf)
- Thai Word Segmentation with Hidden Markov Model and Decision Tree (PAKDD 2009)
- Poramin Bheganan, Richi Nayak, Yue Xu
- Paper (https://link.springer.com/chapter/10.1007/978-3-642-01307-2_10)
- Parameter Estimdation in Semi-Random Decision Tree Ensembling on Streaming Data (PAKDD 2009)
- Pei-Pei Li, Qianhui Liang, Xindong Wu, Xuegang Hu
- Paper (https://link.springer.com/chapter/10.1007/978-3-642-01307-2_35)
- DTU: A Decision Tree for Uncertain Data (PAKDD 2009)
- Biao Qin, Yuni Xia, Fang Li
- Paper (https://link.springer.com/chapter/10.1007/978-3-642-01307-2_4)
2008
- Predicting Future Decision Trees from Evolving Data (ICDM 2008)
- Mirko Böttcher, Martin Spott, Rudolf Kruse
- Paper (https://ieeexplore.ieee.org/document/4781098)
- Bayes Optimal Classification for Decision Trees (ICML 2008)
- Siegfried Nijssen
- Paper (http://icml2008.cs.helsinki.fi/papers/455.pdf)
- A New Credit Scoring Method Based on Rough Sets and Decision Tree (PAKDD 2008)
- XiYue Zhou, Defu Zhang, Yi Jiang
- Paper (https://link.springer.com/chapter/10.1007/978-3-540-68125-0_117)
- A Comparison of Different Off-Centered Entropies to Deal with Class Imbalance for Decision Trees (PAKDD 2008)
- Philippe Lenca, Stéphane Lallich, Thanh-Nghi Do, Nguyen-Khang Pham
- Paper (https://link.springer.com/chapter/10.1007/978-3-540-68125-0_59)
- BOAI: Fast Alternating Decision Tree Induction Based on Bottom-Up Evaluation (PAKDD 2008)
- Bishan Yang, Tengjiao Wang, Dongqing Yang, Lei Chang
- Paper (https://link.springer.com/chapter/10.1007/978-3-540-68125-0_36)
- A General Framework for Estimating Similarity of Datasets and Decision Trees: Exploring Semantic Similarity of Decision Trees (SDM 2008)
- Irene Ntoutsi, Alexandros Kalousis, Yannis Theodoridis
- Paper (https://www.researchgate.net/publication/220907047_A_general_framework_for_estimating_similarity_of_datasets_and_decision_trees_exploring_semantic_similarity_of_decision_trees)
- ROC-tree: A Novel Decision Tree Induction Algorithm Based on Receiver Operating Characteristics to Classify Gene Expression Data (SDM 2008)
- M. Maruf Hossain, Md. Rafiul Hassan, James Bailey
- Paper (https://pdfs.semanticscholar.org/bd80/db2f0903169b7611d34b2cc85f60a736375d.pdf)
2007
- Tree-based Classifiers for Bilayer Video Segmentation (CVPR 2007)
- Pei Yin, Antonio Criminisi, John M. Winn, Irfan A. Essa
- Paper (https://ieeexplore.ieee.org/document/4270033)
- Additive Groves of Regression Trees (ECML 2007)
- Daria Sorokina, Rich Caruana, Mirek Riedewald
- Paper (http://additivegroves.net/papers/groves.pdf)
- Decision Tree Instability and Active Learning (ECML 2007)
- Kenneth Dwyer, Robert Holte
- Paper (https://webdocs.cs.ualberta.ca/~holte/Publications/ecml07.pdf)
- Ensembles of Multi-Objective Decision Trees (ECML 2007)
- Dragi Kocev, Celine Vens, Jan Struyf, Saso Dzeroski
- Paper (https://link.springer.com/chapter/10.1007/978-3-540-74958-5_61)
- Seeing the Forest Through the Trees: Learning a Comprehensible Model from an Ensemble (ECML 2007)
- Anneleen Van Assche, Hendrik Blockeel
- Paper (http://ftp.cs.wisc.edu/machine-learning/shavlik-group/ilp07wip/ilp07_assche.pdf)
- Sample Compression Bounds for Decision Trees (ICML 2007)
- Mohak Shah
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.9136&rep=rep1&type=pdf)
- A Tighter Error Bound for Decision Tree Learning Using PAC Learnability (IJCAI 2007)
- Chaithanya Pichuka, Raju S. Bapi, Chakravarthy Bhagvati, Arun K. Pujari, Bulusu Lakshmana Deekshatulu
- Paper (https://www.ijcai.org/Proceedings/07/Papers/163.pdf)
- Keep the Decision Tree and Estimate the Class Probabilities Using its Decision Boundary (IJCAI 2007)
- Isabelle Alvarez, Stephan Bernard, Guillaume Deffuant
- Paper (https://www.ijcai.org/Proceedings/07/Papers/104.pdf)
- Real Boosting a la Carte with an Application to Boosting Oblique Decision Tree (IJCAI 2007)
- Claudia Henry, Richard Nock, Frank Nielsen
- Paper (https://www.ijcai.org/Proceedings/07/Papers/135.pdf)
- Scalable Look-ahead Linear Regression Trees (KDD 2007)
- David S. Vogel, Ognian Asparouhov, Tobias Scheffer
- Paper (https://www.cs.uni-potsdam.de/ml/publications/kdd2007.pdf)
- Mining Optimal Decision Trees from Itemset Lattices (KDD 2007)
- Siegfried Nijssen, Élisa Fromont
- Paper (https://hal.archives-ouvertes.fr/hal-00372011/document)
- A Hybrid Multi-group Privacy-Preserving Approach for Building Decision Trees (PAKDD 2007)
- Zhouxuan Teng, Wenliang Du
- Paper (https://link.springer.com/chapter/10.1007/978-3-540-71701-0_30)
2006
- Decision Tree Methods for Finding Reusable MDP Homomorphisms (AAAI 2006)
- Alicia P. Wolfe, Andrew G. Barto
- Paper (https://www.aaai.org/Papers/AAAI/2006/AAAI06-085.pdf)
- A Fast Decision Tree Learning Algorithm (AAAI 2006)
- Jiang Su, Harry Zhang
- Paper (http://www.cs.unb.ca/~hzhang/publications/AAAI06.pdf)
- Anytime Induction of Decision Trees: An Iterative Improvement Approach (AAAI 2006)
- Saher Esmeir, Shaul Markovitch
- Paper (https://www.aaai.org/Papers/AAAI/2006/AAAI06-056.pdf)
- When a Decision Tree Learner Has Plenty of Time (AAAI 2006)
- Saher Esmeir, Shaul Markovitch
- Paper (https://www.aaai.org/Papers/AAAI/2006/AAAI06-259.pdf)
- Decision Trees for Functional Variables (ICDM 2006)
- Suhrid Balakrishnan, David Madigan
- Paper (http://archive.dimacs.rutgers.edu/Research/MMS/PAPERS/fdt17.pdf)
- Cost-Sensitive Decision Tree Learning for Forensic Classification (ECML 2006)
- Jason V. Davis, Jungwoo Ha, Christopher J. Rossbach, Hany E. Ramadan, Emmett Witchel
- Paper (https://www.cs.utexas.edu/users/witchel/pubs/davis-ecml06.pdf)
- Improving the Ranking Performance of Decision Trees (ECML 2006)
- Bin Wang, Harry Zhang
- Paper (https://link.springer.com/chapter/10.1007/11871842_44)
- A General Framework for Accurate and Fast Regression by Data Summarization in Random Decision Trees (KDD 2006)
- Wei Fan, Joe McCloskey, Philip S. Yu
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.442.2004&rep=rep1&type=pdf)
- Constructing Decision Trees for Graph-Structured Data by Chunkingless Graph-Based Induction (PAKDD 2006)
- Phu Chien Nguyen, Kouzou Ohara, Akira Mogi, Hiroshi Motoda, Takashi Washio
- Paper (http://www.ar.sanken.osaka-u.ac.jp/~motoda/papers/pakdd06.pdf)
- Variable Randomness in Decision Tree Ensembles (PAKDD 2006)
- Fei Tony Liu, Kai Ming Ting
- Paper (https://link.springer.com/chapter/10.1007/11731139_12)
- Generalized Conditional Entropy and a Metric Splitting Criterion for Decision Trees (PAKDD 2006)
- Dan A. Simovici, Szymon Jaroszewicz
- Paper
(https://www.researchgate.net/profile/Szymon_Jaroszewicz/publication/220895184_Generalized_Conditional_Entropy_and_a_Metric_Splitting_Criterion_for_Decision_Trees/links/0fcfd50b1267f7b868000000/Generalized-Conditional-Entropy-and-a-Metric-Splitti
ng-Criterion-for-Decision-Trees.pdf)
- Decision Trees for Hierarchical Multilabel Classification: A Case Study in Functional Genomics (PKDD 2006)
- Hendrik Blockeel, Leander Schietgat, Jan Struyf, Saso Dzeroski, Amanda Clare
- Paper (https://link.springer.com/chapter/10.1007/11871637_7)
- k-Anonymous Decision Tree Induction (PKDD 2006)
- Arik Friedman, Assaf Schuster, Ran Wolff
- Paper (http://www.cs.technion.ac.il/~arikf/online-publications/kADET06.pdf)
2005
- Representing Conditional Independence Using Decision Trees (AAAI 2005)
- Jiang Su, Harry Zhang
- Paper (http://www.cs.unb.ca/~hzhang/publications/AAAI051SuJ.pdf)
- Use of Expert Knowledge for Decision Tree Pruning (AAAI 2005)
- Jingfeng Cai, John Durkin
- Paper (http://www.aaai.org/Papers/AAAI/2005/SA05-009.pdf)
- Model Selection in Omnivariate Decision Trees (ECML 2005)
- Olcay Taner Yildiz, Ethem Alpaydin
- Paper (https://www.cmpe.boun.edu.tr/~ethem/files/papers/yildiz_ecml05.pdf)
- Combining Bias and Variance Reduction Techniques for Regression Trees (ECML 2005)
- Yuk Lai Suen, Prem Melville, Raymond J. Mooney
- Paper (http://www.cs.utexas.edu/users/ml/papers/bv-ecml-05.pdf)
- Simple Test Strategies for Cost-Sensitive Decision Trees (ECML 2005)
- Shengli Sheng, Charles X. Ling, Qiang Yang
- Paper (https://www.researchgate.net/publication/3297582_Test_strategies_for_cost-sensitive_decision_trees)
- Effective Estimation of Posterior Probabilities: Explaining the Accuracy of Randomized Decision Tree Approaches (ICDM 2005)
- Wei Fan, Ed Greengrass, Joe McCloskey, Philip S. Yu, Kevin Drummey
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.218.9713&rep=rep1&type=pdf)
- Exploiting Informative Priors for Bayesian Classification and Regression Trees (IJCAI 2005)
- Nicos Angelopoulos, James Cussens
- Paper (https://www.ijcai.org/Proceedings/05/Papers/1013.pdf)
- Ranking Cases with Decision Trees: a Geometric Method that Preserves Intelligibility (IJCAI 2005)
- Isabelle Alvarez, Stephan Bernard
- Paper (https://www.ijcai.org/Proceedings/05/Papers/1502.pdf)
- Maximizing Tree Diversity by Building Complete-Random Decision Trees (PAKDD 2005)
- Fei Tony Liu, Kai Ming Ting, Wei Fan
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.218.7805&rep=rep1&type=pdf)
- Hybrid Cost-Sensitive Decision Tree (PKDD 2005)
- Shengli Sheng, Charles X. Ling
- Paper (https://cling.csd.uwo.ca/papers/pkdd05a.pdf)
- Tree2 - Decision Trees for Tree Structured Data (PKDD 2005)
- Björn Bringmann, Albrecht Zimmermann
- Paper (https://link.springer.com/chapter/10.1007/11564126_10)
- Building Decision Trees on Records Linked through Key References (SDM 2005)
- Ke Wang, Yabo Xu, Philip S. Yu, Rong She
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.215.7181&rep=rep1&type=pdf)
- Decision Tree Induction in High Dimensional, Hierarchically Distributed Databases (SDM 2005)
- Amir Bar-Or, Ran Wolff, Assaf Schuster, Daniel Keren
- Paper (https://www.semanticscholar.org/paper/Decision-Tree-Induction-in-High-Dimensional%2C-Bar-Or-Wolff/90235fc35c27dae273681f7847c2b20ff37928a9)
- Boosted Decision Trees for Word Recognition in Handwritten Document Retrieval (SIGIR 2005)
- Nicholas R. Howe, Toni M. Rath, R. Manmatha
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.152.1551&rep=rep1&type=pdf)
2004
- On the Optimality of Probability Estimation by Random Decision Trees (AAAI 2004)
- Wei Fan
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.447.2128&rep=rep1&type=pdf)
- Occam's Razor and a Non-Syntactic Measure of Decision Tree Complexity (AAAI 2004)
- Goutam Paul
- Paper (https://www.aaai.org/Papers/AAAI/2004/AAAI04-130.pdf)
- Using Emerging Patterns and Decision Trees in Rare-Class Classification (ICDM 2004)
- Hamad Alhammady, Kotagiri Ramamohanarao
- Paper (https://ieeexplore.ieee.org/abstract/document/1410299)
- Orthogonal Decision Trees (ICDM 2004)
- Hillol Kargupta, Haimonti Dutta
- Paper (https://www.csee.umbc.edu/~hillol/PUBS/odtree.pdf)
- Improving the Reliability of Decision Tree and Naive Bayes Learners (ICDM 2004)
- David George Lindsay, Siân Cox
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.521.3127&rep=rep1&type=pdf)
- Communication Efficient Construction of Decision Trees Over Heterogeneously Distributed Data (ICDM 2004)
- Chris Giannella, Kun Liu, Todd Olsen, Hillol Kargupta
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.7119&rep=rep1&type=pdf)
- Decision Tree Evolution Using Limited Number of Labeled Data Items from Drifting Data Streams (ICDM 2004)
- Wei Fan, Yi-an Huang, Philip S. Yu
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.218.9450&rep=rep1&type=pdf)
- Lookahead-based Algorithms for Anytime Induction of Decision Trees (ICML 2004)
- Saher Esmeir, Shaul Markovitch
- Paper (http://www.cs.technion.ac.il/~shaulm/papers/pdf/Esmeir-Markovitch-icml2004.pdf)
- Decision Trees with Minimal Costs (ICML 2004)
- Charles X. Ling, Qiang Yang, Jianning Wang, Shichao Zhang
- Paper (https://icml.cc/Conferences/2004/proceedings/papers/136.pdf)
- Training Conditional Random Fields via Gradient Tree Boosting (ICML 2004)
- Thomas G. Dietterich, Adam Ashenfelter, Yaroslav Bulatov
- Paper (http://web.engr.oregonstate.edu/~tgd/publications/ml2004-treecrf.pdf)
- Detecting Structural Metadata with Decision Trees and Transformation-Based Learning (NAACL 2004)
- Joungbum Kim, Sarah E. Schwarm, Mari Ostendorf
- Paper (https://www.aclweb.org/anthology/N04-1018)
- On the Adaptive Properties of Decision Trees (NIPS 2004)
- Clayton D. Scott, Robert D. Nowak
- Paper (https://papers.nips.cc/paper/2625-on-the-adaptive-properties-of-decision-trees.pdf)
- A Metric Approach to Building Decision Trees Based on Goodman-Kruskal Association Index (PAKDD 2004)
- Dan A. Simovici, Szymon Jaroszewicz
- Paper (https://www.researchgate.net/publication/2906289_A_Metric_Approach_to_Building_Decision_Trees_Based_on_Goodman-Kruskal_Association_Index)
2003
- Rademacher Penalization over Decision Tree Prunings (ECML 2003)
- Matti Kääriäinen, Tapio Elomaa
- Paper (https://www.researchgate.net/publication/221112653_Rademacher_Penalization_over_Decision_Tree_Prunings)
- Ensembles of Cascading Trees (ICDM 2003)
- Jinyan Li, Huiqing Liu
- Paper (https://www.researchgate.net/publication/4047523_Ensembles_of_cascading_trees)
- Postprocessing Decision Trees to Extract Actionable Knowledge (ICDM 2003)
- Qiang Yang, Jie Yin, Charles X. Ling, Tielin Chen
- Paper (https://pdfs.semanticscholar.org/b2c6/ff54c7aeefc70820ff04a8fc8b804012c504.pdf)
- K-D Decision Tree: An Accelerated and Memory Efficient Nearest Neighbor Classifier (ICDM 2003)
- Tomoyuki Shibata, Takekazu Kato, Toshikazu Wada
- Paper (https://ieeexplore.ieee.org/abstract/document/1250997)
- Identifying Markov Blankets with Decision Tree Induction (ICDM 2003)
- Lewis J. Frey, Douglas H. Fisher, Ioannis Tsamardinos, Constantin F. Aliferis, Alexander R. Statnikov
- Paper (https://www.semanticscholar.org/paper/Identifying-Markov-Blankets-with-Decision-Tree-Frey-Fisher/1aa0b0ede22f3963c923ea320a8bed91ac5aafbf)
- Comparing Naive Bayes, Decision Trees, and SVM with AUC and Accuracy (ICDM 2003)
- Jin Huang, Jingjing Lu, Charles X. Ling
- Paper (https://pdfs.semanticscholar.org/8a73/74b98a9d94b8c01e996e72340f86a4327869.pdf)
- Boosting Lazy Decision Trees (ICML 2003)
- Xiaoli Zhang Fern, Carla E. Brodley
- Paper (https://www.aaai.org/Papers/ICML/2003/ICML03-026.pdf)
- Decision Tree with Better Ranking (ICML 2003)
- Charles X. Ling, Robert J. Yan
- Paper (https://www.aaai.org/Papers/ICML/2003/ICML03-064.pdf)
- Skewing: An Efficient Alternative to Lookahead for Decision Tree Induction (IJCAI 2003)
- David Page, Soumya Ray
- Paper (http://pages.cs.wisc.edu/~dpage/ijcai3.pdf)
- Efficient Decision Tree Construction on Streaming Data (KDD 2003)
- Ruoming Jin, Gagan Agrawal
- Paper (http://web.cse.ohio-state.edu/~agrawal.28/p/sigkdd03.pdf)
- PaintingClass: Interactive Construction Visualization and Exploration of Decision Trees (KDD 2003)
- Soon Tee Teoh, Kwan-Liu Ma
- Paper (https://www.researchgate.net/publication/220272011_PaintingClass_interactive_construction_visualization_and_exploration_of_decision_trees)
- Accurate Decision Trees for Mining High-Speed Data Streams (KDD 2003)
- João Gama, Ricardo Rocha, Pedro Medas
- Paper (http://staff.icar.cnr.it/manco/Teaching/2006/datamining/Esami2006/ArticoliSelezionatiDM/SEMINARI/Mining%20Data%20Streams/kdd03.pdf)
- Near-Minimax Optimal Classification with Dyadic Classification Trees (NIPS 2003)
- Clayton D. Scott, Robert D. Nowak
- Paper (http://nowak.ece.wisc.edu/nips03.pdf)
- Improving Performance of Decision Tree Algorithms with Multi-edited Nearest Neighbor Rule (PAKDD 2003)
- Chenzhou Ye, Jie Yang, Lixiu Yao, Nian-yi Chen
- Paper (https://www.researchgate.net/publication/220895462_Improving_Performance_of_Decision_Tree_Algorithms_with_Multi-edited_Nearest_Neighbor_Rule)
- Arbogodai: a New Approach for Decision Trees (PKDD 2003)
- Djamel A. Zighed, Gilbert Ritschard, Walid Erray, Vasile-Marian Scuturici
- Paper (http://mephisto.unige.ch/pub/publications/gr/zig_rit_arbo_pkdd03.pdf)
- Communication and Memory Efficient Parallel Decision Tree Construction (SDM 2003)
- Ruoming Jin, Gagan Agrawal
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.3059&rep=rep1&type=pdf)
- Decision Tree Classification of Spatial Data Patterns from Videokeratography using Zernicke Polynomials (SDM 2003)
- Michael D. Twa, Srinivasan Parthasarathy, Thomas W. Raasch, Mark Bullimore
- Paper (https://www.researchgate.net/publication/220907147_Decision_Tree_Classification_of_Spatial_Data_Patterns_From_Videokeratography_Using_Zernike_Polynomials)
2002
- Multiclass Alternating Decision Trees (ECML 2002)
- Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby, Eibe Frank, Mark A. Hall
- Paper (https://www.cs.waikato.ac.nz/~bernhard/papers/ecml2002.pdf)
- Heterogeneous Forests of Decision Trees (ICANN 2002)
- Krzysztof Grabczewski, Wlodzislaw Duch
- Paper (https://fizyka.umk.pl/publications/kmk/02forest.pdf)
- Solving the Fragmentation Problem of Decision Trees by Discovering Boundary Emerging Patterns (ICDM 2002)
- Jinyan Li, Limsoon Wong
- Paper (https://ieeexplore.ieee.org/document/1184021)
- Solving the Fragmentation Problem of Decision Trees by Discovering Boundary Emerging Patterns (ICDM 2002)
- Jinyan Li, Limsoon Wong
- Paper (https://www.comp.nus.edu.sg/~wongls/psZ/decisionTreeandEP-2.ps)
- Learning Decision Trees Using the Area Under the ROC Curve (ICML 2002)
- César Ferri, Peter A. Flach, José Hernández-Orallo
- Paper (http://dmip.webs.upv.es/papers/ICML2002.pdf)
- Finding an Optimal Gain-Ratio Subset-Split Test for a Set-Valued Attribute in Decision Tree Induction (ICML 2002)
- Fumio Takechi, Einoshin Suzuki
- Paper (https://www.researchgate.net/publication/221346121_Finding_an_Optimal_Gain-Ratio_Subset-Split_Test_for_a_Set-Valued_Attribute_in_Decision_Tree_Induction)
- Efficiently Mining Frequent Trees in a Forest (KDD 2002)
- Mohammed Javeed Zaki
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.8511&rep=rep1&type=pdf)
- SECRET: a Scalable Linear Regression Tree Algorithm (KDD 2002)
- Alin Dobra, Johannes Gehrke
- Paper (http://www.cs.cornell.edu/people/dobra/papers/secret-extended.pdf)
- Instability of Decision Tree Classification Algorithms (KDD 2002)
- Ruey-Hsia Li, Geneva G. Belford
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.8094&rep=rep1&type=pdf)
- Extracting Decision Trees From Trained Neural Networks (KDD 2002)
- Olcay Boz
- Paper (http://dspace.library.iitb.ac.in/jspui/bitstream/10054/1285/1/5664.pdf)
- Dyadic Classification Trees via Structural Risk Minimization (NIPS 2002)
- Clayton D. Scott, Robert D. Nowak
- Paper (https://papers.nips.cc/paper/2198-dyadic-classification-trees-via-structural-risk-minimization.pdf)
- Approximate Splitting for Ensembles of Trees using Histograms (SDM 2002)
- Chandrika Kamath, Erick Cantú-Paz, David Littau
- Paper (https://pdfs.semanticscholar.org/0855/0a94993a268e4e3e99c41e7e0ee43eabd993.pdf)
2001
- Japanese Named Entity Recognition based on a Simple Rule Generator and Decision Tree Learning (ACL 2001)
- Hideki Isozaki
- Paper (https://www.aclweb.org/anthology/P01-1041)
- Message Length as an Effective Ockham's Razor in Decision Tree Induction (AISTATS 2001)
- Scott Needham, David L. Dowe
- Paper (www.gatsby.ucl.ac.uk/aistats/aistats2001/files/needham122.ps)
- SQL Database Primitives for Decision Tree Classifiers (CIKM 2001)
- Kai-Uwe Sattler, Oliver Dunemann
- Paper (http://fusion.cs.uni-magdeburg.de/pubs/classprim.pdf)
- A Unified Framework for Evaluation Metrics in Classification Using Decision Trees (ECML 2001)
- Ricardo Vilalta, Mark Brodie, Daniel Oblinger, Irina Rish
- Paper (https://scholar.harvard.edu/files/nkc/files/2015_framework_for_benefit_risk_assessment_value_in_health.pdf)
- Backpropagation in Decision Trees for Regression (ECML 2001)
- Victor Medina-Chico, Alberto Suárez, James F. Lutsko
- Paper (https://link.springer.com/chapter/10.1007/3-540-44795-4_30)
- Consensus Decision Trees: Using Consensus Hierarchical Clustering for Data Relabelling and Reduction (ECML 2001)
- Branko Kavsek, Nada Lavrac, Anuska Ferligoj
- Paper (https://link.springer.com/content/pdf/10.1007/3-540-44795-4_22.pdf)
- Mining Decision Trees from Data Streams in a Mobile Environment (ICDM 2001)
- Hillol Kargupta, Byung-Hoon Park
- Paper (https://ieeexplore.ieee.org/document/989530)
- Efficient Determination of Dynamic Split Points in a Decision Tree (ICDM 2001)
- David Maxwell Chickering, Christopher Meek, Robert Rounthwaite
- Paper (https://pdfs.semanticscholar.org/3587/a245c34ea415b205a903bde3220eb533d1a7.pdf)
- A Comparison of Stacking with Meta Decision Trees to Bagging, Boosting, and Stacking with other Methods (ICDM 2001)
- Bernard Zenko, Ljupco Todorovski, Saso Dzeroski
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.3118&rep=rep1&type=pdf)
- Efficient Algorithms for Decision Tree Cross-Validation (ICML 2001)
- Hendrik Blockeel, Jan Struyf
- Paper (http://www.jmlr.org/papers/volume3/blockeel02a/blockeel02a.pdf)
- Bias Correction in Classification Tree Construction (ICML 2001)
- Alin Dobra, Johannes Gehrke
- Paper (http://www.cs.cornell.edu/people/dobra/papers/icml2001-bias.pdf)
- Breeding Decision Trees Using Evolutionary Techniques (ICML 2001)
- Athanassios Papagelis, Dimitrios Kalles
- Paper (http://www.gatree.com/data/BreedinDecisioTreeUsinEvo.pdf)
- Obtaining Calibrated Probability Estimates from Decision Trees and Naive Bayesian Classifiers (ICML 2001)
- Bianca Zadrozny, Charles Elkan
- Paper (http://cseweb.ucsd.edu/~elkan/calibrated.pdf)
- Temporal Decision Trees or the lazy ECU vindicated (IJCAI 2001)
- Luca Console, Claudia Picardi, Daniele Theseider Dupré
- Paper (https://www.researchgate.net/publication/220815333_Temporal_Decision_Trees_or_the_lazy_ECU_vindicated)
- Data Mining Criteria for Tree-based Regression and Classification (KDD 2001)
- Andreas Buja, Yung-Seop Lee
- Paper (https://repository.upenn.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1406&context=statistics_papers)
- A Decision Tree of Bigrams is an Accurate Predictor of Word Sense (NAACL 2001)
- Ted Pedersen
- Paper (https://www.aclweb.org/anthology/N01-1011)
- Rule Reduction over Numerical Attributes in Decision Tree Using Multilayer Perceptron (PAKDD 2001)
- DaeEun Kim, Jaeho Lee
- Paper (https://dl.acm.org/citation.cfm?id=693490)
- A Scalable Algorithm for Rule Post-pruning of Large Decision Trees (PAKDD 2001)
- Trong Dung Nguyen, Tu Bao Ho, Hiroshi Shimodaira
- Paper (https://link.springer.com/chapter/10.1007/3-540-45357-1_49)
- Optimizing the Induction of Alternating Decision Trees (PAKDD 2001)
- Bernhard Pfahringer, Geoffrey Holmes, Richard Kirkby
- Paper (https://www.researchgate.net/publication/33051701_Optimizing_the_Induction_of_Alternating_Decision_Trees)
- Interactive Construction of Decision Trees (PAKDD 2001)
- Jianchao Han, Nick Cercone
- Paper (https://pure.tue.nl/ws/files/3522084/672434611234867.pdf)
- Bloomy Decision Tree for Multi-objective Classification (PKDD 2001)
- Einoshin Suzuki, Masafumi Gotoh, Yuta Choki
- Paper (https://link.springer.com/chapter/10.1007/3-540-44794-6_36)
- A Fourier Analysis Based Approach to Learning Decision Trees in a Distributed Environment (SDM 2001)
- Byung-Hoon Park, Rajeev Ayyagari, Hillol Kargupta
- Paper (https://archive.siam.org/meetings/sdm01/pdf/sdm01_19.pdf)
2000
- Intuitive Representation of Decision Trees Using General Rules and Exceptions (AAAI 2000)
- Bing Liu, Minqing Hu, Wynne Hsu
- Paper (https://pdfs.semanticscholar.org/e284/96551e595f1850a53f93affa98919147712f.pdf)
- Tagging Unknown Proper Names Using Decision Trees (ACL 2000)
- Frédéric Béchet, Alexis Nasr, Franck Genet
- Paper (https://www.aclweb.org/anthology/P00-1011)
- Clustering Through Decision Tree Construction (CIKM 2000)
- Bing Liu, Yiyuan Xia, Philip S. Yu
- Paper (https://dl.acm.org/citation.cfm?id=354775)
- Handling Continuous-Valued Attributes in Decision Tree with Neural Network Modelling (ECML 2000)
- DaeEun Kim, Jaeho Lee
- Paper (https://link.springer.com/content/pdf/10.1007/3-540-45164-1_22.pdf)
- Investigation and Reduction of Discretization Variance in Decision Tree Induction (ECML 2000)
- Pierre Geurts, Louis Wehenkel
- Paper (https://link.springer.com/chapter/10.1007/3-540-45164-1_17)
- Nonparametric Regularization of Decision Trees (ECML 2000)
- Tobias Scheffer
- Paper (https://link.springer.com/chapter/10.1007/3-540-45164-1_36)
- Exploiting the Cost (In)sensitivity of Decision Tree Splitting Criteria (ICML 2000)
- Chris Drummond, Robert C. Holte
- Paper (https://pdfs.semanticscholar.org/160e/21c3acc925b60dc040cb1705e58bb166b045.pdf)
- Multi-agent Q-learning and Regression Trees for Automated Pricing Decisions (ICML 2000)
- Manu Sridharan, Gerald Tesauro
- Paper (https://manu.sridharan.net/files/icml00.pdf)
- Growing Decision Trees on Support-less Association Rules (KDD 2000)
- Ke Wang, Senqiang Zhou, Yu He
- Paper (https://www2.cs.sfu.ca/~wangk/pub/kdd002.pdf)
- Efficient Algorithms for Constructing Decision Trees with Constraints (KDD 2000)
- Minos N. Garofalakis, Dongjoon Hyun, Rajeev Rastogi, Kyuseok Shim
- Paper (http://www.softnet.tuc.gr/~minos/Papers/kdd00-cam.pdf)
- Interactive Visualization in Mining Large Decision Trees (PAKDD 2000)
- Trong Dung Nguyen, Tu Bao Ho, Hiroshi Shimodaira
- Paper (https://link.springer.com/content/pdf/10.1007/3-540-45571-X_40.pdf)
- VQTree: Vector Quantization for Decision Tree Induction (PAKDD 2000)
- Shlomo Geva, Lawrence Buckingham
- Paper (https://link.springer.com/chapter/10.1007%2F3-540-45571-X_41)
- Some Enhencements of Decision Tree Bagging (PKDD 2000)
- Pierre Geurts
- Paper (https://link.springer.com/chapter/10.1007/3-540-45372-5_14)
- Combining Multiple Models with Meta Decision Trees (PKDD 2000)
- Ljupco Todorovski, Saso Dzeroski
- Paper (http://kt.ijs.si/bernard/mdts/pub01.pdf)
- Induction of Multivariate Decision Trees by Using Dipolar Criteria (PKDD 2000)
- Leon Bobrowski, Marek Kretowski
- Paper (https://link.springer.com/chapter/10.1007/3-540-45372-5_33)
- Decision Tree Toolkit: A Component-Based Library of Decision Tree Algorithms (PKDD 2000)
- Nikos Drossos, Athanassios Papagelis, Dimitrios Kalles
- Paper (https://link.springer.com/chapter/10.1007/3-540-45372-5_40)
1999
- Modeling Decision Tree Performance with the Power Law (AISTATS 1999)
- Lewis J. Frey, Douglas H. Fisher
- Paper (https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/ModelingTree.pdf)
- Causal Mechanisms and Classification Trees for Predicting Chemical Carcinogens (AISTATS 1999)
- Louis Anthony Cox Jr.
- Paper (https://pdfs.semanticscholar.org/0d7b/1d55c5abfd024aacf645c66d0c90c283814e.pdf)
- POS Tags and Decision Trees for Language Modeling (EMNLP 1999)
- Peter A. Heeman
- Paper (https://www.aclweb.org/anthology/W99-0617)
- Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees (ICML 1999)
- Zijian Zheng, Geoffrey I. Webb, Kai Ming Ting
- Paper (https://pdfs.semanticscholar.org/067e/86836ddbcb5e2844e955c16e058366a18c77.pdf)
- The Alternating Decision Tree Learning Algorithm (ICML 1999)
- Yoav Freund, Llew Mason
- Paper (https://cseweb.ucsd.edu/~yfreund/papers/atrees.pdf)
- Code (https://github.com/rajanil/mkboost)
- Boosting with Multi-Way Branching in Decision Trees (NIPS 1999)
- Yishay Mansour, David A. McAllester
- Paper (https://papers.nips.cc/paper/1659-boosting-with-multi-way-branching-in-decision-trees.pdf)
1998
- Learning Sorting and Decision Trees with POMDPs (ICML 1998)
- Blai Bonet, Hector Geffner
- Paper (https://bonetblai.github.io/reports/icml98-learning.pdf)
- Using a Permutation Test for Attribute Selection in Decision Trees (ICML 1998)
- Eibe Frank, Ian H. Witten
- Paper (https://pdfs.semanticscholar.org/9aa9/21b0203e06e98b49bf726a33e124f4310ea3.pdf)
- A Fast and Bottom-Up Decision Tree Pruning Algorithm with Near-Optimal Generalization (ICML 1998)
- Michael J. Kearns, Yishay Mansour
- Paper (https://www.cis.upenn.edu/~mkearns/papers/pruning.pdf)
1997
- Pessimistic Decision Tree Pruning Based Continuous-Time (ICML 1997)
- Yishay Mansour
- Paper (https://pdfs.semanticscholar.org/b6fc/e37612db10a9756b904b5e79e1144ca12574.pdf)
- PAC Learning with Constant-Partition Classification Noise and Applications to Decision Tree Induction (ICML 1997)
- Scott E. Decatur
- Paper (https://www.semanticscholar.org/paper/PAC-Learning-with-Constant-Partition-Classification-Decatur/dd205073aeb512ecd1e823b35f556058fdeea5e0)
- Option Decision Trees with Majority Votes (ICML 1997)
- Ron Kohavi, Clayton Kunz
- Paper (https://pdfs.semanticscholar.org/383b/381d1ac0bb41ec595e0d1603ed642809eb86.pdf)
- Integrating Feature Construction with Multiple Classifiers in Decision Tree Induction (ICML 1997)
- Ricardo Vilalta, Larry A. Rendell
- Paper (https://pdfs.semanticscholar.org/1f73/d9d409a75d16871cfa1182ac72b37c839d86.pdf)
- Functional Models for Regression Tree Leaves (ICML 1997)
- Luís Torgo
- Paper (https://pdfs.semanticscholar.org/48e4/b3187ca234308e97e1ac0cab84222c603bdd.pdf)
- The Effects of Training Set Size on Decision Tree Complexity (ICML 1997)
- Tim Oates, David D. Jensen
- Paper (https://pdfs.semanticscholar.org/e003/9dbdec3bd4cfbb3273b623fbed2d6b2f0cc9.pdf)
- Unsupervised On-line Learning of Decision Trees for Hierarchical Data Analysis (NIPS 1997)
- Marcus Held, Joachim M. Buhmann
- Paper (https://papers.nips.cc/paper/1479-unsupervised-on-line-learning-of-decision-trees-for-hierarchical-data-analysis.pdf)
- Data-Dependent Structural Risk Minimization for Perceptron Decision Trees (NIPS 1997)
- John Shawe-Taylor, Nello Cristianini
- Paper (https://papers.nips.cc/paper/1359-data-dependent-structural-risk-minimization-for-perceptron-decision-trees)
- Generalization in Decision Trees and DNF: Does Size Matter (NIPS 1997)
- Mostefa Golea, Peter L. Bartlett, Wee Sun Lee, Llew Mason
- Paper (https://papers.nips.cc/paper/1340-generalization-in-decision-trees-and-dnf-does-size-matter.pdf)
1996
- Second Tier for Decision Trees (ICML 1996)
- Miroslav Kubat
- Paper (https://pdfs.semanticscholar.org/b619/7c531b1c83dfaa52563449f9b8248cc68c5a.pdf)
- Non-Linear Decision Trees - NDT (ICML 1996)
- Andreas Ittner, Michael Schlosser
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.2133&rep=rep1&type=pdf)
- Learning Relational Concepts with Decision Trees (ICML 1996)
- Peter Geibel, Fritz Wysotzki
- Paper (https://pdfs.semanticscholar.org/32f1/78d7266fee779257b87ac8f948951db57d1e.pdf)
1995
- A Hill-Climbing Approach for Optimizing Classification Trees (AISTATS 1995)
- Xiaorong Sun, Steve Y. Chiu, Louis Anthony Cox Jr.
- Paper (https://link.springer.com/chapter/10.1007%2F978-1-4612-2404-4_11)
- An Exact Probability Metric for Decision Tree Splitting (AISTATS 1995)
- J. Kent Martin
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.6378&rep=rep1&type=pdf)
- On Pruning and Averaging Decision Trees (ICML 1995)
- Jonathan J. Oliver, David J. Hand
- Paper (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.6733&rep=rep1&type=pdf)
- On Handling Tree-Structured Attributed in Decision Tree Learning (ICML 1995)
- Hussein Almuallim, Yasuhiro Akiba, Shigeo Kaneda
- Paper (https://www.sciencedirect.com/science/article/pii/B9781558603776500116)
- Retrofitting Decision Tree Classifiers Using Kernel Density Estimation (ICML 1995)
- Padhraic Smyth, Alexander G. Gray, Usama M. Fayyad
- Paper (https://pdfs.semanticscholar.org/3a05/8ab505f096b23962591bb14e495a543aa2a1.pdf)
- Increasing the Performance and Consistency of Classification Trees by Using the Accuracy Criterion at the Leaves (ICML 1995)
- David J. Lubinsky
- Paper (https://www.sciencedirect.com/science/article/pii/B9781558603776500530)
- Efficient Algorithms for Finding Multi-way Splits for Decision Trees (ICML 1995)
- Truxton Fulton, Simon Kasif, Steven Salzberg
- Paper (https://www.sciencedirect.com/science/article/pii/B9781558603776500384)
- Theory and Applications of Agnostic PAC-Learning with Small Decision Trees (ICML 1995)
- Peter Auer, Robert C. Holte, Wolfgang Maass
- Paper (https://igi-web.tugraz.at/PDF/77.pdf)
- Boosting Decision Trees (NIPS 1995)
- Harris Drucker, Corinna Cortes
- Paper (http://papers.nips.cc/paper/1059-boosting-decision-trees.pdf)
- Using Pairs of Data-Points to Define Splits for Decision Trees (NIPS 1995)
- Geoffrey E. Hinton, Michael Revow
- Paper (https://www.cs.toronto.edu/~hinton/absps/bcart.pdf)
- A New Pruning Method for Solving Decision Trees and Game Trees (UAI 1995)
- Prakash P. Shenoy
- Paper (https://arxiv.org/abs/1302.4981)
1994
- A Statistical Approach to Decision Tree Modeling (ICML 1994)
- Michael I. Jordan
- Paper (https://www.sciencedirect.com/science/article/pii/B9781558603356500519)
- In Defense of C4.5: Notes Learning One-Level Decision Trees (ICML 1994)
- Tapio Elomaa
- Paper (http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.9386)
- An Improved Algorithm for Incremental Induction of Decision Trees (ICML 1994)
- Paul E. Utgoff
- Paper (https://www.sciencedirect.com/science/article/pii/B9781558603356500465)
- Decision Tree Parsing using a Hidden Derivation Model (NAACL 1994)
- Frederick Jelinek, John D. Lafferty, David M. Magerman, Robert L. Mercer, Adwait Ratnaparkhi, Salim Roukos
- Paper (http://acl-arc.comp.nus.edu.sg/archives/acl-arc-090501d3/data/pdf/anthology-PDF/H/H94/H94-1052.pdf)
1993
- Using Decision Trees to Improve Case-Based Learning (ICML 1993)
- Claire Cardie
- Paper (https://www.cs.cornell.edu/home/cardie/papers/ml-93.ps)
1991
- Context Dependent Modeling of Phones in Continuous Speech Using Decision Trees (NAACL 1991)
- Lalit R. Bahl, Peter V. de Souza, P. S. Gopalakrishnan, David Nahamoo, Michael Picheny
- Paper (https://www.aclweb.org/anthology/H91-1051.pdf)
1989
- Performance Comparisons Between Backpropagation Networks and Classification Trees on Three Real-World Applications (NIPS 1989)
- Les E. Atlas, Ronald A. Cole, Jerome T. Connor, Mohamed A. El-Sharkawi, Robert J. Marks II, Yeshwant K. Muthusamy, Etienne Barnard
- Paper (https://papers.nips.cc/paper/203-performance-comparisons-between-backpropagation-networks-and-classification-trees-on-three-real-world-applications)
1988
- Multiple Decision Trees (UAI 1988)
- Suk Wah Kwok, Chris Carter
- Paper (https://arxiv.org/abs/1304.2363)
1987
- Decision Tree Induction Systems: A Bayesian Analysis (UAI 1987)
- Wray L. Buntine
- Paper (https://arxiv.org/abs/1304.2732)
――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――
License
- CC0 Universal (https://github.com/benedekrozemberczki/awesome-decision-tree-papers/blob/master/LICENSE)
decisiontreepapers Github: https://github.com/benedekrozemberczki/awesome-decision-tree-papers