Files
awesome-awesomeness/html/montecarlotreesearchpapers.html
2025-07-18 23:13:11 +02:00

834 lines
30 KiB
HTML
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<h1 id="awesome-monte-carlo-tree-search-papers.">Awesome Monte Carlo
Tree Search Papers.</h1>
<a href="https://github.com/sindresorhus/awesome"><img
src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg"
alt="Awesome" /></a> <a href="http://makeapullrequest.com"><img
src="https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square"
alt="PRs Welcome" /></a><a
href="https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers/archive/master.zip"><img
src="https://img.shields.io/github/repo-size/benedekrozemberczki/awesome-monte-carlo-tree-search-papers.svg"
alt="repo size" /></a> <img
src="https://img.shields.io/github/license/benedekrozemberczki/awesome-tree-search-papers.svg?color=blue"
alt="License" /> <a
href="https://twitter.com/intent/follow?screen_name=benrozemberczki"><img
src="https://img.shields.io/twitter/follow/benrozemberczki?style=social&amp;logo=twitter"
alt="benedekrozemberczki" /></a>
<p align="center">
<img width="600" src="tree.png">
</p>
<hr />
<p>A curated list of Monte Carlo tree search papers with implementations
from the following conferences/journals:</p>
<ul>
<li>Machine learning
<ul>
<li><a href="https://nips.cc/">NeurIPS</a></li>
<li><a href="https://icml.cc/">ICML</a></li>
</ul></li>
<li>Computer vision
<ul>
<li><a href="http://cvpr2019.thecvf.com/">CVPR</a></li>
<li><a href="http://iccv2019.thecvf.com/">ICCV</a></li>
</ul></li>
<li>Natural language processing
<ul>
<li><a href="http://www.acl2019.org/EN/index.xhtml">ACL</a></li>
</ul></li>
<li>Data
<ul>
<li><a href="https://www.kdd.org/">KDD</a></li>
</ul></li>
<li>Artificial intelligence
<ul>
<li><a href="https://www.aaai.org/">AAAI</a></li>
<li><a href="https://www.aistats.org/">AISTATS</a></li>
<li><a href="https://www.ijcai.org/">IJCAI</a></li>
<li><a href="http://www.auai.org/">UAI</a></li>
</ul></li>
<li>Robotics
<ul>
<li><a
href="https://www.journals.elsevier.com/robotics-and-autonomous-systems">RAS</a></li>
</ul></li>
<li>Games
<ul>
<li><a href="http://www.ieee-cig.org/">CIG</a></li>
</ul></li>
</ul>
<p>Similar collections about <a
href="https://github.com/benedekrozemberczki/awesome-graph-classification">graph
classification</a>, <a
href="https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers">gradient
boosting</a>, <a
href="https://github.com/benedekrozemberczki/awesome-decision-tree-papers">classification/regression
trees</a>, <a
href="https://github.com/benedekrozemberczki/awesome-fraud-detection-papers">fraud
detection</a>, and <a
href="https://github.com/benedekrozemberczki/awesome-community-detection">community
detection</a> papers with implementations.</p>
<h2 id="section">2023</h2>
<ul>
<li><strong>Symbolic Physics Learner: Discovering governing equations
via Monte Carlo tree search (ICLR 2023)</strong>
<ul>
<li>Fangzheng Sun, Yang Liu, Jian-Xun Wang, Hao Sun</li>
<li><a href="https://arxiv.org/abs/2205.13134">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-1">2022</h2>
<ul>
<li><strong>Finding Backdoors to Integer Programs: A Monte Carlo Tree
Search Framework (AAAI 2022)</strong>
<ul>
<li>Elias B. Khalil, Pashootan Vaezipoor, Bistra Dilkina</li>
<li><a href="https://arxiv.org/abs/2110.08423">[Paper]</a></li>
</ul></li>
<li><strong>NSGZero: Efficiently Learning Non-exploitable Policy in
Large-Scale Network Security Games with Neural Monte Carlo Tree Search
(AAAI 2022)</strong>
<ul>
<li>Wanqi Xue, Bo An, Chai Kiat Yeo</li>
<li><a href="https://arxiv.org/abs/2201.07224">[Paper]</a></li>
</ul></li>
<li><strong>Solving Disjunctive Temporal Networks with Uncertainty under
Restricted Time-Based Controllability Using Tree Search and Graph Neural
Networks (AAAI 2022)</strong>
<ul>
<li>Kevin Osanlou, Jeremy Frank, Andrei Bursuc, Tristan Cazenave, Eric
Jacopin, Christophe Guettier, J. Benton</li>
<li><a
href="https://ojs.aaai.org/index.php/AAAI/article/view/21224">[Paper]</a></li>
</ul></li>
<li><strong>Qubit Routing Using Graph Neural Network Aided Monte Carlo
Tree Search (AAAI 2022)</strong>
<ul>
<li>Animesh Sinha, Utkarsh Azad, Harjinder Singh</li>
<li><a href="https://arxiv.org/abs/2104.01992">[Paper]</a></li>
</ul></li>
<li><strong>Split Moves for Monte-Carlo Tree Search (AAAI 2022)</strong>
<ul>
<li>Jakub Kowalski, Maksymilian Mika, Wojciech Pawlik, Jakub Sutowicz,
Marek Szykula, Mark H. M. Winands</li>
<li><a href="https://arxiv.org/abs/2112.07761">[Paper]</a></li>
</ul></li>
<li><strong>Procrastinated Tree Search: Black-Box Optimization with
Delayed%2C Noisy and Multi-Fidelity Feedback (AAAI 2022)</strong>
<ul>
<li>Junxiong Wang, Debabrota Basu, Immanuel Trummer</li>
<li><a href="https://arxiv.org/abs/2110.07232">[Paper]</a></li>
</ul></li>
<li><strong>Enabling Arbitrary Translation Objectives with Adaptive Tree
Search (ICLR 2022)</strong>
<ul>
<li>Wang Ling, Wojciech Stokowiec, Domenic Donato, Chris Dyer, Lei Yu,
Laurent Sartran, Austin Matthews</li>
<li><a
href="https://en.x-mol.com/paper/article/1496885785571840000">[Paper]</a></li>
</ul></li>
<li><strong>Whats Wrong with Deep Learning in Tree Search for
Combinatorial Optimization (ICLR 2022)</strong>
<ul>
<li>Maximili1an Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen
Seidel, Tobias Friedrich</li>
<li><a href="https://arxiv.org/abs/2201.10494">[Paper]</a></li>
</ul></li>
<li><strong>Anytime Capacity Expansion in Medical Residency Match by
Monte Carlo Tree Search (IJCAI 2022)</strong>
<ul>
<li>Kenshi Abe, Junpei Komiyama, Atsushi Iwasaki</li>
<li><a href="https://www.ijcai.org/proceedings/2022/1">[Paper]</a></li>
</ul></li>
<li><strong>Fast and Accurate User Cold-Start Learning Using Monte Carlo
Tree Search (RECSYS 2022)</strong>
<ul>
<li>Dilina Chandika Rajapakse, Douglas Leith</li>
<li><a
href="https://www.scss.tcd.ie/Doug.Leith/pubs/recsys22-35.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-2">2021</h2>
<ul>
<li><strong>Learning to Stop: Dynamic Simulation Monte-Carlo Tree Search
(AAAI 2021)</strong>
<ul>
<li>Li-Cheng Lan, Ti-Rong Wu, I-Chen Wu, Cho-Jui Hsieh</li>
<li><a href="https://arxiv.org/abs/2012.07910">[Paper]</a></li>
</ul></li>
<li><strong>Dec-SGTS: Decentralized Sub-Goal Tree Search for Multi-Agent
Coordination (AAAI 2021)</strong>
<ul>
<li>Minglong Li, Zhongxuan Cai, Wenjing Yang, Lixia Wu, Yinghui Xu, Ji
Wang</li>
<li><a
href="https://ojs.aaai.org/index.php/AAAI/article/view/17345">[Paper]</a></li>
</ul></li>
<li><strong>Improved POMDP Tree Search Planning with Prioritized Action
Branching (AAAI 2021)</strong>
<ul>
<li>John Mern, Anil Yildiz, Lawrence Bush, Tapan Mukerji, Mykel J.
Kochenderfer</li>
<li><a href="https://arxiv.org/abs/2010.03599">[Paper]</a></li>
</ul></li>
<li><strong>Dynamic Automaton-Guided Reward Shaping for Monte Carlo Tree
Search (AAAI 2021)</strong>
<ul>
<li>Alvaro Velasquez, Brett Bissey, Lior Barak, Andre Beckus, Ismail
Alkhouri, Daniel Melcer, George K. Atia</li>
<li><a
href="https://ojs.aaai.org/index.php/AAAI/article/view/17427">[Paper]</a></li>
</ul></li>
<li><strong>Single Player Monte-Carlo Tree Search Based on the
Plackett-Luce Model (AAAI 2021)</strong>
<ul>
<li>Felix Mohr, Viktor Bengs, Eyke Hüllermeier</li>
<li><a
href="https://ojs.aaai.org/index.php/AAAI/article/view/17468">[Paper]</a></li>
</ul></li>
<li><strong>Learning to Pack: A Data-Driven Tree Search Algorithm for
Large-Scale 3D Bin Packing Problem (CIKM 2021)</strong>
<ul>
<li>Qianwen Zhu, Xihan Li, Zihan Zhang, Zhixing Luo, Xialiang Tong,
Mingxuan Yuan, Jia Zeng</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3459637.3481933">[Paper]</a></li>
</ul></li>
<li><strong>Practical Massively Parallel Monte-Carlo Tree Search Applied
to Molecular Design (ICLR 2021)</strong>
<ul>
<li>Xiufeng Yang, Tanuj Kr Aasawat, Kazuki Yoshizoe</li>
<li><a href="https://arxiv.org/abs/2006.10504">[Paper]</a></li>
</ul></li>
<li><strong>Convex Regularization in Monte-Carlo Tree Search (ICML
2021)</strong>
<ul>
<li>Tuan Dam, Carlo DEramo, Jan Peters, Joni Pajarinen</li>
<li><a href="https://arxiv.org/abs/2007.00391">[Paper]</a></li>
</ul></li>
<li><strong>Combining Tree Search and Action Prediction for
State-of-the-Art Performance in DouDiZhu (IJCAI 2021)</strong>
<ul>
<li>Yunsheng Zhang, Dong Yan, Bei Shi, Haobo Fu, Qiang Fu, Hang Su, Jun
Zhu, Ning Chen</li>
<li><a
href="https://www.ijcai.org/proceedings/2021/470">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-3">2020</h2>
<ul>
<li><strong>Monte Carlo Tree Search in Continuous Spaces Using Voronoi
Optimistic Optimization with Regret Bounds (AAAI 2020)</strong>
<ul>
<li>Beomjoon Kim, Kyungjae Lee, Sungbin Lim, Leslie Pack Kaelbling,
Tomás Lozano-Pérez</li>
<li><a
href="https://www.aaai.org/Papers/AAAI/2020GB/AAAI-KimB.1282.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Neural Architecture Search Using Deep Neural Networks and
Monte Carlo Tree Search (AAAI 2020)</strong>
<ul>
<li>Linnan Wang, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, Rodrigo
Fonseca</li>
<li><a href="https://arxiv.org/abs/1805.07440">[Paper]</a></li>
<li><a
href="https://github.com/linnanwang/AlphaX-NASBench101">[Code]</a></li>
</ul></li>
<li><strong>Monte-Carlo Tree Search in Continuous Action Spaces with
Value Gradients (AAAI 2020)</strong>
<ul>
<li>Jongmin Lee, Wonseok Jeon, Geon-Hyeong Kim, Kee-Eung Kim</li>
<li><a
href="https://www.ijcai.org/Proceedings/16/Papers/104.pdf">[Paper]</a></li>
<li><a href="https://github.com/leekwoon/KR-DL-UCT">[Code]</a></li>
</ul></li>
<li><strong>Approximate Inference in Discrete Distributions with Monte
Carlo Tree Search and Value Functions (AISTATS 2020)</strong>
<ul>
<li>Lars Buesing, Nicolas Heess, Theophane Weber</li>
<li><a href="https://arxiv.org/abs/1910.06862">[Paper]</a></li>
</ul></li>
<li><strong>Watch the Unobserved: A Simple Approach to Parallelizing
Monte Carlo Tree Search (ICLR 2020)</strong>
<ul>
<li>Anji Liu, Jianshu Chen, Mingze Yu, Yu Zhai, Xuewen Zhou, Ji Liu</li>
<li><a
href="https://openreview.net/forum?id=BJlQtJSKDB">[Paper]</a></li>
<li><a href="https://github.com/brilee/python_uct">[Code]</a></li>
</ul></li>
<li><strong>Information Particle Filter Tree: An Online Algorithm for
POMDPs with Belief-Based Rewards on Continuous Domains (ICML
2020)</strong>
<ul>
<li>Johannes Fischer, Ömer Sahin Tas</li>
<li><a
href="http://proceedings.mlr.press/v119/fischer20a.html">[Paper]</a></li>
<li><a
href="https://github.com/johannes-fischer/icml2020_ipft">[Code]</a></li>
</ul></li>
<li><strong>Sub-Goal Trees a Framework for Goal-Based Reinforcement
Learning (ICML 2020)</strong>
<ul>
<li>Tom Jurgenson, Or Avner, Edward Groshev, Aviv Tamar</li>
<li><a href="https://arxiv.org/abs/2002.12361">[Paper]</a></li>
</ul></li>
<li><strong>Monte-Carlo Tree Search for Scalable Coalition Formation
(IJCAI 2020)</strong>
<ul>
<li>Feng Wu, Sarvapali D. Ramchurn</li>
<li><a href="https://www.ijcai.org/Proceedings/2020/57">[Paper]</a></li>
</ul></li>
<li><strong>Generalized Mean Estimation in Monte-Carlo Tree Search
(IJCAI 2020)</strong>
<ul>
<li>Tuan Dam, Pascal Klink, Carlo DEramo, Jan Peters, Joni
Pajarinen</li>
<li><a href="https://arxiv.org/abs/1911.00384">[Paper]</a></li>
</ul></li>
<li><strong>Sparse Tree Search Optimality Guarantees in POMDPs with
Continuous Observation Spaces (IJCAI 2020)</strong>
<ul>
<li>Michael H. Lim, Claire Tomlin, Zachary N. Sunberg</li>
<li><a href="https://arxiv.org/abs/1910.04332">[Paper]</a></li>
</ul></li>
<li><strong>Mix and Match: An Optimistic Tree-Search Approach for
Learning Models from Mixture Distributions (NeurIPS 2020)</strong>
<ul>
<li>Matthew Faw, Rajat Sen, Karthikeyan Shanmugam, Constantine
Caramanis, Sanjay Shakkottai</li>
<li><a href="https://arxiv.org/abs/1907.10154">[Paper]</a></li>
</ul></li>
<li><strong>Extracting Knowledge from Web Text with Monte Carlo Tree
Search (WWW 2020)</strong>
<ul>
<li>Guiliang Liu, Xu Li, Jiakang Wang, Mingming Sun, Ping Li</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3366423.3380010">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-4">2019</h2>
<ul>
<li><strong>ACE: An Actor Ensemble Algorithm for Continuous Control with
Tree Search (AAAI 2019)</strong>
<ul>
<li>Shangtong Zhang, Hengshuai Yao</li>
<li><a href="https://arxiv.org/abs/1811.02696">[Paper]</a></li>
<li><a href="https://github.com/ShangtongZhang/DeepRL">[Code]</a></li>
</ul></li>
<li><strong>A Monte Carlo Tree Search Player for Birds of a Feather
Solitaire (AAAI 2019)</strong>
<ul>
<li>Christian Roberson, Katarina Sperduto</li>
<li><a
href="https://aaai.org/ojs/index.php/AAAI/article/view/5036">[Paper]</a></li>
<li><a
href="http://cs.gettysburg.edu/~tneller/puzzles/boaf/">[Code]</a></li>
</ul></li>
<li><strong>Vine Copula Structure Learning via Monte Carlo Tree Search
(AISTATS 2019)</strong>
<ul>
<li>Bo Chang, Shenyi Pan, Harry Joe</li>
<li><a
href="http://proceedings.mlr.press/v89/chang19a/chang19a.pdf">[Paper]</a></li>
<li><a href="https://github.com/changebo/Vine_MCTS">[Code]</a></li>
</ul></li>
<li><strong>Noisy Blackbox Optimization using Multi-fidelity Queries: A
Tree Search Approach (AISTATS 2019)</strong>
<ul>
<li>Rajat Sen, Kirthevasan Kandasamy, Sanjay Shakkottai</li>
<li><a href="https://arxiv.org/abs/1810.10482">[Paper]</a></li>
<li><a href="https://github.com/rajatsen91/MFTREE_DET">[Code]</a></li>
</ul></li>
<li><strong>Reinforcement Learning Based Monte Carlo Tree Search for
Temporal Path Discovery (ICDM 2019)</strong>
<ul>
<li>Pengfei Ding, Guanfeng Liu, Pengpeng Zhao, An Liu, Zhixu Li, Kai
Zheng</li>
<li><a
href="https://zheng-kai.com/paper/icdm_2019_b.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Monte Carlo Tree Search for Policy Optimization (IJCAI
2019)</strong>
<ul>
<li>Xiaobai Ma, Katherine Rose Driggs-Campbell, Zongzhang Zhang, Mykel
J. Kochenderfer</li>
<li><a
href="https://www.ijcai.org/proceedings/2019/0432.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Subgoal-Based Temporal Abstraction in Monte-Carlo Tree
Search (IJCAI 2019)</strong>
<ul>
<li>Thomas Gabor, Jan Peter, Thomy Phan, Christian Meyer, Claudia
Linnhoff-Popien</li>
<li><a
href="https://www.ijcai.org/proceedings/2019/0772.pdf">[Paper]</a></li>
<li><a href="https://github.com/jnptr/subgoal-mcts">[Code]</a></li>
</ul></li>
<li><strong>Automated Machine Learning with Monte-Carlo Tree Search
(IJCAI 2019)</strong>
<ul>
<li>Herilalaina Rakotoarison, Marc Schoenauer, Michèle Sebag</li>
<li><a
href="https://www.ijcai.org/proceedings/2019/0457.pdf">[Paper]</a></li>
<li><a href="https://github.com/herilalaina/mosaic_ml">[Code]</a></li>
</ul></li>
<li><strong>Multiple Policy Value Monte Carlo Tree Search (IJCAI
2019)</strong>
<ul>
<li>Li-Cheng Lan, Wei Li, Ting-Han Wei, I-Chen Wu</li>
<li><a
href="https://www.ijcai.org/proceedings/2019/0653.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Learning Compositional Neural Programs with Recursive Tree
Search and Planning (NeurIPS 2019)</strong>
<ul>
<li>Thomas Pierrot, Guillaume Ligner, Scott E. Reed, Olivier Sigaud,
Nicolas Perrin, Alexandre Laterre, David Kas, Karim Beguir, Nando de
Freitas</li>
<li><a href="https://arxiv.org/abs/1905.12941">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-5">2018</h2>
<ul>
<li><strong>Monte Carlo Methods for the Game Kingdomino (CIG
2018)</strong>
<ul>
<li>Magnus Gedda, Mikael Z. Lagerkvist, Martin Butler</li>
<li><a href="https://arxiv.org/abs/1807.04458">[Paper]</a></li>
<li><a href="https://github.com/mgedda/kdom-ai">[Code]</a></li>
<li><a href="https://github.com/mratin/kdom">[Game Server]</a></li>
</ul></li>
<li><strong>Reset-free Trial-and-Error Learning for Robot Damage
Recovery (RAS 2018)</strong>
<ul>
<li>Konstantinos Chatzilygeroudis, Vassilis Vassiliades, Jean-Baptiste
Mouret</li>
<li><a href="https://arxiv.org/pdf/1610.04213.pdf">[Paper]</a></li>
<li><a
href="https://github.com/resibots/chatzilygeroudis_2018_rte">[Code]</a></li>
<li><a href="https://github.com/resibots/mcts">[MCTS C++
Library]</a></li>
</ul></li>
<li><strong>Memory-Augmented Monte Carlo Tree Search (AAAI
2018)</strong>
<ul>
<li>Chenjun Xiao, Jincheng Mei, Martin Müller</li>
<li><a
href="https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17139">[Paper]</a></li>
</ul></li>
<li><strong>Feedback-Based Tree Search for Reinforcement Learning (ICML
2018)</strong>
<ul>
<li>Daniel R. Jiang, Emmanuel Ekwedike, Han Liu</li>
<li><a href="https://arxiv.org/abs/1805.05935">[Paper]</a></li>
</ul></li>
<li><strong>Extended Increasing Cost Tree Search for Non-Unit Cost
Domains (IJCAI 2018)</strong>
<ul>
<li>Thayne T. Walker, Nathan R. Sturtevant, Ariel Felner</li>
<li><a href="https://www.ijcai.org/proceedings/2018/74">[Paper]</a></li>
</ul></li>
<li><strong>Three-Head Neural Network Architecture for Monte Carlo Tree
Search (IJCAI 2018)</strong>
<ul>
<li>Chao Gao, Martin Müller, Ryan Hayward</li>
<li><a
href="https://www.ijcai.org/proceedings/2018/523">[Paper]</a></li>
</ul></li>
<li><strong>Bidding in Periodic Double Auctions Using Heuristics and
Dynamic Monte Carlo Tree Search (IJCAI 2018)</strong>
<ul>
<li>Moinul Morshed Porag Chowdhury, Christopher Kiekintveld, Son Tran,
William Yeoh</li>
<li><a href="https://www.ijcai.org/proceedings/2018/23">[Paper]</a></li>
</ul></li>
<li><strong>Combinatorial Optimization with Graph Convolutional Networks
and Guided Tree Search (NIPS 2018)</strong>
<ul>
<li>Zhuwen Li, Qifeng Chen, Vladlen Koltun</li>
<li><a href="https://arxiv.org/abs/1810.10659">[Paper]</a></li>
</ul></li>
<li><strong>M-Walk: Learning to Walk over Graphs using Monte Carlo Tree
Search (NIPS 2018)</strong>
<ul>
<li>Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, Jianfeng
Gao</li>
<li><a href="https://arxiv.org/abs/1802.04394">[Paper]</a></li>
</ul></li>
<li><strong>Single-Agent Policy Tree Search With Guarantees (NIPS
2018)</strong>
<ul>
<li>Laurent Orseau, Levi Lelis, Tor Lattimore, Theophane Weber</li>
<li><a href="https://arxiv.org/abs/1811.10928">[Paper]</a></li>
</ul></li>
<li><strong>Monte-Carlo Tree Search for Constrained POMDPs (NIPS
2018)</strong>
<ul>
<li>Jongmin Lee, Geon-hyeong Kim, Pascal Poupart, Kee-Eung Kim</li>
<li><a
href="https://cs.uwaterloo.ca/~ppoupart/publications/constrained-pomdps/mcts-constrained-pomdps-paper.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-6">2017</h2>
<ul>
<li><strong>An Analysis of Monte Carlo Tree Search (AAAI 2017)</strong>
<ul>
<li>Steven James, George Dimitri Konidaris, Benjamin Rosman</li>
<li><a
href="https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14886">[Paper]</a></li>
</ul></li>
<li><strong>Beyond Monte Carlo Tree Search: Playing Go with Deep
Alternative Neural Network and Long-Term Evaluation (AAAI 2017)</strong>
<ul>
<li>Jinzhuo Wang, Wenmin Wang, Ronggang Wang, Wen Gao</li>
<li><a href="https://arxiv.org/abs/1706.04052">[Paper]</a></li>
</ul></li>
<li><strong>Designing Better Playlists with Monte Carlo Tree Search
(AAAI 2017)</strong>
<ul>
<li>Elad Liebman, Piyush Khandelwal, Maytal Saar-Tsechansky, Peter
Stone</li>
<li><a
href="https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/IAAI2017-eladlieb.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Learning in POMDPs with Monte Carlo Tree Search (ICML
2017)</strong>
<ul>
<li>Sammie Katt, Frans A. Oliehoek, Christopher Amato</li>
<li><a href="https://arxiv.org/abs/1806.05631">[Paper]</a></li>
</ul></li>
<li><strong>Learning to Run Heuristics in Tree Search (IJCAI
2017)</strong>
<ul>
<li>Elias B. Khalil, Bistra Dilkina, George L. Nemhauser, Shabbir Ahmed,
Yufen Shao</li>
<li><a href="https://www.ijcai.org/proceedings/2017/92">[Paper]</a></li>
</ul></li>
<li><strong>Estimating the Size of Search Trees by Sampling with Domain
Knowledge (IJCAI 2017)</strong>
<ul>
<li>Gleb Belov, Samuel Esler, Dylan Fernando, Pierre Le Bodic, George L.
Nemhauser</li>
<li><a href="https://www.ijcai.org/proceedings/2017/67">[Paper]</a></li>
</ul></li>
<li><strong>A Monte Carlo Tree Search Approach to Active Malware
Analysis (IJCAI 2017)</strong>
<ul>
<li>Riccardo Sartea, Alessandro Farinelli</li>
<li><a
href="https://www.ijcai.org/proceedings/2017/535">[Paper]</a></li>
</ul></li>
<li><strong>Monte-Carlo Tree Search by Best Arm Identification (NIPS
2017)</strong>
<ul>
<li>Emilie Kaufmann, Wouter M. Koolen</li>
<li><a href="https://arxiv.org/abs/1706.02986">[Paper]</a></li>
</ul></li>
<li><strong>Thinking Fast and Slow with Deep Learning and Tree Search
(NIPS 2017)</strong>
<ul>
<li>Thomas Anthony, Zheng Tian, David Barber</li>
<li><a href="https://arxiv.org/abs/1705.08439">[Paper]</a></li>
</ul></li>
<li><strong>Monte-Carlo Tree Search using Batch Value of Perfect
Information (UAI 2017)</strong>
<ul>
<li>Shahaf S. Shperberg, Solomon Eyal Shimony, Ariel Felner</li>
<li><a
href="http://auai.org/uai2017/proceedings/papers/37.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-7">2016</h2>
<ul>
<li><strong>Using Domain Knowledge to Improve Monte-Carlo Tree Search
Performance in Parameterized Poker Squares (AAAI 2016)</strong>
<ul>
<li>Robert Arrington, Clay Langley, Steven Bogaerts</li>
<li><a
href="https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11809">[Paper]</a></li>
</ul></li>
<li><strong>Monte Carlo Tree Search for Multi-Robot Task Allocation
(AAAI 2016)</strong>
<ul>
<li>Bilal Kartal, Ernesto Nunes, Julio Godoy, Maria L. Gini</li>
<li><a
href="https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12154">[Paper]</a></li>
</ul></li>
<li><strong>Large Scale Hard Sample Mining with Monte Carlo Tree Search
(CVPR 2016)</strong>
<ul>
<li>Olivier Canévet, François Fleuret</li>
<li><a
href="https://www.idiap.ch/~fleuret/papers/canevet-fleuret-cvpr2016.pdf">[Paper]</a></li>
</ul></li>
<li><strong>On the Analysis of Complex Backup Strategies in Monte Carlo
Tree Search (ICML 2016)</strong>
<ul>
<li>Piyush Khandelwal, Elad Liebman, Scott Niekum, Peter Stone</li>
<li><a
href="https://www.cs.utexas.edu/~eladlieb/ICML2016.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Deep Learning for Reward Design to Improve Monte Carlo Tree
Search in ATARI Games (IJCAI 2016)</strong>
<ul>
<li>Xiaoxiao Guo, Satinder P. Singh, Richard L. Lewis, Honglak Lee</li>
<li><a href="https://arxiv.org/abs/1604.07095">[Paper]</a></li>
</ul></li>
<li><strong>Monte Carlo Tree Search in Continuous Action Spaces with
Execution Uncertainty (IJCAI 2016)</strong>
<ul>
<li>Timothy Yee, Viliam Lisý, Michael H. Bowling</li>
<li><a
href="https://www.ijcai.org/Proceedings/16/Papers/104.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Learning Predictive State Representations via Monte-Carlo
Tree Search (IJCAI 2016)</strong>
<ul>
<li>Yunlong Liu, Hexing Zhu, Yifeng Zeng, Zongxiong Dai</li>
<li><a
href="https://pdfs.semanticscholar.org/8056/df11094fc96d76826403f8b339dc14aa821f.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-8">2015</h2>
<ul>
<li><strong>Efficient Globally Optimal Consensus Maximisation with Tree
Search (CVPR 2015)</strong>
<ul>
<li>Tat-Jun Chin, Pulak Purkait, Anders P. Eriksson, David Suter</li>
<li><a
href="https://zpascal.net/cvpr2015/Chin_Efficient_Globally_Optimal_2015_CVPR_paper.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Interplanetary Trajectory Planning with Monte Carlo Tree
Search (IJCAI 2015)</strong>
<ul>
<li>Daniel Hennes, Dario Izzo</li>
<li><a
href="https://pdfs.semanticscholar.org/ce42/53ca1c5b16e96cdbefae75649cd2588f42f3.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-9">2014</h2>
<ul>
<li><strong>State Aggregation in Monte Carlo Tree Search (AAAI
2014)</strong>
<ul>
<li>Jesse Hostetler, Alan Fern, Tom Dietterich</li>
<li><a
href="https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/download/8439/8712">[Paper]</a></li>
</ul></li>
<li><strong>Deep Learning for Real-Time Atari Game Play Using Offline
Monte-Carlo Tree Search Planning (NIPS 2014)</strong>
<ul>
<li>Xiaoxiao Guo, Satinder P. Singh, Honglak Lee, Richard L. Lewis,
Xiaoshi Wang</li>
<li><a
href="https://web.eecs.umich.edu/~baveja/Papers/UCTtoCNNsAtariGames-FinalVersion.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Learning Partial Policies to Speedup MDP Tree Search (UAI
2014)</strong>
<ul>
<li>Jervis Pinto, Alan Fern</li>
<li><a
href="http://www.jmlr.org/papers/volume18/15-251/15-251.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-10">2013</h2>
<ul>
<li><strong>Monte Carlo Tree Search for Scheduling Activity Recognition
(ICCV 2013)</strong>
<ul>
<li>Mohamed R. Amer, Sinisa Todorovic, Alan Fern, Song-Chun Zhu</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.405.5916&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
<li><strong>Convergence of Monte Carlo Tree Search in Simultaneous Move
Games (NIPS 2013)</strong>
<ul>
<li>Viliam Lisý, Vojtech Kovarík, Marc Lanctot, Branislav Bosanský</li>
<li><a
href="https://papers.nips.cc/paper/5145-convergence-of-monte-carlo-tree-search-in-simultaneous-move-games">[Paper]</a></li>
</ul></li>
<li><strong>Bayesian Mixture Modelling and Inference based Thompson
Sampling in Monte-Carlo Tree Search (NIPS 2013)</strong>
<ul>
<li>Aijun Bai, Feng Wu, Xiaoping Chen</li>
<li><a
href="https://papers.nips.cc/paper/5111-bayesian-mixture-modelling-and-inference-based-thompson-sampling-in-monte-carlo-tree-search">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-11">2012</h2>
<ul>
<li><strong>Generalized Monte-Carlo Tree Search Extensions for General
Game Playing (AAAI 2012)</strong>
<ul>
<li>Hilmar Finnsson</li>
<li><a
href="https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/viewFile/4935/5300">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-12">2011</h2>
<ul>
<li><strong>A Local Monte Carlo Tree Search Approach in Deterministic
Planning (AAAI 2011)</strong>
<ul>
<li>Fan Xie, Hootan Nakhost, Martin Müller</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.699.3833&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
<li><strong>Real-Time Solving of Quantified CSPs Based on Monte-Carlo
Game Tree Search (IJCAI 2011)</strong>
<ul>
<li>Satomi Baba, Yongjoon Joe, Atsushi Iwasaki, Makoto Yokoo</li>
<li><a
href="https://www.ijcai.org/Proceedings/11/Papers/116.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Nested Rollout Policy Adaptation for Monte Carlo Tree Search
(IJCAI 2011)</strong>
<ul>
<li>Christopher D. Rosin</li>
<li><a
href="https://www.ijcai.org/Proceedings/11/Papers/115.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Variance Reduction in Monte-Carlo Tree Search (NIPS
2011)</strong>
<ul>
<li>Joel Veness, Marc Lanctot, Michael H. Bowling</li>
<li><a
href="https://papers.nips.cc/paper/4288-variance-reduction-in-monte-carlo-tree-search">[Paper]</a></li>
</ul></li>
<li><strong>Learning Is Planning: Near Bayes-Optimal Reinforcement
Learning via Monte-Carlo Tree Search (UAI 2011)</strong>
<ul>
<li>John Asmuth, Michael L. Littman</li>
<li><a href="https://arxiv.org/abs/1202.3699">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-13">2010</h2>
<ul>
<li><strong>Understanding the Success of Perfect Information Monte Carlo
Sampling in Game Tree Search (AAAI 2010)</strong>
<ul>
<li>Jeffrey Richard Long, Nathan R. Sturtevant, Michael Buro, Timothy
Furtak</li>
<li><a
href="https://pdfs.semanticscholar.org/011e/2c79575721764c127e210c9d8105a6305e70.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Bayesian Inference in Monte-Carlo Tree Search (UAI
2010)</strong>
<ul>
<li>Gerald Tesauro, V. T. Rajan, Richard Segal</li>
<li><a href="https://arxiv.org/abs/1203.3519">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-14">2009</h2>
<ul>
<li><strong>Monte Carlo Tree Search Techniques in the Game of Kriegspiel
(IJCAI 2009)</strong>
<ul>
<li>Paolo Ciancarini, Gian Piero Favini</li>
<li><a
href="https://www.aaai.org/ocs/index.php/IJCAI/IJCAI-09/paper/viewFile/396/693">[Paper]</a></li>
</ul></li>
<li><strong>Bootstrapping from Game Tree Search (NIPS 2009)</strong>
<ul>
<li>Joel Veness, David Silver, William T. B. Uther, Alan Blair</li>
<li><a
href="https://papers.nips.cc/paper/3722-bootstrapping-from-game-tree-search">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-15">2008</h2>
<ul>
<li><strong>Direct Mining of Discriminative and Essential Frequent
Patterns via Model-Based Search Tree (KDD 2008)</strong>
<ul>
<li>Wei Fan, Kun Zhang, Hong Cheng, Jing Gao, Xifeng Yan, Jiawei Han,
Philip S. Yu, Olivier Verscheure</li>
<li><a
href="http://www1.se.cuhk.edu.hk/~hcheng/paper/kdd08mbt.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-16">2007</h2>
<ul>
<li><strong>Bandit Algorithms for Tree Search (UAI 2007)</strong>
<ul>
<li>Pierre-Arnaud Coquelin, Rémi Munos</li>
<li><a href="https://arxiv.org/pdf/1408.2028.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-17">2006</h2>
<ul>
<li><strong>Properties of Forward Pruning in Game-Tree Search (AAAI
2006)</strong>
<ul>
<li>Yew Jin Lim, Wee Sun Lee</li>
<li><a
href="https://dl.acm.org/citation.cfm?id=1597351">[Paper]</a></li>
</ul></li>
<li><strong>Graph Branch Algorithm: An Optimum Tree Search Method for
Scored Dependency Graph with Arc Co-Occurrence Constraints (ACL
2006)</strong>
<ul>
<li>Hideki Hirakawa</li>
<li><a
href="https://www.aclweb.org/anthology/P06-2047/">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-18">2005</h2>
<ul>
<li><strong>Game-Tree Search with Combinatorially Large Belief States
(IJCAI 2005)</strong>
<ul>
<li>Austin Parker, Dana S. Nau, V. S. Subrahmanian</li>
<li><a
href="https://www.ijcai.org/Proceedings/05/Papers/0878.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-19">2003</h2>
<ul>
<li><strong>Solving Finite Domain Constraint Hierarchies by Local
Consistency and Tree Search (IJCAI 2003)</strong>
<ul>
<li>Stefano Bistarelli, Philippe Codognet, Kin Chuen Hui, Jimmy Ho-Man
Lee</li>
<li><a
href="https://www.ijcai.org/Proceedings/03/Papers/200.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-20">2001</h2>
<ul>
<li><strong>Incomplete Tree Search using Adaptive Probing (IJCAI
2001)</strong>
<ul>
<li>Wheeler Ruml</li>
<li><a
href="https://dash.harvard.edu/bitstream/handle/1/23017275/tr-02-01.pdf?sequence%3D1">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-21">1998</h2>
<ul>
<li><strong>KnightCap: A Chess Programm That Learns by Combining TD with
Game-Tree Search (ICML 1998)</strong>
<ul>
<li>Jonathan Baxter, Andrew Tridgell, Lex Weaver</li>
<li><a href="https://arxiv.org/abs/cs/9901002">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-22">1988</h2>
<ul>
<li><strong>A Tree Search Algorithm for Target Detection in Image
Sequences (CVPR 1988)</strong>
<ul>
<li>Steven D. Blostein, Thomas S. Huang</li>
<li><a
href="https://ieeexplore.ieee.org/document/196309">[Paper]</a></li>
</ul></li>
</ul>
<hr />
<p><strong>License</strong></p>
<ul>
<li><a
href="https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers/blob/master/LICENSE">CC0
Universal</a></li>
</ul>
<hr />
<p><a
href="https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers">montecarlotreesearchpapers.md
Github</a></p>