Files
awesome-awesomeness/html/lidar.md2.html
2025-07-18 23:13:11 +02:00

1192 lines
56 KiB
HTML
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<h1 id="awesome-lidar-awesome">Awesome LIDAR <a
href="https://awesome.re"><img src="https://awesome.re/badge-flat.svg"
alt="Awesome" /></a></h1>
<p><img src="img/lidar.svg" align="right" width="100"></p>
<blockquote>
<p>A curated list of awesome LIDAR sensors and its applications.</p>
</blockquote>
<p><a href="https://en.wikipedia.org/wiki/Lidar">LIDAR</a> is a remote
sensing sensor that uses laser light to measure the surroundings in ~cm
accuracy. The sensory data is usually referred as point cloud which
means set of data points in 3D or 2D. The list contains hardwares,
datasets, point cloud-processing algorithms, point cloud frameworks,
simulators etc.</p>
<p>Contributions are welcome! Please <a href="contributing.md">check
out</a> our guidelines.</p>
<blockquote>
<p>[!TIP] An optional view: <a
href="https://www.trackawesomelist.com/szenergy/awesome-lidar/readme/">trackawesomelist.com/szenergy/awesome-lidar</a></p>
</blockquote>
<h2 id="contents">Contents</h2>
<ul>
<li><a href="#awesome-lidar-">Awesome LIDAR</a>
<ul>
<li><a href="#contents">Contents</a></li>
<li><a href="#conventions">Conventions</a></li>
<li><a href="#manufacturers">Manufacturers</a></li>
<li><a href="#datasets">Datasets</a></li>
<li><a href="#libraries">Libraries</a></li>
<li><a href="#frameworks">Frameworks</a></li>
<li><a href="#algorithms">Algorithms</a>
<ul>
<li><a href="#basic-matching-algorithms">Basic matching
algorithms</a></li>
<li><a href="#semantic-segmentation">Semantic segmentation</a></li>
<li><a href="#ground-segmentation">Ground segmentation</a></li>
<li><a
href="#simultaneous-localization-and-mapping-slam-and-lidar-based-odometry-and-or-mapping-loam">Simultaneous
localization and mapping SLAM and LIDAR-based odometry and or mapping
LOAM</a></li>
<li><a href="#object-detection-and-object-tracking">Object detection and
object tracking</a></li>
<li><a href="#lidar-other-sensor-calibration">LIDAR-other-sensor
calibration</a></li>
</ul></li>
<li><a href="#simulators">Simulators</a></li>
<li><a href="#related-awesome">Related awesome</a></li>
<li><a href="#others">Others</a></li>
</ul></li>
</ul>
<h2 id="conventions">Conventions</h2>
<ul>
<li>Any list item with <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" />
badge has a GitHub repo or organization</li>
<li>Any list item with <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" />
badge has YouTube videos or channel</li>
<li>Any list item with <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" />
badge has a scientific paper or detailed description</li>
<li>Any list item with <img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" />
badge is <a href="https://docs.ros.org/"><code>ROS 2</code></a>
compatible</li>
</ul>
<h2 id="manufacturers">Manufacturers</h2>
<ul>
<li><a href="https://velodynelidar.com/">Velodyne</a> - Ouster and
Velodyne announced the successful completion of their <em>merger</em> of
equals, effective February 10, 2023. Velodyne was a mechanical and
solid-state LIDAR manufacturer. The headquarter is in San Jose,
California, USA.
<ul>
<li><a href="https://www.youtube.com/user/VelodyneLiDAR">YouTube channel
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
<li><a href="https://github.com/ros-drivers/velodyne">ROS driver <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://github.com/valgur/velodyne_decoder">C++/Python
library <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
<li><a href="https://ouster.com/">Ouster</a> - LIDAR manufacturer,
specializing in digital-spinning LiDARs. Ouster is headquartered in San
Francisco, USA.
<ul>
<li><a href="https://www.youtube.com/c/Ouster-lidar">YouTube channel
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
<li><a href="https://github.com/ouster-lidar">GitHub organization <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
</ul></li>
<li><a href="https://www.livoxtech.com/">Livox</a> - LIDAR manufacturer.
<ul>
<li><a
href="https://www.youtube.com/channel/UCnLpB5QxlQUexi40vM12mNQ">YouTube
channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
<li><a href="https://github.com/Livox-SDK">GitHub organization <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
</ul></li>
<li><a href="https://www.sick.com/ag/en/">SICK</a> - Sensor and
automation manufacturer, the headquarter is located in Waldkirch,
Germany.
<ul>
<li><a href="https://www.youtube.com/user/SICKSensors">YouTube channel
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
<li><a href="https://github.com/SICKAG">GitHub organization <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
</ul></li>
<li><a href="https://www.hokuyo-aut.jp/">Hokuyo</a> - Sensor and
automation manufacturer, headquartered in Osaka, Japan.
<ul>
<li><a
href="https://www.youtube.com/channel/UCYzJXC82IEy-h-io2REin5g">YouTube
channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="http://autonomousdriving.pioneer/en/3d-lidar/">Pioneer</a>
- LIDAR manufacturer, specializing in MEMS mirror-based raster scanning
LiDARs (3D-LiDAR). Pioneer is headquartered in Tokyo, Japan.
<ul>
<li><a href="https://www.youtube.com/user/PioneerCorporationPR">YouTube
channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://www.luminartech.com/">Luminar</a> - LIDAR
manufacturer focusing on compact, auto-grade sensors. Luminar is
headquartered Palo Alto, California, USA.
<ul>
<li><a href="https://vimeo.com/luminartech">Vimeo channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
<li><a href="https://github.com/luminartech">GitHub organization <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
<li><a href="https://www.hesaitech.com/">Hesai</a> - Hesai Technology is
a LIDAR manufacturer, founded in Shanghai, China.
<ul>
<li><a
href="https://www.youtube.com/channel/UCG2_ffm6sdMsK-FX8yOLNYQ/videos">YouTube
channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
<li><a href="https://github.com/HesaiTechnology">GitHub organization
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
<li><a href="http://www.robosense.ai/">Robosense</a> - RoboSense (Suteng
Innovation Technology Co., Ltd.) is a LIDAR sensor, AI algorithm and IC
chipset maufactuirer based in Shenzhen and Beijing (China).
<ul>
<li><a
href="https://www.youtube.com/channel/UCYCK8j678N6d_ayWE_8F3rQ">YouTube
channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
<li><a href="https://github.com/RoboSense-LiDAR">GitHub organization
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
</ul></li>
<li><a href="https://www.lslidar.com/">LSLIDAR</a> - LSLiDAR (Leishen
Intelligent System Co., Ltd.) is a LIDAR sensor manufacturer and
complete solution provider based in Shenzhen, China.
<ul>
<li><a href="https://www.youtube.com/@lslidar2015">YouTube channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
<li><a href="https://github.com/Lslidar">GitHub organization <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
</ul></li>
<li><a href="https://www.ibeo-as.com/">Ibeo</a> - Ibeo Automotive
Systems GmbH is an automotive industry / environmental detection
laserscanner / LIDAR manufacturer, based in Hamburg, Germany.
<ul>
<li><a href="https://www.youtube.com/c/IbeoAutomotive/">YouTube channel
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://innoviz.tech/">Innoviz</a> - Innoviz technologies /
specializes in solid-state LIDARs.
<ul>
<li><a
href="https://www.youtube.com/channel/UCVc1KFsu2eb20M8pKFwGiFQ">YouTube
channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://quanergy.com/">Quanenergy</a> - Quanenergy Systems
/ solid-state and mechanical LIDAR sensors / offers End-to-End solutions
in Mapping, Industrial Automation, Transportation and Security. The
headquarter is located in Sunnyvale, California, USA.
<ul>
<li><a href="https://www.youtube.com/c/QuanergySystems">YouTube channel
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://www.cepton.com/index.html">Cepton</a> - Cepton
(Cepton Technologies, Inc.) / pioneers in frictionless, and mirrorless
design, self-developed MMT (micro motion technology) lidar technology.
The headquarter is located in San Jose, California, USA.
<ul>
<li><a
href="https://www.youtube.com/channel/UCUgkBZZ1UWWkkXJ5zD6o8QQ">YouTube
channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://www.blickfeld.com/">Blickfeld</a> - Blickfeld is a
solid-state LIDAR manufacturer for autonomous mobility and IoT, based in
München, Germany.
<ul>
<li><a href="https://www.youtube.com/c/BlickfeldLiDAR">YouTube channel
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
<li><a href="https://github.com/Blickfeld">GitHub organization <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
</ul></li>
<li><a href="https://www.neuvition.com/">Neuvition</a> - Neuvition is a
solid-state LIDAR manufacturer based in Wujiang, China.
<ul>
<li><a
href="https://www.youtube.com/channel/UClFjlekWJo4T5bfzxX0ZW3A">YouTube
channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://www.aeva.com/">Aeva</a> - Aeva is bringing the next
wave of perception technology to all devices for automated driving,
consumer electronics, health, industrial robotics and security, Mountain
View, California, USA.
<ul>
<li><a href="https://www.youtube.com/c/AevaInc">YouTube channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
<li><a href="https://github.com/aevainc">GitHub organization <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
<li><a href="https://www.xenomatix.com/">XenomatiX</a> - XenomatiX
offers true solid-state lidar sensors based on a multi-beam lasers
concept. XenomatiX is headquartered in Leuven, Belgium.
<ul>
<li><a
href="https://www.youtube.com/@XenomatiXTruesolidstatelidar">YouTube
channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://microvision.com/">MicroVision</a> - A pioneer in
MEMS-based laser beam scanning technology, the main focus is on building
Automotive grade Lidar sensors, located in Hamburg, Germany.
<ul>
<li><a href="https://www.youtube.com/user/mvisvideo">YouTube channel
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
<li><a href="https://github.com/MicroVision-Inc">GitHub organization
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
<li><a href="https://www.preact-tech.com/">PreAct</a> - PreActs mission
is to make life safer and more efficient for the automotive industry and
beyond. The headquarter is located in Portland, Oregon, USA.
<ul>
<li><a href="https://www.youtube.com/@PreActTechnologies">YouTube
channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://www.pepperl-fuchs.com/">Pepperl+Fuchs</a> - Is a
global technology company, specialized in innovative automation
solutions and sensor technologies, such as LiDAR, based in Mannheim,
Germany.
<ul>
<li><a href="https://www.youtube.com/c/pepperl-fuchs">YouTube channel
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
<li><a href="https://www.youtube.com/user/PepperlFuchsUSA">YouTube
channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
<li><a href="https://github.com/PepperlFuchs">GitHub organization <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
</ul></li>
</ul>
<h2 id="datasets">Datasets</h2>
<ul>
<li><a href="https://avdata.ford.com/">Ford Dataset</a> - The dataset is
time-stamped and contains raw data from all the sensors, calibration
values, pose trajectory, ground truth pose, and 3D maps. The data is
Robot Operating System (ROS) compatible.
<ul>
<li><a href="https://arxiv.org/pdf/2003.07969.pdf">Paper <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a></li>
<li><a href="https://github.com/Ford/AVData">GitHub repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
<li><a href="https://www.a2d2.audi">Audi A2D2 Dataset</a> - The dataset
features 2D semantic segmentation, 3D point clouds, 3D bounding boxes,
and vehicle bus data.
<ul>
<li><a
href="https://www.a2d2.audi/content/dam/a2d2/dataset/a2d2-audi-autonomous-driving-dataset.pdf">Paper
<img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a></li>
</ul></li>
<li><a href="https://waymo.com/open/">Waymo Open Dataset</a> - The
dataset contains independently-generated labels for lidar and camera
data, not simply projections.</li>
<li><a href="https://robotcar-dataset.robots.ox.ac.uk/">Oxford
RobotCar</a> - The Oxford RobotCar Dataset contains over 100 repetitions
of a consistent route through Oxford, UK, captured over a period of over
a year.
<ul>
<li><a
href="https://www.youtube.com/c/ORIOxfordRoboticsInstitute">YouTube
channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
<li><a
href="https://robotcar-dataset.robots.ox.ac.uk/images/RCD_RTK.pdf">Paper
<img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a></li>
</ul></li>
<li><a href="https://epan-utbm.github.io/utbm_robocar_dataset/">EU
Long-term Dataset</a> - This dataset was collected with our robocar (in
human driving mode of course), equipped up to eleven heterogeneous
sensors, in the downtown (for long-term data) and a suburb (for
roundabout data) of Montbéliard in France. The vehicle speed was limited
to 50 km/h following the French traffic rules.</li>
<li><a href="https://www.nuscenes.org/">NuScenes</a> - Public
large-scale dataset for autonomous driving.
<ul>
<li><a href="https://arxiv.org/pdf/1903.11027.pdf">Paper <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a></li>
</ul></li>
<li><a href="https://level5.lyft.com/dataset/">Lyft</a> - Public dataset
collected by a fleet of Ford Fusion vehicles equipped with LIDAR and
camera.</li>
<li><a
href="http://www.cvlibs.net/datasets/kitti/raw_data.php">KITTI</a> -
Widespread public dataset, pirmarily focusing on computer vision
applications, but also contains LIDAR point cloud. <img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
<li><a href="http://semantic-kitti.org/">Semantic KITTI</a> - Dataset
for semantic and panoptic scene segmentation.
<ul>
<li><a href="https://www.youtube.com/watch?v=3qNOXvkpK4I">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="http://cadcd.uwaterloo.ca/">CADC - Canadian Adverse Driving
Conditions Dataset</a> - Public large-scale dataset for autonomous
driving in adverse weather conditions (snowy weather).
<ul>
<li><a href="https://arxiv.org/pdf/2001.10117.pdf">Paper <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a></li>
</ul></li>
<li><a href="https://www.autodrive.utoronto.ca/uoftped50">UofTPed50
Dataset</a> - University of Toronto, aUTorontos self-driving car
dataset, which contains GPS/IMU, 3D LIDAR, and Monocular camera data. It
can be used for 3D pedestrian detection.
<ul>
<li><a href="https://arxiv.org/pdf/1905.08758.pdf">Paper <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a></li>
</ul></li>
<li><a href="https://scale.com/open-datasets/pandaset">PandaSet Open
Dataset</a> - Public large-scale dataset for autonomous driving provided
by Hesai &amp; Scale. It enables researchers to study challenging urban
driving situations using the full sensor suit of a real
self-driving-car.</li>
<li><a
href="https://developer.volvocars.com/open-datasets/cirrus/">Cirrus
dataset</a> A public datatset from non-uniform distribution of LIDAR
scanning patterns with emphasis on long range. In this dataset Luminar
Hydra LIDAR is used. The dataset is available at the Volvo Cars
Innovation Portal.
<ul>
<li><a href="https://arxiv.org/pdf/2012.02938.pdf">Paper <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a></li>
</ul></li>
<li><a
href="http://its.acfr.usyd.edu.au/datasets/usyd-campus-dataset/">USyd
Dataset- The Univerisity of Sydney Campus- Dataset</a> - Long-term,
large-scale dataset collected over the period of 1.5 years on a weekly
basis over the University of Sydney campus and surrounds. It includes
multiple sensor modalities and covers various environmental conditions.
ROS compatible
<ul>
<li><a href="https://ieeexplore.ieee.org/document/9109704">Paper <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a></li>
</ul></li>
<li><a href="https://github.com/Robotics-BUT/Brno-Urban-Dataset">Brno
Urban Dataset <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
- Navigation and localisation dataset for self driving cars and
autonomous robots in Brno, Czechia.
<ul>
<li><a href="https://ieeexplore.ieee.org/document/9197277">Paper <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a></li>
<li><a href="https://www.youtube.com/watch?v=wDFePIViwqY">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://www.argoverse.org/">Argoverse <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
- A dataset designed to support autonomous vehicle perception tasks
including 3D tracking and motion forecasting collected in Pittsburgh,
Pennsylvania and Miami, Florida, USA.
<ul>
<li><a
href="https://openaccess.thecvf.com/content_CVPR_2019/papers/Chang_Argoverse_3D_Tracking_and_Forecasting_With_Rich_Maps_CVPR_2019_paper.pdf">Paper
<img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a></li>
<li><a href="https://www.youtube.com/watch?v=DM8jWfi69zM">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://www.boreas.utias.utoronto.ca/">Boreas Dataset</a> -
The Boreas dataset was collected by driving a repeated route over the
course of 1 year resulting in stark seasonal variations. In total,
Boreas contains over 350km of driving data including several sequences
with adverse weather conditions such as rain and heavy snow. The Boreas
data-taking platform features a unique high-quality sensor suite with a
128-channel Velodyne Alpha Prime lidar, a 360-degree Navtech radar, and
accurate ground truth poses obtained from an Applanix POSLV GPS/IMU.
<ul>
<li><a href="https://arxiv.org/abs/2203.10168">Paper 📰</a></li>
<li><a href="https://github.com/utiasASRL/pyboreas">GitHub repository
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
</ul>
<h2 id="libraries">Libraries</h2>
<ul>
<li><a href="http://www.pointclouds.org/">Point Cloud Library (PCL)</a>
- Popular highly parallel programming library, with numerous industrial
and research use-cases.
<ul>
<li><a href="https://github.com/PointCloudLibrary/pcl">GitHub repository
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
</ul></li>
<li><a href="http://www.open3d.org/docs/release/">Open3D library</a> -
Open3D library contanins 3D data processing and visualization
algorithms. It is open-source and supports both C++ and Python.
<ul>
<li><a href="https://github.com/intel-isl/Open3D">GitHub repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a
href="https://www.youtube.com/channel/UCRJBlASPfPBtPXJSPffJV-w">YouTube
channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://arxiv.org/pdf/1903.02428.pdf">PyTorch Geometric
<img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>
- A geometric deep learning extension library for PyTorch.
<ul>
<li><a href="https://github.com/rusty1s/pytorch_geometric">GitHub
repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
<li><a href="https://pytorch3d.org/">PyTorch3d</a> - PyTorch3d is a
library for deep learning with 3D data written and maintained by the
Facebook AI Research Computer Vision Team.
<ul>
<li><a href="https://github.com/facebookresearch/pytorch3d">GitHub
repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
<li><a href="https://kaolin.readthedocs.io/en/latest/">Kaolin</a> -
Kaolin is a PyTorch Library for Accelerating 3D Deep Learning Research
written by NVIDIA Technologies for game and application developers.
<ul>
<li><a href="https://github.com/NVIDIAGameWorks/kaolin/">GitHub
repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://arxiv.org/pdf/1911.05063.pdf">Paper <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a></li>
</ul></li>
<li><a href="https://docs.pyvista.org/">PyVista</a> - 3D plotting and
mesh analysis through a streamlined interface for the Visualization
Toolkit.
<ul>
<li><a href="https://github.com/pyvista/pyvista">GitHub repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://joss.theoj.org/papers/10.21105/joss.01450">Paper
<img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a></li>
</ul></li>
<li><a href="https://pyntcloud.readthedocs.io/en/latest/">pyntcloud</a>
- Pyntcloud is a Python 3 library for working with 3D point clouds
leveraging the power of the Python scientific stack.
<ul>
<li><a href="https://github.com/daavoo/pyntcloud">GitHub repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
<li><a
href="https://virtual-vehicle.github.io/pointcloudset/">pointcloudset</a>
- Python library for efficient analysis of large datasets of point
clouds recorded over time.
<ul>
<li><a href="https://github.com/virtual-vehicle/pointcloudset">GitHub
repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
<li><a href="https://rapidlasso.de/lastools/">LAStools</a> - C++ library
and command-line tools for pointcloud processing and data compressing.
<ul>
<li><a href="https://github.com/LAStools/LAStools">GitHub repository
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
</ul>
<h2 id="frameworks">Frameworks</h2>
<ul>
<li><a href="https://www.autoware.ai/">Autoware</a> - Popular framework
in academic and research applications of autonomous vehicles.
<ul>
<li><a href="https://github.com/autowarefoundation">GitHub oragnization
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
<li><a
href="https://www.researchgate.net/profile/Takuya_Azumi/publication/327198306_Autoware_on_Board_Enabling_Autonomous_Vehicles_with_Embedded_Systems/links/5c9085da45851564fae6dcd0/Autoware-on-Board-Enabling-Autonomous-Vehicles-with-Embedded-Systems.pdf">Paper
<img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a></li>
</ul></li>
<li><a href="https://apollo.auto/">Baidu Apollo</a> - Apollo is a
popular framework which accelerates the development, testing, and
deployment of Autonomous Vehicles.
<ul>
<li><a href="https://github.com/ApolloAuto/apollo">GitHub repository
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://www.youtube.com/c/ApolloAuto">YouTube channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://ieeexplore.ieee.org/document/11024231">ALFA
Framework <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>
- An open-source framework for developing processing algorithms, with a
focus on embedded platforms and hardware acceleration.
<ul>
<li><a href="https://github.com/alfa-project/alfa-framework">GitHub
repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" />
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></a></li>
</ul></li>
</ul>
<h2 id="algorithms">Algorithms</h2>
<h3 id="basic-matching-algorithms">Basic matching algorithms</h3>
<ul>
<li><a href="https://www.youtube.com/watch?v=uzOCS_gdZuM">Iterative
closest point (ICP) <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a>
- The must-have algorithm for feature matching applications (ICP).
<ul>
<li><a href="https://github.com/pglira/simpleICP">GitHub repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
- simpleICP C++ /Julia / Matlab / Octave / Python implementation.</li>
<li><a href="https://github.com/ethz-asl/libpointmatcher">GitHub
repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
- libpointmatcher, a modular library implementing the ICP
algorithm.</li>
<li><a
href="https://link.springer.com/content/pdf/10.1007/s10514-013-9327-2.pdf">Paper
<img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>
- libpointmatcher: Comparing ICP variants on real-world data sets.</li>
</ul></li>
<li><a href="https://www.youtube.com/watch?v=0YV4a2asb8Y">Normal
distributions transform <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a>
- More recent massively-parallel approach to feature matching
(NDT).</li>
<li><a href="https://www.youtube.com/watch?v=kMMH8rA1ggI">KISS-ICP <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a>
- In Defense of Point-to-Point ICP Simple, Accurate, and Robust
Registration If Done the Right Way.
<ul>
<li><a href="https://github.com/PRBonn/kiss-icp">GitHub repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
<li><a href="https://arxiv.org/pdf/2209.15397.pdf">Paper <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a></li>
</ul></li>
</ul>
<h3 id="semantic-segmentation">Semantic segmentation</h3>
<ul>
<li><a
href="https://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/milioto2019iros.pdf">RangeNet++
<img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>
- Fast and Accurate LiDAR Sematnic Segmentation with fully convolutional
network.
<ul>
<li><a href="https://github.com/PRBonn/rangenet_lib">GitHub repository
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://www.youtube.com/watch?v=uo3ZuLuFAzk">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://arxiv.org/pdf/2003.14032.pdf">PolarNet <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>
- An Improved Grid Representation for Online LiDAR Point Clouds Semantic
Segmentation.
<ul>
<li><a href="https://github.com/edwardzhou130/PolarSeg">GitHub
repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://www.youtube.com/watch?v=iIhttRSMqjE">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://arxiv.org/pdf/1711.08488.pdf">Frustum PointNets
<img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>
- Frustum PointNets for 3D Object Detection from RGB-D Data.
<ul>
<li><a href="https://github.com/charlesq34/frustum-pointnets">GitHub
repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
<li><a href="https://larissa.triess.eu/scan-semseg/">Study of LIDAR
Semantic Segmentation</a> - Scan-based Semantic Segmentation of LiDAR
Point Clouds: An Experimental Study IV 2020.
<ul>
<li><a href="https://arxiv.org/abs/2004.11803">Paper <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a></li>
<li><a href="http://ltriess.github.io/scan-semseg">GitHub repository
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
<li><a
href="https://www.ipb.uni-bonn.de/pdfs/chen2021ral-iros.pdf">LIDAR-MOS
<img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>
- Moving Object Segmentation in 3D LIDAR Data
<ul>
<li><a href="https://github.com/PRBonn/LiDAR-MOS">GitHub repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://www.youtube.com/watch?v=NHvsYhk4dhw">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://arxiv.org/pdf/1711.09869.pdf">SuperPoint Graph <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>-
Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs
<ul>
<li><a href="https://github.com/loicland/superpoint_graph">GitHub
repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://www.youtube.com/watch?v=Ijr3kGSU_tU">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://arxiv.org/pdf/2306.08045.pdf">SuperPoint
Transformer <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>-
Efficient 3D Semantic Segmentation with Superpoint Transformer
<ul>
<li><a
href="https://github.com/drprojects/superpoint_transformer">GitHub
repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://www.youtube.com/watch?v=2qKhpQs9gJw">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://arxiv.org/pdf/1911.11236.pdf">RandLA-Net <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>
- Efficient Semantic Segmentation of Large-Scale Point Clouds
<ul>
<li><a href="https://github.com/QingyongHu/RandLA-Net">GitHub repository
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://www.youtube.com/watch?v=Ar3eY_lwzMk">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://arxiv.org/pdf/2108.13757.pdf">Automatic labelling
<img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>
- Automatic labelling of urban point clouds using data fusion
<ul>
<li><a
href="https://github.com/Amsterdam-AI-Team/Urban_PointCloud_Processing">GitHub
repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://www.youtube.com/watch?v=qMj_WM6D0vI">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
</ul>
<h3 id="ground-segmentation">Ground segmentation</h3>
<ul>
<li><a href="https://github.com/ori-drs/plane_seg">Plane Seg <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
- ROS comapatible ground plane segmentation; a library for fitting
planes to LIDAR.
<ul>
<li><a href="https://www.youtube.com/watch?v=YYs4lJ9t-Xo">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a
href="https://ieeexplore.ieee.org/abstract/document/5548059">LineFit
Graph <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>-
Line fitting-based fast ground segmentation for horizontal 3D LiDAR data
<ul>
<li><a
href="https://github.com/lorenwel/linefit_ground_segmentation">GitHub
repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
<li><a href="https://arxiv.org/pdf/2108.05560.pdf">Patchwork <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>-
Region-wise plane fitting-based robust and fast ground segmentation for
3D LiDAR data
<ul>
<li><a href="https://github.com/LimHyungTae/patchwork">GitHub repository
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://www.youtube.com/watch?v=rclqeDi4gow">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://arxiv.org/pdf/2207.11919.pdf">Patchwork++ <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>-
Improved version of Patchwork. Patchwork++ provides pybinding as well
for deep learning users
<ul>
<li><a href="https://github.com/url-kaist/patchwork-plusplus-ros">GitHub
repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
<li><a href="https://www.youtube.com/watch?v=fogCM159GRk">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
</ul>
<h3
id="simultaneous-localization-and-mapping-slam-and-lidar-based-odometry-and-or-mapping-loam">Simultaneous
localization and mapping SLAM and LIDAR-based odometry and or mapping
LOAM</h3>
<ul>
<li><a href="https://youtu.be/8ezyhTAEyHs">LOAM J. Zhang and S. Singh
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a>
- LOAM: Lidar Odometry and Mapping in Real-time.</li>
<li><a
href="https://github.com/RobustFieldAutonomyLab/LeGO-LOAM">LeGO-LOAM
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
- A lightweight and ground optimized lidar odometry and mapping
(LeGO-LOAM) system for ROS compatible UGVs.
<ul>
<li><a href="https://www.youtube.com/watch?v=7uCxLUs9fwQ">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
<li>ROS 2 verison on different repo: <a
href="https://github.com/eperdices/LeGO-LOAM-SR">GitHub repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
</ul></li>
<li><a
href="https://github.com/cartographer-project/cartographer">Cartographer
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
- Cartographer is ROS compatible system that provides real-time
simultaneous localization and mapping (SLAM) in 2D and 3D across
multiple platforms and sensor configurations. <img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" />
<ul>
<li><a href="https://www.youtube.com/watch?v=29Knm-phAyI">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a
href="http://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/chen2019iros.pdf">SuMa++
<img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>
- LiDAR-based Semantic SLAM.
<ul>
<li><a href="https://github.com/PRBonn/semantic_suma/">GitHub repository
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://youtu.be/uo3ZuLuFAzk">YouTube video <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a
href="http://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/chen2020rss.pdf">OverlapNet
<img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>
- Loop Closing for LiDAR-based SLAM.
<ul>
<li><a href="https://github.com/PRBonn/OverlapNet">GitHub repository
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://www.youtube.com/watch?v=YTfliBco6aw">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://arxiv.org/pdf/2007.00258.pdf">LIO-SAM <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>
- Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping.
<ul>
<li><a href="https://github.com/TixiaoShan/LIO-SAM">GitHub repository
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
<li><a href="https://www.youtube.com/watch?v=A0H8CoORZJU">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a
href="http://ras.papercept.net/images/temp/IROS/files/0855.pdf">Removert
<img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>
- Remove, then Revert: Static Point cloud Map Construction using
Multiresolution Range Images.
<ul>
<li><a href="https://github.com/irapkaist/removert">GitHub repository
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://www.youtube.com/watch?v=M9PEGi5fAq8">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://arxiv.org/pdf/2504.11580">RESPLE <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>
- Recursive Spline Estimation for LiDAR-Based Odometry
<ul>
<li><a href="https://github.com/ASIG-X/RESPLE">GitHub repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
<li><a href="https://www.youtube.com/watch?v=3-xLRRT25ys">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
</ul>
<h3 id="object-detection-and-object-tracking">Object detection and
object tracking</h3>
<ul>
<li><a href="https://arxiv.org/abs/1912.04976">Learning to Optimally
Segment Point Clouds <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>
- By Peiyun Hu, David Held, and Deva Ramanan at Carnegie Mellon
University. IEEE Robotics and Automation Letters, 2020.
<ul>
<li><a href="https://www.youtube.com/watch?v=wLxIAwIL870">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
<li><a href="https://github.com/peiyunh/opcseg">GitHub repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
<li><a href="https://arxiv.org/pdf/1809.05590.pdf">Leveraging
Heteroscedastic Aleatoric Uncertainties for Robust Real-Time LiDAR 3D
Object Detection <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>
- By Di Feng, Lars Rosenbaum, Fabian Timm, Klaus Dietmayer. 30th IEEE
Intelligent Vehicles Symposium, 2019.
<ul>
<li><a href="https://www.youtube.com/watch?v=2DzH9COLpkU">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://arxiv.org/pdf/1912.04986.pdf">What You See is What
You Get: Exploiting Visibility for 3D Object Detection <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>
- By Peiyun Hu, Jason Ziglar, David Held, Deva Ramanan, 2019.
<ul>
<li><a href="https://www.youtube.com/watch?v=497OF-otY2k">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
<li><a href="https://github.com/peiyunh/WYSIWYG">GitHub repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
<li><a href="https://doi.org/10.3390/s22010194">urban_road_filter <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>-
Real-Time LIDAR-Based Urban Road and Sidewalk Detection for Autonomous
Vehicles
<ul>
<li><a href="https://github.com/jkk-research/urban_road_filter">GitHub
repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
<li><a href="https://www.youtube.com/watch?v=T2qi4pldR-E">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a
href="https://www.semanticscholar.org/paper/3D-LIDAR-Multi-Object-Tracking-for-Autonomous-and-Rachman/bafc8fcdee9b22708491ea1293524ece9e314851">detection_by_tracker
<img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a>
- 3D-LIDAR Multi Object Tracking for Autonomous Driving: Multi-target
Detection and Tracking under Urban Road Uncertainties, also used in
Autoware Universe
<ul>
<li><a
href="https://autowarefoundation.github.io/autoware.universe/main/perception/detection_by_tracker/">GitHub
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
<li><a href="https://www.youtube.com/watch?v=xSGCpb24dhI">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
</ul>
<h3 id="lidar-other-sensor-calibration">LIDAR-other-sensor
calibration</h3>
<ul>
<li><a
href="https://koide3.github.io/direct_visual_lidar_calibration/">direct_visual_lidar_calibration</a>
- General, Single-shot, Target-less, and Automatic LiDAR-Camera
Extrinsic Calibration Toolbox
<ul>
<li><a
href="https://github.com/koide3/direct_visual_lidar_calibration">GitHub
repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
<li><a
href="https://staff.aist.go.jp/k.koide/assets/pdf/icra2023.pdf">Paper
<img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a></li>
</ul></li>
<li><a href="https://github.com/PJLab-ADG/SensorsCalibration">OpenCalib
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
- A Multi-sensor Calibration Toolbox for Autonomous Driving
<ul>
<li><a href="https://arxiv.org/pdf/2205.14087">Paper <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a></li>
</ul></li>
</ul>
<h2 id="simulators">Simulators</h2>
<ul>
<li><a
href="https://www.coppeliarobotics.com/coppeliaSim">CoppeliaSim</a> -
Cross-platform general-purpose robotic simulator (formerly known as
V-REP).
<ul>
<li><a href="https://www.youtube.com/user/VirtualRobotPlatform">YouTube
channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="http://gazebosim.org/">OSRF Gazebo</a> - OGRE-based
general-purpose robotic simulator, ROS/ROS 2 compatible.
<ul>
<li><a href="https://github.com/osrf/gazebo">GitHub repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
</ul></li>
<li><a href="https://carla.org/">CARLA</a> - Unreal Engine based
simulator for automotive applications. Compatible with Autoware, Baidu
Apollo and ROS/ROS 2.
<ul>
<li><a href="https://github.com/carla-simulator/carla">GitHub repository
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
<li><a
href="https://www.youtube.com/channel/UC1llP9ekCwt8nEJzMJBQekg">YouTube
channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://www.lgsvlsimulator.com/">LGSVL / SVL</a> - Unity
Engine based simulator for automotive applications. Compatible with
Autoware, Baidu Apollo and ROS/ROS 2. <em>Note:</em> LG has made the
difficult decision to <a
href="https://www.svlsimulator.com/news/2022-01-20-svl-simulator-sunset">suspend</a>
active development of SVL Simulator.
<ul>
<li><a href="https://github.com/lgsvl/simulator">GitHub repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://www.youtube.com/c/LGSVLSimulator">YouTube channel
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://github.com/OSSDC/OSSDC-SIM">OSSDC SIM</a> - Unity
Engine based simulator for automotive applications, based on the
suspended LGSVL simulator, but an active development. Compatible with
Autoware, Baidu Apollo and ROS/ROS 2.
<ul>
<li><a href="https://github.com/OSSDC/OSSDC-SIM">GitHub repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
<li><a href="https://www.youtube.com/watch?v=fU_C38WEwGw">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://microsoft.github.io/AirSim">AirSim</a> - Unreal
Engine based simulator for drones and automotive. Compatible with ROS.
<ul>
<li><a href="https://github.com/microsoft/AirSim">GitHub repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://www.youtube.com/watch?v=gnz1X3UNM5Y">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://tier4.github.io/AWSIM">AWSIM</a> - Unity Engine
based simulator for automotive applications. Compatible with Autoware
and ROS 2.
<ul>
<li><a href="https://github.com/tier4/AWSIM">GitHub repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
<li><a href="https://www.youtube.com/watch?v=FH7aBWDmSNA">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
</ul>
<h2 id="related-awesome">Related awesome</h2>
<ul>
<li><a
href="https://github.com/Yochengliu/awesome-point-cloud-analysis#readme">Awesome
point cloud analysis <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a
href="https://github.com/Kiloreux/awesome-robotics#readme">Awesome
robotics <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a
href="https://github.com/jslee02/awesome-robotics-libraries#readme">Awesome
robotics libraries <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://github.com/fkromer/awesome-ros2#readme">Awesome ROS
2 <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
<li><a
href="https://github.com/owainlewis/awesome-artificial-intelligence#readme">Awesome
artificial intelligence <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a
href="https://github.com/jbhuang0604/awesome-computer-vision#readme">Awesome
computer vision <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a
href="https://github.com/josephmisiti/awesome-machine-learning#readme">Awesome
machine learning <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a
href="https://github.com/ChristosChristofidis/awesome-deep-learning#readme">Awesome
deep learning <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a href="https://github.com/aikorea/awesome-rl/#readme">Awesome
reinforcement learning <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a
href="https://github.com/youngguncho/awesome-slam-datasets#readme">Awesome
SLAM datasets <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a
href="https://github.com/kitspace/awesome-electronics#readme">Awesome
electronics <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a
href="https://github.com/jaredthecoder/awesome-vehicle-security#readme">Awesome
vehicle security and car hacking <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a
href="https://github.com/Deephome/Awesome-LiDAR-Camera-Calibration">Awesome
LIDAR-Camera calibration <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a
href="https://github.com/hogyun2/awesome-lidar-place-recognition">Awesome
LiDAR Place Recognition <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
<li><a
href="https://github.com/neng-wang/Awesome-LiDAR-MOS">Awesome-LiDAR-MOS
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
Moving Object Segmentation</li>
<li><a
href="https://github.com/sjtuyinjie/awesome-LiDAR-Visual-SLAM">Awesome-LiDAR-Visual-SLAM
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul>
<h2 id="others">Others</h2>
<ul>
<li><a
href="https://github.com/philipturner/ARHeadsetKit">ARHeadsetKit</a> -
Using $5 Google Cardboard to replicate Microsoft Hololens. Hosts the
source code for research on <a
href="https://github.com/philipturner/scene-color-reconstruction">scene
color reconstruction</a>.</li>
<li><a
href="https://github.com/marian42/pointcloudprinter">Pointcloudprinter
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
- A tool to turn point cloud data from aerial lidar scans into solid
meshes for 3D printing.</li>
<li><a href="https://cloudcompare.org/">CloudCompare</a> - CloudCompare
is a free, cross-platform point cloud editor software.
<ul>
<li><a href="https://github.com/CloudCompare">GitHub repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
<li><a href="https://github.com/keijiro/Pcx">Pcx <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
- Point cloud importer/renderer for Unity.</li>
<li><a href="https://github.com/uhlik/bpy">Bpy <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
- Point cloud importer/renderer/editor for Blender, Point Cloud
visualizer.</li>
<li><a
href="https://github.com/Hitachi-Automotive-And-Industry-Lab/semantic-segmentation-editor">Semantic
Segmentation Editor <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
- Point cloud and image semantic segmentation editor by Hitachi
Automotive And Industry Laboratory, point cloud annotator /
labeling.</li>
<li><a href="https://github.com/walzimmer/3d-bat">3D Bounding Box
Annotation Tool <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
- 3D BAT: A Semi-Automatic, Web-based 3D Annotation Toolbox for
Full-Surround, Multi-Modal Data Streams, point cloud annotator /
labeling.
<ul>
<li><a href="https://arxiv.org/pdf/1905.00525.pdf">Paper <img
src="https://img.shields.io/badge/paper-blue?style=flat-square&amp;logo=semanticscholar" /></a></li>
<li><a href="https://www.youtube.com/watch?v=gSGG4Lw8BSU">YouTube video
<img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a
href="https://github.com/SBCV/Blender-Addon-Photogrammetry-Importer">Photogrammetry
importer <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
- Blender addon to import reconstruction results of several
libraries.</li>
<li><a href="https://foxglove.dev/">Foxglove</a> - Foxglove Studio is an
integrated visualization and diagnosis tool for robotics, available in
your browser or for download as a desktop app on Linux, Windows, and
macOS.
<ul>
<li><a href="https://github.com/foxglove/studio">GitHub repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a>
<img
src="https://img.shields.io/badge/ROS-2-34aec5?style=flat-square&amp;logo=ros" /></li>
<li><a
href="https://www.youtube.com/channel/UCrIbrBxb9HBAnlhbx2QycsA">YouTube
channel <img
src="https://img.shields.io/badge/youtube-red?style=flat-square&amp;logo=youtube" /></a></li>
</ul></li>
<li><a href="https://www.meshlab.net/">MeshLab</a> - MeshLab is an open
source, portable, and extensible system for the processing and editing
3D triangular meshes and pointcloud.
<ul>
<li><a href="https://github.com/cnr-isti-vclab/meshlab">GitHub
repository <img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
<li><a href="https://github.com/Geekgineer/CloudPeek">CloudPeek</a> is a
lightweight, c++ single-header, cross-platform point cloud viewer,
designed for simplicity and efficiency without relying on heavy external
libraries like PCL or Open3D.
<ul>
<li><a href="https://github.com/Geekgineer/CloudPeek">GitHub repository
<img
src="https://img.shields.io/badge/github-black?style=flat-square&amp;logo=github" /></a></li>
</ul></li>
</ul>
<p><a href="https://github.com/szenergy/awesome-lidar">lidar.md
Github</a></p>