Files
awesome-awesomeness/html/decisiontreepapers.html
2025-07-18 23:13:11 +02:00

2854 lines
106 KiB
HTML
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<h1
id="awesome-decision-classification-and-regression-tree-research-papers">Awesome
Decision, Classification, and Regression Tree Research Papers</h1>
<a href="https://github.com/sindresorhus/awesome"><img
src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg"
alt="Awesome" /></a> <a href="http://makeapullrequest.com"><img
src="https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square"
alt="PRs Welcome" /></a> <a
href="https://github.com/benedekrozemberczki/awesome-decision-tree-papers/archive/master.zip"><img
src="https://img.shields.io/github/repo-size/benedekrozemberczki/awesome-decision-tree-papers.svg"
alt="repo size" /></a> <img
src="https://img.shields.io/github/license/benedekrozemberczki/awesome-decision-tree-papers.svg?color=blue"
alt="License" /> <a
href="https://twitter.com/intent/follow?screen_name=benrozemberczki"><img
src="https://img.shields.io/twitter/follow/benrozemberczki?style=social&amp;logo=twitter"
alt="benedekrozemberczki" /></a>
<p align="center">
<img width="300" src="tree.png">
</p>
<p>A curated list of classification and regression tree research papers
with implementations from the following conferences:</p>
<ul>
<li>Machine learning
<ul>
<li><a href="https://nips.cc/">NeurIPS</a></li>
<li><a href="https://icml.cc/">ICML</a></li>
<li><a href="https://iclr.cc/">ICLR</a></li>
</ul></li>
<li>Computer vision
<ul>
<li><a href="http://cvpr2019.thecvf.com/">CVPR</a></li>
<li><a href="http://iccv2019.thecvf.com/">ICCV</a></li>
<li><a href="https://eccv2018.org/">ECCV</a></li>
</ul></li>
<li>Natural language processing
<ul>
<li><a href="http://www.acl2019.org/EN/index.xhtml">ACL</a></li>
<li><a href="https://naacl2019.org/">NAACL</a></li>
<li><a href="https://www.emnlp-ijcnlp2019.org/">EMNLP</a></li>
</ul></li>
<li>Data
<ul>
<li><a href="https://www.kdd.org/">KDD</a></li>
<li><a href="http://www.cikmconference.org/">CIKM</a><br />
</li>
<li><a href="http://icdm2019.bigke.org/">ICDM</a></li>
<li><a
href="https://www.siam.org/Conferences/CM/Conference/sdm19">SDM</a><br />
</li>
<li><a href="http://pakdd2019.medmeeting.org">PAKDD</a></li>
<li><a href="http://ecmlpkdd2019.org">PKDD/ECML</a></li>
<li><a href="https://sigir.org/">SIGIR</a></li>
<li><a href="https://www2019.thewebconf.org/">WWW</a></li>
<li><a href="www.wsdm-conference.org">WSDM</a></li>
</ul></li>
<li>Artificial intelligence
<ul>
<li><a href="https://www.aaai.org/">AAAI</a></li>
<li><a href="https://www.aistats.org/">AISTATS</a></li>
<li><a href="https://e-nns.org/icann2019/">ICANN</a><br />
</li>
<li><a href="https://www.ijcai.org/">IJCAI</a></li>
<li><a href="http://www.auai.org/">UAI</a></li>
</ul></li>
</ul>
<p>Similar collections about <a
href="https://github.com/benedekrozemberczki/awesome-graph-classification">graph
classification</a>, <a
href="https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers">gradient
boosting</a>, <a
href="https://github.com/benedekrozemberczki/awesome-fraud-detection-papers">fraud
detection</a>, <a
href="https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers">Monte
Carlo tree search</a>, and <a
href="https://github.com/benedekrozemberczki/awesome-community-detection">community
detection</a> papers with implementations.</p>
<h2 id="section">2022</h2>
<ul>
<li><strong>Using MaxSAT for Efficient Explanations of Tree Ensembles
(AAAI 2022)</strong>
<ul>
<li>Alexey Ignatiev, Yacine Izza, Peter J. Stuckey, João
Marques-Silva</li>
<li><a
href="https://alexeyignatiev.github.io/assets/pdf/iisms-aaai22-preprint.pdf">[Paper]</a></li>
</ul></li>
<li><strong>FOCUS: Flexible Optimizable Counterfactual Explanations for
Tree Ensembles (AAAI 2022)</strong>
<ul>
<li>Ana Lucic, Harrie Oosterhuis, Hinda Haned, Maarten de Rijke</li>
<li><a
href="https://a-lucic.github.io/talks/ICML_SMRL_focus.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Explainable and Local Correction of Classification Models
Using Decision Trees (AAAI 2022)</strong>
<ul>
<li>Hirofumi Suzuki, Hiroaki Iwashita, Takuya Takagi, Keisuke Goto, Yuta
Fujishige, Satoshi Hara</li>
<li><a
href="https://ojs.aaai.org/index.php/AAAI/article/view/20816">[Paper]</a></li>
</ul></li>
<li><strong>Robust Optimal Classification Trees against Adversarial
Examples (AAAI 2022)</strong>
<ul>
<li>Daniël Vos, Sicco Verwer</li>
<li><a href="https://arxiv.org/abs/2109.03857">[Paper]</a></li>
</ul></li>
<li><strong>Fairness without Imputation: A Decision Tree Approach for
Fair Prediction with Missing Values (AAAI 2022)</strong>
<ul>
<li>Haewon Jeong, Hao Wang, Flávio P. Calmon</li>
<li><a href="https://arxiv.org/abs/2109.10431">[Paper]</a></li>
</ul></li>
<li><strong>Fast Sparse Decision Tree Optimization via Reference
Ensembles (AAAI 2022)</strong>
<ul>
<li>Hayden McTavish, Chudi Zhong, Reto Achermann, Ilias Karimalis,
Jacques Chen, Cynthia Rudin, Margo I. Seltzer</li>
<li><a href="https://arxiv.org/abs/2112.00798">[Paper]</a></li>
<li><a href="https://pypi.org/project/gosdt/">[Code]</a></li>
</ul></li>
<li><strong>TransBoost: A Boosting-Tree Kernel Transfer Learning
Algorithm for Improving Financial Inclusion (AAAI 2022)</strong>
<ul>
<li>Yiheng Sun, Tian Lu, Cong Wang, Yuan Li, Huaiyu Fu, Jingran Dong,
Yunjie Xu</li>
<li><a href="https://arxiv.org/abs/2112.02365">[Paper]</a></li>
<li><a href="https://github.com/yihengsun/TransBoost">[Code]</a></li>
</ul></li>
<li><strong>Counterfactual Explanation Trees: Transparent and Consistent
Actionable Recourse with Decision Trees (AISTATS 2022)</strong>
<ul>
<li>Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike</li>
<li><a
href="https://proceedings.mlr.press/v151/kanamori22a.html">[Paper]</a></li>
</ul></li>
<li><strong>Accurate Shapley Values for explaining tree-based models
(AISTATS 2022)</strong>
<ul>
<li>Salim I. Amoukou, Tangi Salaün, Nicolas J.-B. Brunel</li>
<li><a href="https://arxiv.org/abs/2106.03820">[Paper]</a></li>
</ul></li>
<li><strong>A cautionary tale on fitting decision trees to data from
additive models: generalization lower bounds (AISTATS 2022)</strong>
<ul>
<li>Yan Shuo Tan, Abhineet Agarwal, Bin Yu</li>
<li><a href="https://arxiv.org/abs/2110.09626">[Paper]</a></li>
<li><a
href="https://github.com/aagarwal1996/additive_trees">[Code]</a></li>
</ul></li>
<li><strong>Enterprise-Scale Search: Accelerating Inference for Sparse
Extreme Multi-Label Ranking Trees (WWW 2022)</strong>
<ul>
<li>Philip A. Etter, Kai Zhong, Hsiang-Fu Yu, Lexing Ying, Inderjit S.
Dhillon</li>
<li><a href="https://arxiv.org/abs/2106.02697">[Paper]</a></li>
</ul></li>
<li><strong>MBCT: Tree-Based Feature-Aware Binning for Individual
Uncertainty Calibration (WWW 2022)</strong>
<ul>
<li>Siguang Huang, Yunli Wang, Lili Mou, Huayue Zhang, Han Zhu, Chuan
Yu, Bo Zheng</li>
<li><a href="https://arxiv.org/abs/2202.04348">[Paper]</a></li>
</ul></li>
<li><strong>Rethinking Conversational Recommendations: Is Decision Tree
All You Need (CIKM 2022)</strong>
<ul>
<li>A S. M. Ahsan-Ul-Haque, Hongning Wang</li>
<li><a href="https://arxiv.org/abs/2208.14614">[Paper]</a></li>
</ul></li>
<li><strong>A Neural Tangent Kernel Perspective of Infinite Tree
Ensembles (ICLR 2022)</strong>
<ul>
<li>Ryuichi Kanoh, Mahito Sugiyama</li>
<li><a
href="https://openreview.net/forum?id=vUH85MOXO7h">[Paper]</a></li>
</ul></li>
<li><strong>POETREE: Interpretable Policy Learning with Adaptive
Decision Trees (ICLR 2022)</strong>
<ul>
<li>Alizée Pace, Alex Chan, Mihaela van der Schaar</li>
<li><a href="https://arxiv.org/abs/2203.08057">[Paper]</a></li>
</ul></li>
<li><strong>Hierarchical Shrinkage: Improving the accuracy and
interpretability of tree-based models (ICML 2022)</strong>
<ul>
<li>Abhineet Agarwal, Yan Shuo Tan, Omer Ronen, Chandan Singh, Bin
Yu</li>
<li><a href="https://arxiv.org/abs/2202.00858">[Paper]</a></li>
</ul></li>
<li><strong>Popular decision tree algorithms are provably noise tolerant
(ICML 2022)</strong>
<ul>
<li>Guy Blanc, Jane Lange, Ali Malik, Li-Yang Tan</li>
<li><a href="https://arxiv.org/abs/2206.08899">[Paper]</a></li>
</ul></li>
<li><strong>Robust Counterfactual Explanations for Tree-Based Ensembles
(ICML 2022)</strong>
<ul>
<li>Sanghamitra Dutta, Jason Long, Saumitra Mishra, Cecilia Tilli,
Daniele Magazzeni</li>
<li><a
href="https://proceedings.mlr.press/v162/dutta22a.html">[Paper]</a></li>
</ul></li>
<li><strong>Fast Provably Robust Decision Trees and Boosting (ICML
2022)</strong>
<ul>
<li>Jun-Qi Guo, Ming-Zhuo Teng, Wei Gao, Zhi-Hua Zhou</li>
<li><a
href="https://proceedings.mlr.press/v162/guo22h.html">[Paper]</a></li>
</ul></li>
<li><strong>BAMDT: Bayesian Additive Semi-Multivariate Decision Trees
for Nonparametric Regression (ICML 2022)</strong>
<ul>
<li>Zhao Tang Luo, Huiyan Sang, Bani K. Mallick</li>
<li><a
href="https://proceedings.mlr.press/v162/luo22a.html">[Paper]</a></li>
</ul></li>
<li><strong>Quant-BnB: A Scalable Branch-and-Bound Method for Optimal
Decision Trees with Continuous Features (ICML 2022)</strong>
<ul>
<li>Rahul Mazumder, Xiang Meng, Haoyue Wang</li>
<li><a href="https://arxiv.org/abs/2206.11844">[Paper]</a></li>
</ul></li>
<li><strong>A Tree-based Model Averaging Approach for Personalized
Treatment Effect Estimation from Heterogeneous Data Sources (ICML
2022)</strong>
<ul>
<li>Xiaoqing Tan, Chung-Chou H. Chang, Ling Zhou, Lu Tang</li>
<li><a href="https://arxiv.org/abs/2103.06261">[Paper]</a></li>
</ul></li>
<li><strong>On Preferred Abductive Explanations for Decision Trees and
Random Forests (IJCAI 2022)</strong>
<ul>
<li>Gilles Audemard, Steve Bellart, Louenas Bounia, Frédéric Koriche,
Jean-Marie Lagniez, Pierre Marquis</li>
<li><a
href="https://www.ijcai.org/proceedings/2022/0091.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Extending Decision Tree to Handle Multiple Fairness Criteria
(IJCAI 2022)</strong>
<ul>
<li>Alessandro Castelnovo</li>
<li><a
href="https://www.ijcai.org/proceedings/2022/0822.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Flexible Modeling and Multitask Learning using
Differentiable Tree Ensembles (KDD 2022)</strong>
<ul>
<li>Shibal Ibrahim, Hussein Hazimeh, Rahul Mazumder</li>
<li><a href="https://arxiv.org/abs/2205.09717">[Paper]</a></li>
</ul></li>
<li><strong>Integrity Authentication in Tree Models (KDD 2022)</strong>
<ul>
<li>Weijie Zhao, Yingjie Lao, Ping Li</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3534678.3539428">[Paper]</a></li>
</ul></li>
<li><strong>Retrieval-Based Gradient Boosting Decision Trees for Disease
Risk Assessment (KDD 2022)</strong>
<ul>
<li>Handong Ma, Jiahang Cao, Yuchen Fang, Weinan Zhang, Wenbo Sheng,
Shaodian Zhang, Yong Yu</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3534678.3539052">[Paper]</a></li>
</ul></li>
<li><strong>Improved feature importance computation for tree models
based on the Banzhaf value (UAI 2022)</strong>
<ul>
<li>Adam Karczmarz, Tomasz Michalak, Anish Mukherjee, Piotr Sankowski,
Piotr Wygocki</li>
<li><a
href="https://proceedings.mlr.press/v180/karczmarz22a.html">[Paper]</a></li>
</ul></li>
<li><strong>Learning linear non-Gaussian polytree models (UAI
2022)</strong>
<ul>
<li>Daniele Tramontano, Anthea Monod, Mathias Drton</li>
<li><a href="https://arxiv.org/abs/2208.06701">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-1">2021</h2>
<ul>
<li><strong>Online Probabilistic Label Trees (AISTATS 2021)</strong>
<ul>
<li>Kalina Jasinska-Kobus, Marek Wydmuch, Devanathan Thiruvenkatachari,
Krzysztof Dembczyński</li>
<li><a href="https://arxiv.org/abs/2007.04451">[Paper]</a></li>
<li><a href="https://github.com/mwydmuch/napkinXC">[Code]</a></li>
</ul></li>
<li><strong>Optimal Decision Trees for Nonlinear Metrics (AAAI
2021)</strong>
<ul>
<li>Emir Demirovic, Peter J. Stuckey</li>
<li><a href="https://arxiv.org/abs/2009.06921">[Paper]</a></li>
</ul></li>
<li><strong>SAT-based Decision Tree Learning for Large Data Sets (AAAI
2021)</strong>
<ul>
<li>André Schidler, Stefan Szeider</li>
<li><a
href="https://ojs.aaai.org/index.php/AAAI/article/view/16509">[Paper]</a></li>
</ul></li>
<li><strong>Parameterized Complexity of Small Decision Tree Learning
(AAAI 2021)</strong>
<ul>
<li>Sebastian Ordyniak, Stefan Szeider</li>
<li><a
href="https://www.ac.tuwien.ac.at/files/tr/ac-tr-21-002.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Counterfactual Explanations for Oblique Decision Trees:
Exact - Efficient Algorithms (AAAI 2021)</strong>
<ul>
<li>Miguel Á. Carreira-Perpiñán, Suryabhan Singh Hada</li>
<li><a href="https://arxiv.org/abs/2103.01096">[Paper]</a></li>
</ul></li>
<li><strong>Geometric Heuristics for Transfer Learning in Decision Trees
(CIKM 2021)</strong>
<ul>
<li>Siddhesh Chaubal, Mateusz Rzepecki, Patrick K. Nicholson, Guangyuan
Piao, Alessandra Sala</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3459637.3482259">[Paper]</a></li>
</ul></li>
<li><strong>Fairness-Aware Training of Decision Trees by Abstract
Interpretation (CIKM 2021)</strong>
<ul>
<li>Francesco Ranzato, Caterina Urban, Marco Zanella</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3459637.3482342">[Paper]</a></li>
</ul></li>
<li><strong>Enabling Efficiency-Precision Trade-offs for Label Trees in
Extreme Classification (CIKM 2021)</strong>
<ul>
<li>Tavor Z. Baharav, Daniel L. Jiang, Kedarnath Kolluri, Sujay
Sanghavi, Inderjit S. Dhillon</li>
<li><a href="https://arxiv.org/abs/2106.00730">[Paper]</a></li>
</ul></li>
<li><strong>Are Neural Rankers still Outperformed by Gradient Boosted
Decision Trees (ICLR 2021)</strong>
<ul>
<li>Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi,
Xuanhui Wang, Michael Bendersky, Marc Najork</li>
<li><a
href="https://openreview.net/forum?id=Ut1vF_q_vC">[Paper]</a></li>
</ul></li>
<li><strong>NBDT: Neural-Backed Decision Tree (ICLR 2021)</strong>
<ul>
<li>Alvin Wan, Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee, Suzanne
Petryk, Sarah Adel Bargal, Joseph E. Gonzalez</li>
<li><a href="https://arxiv.org/abs/2004.00221">[Paper]</a></li>
</ul></li>
<li><strong>Versatile Verification of Tree Ensembles (ICML
2021)</strong>
<ul>
<li>Laurens Devos, Wannes Meert, Jesse Davis</li>
<li><a href="https://arxiv.org/abs/2010.13880">[Paper]</a></li>
</ul></li>
<li><strong>Connecting Interpretability and Robustness in Decision Trees
through Separation (ICML 2021)</strong>
<ul>
<li>Michal Moshkovitz, Yao-Yuan Yang, Kamalika Chaudhuri</li>
<li><a href="https://arxiv.org/abs/2102.07048">[Paper]</a></li>
</ul></li>
<li><strong>Optimal Counterfactual Explanations in Tree Ensembles (ICML
2021)</strong>
<ul>
<li>Axel Parmentier, Thibaut Vidal</li>
<li><a href="https://arxiv.org/abs/2106.06631">[Paper]</a></li>
</ul></li>
<li><strong>Efficient Training of Robust Decision Trees Against
Adversarial Examples (ICML 2021)</strong>
<ul>
<li>Daniël Vos, Sicco Verwer</li>
<li><a href="https://arxiv.org/abs/2012.10438">[Paper]</a></li>
</ul></li>
<li><strong>Learning Binary Decision Trees by Argmin Differentiation
(ICML 2021)</strong>
<ul>
<li>Valentina Zantedeschi, Matt J. Kusner, Vlad Niculae</li>
<li><a href="https://arxiv.org/pdf/2010.04627.pdf">[Paper]</a></li>
</ul></li>
<li><strong>BLOCKSET (Block-Aligned Serialized Trees): Reducing
Inference Latency for Tree ensemble Deployment (KDD 2021)</strong>
<ul>
<li>Meghana Madhyastha, Kunal Lillaney, James Browne, Joshua T.
Vogelstein, Randal Burns</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3447548.3467368">[Paper]</a></li>
</ul></li>
<li><strong>ControlBurn: Feature Selection by Sparse Forests (KDD
2021)</strong>
<ul>
<li>Brian Liu, Miaolan Xie, Madeleine Udell</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3447548.3467387?sid=SCITRUS">[Paper]</a></li>
</ul></li>
<li><strong>Probabilistic Gradient Boosting Machines for Large-Scale
Probabilistic Regression (KDD 2021)</strong>
<ul>
<li>Olivier Sprangers, Sebastian Schelter, Maarten de Rijke</li>
<li><a
href="https://dl.acm.org/doi/10.1145/3447548.3467278">[Paper]</a></li>
</ul></li>
<li><strong>Verifying Tree Ensembles by Reasoning about Potential
Instances (SDM 2021)</strong>
<ul>
<li>Laurens Devos, Wannes Meert, Jesse Davis</li>
<li><a href="https://arxiv.org/abs/2001.11905">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-2">2020</h2>
<ul>
<li><strong>DTCA: Decision Tree-based Co-Attention Networks for
Explainable Claim Verification (ACL 2020)</strong>
<ul>
<li>Lianwei Wu, Yuan Rao, Yongqiang Zhao, Hao Liang, Ambreen Nazir</li>
<li><a href="https://arxiv.org/abs/2004.13455">[Paper]</a></li>
</ul></li>
<li><strong>Privacy-Preserving Gradient Boosting Decision Trees (AAAI
2020)</strong>
<ul>
<li>Qinbin Li, Zhaomin Wu, Zeyi Wen, Bingsheng He</li>
<li><a href="https://arxiv.org/abs/1911.04209">[Paper]</a></li>
</ul></li>
<li><strong>Practical Federated Gradient Boosting Decision Trees (AAAI
2020)</strong>
<ul>
<li>Qinbin Li, Zeyi Wen, Bingsheng He</li>
<li><a href="https://arxiv.org/abs/1911.04206">[Paper]</a></li>
</ul></li>
<li><strong>Efficient Inference of Optimal Decision Trees (AAAI
2020)</strong>
<ul>
<li>Florent Avellaneda</li>
<li><a
href="http://florent.avellaneda.free.fr/dl/AAAI20.pdf">[Paper]</a></li>
<li><a
href="https://github.com/FlorentAvellaneda/InferDT">[Code]</a></li>
</ul></li>
<li><strong>Learning Optimal Decision Trees Using Caching
Branch-and-Bound Search (AAAI 2020)</strong>
<ul>
<li>Gael Aglin, Siegfried Nijssen, Pierre Schaus</li>
<li><a
href="https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A223390/datastream/PDF_01/view">[Paper]</a></li>
<li><a href="https://pypi.org/project/dl8.5/">[Code]</a></li>
</ul></li>
<li><strong>Abstract Interpretation of Decision Tree Ensemble
Classifiers (AAAI 2020)</strong>
<ul>
<li>Francesco Ranzato, Marco Zanella</li>
<li><a
href="https://www.math.unipd.it/~ranzato/papers/aaai20.pdf">[Paper]</a></li>
<li><a
href="https://github.com/abstract-machine-learning/silva">[Code]</a></li>
</ul></li>
<li><strong>Scalable Feature Selection for (Multitask) Gradient Boosted
Trees (AISTATS 2020)</strong>
<ul>
<li>Cuize Han, Nikhil Rao, Daria Sorokina, Karthik Subbian</li>
<li><a
href="http://proceedings.mlr.press/v108/han20a.html">[Paper]</a></li>
</ul></li>
<li><strong>Optimization Methods for Interpretable Differentiable
Decision Trees Applied to Reinforcement Learning (AISTATS 2020)</strong>
<ul>
<li>Andrew Silva, Matthew C. Gombolay, Taylor W. Killian, Ivan Dario
Jimenez Jimenez, Sung-Hyun Son</li>
<li><a href="https://arxiv.org/abs/1903.09338">[Paper]</a></li>
</ul></li>
<li><strong>Exploiting Categorical Structure Using Tree-Based Methods
(AISTATS 2020)</strong>
<ul>
<li>Brian Lucena</li>
<li><a href="https://arxiv.org/abs/2004.07383">[Paper]</a></li>
</ul></li>
<li><strong>LdSM: Logarithm-depth Streaming Multi-label Decision Trees
(AISTATS 2020)</strong>
<ul>
<li>Maryam Majzoubi, Anna Choromanska</li>
<li><a href="https://arxiv.org/abs/1905.10428">[Paper]</a></li>
</ul></li>
<li><strong>Oblique Decision Trees from Derivatives of ReLU Networks
(ICLR 2020)</strong>
<ul>
<li>Guang-He Lee, Tommi S. Jaakkola</li>
<li><a href="https://openreview.net/pdf?id=Bke8UR4FPB">[Paper]</a></li>
<li><a href="https://github.com/guanghelee/iclr20-lcn">[Code]</a></li>
</ul></li>
<li><strong>Provable Guarantees for Decision Tree Induction: the
Agnostic Setting (ICML 2020)</strong>
<ul>
<li>Guy Blanc, Jane Lange, Li-Yang Tan</li>
<li><a href="https://arxiv.org/abs/2006.00743v1">[Paper]</a></li>
</ul></li>
<li><strong>Decision Trees for Decision-Making under the
Predict-then-Optimize Framework (ICML 2020)</strong>
<ul>
<li>Adam N. Elmachtoub, Jason Cheuk Nam Liang, Ryan McNellis</li>
<li><a href="https://arxiv.org/abs/2003.00360">[Paper]</a></li>
</ul></li>
<li><strong>The Tree Ensemble Layer: Differentiability meets Conditional
Computation (ICML 2020)</strong>
<ul>
<li>Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, Rahul
Mazumder</li>
<li><a href="https://arxiv.org/abs/2002.07772">[Paper]</a></li>
<li><a
href="https://github.com/google-research/google-research/tree/master/tf_trees">[Code]</a></li>
</ul></li>
<li><strong>Generalized and Scalable Optimal Sparse Decision Trees (ICML
2020)</strong>
<ul>
<li>Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, Margo I.
Seltzer</li>
<li><a href="https://arxiv.org/abs/2006.08690">[Paper]</a></li>
<li><a href="https://github.com/xiyanghu/OSDT">[Code]</a></li>
</ul></li>
<li><strong>Born-Again Tree Ensembles (ICML 2020)</strong>
<ul>
<li>Thibaut Vidal, Maximilian Schiffer</li>
<li><a href="https://arxiv.org/abs/2003.11132">[Paper]</a></li>
<li><a href="https://github.com/vidalt/BA-Trees">[Code]</a></li>
</ul></li>
<li><strong>On Lp-norm Robustness of Ensemble Decision Stumps and Trees
(ICML 2020)</strong>
<ul>
<li>Yihan Wang, Huan Zhang, Hongge Chen, Duane S. Boning, Cho-Jui
Hsieh</li>
<li><a href="https://arxiv.org/abs/2008.08755">[Paper]</a></li>
</ul></li>
<li><strong>Smaller, More Accurate Regression Forests Using Tree
Alternating Optimization (ICML 2020)</strong>
<ul>
<li>Arman Zharmagambetov, Miguel Á. Carreira-Perpinan</li>
<li><a
href="http://proceedings.mlr.press/v119/zharmagambetov20a.html">[Paper]</a></li>
</ul></li>
<li><strong>Learning Optimal Decision Trees with MaxSAT and its
Integration in AdaBoost (IJCAI 2020)</strong>
<ul>
<li>Hao Hu, Mohamed Siala, Emmanuel Hebrard, Marie-José Huguet</li>
<li><a
href="https://www.ijcai.org/Proceedings/2020/163">[Paper]</a></li>
</ul></li>
<li><strong>Speeding up Very Fast Decision Tree with Low Computational
Cost (IJCAI 2020)</strong>
<ul>
<li>Jian Sun, Hongyu Jia, Bo Hu, Xiao Huang, Hao Zhang, Hai Wan, Xibin
Zhao</li>
<li><a
href="https://www.ijcai.org/Proceedings/2020/0177.pdf">[Paper]</a></li>
</ul></li>
<li><strong>PyDL8.5: a Library for Learning Optimal Decision Trees
(IJCAI 2020)</strong>
<ul>
<li>Gaël Aglin, Siegfried Nijssen, Pierre Schaus</li>
<li><a
href="https://www.ijcai.org/Proceedings/2020/0750.pdf">[Paper]</a></li>
<li><a href="https://github.com/aia-uclouvain/pydl8.5">[Code]</a></li>
</ul></li>
<li><strong>Geodesic Forests (KDD 2020)</strong>
<ul>
<li>Meghana Madhyastha, Gongkai Li, Veronika Strnadova-Neeley, James
Browne, Joshua T. Vogelstein, Randal Burns</li>
<li><a
href="https://dl.acm.org/doi/pdf/10.1145/3394486.3403094">[Paper]</a></li>
</ul></li>
<li><strong>A Scalable MIP-based Method for Learning Optimal
Multivariate Decision Trees (NeurIPS 2020)</strong>
<ul>
<li>Haoran Zhu, Pavankumar Murali, Dzung T. Phan, Lam M. Nguyen, Jayant
Kalagnanam</li>
<li><a href="https://arxiv.org/abs/2011.03375">[Paper]</a></li>
</ul></li>
<li><strong>Estimating Decision Tree Learnability with Polylogarithmic
Sample Complexity (NeurIPS 2020)</strong>
<ul>
<li>Guy Blanc, Neha Gupta, Jane Lange, Li-Yang Tan</li>
<li><a href="https://arxiv.org/abs/2011.01584">[Paper]</a></li>
</ul></li>
<li><strong>Universal Guarantees for Decision Tree Induction via a
Higher-Order Splitting Criterion (NeurIPS 2020)</strong>
<ul>
<li>Guy Blanc, Neha Gupta, Jane Lange, Li-Yang Tan</li>
<li><a href="https://arxiv.org/abs/2010.08633">[Paper]</a></li>
</ul></li>
<li><strong>Smooth And Consistent Probabilistic Regression Trees
(NeurIPS 2020)</strong>
<ul>
<li>Sami Alkhoury, Emilie Devijver, Marianne Clausel, Myriam Tami, Éric
Gaussier, Georges Oppenheim</li>
<li><a
href="https://papers.nips.cc/paper/2020/file/8289889263db4a40463e3f358bb7c7a1-Paper.pdf">[Paper]</a></li>
</ul></li>
<li><strong>An Efficient Adversarial Attack for Tree Ensembles (NeurIPS
2020)</strong>
<ul>
<li>Chong Zhang, Huan Zhang, Cho-Jui Hsieh</li>
<li><a href="https://arxiv.org/abs/2010.11598">[Paper]</a></li>
<li><a
href="https://github.com/chong-z/tree-ensemble-attack">[Code]</a></li>
</ul></li>
<li><strong>Decision Trees as Partitioning Machines to Characterize
their Generalization Properties (NeurIPS 2020)</strong>
<ul>
<li>Jean-Samuel Leboeuf, Frédéric Leblanc, Mario Marchand</li>
<li><a
href="https://papers.nips.cc/paper/2020/file/d2a10b0bd670e442b1d3caa3fbf9e695-Paper.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Evidence Weighted Tree Ensembles for Text Classification
(SIGIR 2020)</strong>
<ul>
<li>Md. Zahidul Islam, Jixue Liu, Jiuyong Li, Lin Liu, Wei Kang</li>
<li><a
href="https://dl.acm.org/doi/abs/10.1145/3397271.3401229">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-3">2019</h2>
<ul>
<li><strong>Multi Level Deep Cascade Trees for Conversion Rate
Prediction in Recommendation System (AAAI 2019)</strong>
<ul>
<li>Hong Wen, Jing Zhang, Quan Lin, Keping Yang, Pipei Huang</li>
<li><a href="https://arxiv.org/pdf/1805.09484.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Induction of Non-Monotonic Logic Programs to Explain Boosted
Tree Models Using LIME (AAAI 2019)</strong>
<ul>
<li>Farhad Shakerin, Gopal Gupta</li>
<li><a href="https://arxiv.org/abs/1808.00629">[Paper]</a></li>
</ul></li>
<li><strong>Learning Optimal and Fair Decision Trees for
Non-Discriminative Decision-Making (AAAI 2019)</strong>
<ul>
<li>Sina Aghaei, Mohammad Javad Azizi, Phebe Vayanos</li>
<li><a href="https://arxiv.org/abs/1903.10598">[Paper]</a></li>
</ul></li>
<li><strong>Desiderata for Interpretability: Explaining Decision Tree
Predictions with Counterfactuals (AAAI 2019)</strong>
<ul>
<li>Kacper Sokol, Peter A. Flach</li>
<li><a
href="https://aaai.org/ojs/index.php/AAAI/article/view/5154">[Paper]</a></li>
</ul></li>
<li><strong>Weighted Oblique Decision Trees (AAAI 2019)</strong>
<ul>
<li>Bin-Bin Yang, Song-Qing Shen, Wei Gao</li>
<li><a
href="https://aaai.org/ojs/index.php/AAAI/article/view/4505">[Paper]</a></li>
</ul></li>
<li><strong>Learning Optimal Classification Trees Using a Binary Linear
Program Formulation (AAAI 2019)</strong>
<ul>
<li>Sicco Verwer, Yingqian Zhang</li>
<li><a
href="https://yingqianzhang.net/wp-content/uploads/2018/12/VerwerZhangAAAI-final.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Optimization of Hierarchical Regression Model with
Application to Optimizing Multi-Response Regression K-ary Trees (AAAI
2019)</strong>
<ul>
<li>Pooya Tavallali, Peyman Tavallali, Mukesh Singhal</li>
<li><a
href="https://aaai.org/ojs/index.php/AAAI/article/view/4447/4325">[Paper]</a></li>
</ul></li>
<li><strong>XBART: Accelerated Bayesian Additive Regression Trees
(AISTATS 2019)</strong>
<ul>
<li>Jingyu He, Saar Yalov, P. Richard Hahn</li>
<li><a href="https://arxiv.org/abs/1810.02215">[Paper]</a></li>
</ul></li>
<li><strong>Interaction Detection with Bayesian Decision Tree Ensembles
(AISTATS 2019)</strong>
<ul>
<li>Junliang Du, Antonio R. Linero</li>
<li><a href="https://arxiv.org/abs/1809.08524">[Paper]</a></li>
</ul></li>
<li><strong>Adversarial Training of Gradient-Boosted Decision Trees
(CIKM 2019)</strong>
<ul>
<li>Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei</li>
<li><a
href="https://www.dais.unive.it/~calzavara/papers/cikm19.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Interpretable MTL from Heterogeneous Domains using Boosted
Tree (CIKM 2019)</strong>
<ul>
<li>Ya-Lin Zhang, Longfei Li</li>
<li><a
href="https://dl.acm.org/citation.cfm?id=3357384.3358072">[Paper]</a></li>
</ul></li>
<li><strong>Interpreting CNNs via Decision Trees (CVPR 2019)</strong>
<ul>
<li>Quanshi Zhang, Yu Yang, Haotian Ma, Ying Nian Wu</li>
<li><a href="https://arxiv.org/abs/1802.00121">[Paper]</a></li>
</ul></li>
<li><strong>EDiT: Interpreting Ensemble Models via Compact Soft Decision
Trees (ICDM 2019)</strong>
<ul>
<li>Jaemin Yoo, Lee Sael</li>
<li><a
href="https://github.com/leesael/EDiT/blob/master/docs/YooS19.pdf">[Paper]</a></li>
<li><a href="https://github.com/leesael/EDiT">[Code]</a></li>
</ul></li>
<li><strong>Fair Adversarial Gradient Tree Boosting (ICDM 2019)</strong>
<ul>
<li>Vincent Grari, Boris Ruf, Sylvain Lamprier, Marcin Detyniecki</li>
<li><a href="https://arxiv.org/abs/1911.05369">[Paper]</a></li>
</ul></li>
<li><strong>Functional Transparency for Structured Data: a
Game-Theoretic Approach (ICML 2019)</strong>
<ul>
<li>Guang-He Lee, Wengong Jin, David Alvarez-Melis, Tommi S.
Jaakkola</li>
<li><a
href="http://proceedings.mlr.press/v97/lee19b/lee19b.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Incorporating Grouping Information into Bayesian Decision
Tree Ensembles (ICML 2019)</strong>
<ul>
<li>Junliang Du, Antonio R. Linero</li>
<li><a
href="http://proceedings.mlr.press/v97/du19d.html">[Paper]</a></li>
</ul></li>
<li><strong>Adaptive Neural Trees (ICML 2019)</strong>
<ul>
<li>Ryutaro Tanno, Kai Arulkumaran, Daniel C. Alexander, Antonio
Criminisi, Aditya V. Nori</li>
<li><a href="https://arxiv.org/abs/1807.06699">[Paper]</a></li>
<li><a
href="https://github.com/rtanno21609/AdaptiveNeuralTrees">[Code]</a></li>
</ul></li>
<li><strong>Robust Decision Trees Against Adversarial Examples (ICML
2019)</strong>
<ul>
<li>Hongge Chen, Huan Zhang, Duane S. Boning, Cho-Jui Hsieh</li>
<li><a href="https://arxiv.org/abs/1902.10660">[Paper]</a></li>
<li><a href="https://github.com/chenhongge/RobustTrees">[Code]</a></li>
</ul></li>
<li><strong>Learn Smart with Less: Building Better Online Decision Trees
with Fewer Training Examples (IJCAI 2019)</strong>
<ul>
<li>Ariyam Das, Jin Wang, Sahil M. Gandhi, Jae Lee, Wei Wang, Carlo
Zaniolo</li>
<li><a
href="https://www.ijcai.org/proceedings/2019/0306.pdf">[Paper]</a></li>
</ul></li>
<li><strong>FAHT: An Adaptive Fairness-aware Decision Tree Classifier
(IJCAI 2019)</strong>
<ul>
<li>Wenbin Zhang, Eirini Ntoutsi</li>
<li><a href="https://arxiv.org/abs/1907.07237">[Paper]</a></li>
<li><a href="https://github.com/vanbanTruong/FAHT">[Code]</a></li>
</ul></li>
<li><strong>Inter-node Hellinger Distance based Decision Tree (IJCAI
2019)</strong>
<ul>
<li>Pritom Saha Akash, Md. Eusha Kadir, Amin Ahsan Ali, Mohammad
Shoyaib</li>
<li><a
href="https://www.ijcai.org/proceedings/2019/0272.pdf">[Paper]</a></li>
<li><a
href="https://github.com/ZDanielsResearch/HellingerTreesMatlab">[Matlab
Code]</a></li>
<li><a href="https://github.com/kaustubhrpatil/HDDT">[R Code]</a></li>
</ul></li>
<li><strong>Gradient Boosting with Piece-Wise Linear Regression Trees
(IJCAI 2019)</strong>
<ul>
<li>Yu Shi, Jian Li, Zhize Li</li>
<li><a href="https://arxiv.org/abs/1802.05640">[Paper]</a></li>
<li><a href="https://github.com/GBDT-PL/GBDT-PL">[Code]</a></li>
</ul></li>
<li><strong>A Gradient-Based Split Criterion for Highly Accurate and
Transparent Model Trees (IJCAI 2019)</strong>
<ul>
<li>Klaus Broelemann, Gjergji Kasneci</li>
<li><a href="https://arxiv.org/abs/1809.09703">[Paper]</a></li>
</ul></li>
<li><strong>Combining Decision Trees and Neural Networks for
Learning-to-Rank in Personal Search (KDD 2019)</strong>
<ul>
<li>Pan Li, Zhen Qin, Xuanhui Wang, Donald Metzler</li>
<li><a href="https://ai.google/research/pubs/pub48133/">[Paper]</a></li>
</ul></li>
<li><strong>Tight Certificates of Adversarial Robustness for Randomly
Smoothed Classifiers (NeurIPS 2019)</strong>
<ul>
<li>Guang-He Lee, Yang Yuan, Shiyu Chang, Tommi S. Jaakkola</li>
<li><a
href="https://papers.nips.cc/paper/8737-tight-certificates-of-adversarial-robustness-for-randomly-smoothed-classifiers.pdf">[Paper]</a></li>
<li><a
href="https://github.com/guanghelee/Randomized_Smoothing">[Code]</a></li>
</ul></li>
<li><strong>Partitioning Structure Learning for Segmented Linear
Regression Trees (NeurIPS 2019)</strong>
<ul>
<li>Xiangyu Zheng, Song Xi Chen</li>
<li><a
href="https://papers.nips.cc/paper/8494-partitioning-structure-learning-for-segmented-linear-regression-trees">[Paper]</a></li>
</ul></li>
<li><strong>Provably Robust Boosted Decision Stumps and Trees against
Adversarial Attacks (NeurIPS 2019)</strong>
<ul>
<li>Maksym Andriushchenko, Matthias Hein</li>
<li><a href="https://arxiv.org/abs/1906.03526">[Paper]</a></li>
<li><a
href="https://github.com/max-andr/provably-robust-boosting">[Code]</a></li>
</ul></li>
<li><strong>Optimal Decision Tree with Noisy Outcomes (NeurIPS
2019)</strong>
<ul>
<li>Su Jia, Viswanath Nagarajan, Fatemeh Navidi, R. Ravi</li>
<li><a
href="https://papers.nips.cc/paper/8592-optimal-decision-tree-with-noisy-outcomes.pdf">[Paper]</a></li>
<li><a
href="https://github.com/sjia1/ODT-with-noisy-outcomes">[Code]</a></li>
</ul></li>
<li><strong>Regularized Gradient Boosting (NeurIPS 2019)</strong>
<ul>
<li>Corinna Cortes, Mehryar Mohri, Dmitry Storcheus</li>
<li><a
href="https://papers.nips.cc/paper/8784-regularized-gradient-boosting.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Optimal Sparse Decision Trees (NeurIPS 2019)</strong>
<ul>
<li>Xiyang Hu, Cynthia Rudin, Margo Seltzer</li>
<li><a
href="https://papers.nips.cc/paper/8947-optimal-sparse-decision-trees.pdf">[Paper]</a></li>
<li><a href="https://github.com/xiyanghu/OSDT">[Code]</a></li>
</ul></li>
<li><strong>MonoForest framework for tree ensemble analysis (NeurIPS
2019)</strong>
<ul>
<li>Igor Kuralenok, Vasilii Ershov, Igor Labutin</li>
<li><a
href="https://papers.nips.cc/paper/9530-monoforest-framework-for-tree-ensemble-analysis">[Paper]</a></li>
<li><a href="https://github.com/xiyanghu/OSDT">[Code]</a></li>
</ul></li>
<li><strong>Calibrating Probability Estimation Trees using Venn-Abers
Predictors (SDM 2019)</strong>
<ul>
<li>Ulf Johansson, Tuwe Löfström, Henrik Boström</li>
<li><a
href="https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.4">[Paper]</a></li>
</ul></li>
<li><strong>Fast Training for Large-Scale One-versus-All Linear
Classifiers using Tree-Structured Initialization (SDM 2019)</strong>
<ul>
<li>Huang Fang, Minhao Cheng, Cho-Jui Hsieh, Michael P. Friedlander</li>
<li><a
href="https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.32">[Paper]</a></li>
</ul></li>
<li><strong>Forest Packing: Fast Parallel, Decision Forests (SDM
2019)</strong>
<ul>
<li>James Browne, Disa Mhembere, Tyler M. Tomita, Joshua T. Vogelstein,
Randal Burns</li>
<li><a
href="https://epubs.siam.org/doi/abs/10.1137/1.9781611975673.6">[Paper]</a></li>
</ul></li>
<li><strong>Block-distributed Gradient Boosted Trees (SIGIR
2019)</strong>
<ul>
<li>Theodore Vasiloudis, Hyunsu Cho, Henrik Boström</li>
<li><a href="https://arxiv.org/abs/1904.10522">[Paper]</a></li>
</ul></li>
<li><strong>Entity Personalized Talent Search Models with Tree
Interaction Features (WWW 2019)</strong>
<ul>
<li>Cagri Ozcaglar, Sahin Cem Geyik, Brian Schmitz, Prakhar Sharma, Alex
Shelkovnykov, Yiming Ma, Erik Buchanan</li>
<li><a href="https://arxiv.org/abs/1902.09041">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-4">2018</h2>
<ul>
<li><strong>Adapting to Concept Drift in Credit Card Transaction Data
Streams Using Contextual Bandits and Decision Trees (AAAI 2018)</strong>
<ul>
<li>Dennis J. N. J. Soemers, Tim Brys, Kurt Driessens, Mark H. M.
Winands, Ann Nowé</li>
<li><a
href="https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16183/16394">[Paper]</a></li>
</ul></li>
<li><strong>MERCS: Multi-Directional Ensembles of Regression and
Classification Trees (AAAI 2018)</strong>
<ul>
<li>Elia Van Wolputte, Evgeniya Korneva, Hendrik Blockeel</li>
<li><a
href="https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16875/16735">[Paper]</a></li>
<li><a href="https://github.com/eliavw/mercs-v5">[Code]</a></li>
</ul></li>
<li><strong>Differential Performance Debugging With Discriminant
Regression Trees (AAAI 2018)</strong>
<ul>
<li>Saeid Tizpaz-Niari, Pavol Cerný, Bor-Yuh Evan Chang, Ashutosh
Trivedi</li>
<li><a href="https://arxiv.org/abs/1711.04076">[Paper]</a></li>
<li><a href="https://github.com/cuplv/DPDEBUGGER">[Code]</a></li>
</ul></li>
<li><strong>Estimating the Class Prior in Positive and Unlabeled Data
Through Decision Tree Induction (AAAI 2018)</strong>
<ul>
<li>Jessa Bekker, Jesse Davis</li>
<li><a
href="https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16776">[Paper]</a></li>
</ul></li>
<li><strong>MDP-Based Cost Sensitive Classification Using Decision Trees
(AAAI 2018)</strong>
<ul>
<li>Shlomi Maliah, Guy Shani</li>
<li><a
href="https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17128">[Paper]</a></li>
</ul></li>
<li><strong>Generative Adversarial Image Synthesis With Decision Tree
Latent Controller (CVPR 2018)</strong>
<ul>
<li>Takuhiro Kaneko, Kaoru Hiramatsu, Kunio Kashino</li>
<li><a href="https://arxiv.org/abs/1805.10603">[Paper]</a></li>
<li><a
href="https://github.com/LynnHo/DTLC-GAN-Tensorflow">[Code]</a></li>
</ul></li>
<li><strong>Enhancing Very Fast Decision Trees with Local Split-Time
Predictions (ICDM 2018)</strong>
<ul>
<li>Viktor Losing, Heiko Wersing, Barbara Hammer</li>
<li><a
href="https://www.techfak.uni-bielefeld.de/~hwersing/LosingHammerWersing_ICDM2018.pdf">[Paper]</a></li>
<li><a
href="https://github.com/ICDM2018Submission/VFDT-split-time-prediction">[Code]</a></li>
</ul></li>
<li><strong>Realization of Random Forest for Real-Time Evaluation
through Tree Framing (ICDM 2018)</strong>
<ul>
<li>Sebastian Buschjäger, Kuan-Hsun Chen, Jian-Jia Chen, Katharina
Morik</li>
<li><a
href="https://sfb876.tu-dortmund.de/PublicPublicationFiles/buschjaeger_2018a.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Finding Influential Training Samples for Gradient Boosted
Decision Trees (ICML 2018)</strong>
<ul>
<li>Boris Sharchilev, Yury Ustinovskiy, Pavel Serdyukov, Maarten de
Rijke</li>
<li><a href="https://arxiv.org/abs/1802.06640">[Paper]</a></li>
<li><a
href="https://github.com/bsharchilev/influence_boosting">[Code]</a></li>
</ul></li>
<li><strong>Learning Optimal Decision Trees with SAT (IJCAI
2018)</strong>
<ul>
<li>Nina Narodytska, Alexey Ignatiev, Filipe Pereira, João
Marques-Silva</li>
<li><a
href="https://www.ijcai.org/proceedings/2018/0189.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Extremely Fast Decision Tree (KDD 2018)</strong>
<ul>
<li>Chaitanya Manapragada, Geoffrey I. Webb, Mahsa Salehi</li>
<li><a href="https://arxiv.org/abs/1802.08780">[Paper]</a></li>
<li><a
href="https://github.com/doubleplusplus/incremental_decision_tree-CART-Random_Forest_python">[Code]</a></li>
</ul></li>
<li><strong>RapidScorer: Fast Tree Ensemble Evaluation by Maximizing
Compactness in Data Level Parallelization (KDD 2018)</strong>
<ul>
<li>Ting Ye, Hucheng Zhou, Will Y. Zou, Bin Gao, Ruofei Zhang</li>
<li><a
href="http://ai.stanford.edu/~wzou/kdd_rapidscorer.pdf">[Paper]</a></li>
</ul></li>
<li><strong>CatBoost: Unbiased Boosting with Categorical Features (NIPS
2018)</strong>
<ul>
<li>Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika
Dorogush, Andrey Gulin</li>
<li><a
href="https://papers.nips.cc/paper/7898-catboost-unbiased-boosting-with-categorical-features.pdf">[Paper]</a></li>
<li><a href="https://catboost.ai/">[Code]</a></li>
</ul></li>
<li><strong>Active Learning for Non-Parametric Regression Using Purely
Random Trees (NIPS 2018)</strong>
<ul>
<li>Jack Goetz, Ambuj Tewari, Paul Zimmerman</li>
<li><a
href="https://papers.nips.cc/paper/7520-active-learning-for-non-parametric-regression-using-purely-random-trees.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Alternating Optimization of Decision Trees with Application
to Learning Sparse Oblique Trees (NIPS 2018)</strong>
<ul>
<li>Miguel Á. Carreira-Perpiñán, Pooya Tavallali</li>
<li><a
href="https://papers.nips.cc/paper/7397-alternating-optimization-of-decision-trees-with-application-to-learning-sparse-oblique-trees">[Paper]</a></li>
</ul></li>
<li><strong>Multi-Layered Gradient Boosting Decision Trees (NIPS
2018)</strong>
<ul>
<li>Ji Feng, Yang Yu, Zhi-Hua Zhou</li>
<li><a
href="https://papers.nips.cc/paper/7614-multi-layered-gradient-boosting-decision-trees.pdf">[Paper]</a></li>
<li><a href="https://github.com/kingfengji/mGBDT">[Code]</a></li>
</ul></li>
<li><strong>Transparent Tree Ensembles (SIGIR 2018)</strong>
<ul>
<li>Alexander Moore, Vanessa Murdock, Yaxiong Cai, Kristine Jones</li>
<li><a
href="http://delivery.acm.org/10.1145/3220000/3210151/p1241-moore.pdf?ip=129.215.164.203&amp;id=3210151&amp;acc=ACTIVE%20SERVICE&amp;key=C2D842D97AC95F7A%2EEB9E991028F4E1F1%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&amp;__acm__=1559054892_a29816c683aa83a0ce0fbb777c68daba">[Paper]</a></li>
</ul></li>
<li><strong>Privacy-aware Ranking with Tree Ensembles on the Cloud
(SIGIR 2018)</strong>
<ul>
<li>Shiyu Ji, Jinjin Shao, Daniel Agun, Tao Yang</li>
<li><a
href="https://sites.cs.ucsb.edu/projects/ds/sigir18.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-5">2017</h2>
<ul>
<li><strong>Strategic Sequences of Arguments for Persuasion Using
Decision Trees (AAAI 2017)</strong>
<ul>
<li>Emmanuel Hadoux, Anthony Hunter</li>
<li><a
href="http://www0.cs.ucl.ac.uk/staff/a.hunter/papers/aaai17.pdf">[Paper]</a></li>
</ul></li>
<li><strong>BoostVHT: Boosting Distributed Streaming Decision Trees
(CIKM 2017)</strong>
<ul>
<li>Theodore Vasiloudis, Foteini Beligianni, Gianmarco De Francisci
Morales</li>
<li><a
href="https://melmeric.files.wordpress.com/2010/05/boostvht-boosting-distributed-streaming-decision-trees.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Latency Reduction via Decision Tree Based Query Construction
(CIKM 2017)</strong>
<ul>
<li>Aman Grover, Dhruv Arya, Ganesh Venkataraman</li>
<li><a
href="https://dl.acm.org/citation.cfm?id=3132865">[Paper]</a></li>
</ul></li>
<li><strong>Enumerating Distinct Decision Trees (ICML 2017)</strong>
<ul>
<li>Salvatore Ruggieri</li>
<li><a
href="http://proceedings.mlr.press/v70/ruggieri17a/ruggieri17a.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Gradient Boosted Decision Trees for High Dimensional Sparse
Output (ICML 2017)</strong>
<ul>
<li>Si Si, Huan Zhang, S. Sathiya Keerthi, Dhruv Mahajan, Inderjit S.
Dhillon, Cho-Jui Hsieh</li>
<li><a
href="http://proceedings.mlr.press/v70/si17a.html">[Paper]</a></li>
<li><a href="https://github.com/springdaisy/GBDT">[Code]</a></li>
</ul></li>
<li><strong>Consistent Feature Attribution for Tree Ensembles (ICML
2017)</strong>
<ul>
<li>Scott M. Lundberg, Su-In Lee</li>
<li><a href="https://arxiv.org/abs/1706.06060">[Paper]</a></li>
<li><a href="https://github.com/slundberg/shap">[Code]</a></li>
</ul></li>
<li><strong>Extremely Fast Decision Tree Mining for Evolving Data
Streams (KDD 2017)</strong>
<ul>
<li>Albert Bifet, Jiajin Zhang, Wei Fan, Cheng He, Jianfeng Zhang,
Jianfeng Qian, Geoff Holmes, Bernhard Pfahringer</li>
<li><a
href="https://core.ac.uk/download/pdf/151040580.pdf">[Paper]</a></li>
</ul></li>
<li><strong>CatBoost: Gradient Boosting with Categorical Features
Support (NIPS 2017)</strong>
<ul>
<li>Anna Veronika Dorogush, Vasily Ershov, Andrey Gulin</li>
<li><a href="https://arxiv.org/abs/1810.11363">[Paper]</a></li>
<li><a href="https://catboost.ai/">[Code]</a></li>
</ul></li>
<li><strong>LightGBM: A Highly Efficient Gradient Boosting Decision Tree
(NIPS 2017)</strong>
<ul>
<li>Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong
Ma, Qiwei Ye, Tie-Yan Liu</li>
<li><a
href="https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree">[Paper]</a></li>
<li><a href="https://lightgbm.readthedocs.io/en/latest/">[Code]</a></li>
</ul></li>
<li><strong>Variable Importance Using Decision Trees (NIPS
2017)</strong>
<ul>
<li>Jalil Kazemitabar, Arash Amini, Adam Bloniarz, Ameet S.
Talwalkar</li>
<li><a
href="https://papers.nips.cc/paper/6646-variable-importance-using-decision-trees">[Paper]</a></li>
</ul></li>
<li><strong>A Unified Approach to Interpreting Model Predictions (NIPS
2017)</strong>
<ul>
<li>Scott M. Lundberg, Su-In Lee</li>
<li><a
href="https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions">[Paper]</a></li>
<li><a href="https://github.com/slundberg/shap">[Code]</a></li>
</ul></li>
<li><strong>Pruning Decision Trees via Max-Heap Projection (SDM
2017)</strong>
<ul>
<li>Zhi Nie, Binbin Lin, Shuai Huang, Naren Ramakrishnan, Wei Fan,
Jieping Ye</li>
<li><a
href="https://www.researchgate.net/publication/317485748_Pruning_Decision_Trees_via_Max-Heap_Projection">[Paper]</a></li>
</ul></li>
<li><strong>A Practical Method for Solving Contextual Bandit Problems
Using Decision Trees (UAI 2017)</strong>
<ul>
<li>Adam N. Elmachtoub, Ryan McNellis, Sechan Oh, Marek Petrik</li>
<li><a href="https://arxiv.org/abs/1706.04687">[Paper]</a></li>
</ul></li>
<li><strong>Complexity of Solving Decision Trees with Skew-Symmetric
Bilinear Utility (UAI 2017)</strong>
<ul>
<li>Hugo Gilbert, Olivier Spanjaard</li>
<li><a
href="http://auai.org/uai2017/proceedings/papers/64.pdf">[Paper]</a></li>
</ul></li>
<li><strong>GB-CENT: Gradient Boosted Categorical Embedding and
Numerical Trees (WWW 2017)</strong>
<ul>
<li>Qian Zhao, Yue Shi, Liangjie Hong</li>
<li><a
href="http://papers.www2017.com.au.s3-website-ap-southeast-2.amazonaws.com/proceedings/p1311.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-6">2016</h2>
<ul>
<li><strong>Sparse Perceptron Decision Tree for Millions of Dimensions
(AAAI 2016)</strong>
<ul>
<li>Weiwei Liu, Ivor W. Tsang</li>
<li><a
href="https://aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12111">[Paper]</a></li>
</ul></li>
<li><strong>Learning Online Smooth Predictors for Realtime Camera
Planning Using Recurrent Decision Trees (CVPR 2016)</strong>
<ul>
<li>Jianhui Chen, Hoang Minh Le, Peter Carr, Yisong Yue, James J.
Little</li>
<li><a
href="http://hoangle.info/papers/cvpr2016_online_smooth_long.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Online Learning with Bayesian Classification Trees (CVPR
2016)</strong>
<ul>
<li>Samuel Rota Bulò, Peter Kontschieder</li>
<li><a
href="http://www.dsi.unive.it/~srotabul/files/publications/CVPR2016.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Accurate Robust and Efficient Error Estimation for Decision
Trees (ICML 2016)</strong>
<ul>
<li>Lixin Fan</li>
<li><a
href="http://proceedings.mlr.press/v48/fan16.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Meta-Gradient Boosted Decision Tree Model for Weight and
Target Learning (ICML 2016)</strong>
<ul>
<li>Yury Ustinovskiy, Valentina Fedorova, Gleb Gusev, Pavel
Serdyukov</li>
<li><a
href="http://proceedings.mlr.press/v48/ustinovskiy16.html">[Paper]</a></li>
</ul></li>
<li><strong>Boosted Decision Tree Regression Adjustment for Variance
Reduction in Online Controlled Experiments (KDD 2016)</strong>
<ul>
<li>Alexey Poyarkov, Alexey Drutsa, Andrey Khalyavin, Gleb Gusev, Pavel
Serdyukov</li>
<li><a
href="https://www.kdd.org/kdd2016/papers/files/adf0653-poyarkovA.pdf">[Paper]</a></li>
</ul></li>
<li><strong>XGBoost: A Scalable Tree Boosting System (KDD 2016)</strong>
<ul>
<li>Tianqi Chen, Carlos Guestrin</li>
<li><a
href="https://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf">[Paper]</a></li>
<li><a href="https://xgboost.readthedocs.io/en/latest/">[Code]</a></li>
</ul></li>
<li><strong>Yggdrasil: An Optimized System for Training Deep Decision
Trees at Scale (NIPS 2016)</strong>
<ul>
<li>Firas Abuzaid, Joseph K. Bradley, Feynman T. Liang, Andrew Feng, Lee
Yang, Matei Zaharia, Ameet S. Talwalkar</li>
<li><a
href="https://papers.nips.cc/paper/6366-yggdrasil-an-optimized-system-for-training-deep-decision-trees-at-scale">[Paper]</a></li>
</ul></li>
<li><strong>A Communication-Efficient Parallel Algorithm for Decision
Tree (NIPS 2016)</strong>
<ul>
<li>Qi Meng, Guolin Ke, Taifeng Wang, Wei Chen, Qiwei Ye, Zhiming Ma,
Tie-Yan Liu</li>
<li><a href="https://arxiv.org/abs/1611.01276">[Paper]</a></li>
<li><a
href="https://github.com/microsoft/LightGBM/blob/master/docs/Features.rst">[Code]</a></li>
</ul></li>
<li><strong>Exploiting CPU SIMD Extensions to Speed-up Document Scoring
with Tree Ensembles (SIGIR 2016)</strong>
<ul>
<li>Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele
Perego, Nicola Tonellotto, Rossano Venturini</li>
<li><a
href="http://pages.di.unipi.it/rossano/wp-content/uploads/sites/7/2016/07/SIGIR16a.pdf">[Paper]</a></li>
<li><a
href="https://github.com/hpclab/vectorized-quickscorer">[Code]</a></li>
</ul></li>
<li><strong>Post-Learning Optimization of Tree Ensembles for Efficient
Ranking (SIGIR 2016)</strong>
<ul>
<li>Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele
Perego, Fabrizio Silvestri, Salvatore Trani</li>
<li><a
href="https://www.researchgate.net/publication/305081572_Post-Learning_Optimization_of_Tree_Ensembles_for_Efficient_Ranking">[Paper]</a></li>
<li><a href="https://github.com/hpclab/quickrank">[Code]</a></li>
</ul></li>
</ul>
<h2 id="section-7">2015</h2>
<ul>
<li><strong>Particle Gibbs for Bayesian Additive Regression Trees
(AISTATS 2015)</strong>
<ul>
<li>Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh</li>
<li><a href="https://arxiv.org/abs/1502.04622">[Paper]</a></li>
</ul></li>
<li><strong>DART: Dropouts Meet Multiple Additive Regression Trees
(AISTATS 2015)</strong>
<ul>
<li>Korlakai Vinayak Rashmi, Ran Gilad-Bachrach</li>
<li><a href="https://arxiv.org/abs/1505.01866">[Paper]</a></li>
<li><a href="https://xgboost.readthedocs.io/en/latest/">[Code]</a></li>
</ul></li>
<li><strong>Single Target Tracking Using Adaptive Clustered Decision
Trees and Dynamic Multi-level Appearance Models (CVPR 2015)</strong>
<ul>
<li>Jingjing Xiao, Rustam Stolkin, Ales Leonardis</li>
<li><a
href="https://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_058.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Face Alignment Using Cascade Gaussian Process Regression
Trees (CVPR 2015)</strong>
<ul>
<li>Donghoon Lee, Hyunsin Park, Chang Dong Yoo</li>
<li><a
href="https://slsp.kaist.ac.kr/paperdata/Face_Alignment_Using.pdf">[Paper]</a></li>
<li><a href="https://github.com/donghoonlee04/cGPRT">[Code]</a></li>
</ul></li>
<li><strong>Tracking-by-Segmentation with Online Gradient Boosting
Decision Tree (ICCV 2015)</strong>
<ul>
<li>Jeany Son, Ilchae Jung, Kayoung Park, Bohyung Han</li>
<li><a
href="https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Son_Tracking-by-Segmentation_With_Online_ICCV_2015_paper.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Entropy Evaluation Based on Confidence Intervals of
Frequency Estimates : Application to the Learning of Decision Trees
(ICML 2015)</strong>
<ul>
<li>Mathieu Serrurier, Henri Prade</li>
<li><a
href="http://proceedings.mlr.press/v37/serrurier15.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Large-scale Distributed Dependent Nonparametric Trees (ICML
2015)</strong>
<ul>
<li>Zhiting Hu, Qirong Ho, Avinava Dubey, Eric P. Xing</li>
<li><a
href="https://www.cs.cmu.edu/~zhitingh/data/icml15hu.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Optimal Action Extraction for Random Forests and Boosted
Trees (KDD 2015)</strong>
<ul>
<li>Zhicheng Cui, Wenlin Chen, Yujie He, Yixin Chen</li>
<li><a
href="https://www.cse.wustl.edu/~ychen/public/OAE.pdf">[Paper]</a></li>
</ul></li>
<li><strong>A Decision Tree Framework for Spatiotemporal Sequence
Prediction (KDD 2015)</strong>
<ul>
<li>Taehwan Kim, Yisong Yue, Sarah L. Taylor, Iain A. Matthews</li>
<li><a
href="http://www.yisongyue.com/publications/kdd2015_ssw_dt.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Efficient Non-greedy Optimization of Decision Trees (NIPS
2015)</strong>
<ul>
<li>Mohammad Norouzi, Maxwell D. Collins, Matthew Johnson, David J.
Fleet, Pushmeet Kohli</li>
<li><a href="https://arxiv.org/abs/1511.04056">[Paper]</a></li>
</ul></li>
<li><strong>QuickScorer: A Fast Algorithm to Rank Documents with
Additive Ensembles of Regression Trees (SIGIR 2015)</strong>
<ul>
<li>Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele
Perego, Nicola Tonellotto, Rossano Venturini</li>
<li><a
href="http://pages.di.unipi.it/rossano/wp-content/uploads/sites/7/2015/11/sigir15.pdf">[Paper]</a></li>
<li><a href="https://github.com/hpclab/quickrank">[Code]</a></li>
</ul></li>
</ul>
<h2 id="section-8">2014</h2>
<ul>
<li><strong>A Mixtures-of-Trees Framework for Multi-Label Classification
(CIKM 2014)</strong>
<ul>
<li>Charmgil Hong, Iyad Batal, Milos Hauskrecht</li>
<li><a
href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410801/">[Paper]</a></li>
</ul></li>
<li><strong>On Building Decision Trees from Large-scale Data in
Applications of On-line Advertising (CIKM 2014)</strong>
<ul>
<li>Shivaram Kalyanakrishnan, Deepthi Singh, Ravi Kant</li>
<li><a
href="https://www.cse.iitb.ac.in/~shivaram/papers/ksk_cikm_2014.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Fast Supervised Hashing with Decision Trees for
High-Dimensional Data (CVPR 2014)</strong>
<ul>
<li>Guosheng Lin, Chunhua Shen, Qinfeng Shi, Anton van den Hengel, David
Suter</li>
<li><a href="https://arxiv.org/abs/1404.1561">[Paper]</a></li>
</ul></li>
<li><strong>One Millisecond Face Alignment with an Ensemble of
Regression Trees (CVPR 2014)</strong>
<ul>
<li>Vahid Kazemi, Josephine Sullivan</li>
<li><a
href="https://www.researchgate.net/publication/264419855_One_Millisecond_Face_Alignment_with_an_Ensemble_of_Regression_Trees">[Paper]</a></li>
</ul></li>
<li><strong>The return of AdaBoost.MH: multi-class Hamming trees (ICLR
2014)</strong>
<ul>
<li>Balázs Kégl</li>
<li><a href="https://arxiv.org/pdf/1312.6086.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Diagnosis Determination: Decision Trees Optimizing
Simultaneously Worst and Expected Testing Cost (ICML 2014)</strong>
<ul>
<li>Ferdinando Cicalese, Eduardo Sany Laber, Aline Medeiros
Saettler</li>
<li><a
href="https://pdfs.semanticscholar.org/47ae/852f83b76f95b27ab00308d04f6020bdf71f.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Learning Multiple-Question Decision Trees for Cold-Start
Recommendation (WSDM 2013)</strong>
<ul>
<li>Mingxuan Sun, Fuxin Li, Joonseok Lee, Ke Zhou, Guy Lebanon, Hongyuan
Zha</li>
<li><a
href="http://www.joonseok.net/papers/coldstart.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-9">2013</h2>
<ul>
<li><strong>Weakly Supervised Learning of Image Partitioning Using
Decision Trees with Structured Split Criteria (ICCV 2013)</strong>
<ul>
<li>Christoph N. Straehle, Ullrich Köthe, Fred A. Hamprecht</li>
<li><a
href="https://ieeexplore.ieee.org/document/6751340">[Paper]</a></li>
</ul></li>
<li><strong>Revisiting Example Dependent Cost-Sensitive Learning with
Decision Trees (ICCV 2013)</strong>
<ul>
<li>Oisin Mac Aodha, Gabriel J. Brostow</li>
<li><a
href="https://ieeexplore.ieee.org/document/6751133">[Paper]</a></li>
</ul></li>
<li><strong>Conformal Prediction Using Decision Trees (ICDM
2013)</strong>
<ul>
<li>Ulf Johansson, Henrik Boström, Tuve Löfström</li>
<li><a
href="https://ieeexplore.ieee.org/abstract/document/6729517">[Paper]</a></li>
</ul></li>
<li><strong>Focal-Test-Based Spatial Decision Tree Learning: A Summary
of Results (ICDM 2013)</strong>
<ul>
<li>Zhe Jiang, Shashi Shekhar, Xun Zhou, Joseph K. Knight, Jennifer
Corcoran</li>
<li><a
href="https://pdfs.semanticscholar.org/f28e/df8d9eed76e4ce97cb6bd4182d590547be5e.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Top-down Particle Filtering for Bayesian Decision Trees
(ICML 2013)</strong>
<ul>
<li>Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh</li>
<li><a href="https://arxiv.org/abs/1303.0561">[Paper]</a></li>
</ul></li>
<li><strong>Quickly Boosting Decision Trees - Pruning Underachieving
Features Early (ICML 2013)</strong>
<ul>
<li>Ron Appel, Thomas J. Fuchs, Piotr Dollár, Pietro Perona</li>
<li><a
href="http://proceedings.mlr.press/v28/appel13.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Knowledge Compilation for Model Counting: Affine Decision
Trees (IJCAI 2013)</strong>
<ul>
<li>Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis, Samuel
Thomas</li>
<li><a
href="https://www.researchgate.net/publication/262398921_Knowledge_Compilation_for_Model_Counting_Affine_Decision_Trees">[Paper]</a></li>
</ul></li>
<li><strong>Understanding Variable Importances in Forests of Randomized
Trees (NIPS 2013)</strong>
<ul>
<li>Gilles Louppe, Louis Wehenkel, Antonio Sutera, Pierre Geurts</li>
<li><a
href="https://papers.nips.cc/paper/4928-understanding-variable-importances-in-forests-of-randomized-trees">[Paper]</a></li>
</ul></li>
<li><strong>Regression-tree Tuning in a Streaming Setting (NIPS
2013)</strong>
<ul>
<li>Samory Kpotufe, Francesco Orabona</li>
<li><a
href="https://papers.nips.cc/paper/4898-regression-tree-tuning-in-a-streaming-setting">[Paper]</a></li>
</ul></li>
<li><strong>Learning Max-Margin Tree Predictors (UAI 2013)</strong>
<ul>
<li>Ofer Meshi, Elad Eban, Gal Elidan, Amir Globerson</li>
<li><a
href="https://ttic.uchicago.edu/~meshi/papers/mtreen.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-10">2012</h2>
<ul>
<li><strong>Regression Tree Fields - An Efficient, Non-parametric
Approach to Image Labeling Problems (CVPR 2012)</strong>
<ul>
<li>Jeremy Jancsary, Sebastian Nowozin, Toby Sharp, Carsten Rother</li>
<li><a
href="http://www.nowozin.net/sebastian/papers/jancsary2012rtf.pdf">[Paper]</a></li>
</ul></li>
<li><strong>ConfDTree: Improving Decision Trees Using Confidence
Intervals (ICDM 2012)</strong>
<ul>
<li>Gilad Katz, Asaf Shabtai, Lior Rokach, Nir Ofek</li>
<li><a
href="https://ieeexplore.ieee.org/document/6413889">[Paper]</a></li>
</ul></li>
<li><strong>Improved Information Gain Estimates for Decision Tree
Induction (ICML 2012)</strong>
<ul>
<li>Sebastian Nowozin</li>
<li><a href="https://arxiv.org/abs/1206.4620">[Paper]</a></li>
</ul></li>
<li><strong>Learning Partially Observable Models Using Temporally
Abstract Decision Trees (NIPS 2012)</strong>
<ul>
<li>Erik Talvitie</li>
<li><a
href="https://papers.nips.cc/paper/4662-learning-partially-observable-models-using-temporally-abstract-decision-trees">[Paper]</a></li>
</ul></li>
<li><strong>Subtree Replacement in Decision Tree Simplification (SDM
2012)</strong>
<ul>
<li>Salvatore Ruggieri</li>
<li><a
href="http://pages.di.unipi.it/ruggieri/Papers/sdm2012.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-11">2011</h2>
<ul>
<li><strong>Incorporating Boosted Regression Trees into Ecological
Latent Variable Models (AAAI 2011)</strong>
<ul>
<li>Rebecca A. Hutchinson, Li-Ping Liu, Thomas G. Dietterich</li>
<li><a
href="https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/viewFile/3711/4086">[Paper]</a></li>
</ul></li>
<li><strong>Syntactic Decision Tree LMs: Random Selection or Intelligent
Design (EMNLP 2011)</strong>
<ul>
<li>Denis Filimonov, Mary P. Harper</li>
<li><a href="https://www.aclweb.org/anthology/D11-1064">[Paper]</a></li>
</ul></li>
<li><strong>Decision Tree Fields (ICCV 2011)</strong>
<ul>
<li>Sebastian Nowozin, Carsten Rother, Shai Bagon, Toby Sharp, Bangpeng
Yao, Pushmeet Kohli</li>
<li><a
href="https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/nrbsyk_iccv11.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Confidence in Predictions from Random Tree Ensembles (ICDM
2011)</strong>
<ul>
<li>Siddhartha Bhattacharyya</li>
<li><a
href="https://link.springer.com/article/10.1007/s10115-012-0600-z">[Paper]</a></li>
</ul></li>
<li><strong>Speeding-Up Hoeffding-Based Regression Trees With Options
(ICML 2011)</strong>
<ul>
<li>Elena Ikonomovska, João Gama, Bernard Zenko, Saso Dzeroski</li>
<li><a
href="https://icml.cc/Conferences/2011/papers/349_icmlpaper.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Density Estimation Trees (KDD 2011)</strong>
<ul>
<li>Parikshit Ram, Alexander G. Gray</li>
<li><a href="https://mlpack.org/papers/det.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Bagging Gradient-Boosted Trees for High Precision, Low
Variance Ranking Models (SIGIR 2011)</strong>
<ul>
<li>Yasser Ganjisaffar, Rich Caruana, Cristina Videira Lopes</li>
<li><a
href="http://www.ccs.neu.edu/home/vip/teach/MLcourse/4_boosting/materials/bagging_lmbamart_jforests.pdf">[Paper]</a></li>
</ul></li>
<li><strong>On the Complexity of Decision Making in Possibilistic
Decision Trees (UAI 2011)</strong>
<ul>
<li>Hélène Fargier, Nahla Ben Amor, Wided Guezguez</li>
<li><a
href="https://dslpitt.org/uai/papers/11/p203-fargier.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Adaptive Bootstrapping of Recommender Systems Using Decision
Trees (WSDM 2011)</strong>
<ul>
<li>Nadav Golbandi, Yehuda Koren, Ronny Lempel</li>
<li><a
href="https://dl.acm.org/citation.cfm?id=1935910">[Paper]</a></li>
</ul></li>
<li><strong>Parallel Boosted Regression Trees for Web Search Ranking
(WWW 2011)</strong>
<ul>
<li>Stephen Tyree, Kilian Q. Weinberger, Kunal Agrawal, Jennifer
Paykin</li>
<li><a
href="http://www.cs.cornell.edu/~kilian/papers/fr819-tyreeA.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-12">2010</h2>
<ul>
<li><strong>Discrimination Aware Decision Tree Learning (ICDM
2010)</strong>
<ul>
<li>Faisal Kamiran, Toon Calders, Mykola Pechenizkiy</li>
<li><a
href="https://www.win.tue.nl/~mpechen/publications/pubs/KamiranICDM2010.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Decision Trees for Uplift Modeling (ICDM 2010)</strong>
<ul>
<li>Piotr Rzepakowski, Szymon Jaroszewicz</li>
<li><a
href="https://core.ac.uk/download/pdf/81899141.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Learning Markov Network Structure with Decision Trees (ICDM
2010)</strong>
<ul>
<li>Daniel Lowd, Jesse Davis</li>
<li><a
href="https://ix.cs.uoregon.edu/~lowd/icdm10lowd.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Multivariate Dyadic Regression Trees for Sparse Learning
Problems (NIPS 2010)</strong>
<ul>
<li>Han Liu, Xi Chen</li>
<li><a
href="https://papers.nips.cc/paper/4178-multivariate-dyadic-regression-trees-for-sparse-learning-problems.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Fast and Accurate Gene Prediction by Decision Tree
Classification (SDM 2010)</strong>
<ul>
<li>Rong She, Jeffrey Shih-Chieh Chu, Ke Wang, Nansheng Chen</li>
<li><a
href="http://www.sfu.ca/~chenn/genBlastDT_sdm.pdf">[Paper]</a></li>
</ul></li>
<li><strong>A Robust Decision Tree Algorithm for Imbalanced Data Sets
(SDM 2010)</strong>
<ul>
<li>Wei Liu, Sanjay Chawla, David A. Cieslak, Nitesh V. Chawla</li>
<li><a
href="https://www3.nd.edu/~nchawla/papers/SDM10.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-13">2009</h2>
<ul>
<li><strong>Stochastic Gradient Boosted Distributed Decision Trees (CIKM
2009)</strong>
<ul>
<li>Jerry Ye, Jyh-Herng Chow, Jiang Chen, Zhaohui Zheng</li>
<li><a
href="https://dl.acm.org/citation.cfm?id=1646301">[Paper]</a></li>
</ul></li>
<li><strong>Feature Selection for Ranking Using Boosted Trees (CIKM
2009)</strong>
<ul>
<li>Feng Pan, Tim Converse, David Ahn, Franco Salvetti, Gianluca
Donato</li>
<li><a
href="http://www.francosalvetti.com/cikm09_camera2.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Thai Word Segmentation with Hidden Markov Model and Decision
Tree (PAKDD 2009)</strong>
<ul>
<li>Poramin Bheganan, Richi Nayak, Yue Xu</li>
<li><a
href="https://link.springer.com/chapter/10.1007/978-3-642-01307-2_10">[Paper]</a></li>
</ul></li>
<li><strong>Parameter Estimdation in Semi-Random Decision Tree
Ensembling on Streaming Data (PAKDD 2009)</strong>
<ul>
<li>Pei-Pei Li, Qianhui Liang, Xindong Wu, Xuegang Hu</li>
<li><a
href="https://link.springer.com/chapter/10.1007/978-3-642-01307-2_35">[Paper]</a></li>
</ul></li>
<li><strong>DTU: A Decision Tree for Uncertain Data (PAKDD
2009)</strong>
<ul>
<li>Biao Qin, Yuni Xia, Fang Li</li>
<li><a
href="https://link.springer.com/chapter/10.1007/978-3-642-01307-2_4">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-14">2008</h2>
<ul>
<li><strong>Predicting Future Decision Trees from Evolving Data (ICDM
2008)</strong>
<ul>
<li>Mirko Böttcher, Martin Spott, Rudolf Kruse</li>
<li><a
href="https://ieeexplore.ieee.org/document/4781098">[Paper]</a></li>
</ul></li>
<li><strong>Bayes Optimal Classification for Decision Trees (ICML
2008)</strong>
<ul>
<li>Siegfried Nijssen</li>
<li><a
href="http://icml2008.cs.helsinki.fi/papers/455.pdf">[Paper]</a></li>
</ul></li>
<li><strong>A New Credit Scoring Method Based on Rough Sets and Decision
Tree (PAKDD 2008)</strong>
<ul>
<li>XiYue Zhou, Defu Zhang, Yi Jiang</li>
<li><a
href="https://link.springer.com/chapter/10.1007/978-3-540-68125-0_117">[Paper]</a></li>
</ul></li>
<li><strong>A Comparison of Different Off-Centered Entropies to Deal
with Class Imbalance for Decision Trees (PAKDD 2008)</strong>
<ul>
<li>Philippe Lenca, Stéphane Lallich, Thanh-Nghi Do, Nguyen-Khang
Pham</li>
<li><a
href="https://link.springer.com/chapter/10.1007/978-3-540-68125-0_59">[Paper]</a></li>
</ul></li>
<li><strong>BOAI: Fast Alternating Decision Tree Induction Based on
Bottom-Up Evaluation (PAKDD 2008)</strong>
<ul>
<li>Bishan Yang, Tengjiao Wang, Dongqing Yang, Lei Chang</li>
<li><a
href="https://link.springer.com/chapter/10.1007/978-3-540-68125-0_36">[Paper]</a></li>
</ul></li>
<li><strong>A General Framework for Estimating Similarity of Datasets
and Decision Trees: Exploring Semantic Similarity of Decision Trees (SDM
2008)</strong>
<ul>
<li>Irene Ntoutsi, Alexandros Kalousis, Yannis Theodoridis</li>
<li><a
href="https://www.researchgate.net/publication/220907047_A_general_framework_for_estimating_similarity_of_datasets_and_decision_trees_exploring_semantic_similarity_of_decision_trees">[Paper]</a></li>
</ul></li>
<li><strong>ROC-tree: A Novel Decision Tree Induction Algorithm Based on
Receiver Operating Characteristics to Classify Gene Expression Data (SDM
2008)</strong>
<ul>
<li>M. Maruf Hossain, Md. Rafiul Hassan, James Bailey</li>
<li><a
href="https://pdfs.semanticscholar.org/bd80/db2f0903169b7611d34b2cc85f60a736375d.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-15">2007</h2>
<ul>
<li><strong>Tree-based Classifiers for Bilayer Video Segmentation (CVPR
2007)</strong>
<ul>
<li>Pei Yin, Antonio Criminisi, John M. Winn, Irfan A. Essa</li>
<li><a
href="https://ieeexplore.ieee.org/document/4270033">[Paper]</a></li>
</ul></li>
<li><strong>Additive Groves of Regression Trees (ECML 2007)</strong>
<ul>
<li>Daria Sorokina, Rich Caruana, Mirek Riedewald</li>
<li><a
href="http://additivegroves.net/papers/groves.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Decision Tree Instability and Active Learning (ECML
2007)</strong>
<ul>
<li>Kenneth Dwyer, Robert Holte</li>
<li><a
href="https://webdocs.cs.ualberta.ca/~holte/Publications/ecml07.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Ensembles of Multi-Objective Decision Trees (ECML
2007)</strong>
<ul>
<li>Dragi Kocev, Celine Vens, Jan Struyf, Saso Dzeroski</li>
<li><a
href="https://link.springer.com/chapter/10.1007/978-3-540-74958-5_61">[Paper]</a></li>
</ul></li>
<li><strong>Seeing the Forest Through the Trees: Learning a
Comprehensible Model from an Ensemble (ECML 2007)</strong>
<ul>
<li>Anneleen Van Assche, Hendrik Blockeel</li>
<li><a
href="http://ftp.cs.wisc.edu/machine-learning/shavlik-group/ilp07wip/ilp07_assche.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Sample Compression Bounds for Decision Trees (ICML
2007)</strong>
<ul>
<li>Mohak Shah</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.9136&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
<li><strong>A Tighter Error Bound for Decision Tree Learning Using PAC
Learnability (IJCAI 2007)</strong>
<ul>
<li>Chaithanya Pichuka, Raju S. Bapi, Chakravarthy Bhagvati, Arun K.
Pujari, Bulusu Lakshmana Deekshatulu</li>
<li><a
href="https://www.ijcai.org/Proceedings/07/Papers/163.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Keep the Decision Tree and Estimate the Class Probabilities
Using its Decision Boundary (IJCAI 2007)</strong>
<ul>
<li>Isabelle Alvarez, Stephan Bernard, Guillaume Deffuant</li>
<li><a
href="https://www.ijcai.org/Proceedings/07/Papers/104.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Real Boosting a la Carte with an Application to Boosting
Oblique Decision Tree (IJCAI 2007)</strong>
<ul>
<li>Claudia Henry, Richard Nock, Frank Nielsen</li>
<li><a
href="https://www.ijcai.org/Proceedings/07/Papers/135.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Scalable Look-ahead Linear Regression Trees (KDD
2007)</strong>
<ul>
<li>David S. Vogel, Ognian Asparouhov, Tobias Scheffer</li>
<li><a
href="https://www.cs.uni-potsdam.de/ml/publications/kdd2007.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Mining Optimal Decision Trees from Itemset Lattices (KDD
2007)</strong>
<ul>
<li>Siegfried Nijssen, Élisa Fromont</li>
<li><a
href="https://hal.archives-ouvertes.fr/hal-00372011/document">[Paper]</a></li>
</ul></li>
<li><strong>A Hybrid Multi-group Privacy-Preserving Approach for
Building Decision Trees (PAKDD 2007)</strong>
<ul>
<li>Zhouxuan Teng, Wenliang Du</li>
<li><a
href="https://link.springer.com/chapter/10.1007/978-3-540-71701-0_30">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-16">2006</h2>
<ul>
<li><strong>Decision Tree Methods for Finding Reusable MDP Homomorphisms
(AAAI 2006)</strong>
<ul>
<li>Alicia P. Wolfe, Andrew G. Barto</li>
<li><a
href="https://www.aaai.org/Papers/AAAI/2006/AAAI06-085.pdf">[Paper]</a></li>
</ul></li>
<li><strong>A Fast Decision Tree Learning Algorithm (AAAI 2006)</strong>
<ul>
<li>Jiang Su, Harry Zhang</li>
<li><a
href="http://www.cs.unb.ca/~hzhang/publications/AAAI06.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Anytime Induction of Decision Trees: An Iterative
Improvement Approach (AAAI 2006)</strong>
<ul>
<li>Saher Esmeir, Shaul Markovitch</li>
<li><a
href="https://www.aaai.org/Papers/AAAI/2006/AAAI06-056.pdf">[Paper]</a></li>
</ul></li>
<li><strong>When a Decision Tree Learner Has Plenty of Time (AAAI
2006)</strong>
<ul>
<li>Saher Esmeir, Shaul Markovitch</li>
<li><a
href="https://www.aaai.org/Papers/AAAI/2006/AAAI06-259.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Decision Trees for Functional Variables (ICDM 2006)</strong>
<ul>
<li>Suhrid Balakrishnan, David Madigan</li>
<li><a
href="http://archive.dimacs.rutgers.edu/Research/MMS/PAPERS/fdt17.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Cost-Sensitive Decision Tree Learning for Forensic
Classification (ECML 2006)</strong>
<ul>
<li>Jason V. Davis, Jungwoo Ha, Christopher J. Rossbach, Hany E.
Ramadan, Emmett Witchel</li>
<li><a
href="https://www.cs.utexas.edu/users/witchel/pubs/davis-ecml06.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Improving the Ranking Performance of Decision Trees (ECML
2006)</strong>
<ul>
<li>Bin Wang, Harry Zhang</li>
<li><a
href="https://link.springer.com/chapter/10.1007/11871842_44">[Paper]</a></li>
</ul></li>
<li><strong>A General Framework for Accurate and Fast Regression by Data
Summarization in Random Decision Trees (KDD 2006)</strong>
<ul>
<li>Wei Fan, Joe McCloskey, Philip S. Yu</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.442.2004&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
<li><strong>Constructing Decision Trees for Graph-Structured Data by
Chunkingless Graph-Based Induction (PAKDD 2006)</strong>
<ul>
<li>Phu Chien Nguyen, Kouzou Ohara, Akira Mogi, Hiroshi Motoda, Takashi
Washio</li>
<li><a
href="http://www.ar.sanken.osaka-u.ac.jp/~motoda/papers/pakdd06.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Variable Randomness in Decision Tree Ensembles (PAKDD
2006)</strong>
<ul>
<li>Fei Tony Liu, Kai Ming Ting</li>
<li><a
href="https://link.springer.com/chapter/10.1007/11731139_12">[Paper]</a></li>
</ul></li>
<li><strong>Generalized Conditional Entropy and a Metric Splitting
Criterion for Decision Trees (PAKDD 2006)</strong>
<ul>
<li>Dan A. Simovici, Szymon Jaroszewicz</li>
<li><a
href="https://www.researchgate.net/profile/Szymon_Jaroszewicz/publication/220895184_Generalized_Conditional_Entropy_and_a_Metric_Splitting_Criterion_for_Decision_Trees/links/0fcfd50b1267f7b868000000/Generalized-Conditional-Entropy-and-a-Metric-Splitting-Criterion-for-Decision-Trees.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Decision Trees for Hierarchical Multilabel Classification: A
Case Study in Functional Genomics (PKDD 2006)</strong>
<ul>
<li>Hendrik Blockeel, Leander Schietgat, Jan Struyf, Saso Dzeroski,
Amanda Clare</li>
<li><a
href="https://link.springer.com/chapter/10.1007/11871637_7">[Paper]</a></li>
</ul></li>
<li><strong>k-Anonymous Decision Tree Induction (PKDD 2006)</strong>
<ul>
<li>Arik Friedman, Assaf Schuster, Ran Wolff</li>
<li><a
href="http://www.cs.technion.ac.il/~arikf/online-publications/kADET06.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-17">2005</h2>
<ul>
<li><strong>Representing Conditional Independence Using Decision Trees
(AAAI 2005)</strong>
<ul>
<li>Jiang Su, Harry Zhang</li>
<li><a
href="http://www.cs.unb.ca/~hzhang/publications/AAAI051SuJ.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Use of Expert Knowledge for Decision Tree Pruning (AAAI
2005)</strong>
<ul>
<li>Jingfeng Cai, John Durkin</li>
<li><a
href="http://www.aaai.org/Papers/AAAI/2005/SA05-009.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Model Selection in Omnivariate Decision Trees (ECML
2005)</strong>
<ul>
<li>Olcay Taner Yildiz, Ethem Alpaydin</li>
<li><a
href="https://www.cmpe.boun.edu.tr/~ethem/files/papers/yildiz_ecml05.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Combining Bias and Variance Reduction Techniques for
Regression Trees (ECML 2005)</strong>
<ul>
<li>Yuk Lai Suen, Prem Melville, Raymond J. Mooney</li>
<li><a
href="http://www.cs.utexas.edu/users/ml/papers/bv-ecml-05.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Simple Test Strategies for Cost-Sensitive Decision Trees
(ECML 2005)</strong>
<ul>
<li>Shengli Sheng, Charles X. Ling, Qiang Yang</li>
<li><a
href="https://www.researchgate.net/publication/3297582_Test_strategies_for_cost-sensitive_decision_trees">[Paper]</a></li>
</ul></li>
<li><strong>Effective Estimation of Posterior Probabilities: Explaining
the Accuracy of Randomized Decision Tree Approaches (ICDM 2005)</strong>
<ul>
<li>Wei Fan, Ed Greengrass, Joe McCloskey, Philip S. Yu, Kevin
Drummey</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.218.9713&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
<li><strong>Exploiting Informative Priors for Bayesian Classification
and Regression Trees (IJCAI 2005)</strong>
<ul>
<li>Nicos Angelopoulos, James Cussens</li>
<li><a
href="https://www.ijcai.org/Proceedings/05/Papers/1013.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Ranking Cases with Decision Trees: a Geometric Method that
Preserves Intelligibility (IJCAI 2005)</strong>
<ul>
<li>Isabelle Alvarez, Stephan Bernard</li>
<li><a
href="https://www.ijcai.org/Proceedings/05/Papers/1502.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Maximizing Tree Diversity by Building Complete-Random
Decision Trees (PAKDD 2005)</strong>
<ul>
<li>Fei Tony Liu, Kai Ming Ting, Wei Fan</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.218.7805&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
<li><strong>Hybrid Cost-Sensitive Decision Tree (PKDD 2005)</strong>
<ul>
<li>Shengli Sheng, Charles X. Ling</li>
<li><a
href="https://cling.csd.uwo.ca/papers/pkdd05a.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Tree2 - Decision Trees for Tree Structured Data (PKDD
2005)</strong>
<ul>
<li>Björn Bringmann, Albrecht Zimmermann</li>
<li><a
href="https://link.springer.com/chapter/10.1007/11564126_10">[Paper]</a></li>
</ul></li>
<li><strong>Building Decision Trees on Records Linked through Key
References (SDM 2005)</strong>
<ul>
<li>Ke Wang, Yabo Xu, Philip S. Yu, Rong She</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.215.7181&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
<li><strong>Decision Tree Induction in High Dimensional, Hierarchically
Distributed Databases (SDM 2005)</strong>
<ul>
<li>Amir Bar-Or, Ran Wolff, Assaf Schuster, Daniel Keren</li>
<li><a
href="https://www.semanticscholar.org/paper/Decision-Tree-Induction-in-High-Dimensional%2C-Bar-Or-Wolff/90235fc35c27dae273681f7847c2b20ff37928a9">[Paper]</a></li>
</ul></li>
<li><strong>Boosted Decision Trees for Word Recognition in Handwritten
Document Retrieval (SIGIR 2005)</strong>
<ul>
<li>Nicholas R. Howe, Toni M. Rath, R. Manmatha</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.152.1551&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-18">2004</h2>
<ul>
<li><strong>On the Optimality of Probability Estimation by Random
Decision Trees (AAAI 2004)</strong>
<ul>
<li>Wei Fan</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.447.2128&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
<li><strong>Occams Razor and a Non-Syntactic Measure of Decision Tree
Complexity (AAAI 2004)</strong>
<ul>
<li>Goutam Paul</li>
<li><a
href="https://www.aaai.org/Papers/AAAI/2004/AAAI04-130.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Using Emerging Patterns and Decision Trees in Rare-Class
Classification (ICDM 2004)</strong>
<ul>
<li>Hamad Alhammady, Kotagiri Ramamohanarao</li>
<li><a
href="https://ieeexplore.ieee.org/abstract/document/1410299">[Paper]</a></li>
</ul></li>
<li><strong>Orthogonal Decision Trees (ICDM 2004)</strong>
<ul>
<li>Hillol Kargupta, Haimonti Dutta</li>
<li><a
href="https://www.csee.umbc.edu/~hillol/PUBS/odtree.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Improving the Reliability of Decision Tree and Naive Bayes
Learners (ICDM 2004)</strong>
<ul>
<li>David George Lindsay, Siân Cox</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.521.3127&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
<li><strong>Communication Efficient Construction of Decision Trees Over
Heterogeneously Distributed Data (ICDM 2004)</strong>
<ul>
<li>Chris Giannella, Kun Liu, Todd Olsen, Hillol Kargupta</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.7119&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
<li><strong>Decision Tree Evolution Using Limited Number of Labeled Data
Items from Drifting Data Streams (ICDM 2004)</strong>
<ul>
<li>Wei Fan, Yi-an Huang, Philip S. Yu</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.218.9450&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
<li><strong>Lookahead-based Algorithms for Anytime Induction of Decision
Trees (ICML 2004)</strong>
<ul>
<li>Saher Esmeir, Shaul Markovitch</li>
<li><a
href="http://www.cs.technion.ac.il/~shaulm/papers/pdf/Esmeir-Markovitch-icml2004.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Decision Trees with Minimal Costs (ICML 2004)</strong>
<ul>
<li>Charles X. Ling, Qiang Yang, Jianning Wang, Shichao Zhang</li>
<li><a
href="https://icml.cc/Conferences/2004/proceedings/papers/136.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Training Conditional Random Fields via Gradient Tree
Boosting (ICML 2004)</strong>
<ul>
<li>Thomas G. Dietterich, Adam Ashenfelter, Yaroslav Bulatov</li>
<li><a
href="http://web.engr.oregonstate.edu/~tgd/publications/ml2004-treecrf.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Detecting Structural Metadata with Decision Trees and
Transformation-Based Learning (NAACL 2004)</strong>
<ul>
<li>Joungbum Kim, Sarah E. Schwarm, Mari Ostendorf</li>
<li><a href="https://www.aclweb.org/anthology/N04-1018">[Paper]</a></li>
</ul></li>
<li><strong>On the Adaptive Properties of Decision Trees (NIPS
2004)</strong>
<ul>
<li>Clayton D. Scott, Robert D. Nowak</li>
<li><a
href="https://papers.nips.cc/paper/2625-on-the-adaptive-properties-of-decision-trees.pdf">[Paper]</a></li>
</ul></li>
<li><strong>A Metric Approach to Building Decision Trees Based on
Goodman-Kruskal Association Index (PAKDD 2004)</strong>
<ul>
<li>Dan A. Simovici, Szymon Jaroszewicz</li>
<li><a
href="https://www.researchgate.net/publication/2906289_A_Metric_Approach_to_Building_Decision_Trees_Based_on_Goodman-Kruskal_Association_Index">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-19">2003</h2>
<ul>
<li><strong>Rademacher Penalization over Decision Tree Prunings (ECML
2003)</strong>
<ul>
<li>Matti Kääriäinen, Tapio Elomaa</li>
<li><a
href="https://www.researchgate.net/publication/221112653_Rademacher_Penalization_over_Decision_Tree_Prunings">[Paper]</a></li>
</ul></li>
<li><strong>Ensembles of Cascading Trees (ICDM 2003)</strong>
<ul>
<li>Jinyan Li, Huiqing Liu</li>
<li><a
href="https://www.researchgate.net/publication/4047523_Ensembles_of_cascading_trees">[Paper]</a></li>
</ul></li>
<li><strong>Postprocessing Decision Trees to Extract Actionable
Knowledge (ICDM 2003)</strong>
<ul>
<li>Qiang Yang, Jie Yin, Charles X. Ling, Tielin Chen</li>
<li><a
href="https://pdfs.semanticscholar.org/b2c6/ff54c7aeefc70820ff04a8fc8b804012c504.pdf">[Paper]</a></li>
</ul></li>
<li><strong>K-D Decision Tree: An Accelerated and Memory Efficient
Nearest Neighbor Classifier (ICDM 2003)</strong>
<ul>
<li>Tomoyuki Shibata, Takekazu Kato, Toshikazu Wada</li>
<li><a
href="https://ieeexplore.ieee.org/abstract/document/1250997">[Paper]</a></li>
</ul></li>
<li><strong>Identifying Markov Blankets with Decision Tree Induction
(ICDM 2003)</strong>
<ul>
<li>Lewis J. Frey, Douglas H. Fisher, Ioannis Tsamardinos, Constantin F.
Aliferis, Alexander R. Statnikov</li>
<li><a
href="https://www.semanticscholar.org/paper/Identifying-Markov-Blankets-with-Decision-Tree-Frey-Fisher/1aa0b0ede22f3963c923ea320a8bed91ac5aafbf">[Paper]</a></li>
</ul></li>
<li><strong>Comparing Naive Bayes, Decision Trees, and SVM with AUC and
Accuracy (ICDM 2003)</strong>
<ul>
<li>Jin Huang, Jingjing Lu, Charles X. Ling</li>
<li><a
href="https://pdfs.semanticscholar.org/8a73/74b98a9d94b8c01e996e72340f86a4327869.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Boosting Lazy Decision Trees (ICML 2003)</strong>
<ul>
<li>Xiaoli Zhang Fern, Carla E. Brodley</li>
<li><a
href="https://www.aaai.org/Papers/ICML/2003/ICML03-026.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Decision Tree with Better Ranking (ICML 2003)</strong>
<ul>
<li>Charles X. Ling, Robert J. Yan</li>
<li><a
href="https://www.aaai.org/Papers/ICML/2003/ICML03-064.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Skewing: An Efficient Alternative to Lookahead for Decision
Tree Induction (IJCAI 2003)</strong>
<ul>
<li>David Page, Soumya Ray</li>
<li><a
href="http://pages.cs.wisc.edu/~dpage/ijcai3.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Efficient Decision Tree Construction on Streaming Data (KDD
2003)</strong>
<ul>
<li>Ruoming Jin, Gagan Agrawal</li>
<li><a
href="http://web.cse.ohio-state.edu/~agrawal.28/p/sigkdd03.pdf">[Paper]</a></li>
</ul></li>
<li><strong>PaintingClass: Interactive Construction Visualization and
Exploration of Decision Trees (KDD 2003)</strong>
<ul>
<li>Soon Tee Teoh, Kwan-Liu Ma</li>
<li><a
href="https://www.researchgate.net/publication/220272011_PaintingClass_interactive_construction_visualization_and_exploration_of_decision_trees">[Paper]</a></li>
</ul></li>
<li><strong>Accurate Decision Trees for Mining High-Speed Data Streams
(KDD 2003)</strong>
<ul>
<li>João Gama, Ricardo Rocha, Pedro Medas</li>
<li><a
href="http://staff.icar.cnr.it/manco/Teaching/2006/datamining/Esami2006/ArticoliSelezionatiDM/SEMINARI/Mining%20Data%20Streams/kdd03.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Near-Minimax Optimal Classification with Dyadic
Classification Trees (NIPS 2003)</strong>
<ul>
<li>Clayton D. Scott, Robert D. Nowak</li>
<li><a href="http://nowak.ece.wisc.edu/nips03.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Improving Performance of Decision Tree Algorithms with
Multi-edited Nearest Neighbor Rule (PAKDD 2003)</strong>
<ul>
<li>Chenzhou Ye, Jie Yang, Lixiu Yao, Nian-yi Chen</li>
<li><a
href="https://www.researchgate.net/publication/220895462_Improving_Performance_of_Decision_Tree_Algorithms_with_Multi-edited_Nearest_Neighbor_Rule">[Paper]</a></li>
</ul></li>
<li><strong>Arbogodai: a New Approach for Decision Trees (PKDD
2003)</strong>
<ul>
<li>Djamel A. Zighed, Gilbert Ritschard, Walid Erray, Vasile-Marian
Scuturici</li>
<li><a
href="http://mephisto.unige.ch/pub/publications/gr/zig_rit_arbo_pkdd03.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Communication and Memory Efficient Parallel Decision Tree
Construction (SDM 2003)</strong>
<ul>
<li>Ruoming Jin, Gagan Agrawal</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.3059&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
<li><strong>Decision Tree Classification of Spatial Data Patterns from
Videokeratography using Zernicke Polynomials (SDM 2003)</strong>
<ul>
<li>Michael D. Twa, Srinivasan Parthasarathy, Thomas W. Raasch, Mark
Bullimore</li>
<li><a
href="https://www.researchgate.net/publication/220907147_Decision_Tree_Classification_of_Spatial_Data_Patterns_From_Videokeratography_Using_Zernike_Polynomials">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-20">2002</h2>
<ul>
<li><strong>Multiclass Alternating Decision Trees (ECML 2002)</strong>
<ul>
<li>Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby, Eibe Frank,
Mark A. Hall</li>
<li><a
href="https://www.cs.waikato.ac.nz/~bernhard/papers/ecml2002.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Heterogeneous Forests of Decision Trees (ICANN
2002)</strong>
<ul>
<li>Krzysztof Grabczewski, Wlodzislaw Duch</li>
<li><a
href="https://fizyka.umk.pl/publications/kmk/02forest.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Solving the Fragmentation Problem of Decision Trees by
Discovering Boundary Emerging Patterns (ICDM 2002)</strong>
<ul>
<li>Jinyan Li, Limsoon Wong</li>
<li><a
href="https://ieeexplore.ieee.org/document/1184021">[Paper]</a></li>
</ul></li>
<li><strong>Solving the Fragmentation Problem of Decision Trees by
Discovering Boundary Emerging Patterns (ICDM 2002)</strong>
<ul>
<li>Jinyan Li, Limsoon Wong</li>
<li><a
href="https://www.comp.nus.edu.sg/~wongls/psZ/decisionTreeandEP-2.ps">[Paper]</a></li>
</ul></li>
<li><strong>Learning Decision Trees Using the Area Under the ROC Curve
(ICML 2002)</strong>
<ul>
<li>César Ferri, Peter A. Flach, José Hernández-Orallo</li>
<li><a
href="http://dmip.webs.upv.es/papers/ICML2002.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Finding an Optimal Gain-Ratio Subset-Split Test for a
Set-Valued Attribute in Decision Tree Induction (ICML 2002)</strong>
<ul>
<li>Fumio Takechi, Einoshin Suzuki</li>
<li><a
href="https://www.researchgate.net/publication/221346121_Finding_an_Optimal_Gain-Ratio_Subset-Split_Test_for_a_Set-Valued_Attribute_in_Decision_Tree_Induction">[Paper]</a></li>
</ul></li>
<li><strong>Efficiently Mining Frequent Trees in a Forest (KDD
2002)</strong>
<ul>
<li>Mohammed Javeed Zaki</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.8511&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
<li><strong>SECRET: a Scalable Linear Regression Tree Algorithm (KDD
2002)</strong>
<ul>
<li>Alin Dobra, Johannes Gehrke</li>
<li><a
href="http://www.cs.cornell.edu/people/dobra/papers/secret-extended.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Instability of Decision Tree Classification Algorithms (KDD
2002)</strong>
<ul>
<li>Ruey-Hsia Li, Geneva G. Belford</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.8094&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
<li><strong>Extracting Decision Trees From Trained Neural Networks (KDD
2002)</strong>
<ul>
<li>Olcay Boz</li>
<li><a
href="http://dspace.library.iitb.ac.in/jspui/bitstream/10054/1285/1/5664.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Dyadic Classification Trees via Structural Risk Minimization
(NIPS 2002)</strong>
<ul>
<li>Clayton D. Scott, Robert D. Nowak</li>
<li><a
href="https://papers.nips.cc/paper/2198-dyadic-classification-trees-via-structural-risk-minimization.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Approximate Splitting for Ensembles of Trees using
Histograms (SDM 2002)</strong>
<ul>
<li>Chandrika Kamath, Erick Cantú-Paz, David Littau</li>
<li><a
href="https://pdfs.semanticscholar.org/0855/0a94993a268e4e3e99c41e7e0ee43eabd993.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-21">2001</h2>
<ul>
<li><strong>Japanese Named Entity Recognition based on a Simple Rule
Generator and Decision Tree Learning (ACL 2001)</strong>
<ul>
<li>Hideki Isozaki</li>
<li><a href="https://www.aclweb.org/anthology/P01-1041">[Paper]</a></li>
</ul></li>
<li><strong>Message Length as an Effective Ockhams Razor in Decision
Tree Induction (AISTATS 2001)</strong>
<ul>
<li>Scott Needham, David L. Dowe</li>
<li><a
href="www.gatsby.ucl.ac.uk/aistats/aistats2001/files/needham122.ps">[Paper]</a></li>
</ul></li>
<li><strong>SQL Database Primitives for Decision Tree Classifiers (CIKM
2001)</strong>
<ul>
<li>Kai-Uwe Sattler, Oliver Dunemann</li>
<li><a
href="http://fusion.cs.uni-magdeburg.de/pubs/classprim.pdf">[Paper]</a></li>
</ul></li>
<li><strong>A Unified Framework for Evaluation Metrics in Classification
Using Decision Trees (ECML 2001)</strong>
<ul>
<li>Ricardo Vilalta, Mark Brodie, Daniel Oblinger, Irina Rish</li>
<li><a
href="https://scholar.harvard.edu/files/nkc/files/2015_framework_for_benefit_risk_assessment_value_in_health.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Backpropagation in Decision Trees for Regression (ECML
2001)</strong>
<ul>
<li>Victor Medina-Chico, Alberto Suárez, James F. Lutsko</li>
<li><a
href="https://link.springer.com/chapter/10.1007/3-540-44795-4_30">[Paper]</a></li>
</ul></li>
<li><strong>Consensus Decision Trees: Using Consensus Hierarchical
Clustering for Data Relabelling and Reduction (ECML 2001)</strong>
<ul>
<li>Branko Kavsek, Nada Lavrac, Anuska Ferligoj</li>
<li><a
href="https://link.springer.com/content/pdf/10.1007/3-540-44795-4_22.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Mining Decision Trees from Data Streams in a Mobile
Environment (ICDM 2001)</strong>
<ul>
<li>Hillol Kargupta, Byung-Hoon Park</li>
<li><a
href="https://ieeexplore.ieee.org/document/989530">[Paper]</a></li>
</ul></li>
<li><strong>Efficient Determination of Dynamic Split Points in a
Decision Tree (ICDM 2001)</strong>
<ul>
<li>David Maxwell Chickering, Christopher Meek, Robert Rounthwaite</li>
<li><a
href="https://pdfs.semanticscholar.org/3587/a245c34ea415b205a903bde3220eb533d1a7.pdf">[Paper]</a></li>
</ul></li>
<li><strong>A Comparison of Stacking with Meta Decision Trees to
Bagging, Boosting, and Stacking with other Methods (ICDM 2001)</strong>
<ul>
<li>Bernard Zenko, Ljupco Todorovski, Saso Dzeroski</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.3118&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
<li><strong>Efficient Algorithms for Decision Tree Cross-Validation
(ICML 2001)</strong>
<ul>
<li>Hendrik Blockeel, Jan Struyf</li>
<li><a
href="http://www.jmlr.org/papers/volume3/blockeel02a/blockeel02a.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Bias Correction in Classification Tree Construction (ICML
2001)</strong>
<ul>
<li>Alin Dobra, Johannes Gehrke</li>
<li><a
href="http://www.cs.cornell.edu/people/dobra/papers/icml2001-bias.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Breeding Decision Trees Using Evolutionary Techniques (ICML
2001)</strong>
<ul>
<li>Athanassios Papagelis, Dimitrios Kalles</li>
<li><a
href="http://www.gatree.com/data/BreedinDecisioTreeUsinEvo.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Obtaining Calibrated Probability Estimates from Decision
Trees and Naive Bayesian Classifiers (ICML 2001)</strong>
<ul>
<li>Bianca Zadrozny, Charles Elkan</li>
<li><a
href="http://cseweb.ucsd.edu/~elkan/calibrated.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Temporal Decision Trees or the lazy ECU vindicated (IJCAI
2001)</strong>
<ul>
<li>Luca Console, Claudia Picardi, Daniele Theseider Dupré</li>
<li><a
href="https://www.researchgate.net/publication/220815333_Temporal_Decision_Trees_or_the_lazy_ECU_vindicated">[Paper]</a></li>
</ul></li>
<li><strong>Data Mining Criteria for Tree-based Regression and
Classification (KDD 2001)</strong>
<ul>
<li>Andreas Buja, Yung-Seop Lee</li>
<li><a
href="https://repository.upenn.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&amp;httpsredir=1&amp;article=1406&amp;context=statistics_papers">[Paper]</a></li>
</ul></li>
<li><strong>A Decision Tree of Bigrams is an Accurate Predictor of Word
Sense (NAACL 2001)</strong>
<ul>
<li>Ted Pedersen</li>
<li><a href="https://www.aclweb.org/anthology/N01-1011">[Paper]</a></li>
</ul></li>
<li><strong>Rule Reduction over Numerical Attributes in Decision Tree
Using Multilayer Perceptron (PAKDD 2001)</strong>
<ul>
<li>DaeEun Kim, Jaeho Lee</li>
<li><a href="https://dl.acm.org/citation.cfm?id=693490">[Paper]</a></li>
</ul></li>
<li><strong>A Scalable Algorithm for Rule Post-pruning of Large Decision
Trees (PAKDD 2001)</strong>
<ul>
<li>Trong Dung Nguyen, Tu Bao Ho, Hiroshi Shimodaira</li>
<li><a
href="https://link.springer.com/chapter/10.1007/3-540-45357-1_49">[Paper]</a></li>
</ul></li>
<li><strong>Optimizing the Induction of Alternating Decision Trees
(PAKDD 2001)</strong>
<ul>
<li>Bernhard Pfahringer, Geoffrey Holmes, Richard Kirkby</li>
<li><a
href="https://www.researchgate.net/publication/33051701_Optimizing_the_Induction_of_Alternating_Decision_Trees">[Paper]</a></li>
</ul></li>
<li><strong>Interactive Construction of Decision Trees (PAKDD
2001)</strong>
<ul>
<li>Jianchao Han, Nick Cercone</li>
<li><a
href="https://pure.tue.nl/ws/files/3522084/672434611234867.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Bloomy Decision Tree for Multi-objective Classification
(PKDD 2001)</strong>
<ul>
<li>Einoshin Suzuki, Masafumi Gotoh, Yuta Choki</li>
<li><a
href="https://link.springer.com/chapter/10.1007/3-540-44794-6_36">[Paper]</a></li>
</ul></li>
<li><strong>A Fourier Analysis Based Approach to Learning Decision Trees
in a Distributed Environment (SDM 2001)</strong>
<ul>
<li>Byung-Hoon Park, Rajeev Ayyagari, Hillol Kargupta</li>
<li><a
href="https://archive.siam.org/meetings/sdm01/pdf/sdm01_19.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-22">2000</h2>
<ul>
<li><strong>Intuitive Representation of Decision Trees Using General
Rules and Exceptions (AAAI 2000)</strong>
<ul>
<li>Bing Liu, Minqing Hu, Wynne Hsu</li>
<li><a
href="https://pdfs.semanticscholar.org/e284/96551e595f1850a53f93affa98919147712f.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Tagging Unknown Proper Names Using Decision Trees (ACL
2000)</strong>
<ul>
<li>Frédéric Béchet, Alexis Nasr, Franck Genet</li>
<li><a href="https://www.aclweb.org/anthology/P00-1011">[Paper]</a></li>
</ul></li>
<li><strong>Clustering Through Decision Tree Construction (CIKM
2000)</strong>
<ul>
<li>Bing Liu, Yiyuan Xia, Philip S. Yu</li>
<li><a href="https://dl.acm.org/citation.cfm?id=354775">[Paper]</a></li>
</ul></li>
<li><strong>Handling Continuous-Valued Attributes in Decision Tree with
Neural Network Modelling (ECML 2000)</strong>
<ul>
<li>DaeEun Kim, Jaeho Lee</li>
<li><a
href="https://link.springer.com/content/pdf/10.1007/3-540-45164-1_22.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Investigation and Reduction of Discretization Variance in
Decision Tree Induction (ECML 2000)</strong>
<ul>
<li>Pierre Geurts, Louis Wehenkel</li>
<li><a
href="https://link.springer.com/chapter/10.1007/3-540-45164-1_17">[Paper]</a></li>
</ul></li>
<li><strong>Nonparametric Regularization of Decision Trees (ECML
2000)</strong>
<ul>
<li>Tobias Scheffer</li>
<li><a
href="https://link.springer.com/chapter/10.1007/3-540-45164-1_36">[Paper]</a></li>
</ul></li>
<li><strong>Exploiting the Cost (In)sensitivity of Decision Tree
Splitting Criteria (ICML 2000)</strong>
<ul>
<li>Chris Drummond, Robert C. Holte</li>
<li><a
href="https://pdfs.semanticscholar.org/160e/21c3acc925b60dc040cb1705e58bb166b045.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Multi-agent Q-learning and Regression Trees for Automated
Pricing Decisions (ICML 2000)</strong>
<ul>
<li>Manu Sridharan, Gerald Tesauro</li>
<li><a
href="https://manu.sridharan.net/files/icml00.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Growing Decision Trees on Support-less Association Rules
(KDD 2000)</strong>
<ul>
<li>Ke Wang, Senqiang Zhou, Yu He</li>
<li><a
href="https://www2.cs.sfu.ca/~wangk/pub/kdd002.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Efficient Algorithms for Constructing Decision Trees with
Constraints (KDD 2000)</strong>
<ul>
<li>Minos N. Garofalakis, Dongjoon Hyun, Rajeev Rastogi, Kyuseok
Shim</li>
<li><a
href="http://www.softnet.tuc.gr/~minos/Papers/kdd00-cam.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Interactive Visualization in Mining Large Decision Trees
(PAKDD 2000)</strong>
<ul>
<li>Trong Dung Nguyen, Tu Bao Ho, Hiroshi Shimodaira</li>
<li><a
href="https://link.springer.com/content/pdf/10.1007/3-540-45571-X_40.pdf">[Paper]</a></li>
</ul></li>
<li><strong>VQTree: Vector Quantization for Decision Tree Induction
(PAKDD 2000)</strong>
<ul>
<li>Shlomo Geva, Lawrence Buckingham</li>
<li><a
href="https://link.springer.com/chapter/10.1007%2F3-540-45571-X_41">[Paper]</a></li>
</ul></li>
<li><strong>Some Enhencements of Decision Tree Bagging (PKDD
2000)</strong>
<ul>
<li>Pierre Geurts</li>
<li><a
href="https://link.springer.com/chapter/10.1007/3-540-45372-5_14">[Paper]</a></li>
</ul></li>
<li><strong>Combining Multiple Models with Meta Decision Trees (PKDD
2000)</strong>
<ul>
<li>Ljupco Todorovski, Saso Dzeroski</li>
<li><a href="http://kt.ijs.si/bernard/mdts/pub01.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Induction of Multivariate Decision Trees by Using Dipolar
Criteria (PKDD 2000)</strong>
<ul>
<li>Leon Bobrowski, Marek Kretowski</li>
<li><a
href="https://link.springer.com/chapter/10.1007/3-540-45372-5_33">[Paper]</a></li>
</ul></li>
<li><strong>Decision Tree Toolkit: A Component-Based Library of Decision
Tree Algorithms (PKDD 2000)</strong>
<ul>
<li>Nikos Drossos, Athanassios Papagelis, Dimitrios Kalles</li>
<li><a
href="https://link.springer.com/chapter/10.1007/3-540-45372-5_40">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-23">1999</h2>
<ul>
<li><strong>Modeling Decision Tree Performance with the Power Law
(AISTATS 1999)</strong>
<ul>
<li>Lewis J. Frey, Douglas H. Fisher</li>
<li><a
href="https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/ModelingTree.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Causal Mechanisms and Classification Trees for Predicting
Chemical Carcinogens (AISTATS 1999)</strong>
<ul>
<li>Louis Anthony Cox Jr.</li>
<li><a
href="https://pdfs.semanticscholar.org/0d7b/1d55c5abfd024aacf645c66d0c90c283814e.pdf">[Paper]</a></li>
</ul></li>
<li><strong>POS Tags and Decision Trees for Language Modeling (EMNLP
1999)</strong>
<ul>
<li>Peter A. Heeman</li>
<li><a href="https://www.aclweb.org/anthology/W99-0617">[Paper]</a></li>
</ul></li>
<li><strong>Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning
Technique Competitive to Boosting Decision Trees (ICML 1999)</strong>
<ul>
<li>Zijian Zheng, Geoffrey I. Webb, Kai Ming Ting</li>
<li><a
href="https://pdfs.semanticscholar.org/067e/86836ddbcb5e2844e955c16e058366a18c77.pdf">[Paper]</a></li>
</ul></li>
<li><strong>The Alternating Decision Tree Learning Algorithm (ICML
1999)</strong>
<ul>
<li>Yoav Freund, Llew Mason</li>
<li><a
href="https://cseweb.ucsd.edu/~yfreund/papers/atrees.pdf">[Paper]</a></li>
<li><a href="https://github.com/rajanil/mkboost">[Code]</a></li>
</ul></li>
<li><strong>Boosting with Multi-Way Branching in Decision Trees (NIPS
1999)</strong>
<ul>
<li>Yishay Mansour, David A. McAllester</li>
<li><a
href="https://papers.nips.cc/paper/1659-boosting-with-multi-way-branching-in-decision-trees.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-24">1998</h2>
<ul>
<li><strong>Learning Sorting and Decision Trees with POMDPs (ICML
1998)</strong>
<ul>
<li>Blai Bonet, Hector Geffner</li>
<li><a
href="https://bonetblai.github.io/reports/icml98-learning.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Using a Permutation Test for Attribute Selection in Decision
Trees (ICML 1998)</strong>
<ul>
<li>Eibe Frank, Ian H. Witten</li>
<li><a
href="https://pdfs.semanticscholar.org/9aa9/21b0203e06e98b49bf726a33e124f4310ea3.pdf">[Paper]</a></li>
</ul></li>
<li><strong>A Fast and Bottom-Up Decision Tree Pruning Algorithm with
Near-Optimal Generalization (ICML 1998)</strong>
<ul>
<li>Michael J. Kearns, Yishay Mansour</li>
<li><a
href="https://www.cis.upenn.edu/~mkearns/papers/pruning.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-25">1997</h2>
<ul>
<li><strong>Pessimistic Decision Tree Pruning Based Continuous-Time
(ICML 1997)</strong>
<ul>
<li>Yishay Mansour</li>
<li><a
href="https://pdfs.semanticscholar.org/b6fc/e37612db10a9756b904b5e79e1144ca12574.pdf">[Paper]</a></li>
</ul></li>
<li><strong>PAC Learning with Constant-Partition Classification Noise
and Applications to Decision Tree Induction (ICML 1997)</strong>
<ul>
<li>Scott E. Decatur</li>
<li><a
href="https://www.semanticscholar.org/paper/PAC-Learning-with-Constant-Partition-Classification-Decatur/dd205073aeb512ecd1e823b35f556058fdeea5e0">[Paper]</a></li>
</ul></li>
<li><strong>Option Decision Trees with Majority Votes (ICML
1997)</strong>
<ul>
<li>Ron Kohavi, Clayton Kunz</li>
<li><a
href="https://pdfs.semanticscholar.org/383b/381d1ac0bb41ec595e0d1603ed642809eb86.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Integrating Feature Construction with Multiple Classifiers
in Decision Tree Induction (ICML 1997)</strong>
<ul>
<li>Ricardo Vilalta, Larry A. Rendell</li>
<li><a
href="https://pdfs.semanticscholar.org/1f73/d9d409a75d16871cfa1182ac72b37c839d86.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Functional Models for Regression Tree Leaves (ICML
1997)</strong>
<ul>
<li>Luís Torgo</li>
<li><a
href="https://pdfs.semanticscholar.org/48e4/b3187ca234308e97e1ac0cab84222c603bdd.pdf">[Paper]</a></li>
</ul></li>
<li><strong>The Effects of Training Set Size on Decision Tree Complexity
(ICML 1997)</strong>
<ul>
<li>Tim Oates, David D. Jensen</li>
<li><a
href="https://pdfs.semanticscholar.org/e003/9dbdec3bd4cfbb3273b623fbed2d6b2f0cc9.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Unsupervised On-line Learning of Decision Trees for
Hierarchical Data Analysis (NIPS 1997)</strong>
<ul>
<li>Marcus Held, Joachim M. Buhmann</li>
<li><a
href="https://papers.nips.cc/paper/1479-unsupervised-on-line-learning-of-decision-trees-for-hierarchical-data-analysis.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Data-Dependent Structural Risk Minimization for Perceptron
Decision Trees (NIPS 1997)</strong>
<ul>
<li>John Shawe-Taylor, Nello Cristianini</li>
<li><a
href="https://papers.nips.cc/paper/1359-data-dependent-structural-risk-minimization-for-perceptron-decision-trees">[Paper]</a></li>
</ul></li>
<li><strong>Generalization in Decision Trees and DNF: Does Size Matter
(NIPS 1997)</strong>
<ul>
<li>Mostefa Golea, Peter L. Bartlett, Wee Sun Lee, Llew Mason</li>
<li><a
href="https://papers.nips.cc/paper/1340-generalization-in-decision-trees-and-dnf-does-size-matter.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-26">1996</h2>
<ul>
<li><strong>Second Tier for Decision Trees (ICML 1996)</strong>
<ul>
<li>Miroslav Kubat</li>
<li><a
href="https://pdfs.semanticscholar.org/b619/7c531b1c83dfaa52563449f9b8248cc68c5a.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Non-Linear Decision Trees - NDT (ICML 1996)</strong>
<ul>
<li>Andreas Ittner, Michael Schlosser</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.2133&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
<li><strong>Learning Relational Concepts with Decision Trees (ICML
1996)</strong>
<ul>
<li>Peter Geibel, Fritz Wysotzki</li>
<li><a
href="https://pdfs.semanticscholar.org/32f1/78d7266fee779257b87ac8f948951db57d1e.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-27">1995</h2>
<ul>
<li><strong>A Hill-Climbing Approach for Optimizing Classification Trees
(AISTATS 1995)</strong>
<ul>
<li>Xiaorong Sun, Steve Y. Chiu, Louis Anthony Cox Jr.</li>
<li><a
href="https://link.springer.com/chapter/10.1007%2F978-1-4612-2404-4_11">[Paper]</a></li>
</ul></li>
<li><strong>An Exact Probability Metric for Decision Tree Splitting
(AISTATS 1995)</strong>
<ul>
<li>J. Kent Martin</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.6378&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
<li><strong>On Pruning and Averaging Decision Trees (ICML 1995)</strong>
<ul>
<li>Jonathan J. Oliver, David J. Hand</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.6733&amp;rep=rep1&amp;type=pdf">[Paper]</a></li>
</ul></li>
<li><strong>On Handling Tree-Structured Attributed in Decision Tree
Learning (ICML 1995)</strong>
<ul>
<li>Hussein Almuallim, Yasuhiro Akiba, Shigeo Kaneda</li>
<li><a
href="https://www.sciencedirect.com/science/article/pii/B9781558603776500116">[Paper]</a></li>
</ul></li>
<li><strong>Retrofitting Decision Tree Classifiers Using Kernel Density
Estimation (ICML 1995)</strong>
<ul>
<li>Padhraic Smyth, Alexander G. Gray, Usama M. Fayyad</li>
<li><a
href="https://pdfs.semanticscholar.org/3a05/8ab505f096b23962591bb14e495a543aa2a1.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Increasing the Performance and Consistency of Classification
Trees by Using the Accuracy Criterion at the Leaves (ICML 1995)</strong>
<ul>
<li>David J. Lubinsky</li>
<li><a
href="https://www.sciencedirect.com/science/article/pii/B9781558603776500530">[Paper]</a></li>
</ul></li>
<li><strong>Efficient Algorithms for Finding Multi-way Splits for
Decision Trees (ICML 1995)</strong>
<ul>
<li>Truxton Fulton, Simon Kasif, Steven Salzberg</li>
<li><a
href="https://www.sciencedirect.com/science/article/pii/B9781558603776500384">[Paper]</a></li>
</ul></li>
<li><strong>Theory and Applications of Agnostic PAC-Learning with Small
Decision Trees (ICML 1995)</strong>
<ul>
<li>Peter Auer, Robert C. Holte, Wolfgang Maass</li>
<li><a href="https://igi-web.tugraz.at/PDF/77.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Boosting Decision Trees (NIPS 1995)</strong>
<ul>
<li>Harris Drucker, Corinna Cortes</li>
<li><a
href="http://papers.nips.cc/paper/1059-boosting-decision-trees.pdf">[Paper]</a></li>
</ul></li>
<li><strong>Using Pairs of Data-Points to Define Splits for Decision
Trees (NIPS 1995)</strong>
<ul>
<li>Geoffrey E. Hinton, Michael Revow</li>
<li><a
href="https://www.cs.toronto.edu/~hinton/absps/bcart.pdf">[Paper]</a></li>
</ul></li>
<li><strong>A New Pruning Method for Solving Decision Trees and Game
Trees (UAI 1995)</strong>
<ul>
<li>Prakash P. Shenoy</li>
<li><a href="https://arxiv.org/abs/1302.4981">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-28">1994</h2>
<ul>
<li><strong>A Statistical Approach to Decision Tree Modeling (ICML
1994)</strong>
<ul>
<li>Michael I. Jordan</li>
<li><a
href="https://www.sciencedirect.com/science/article/pii/B9781558603356500519">[Paper]</a></li>
</ul></li>
<li><strong>In Defense of C4.5: Notes Learning One-Level Decision Trees
(ICML 1994)</strong>
<ul>
<li>Tapio Elomaa</li>
<li><a
href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.9386">[Paper]</a></li>
</ul></li>
<li><strong>An Improved Algorithm for Incremental Induction of Decision
Trees (ICML 1994)</strong>
<ul>
<li>Paul E. Utgoff</li>
<li><a
href="https://www.sciencedirect.com/science/article/pii/B9781558603356500465">[Paper]</a></li>
</ul></li>
<li><strong>Decision Tree Parsing using a Hidden Derivation Model (NAACL
1994)</strong>
<ul>
<li>Frederick Jelinek, John D. Lafferty, David M. Magerman, Robert L.
Mercer, Adwait Ratnaparkhi, Salim Roukos</li>
<li><a
href="http://acl-arc.comp.nus.edu.sg/archives/acl-arc-090501d3/data/pdf/anthology-PDF/H/H94/H94-1052.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-29">1993</h2>
<ul>
<li><strong>Using Decision Trees to Improve Case-Based Learning (ICML
1993)</strong>
<ul>
<li>Claire Cardie</li>
<li><a
href="https://www.cs.cornell.edu/home/cardie/papers/ml-93.ps">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-30">1991</h2>
<ul>
<li><strong>Context Dependent Modeling of Phones in Continuous Speech
Using Decision Trees (NAACL 1991)</strong>
<ul>
<li>Lalit R. Bahl, Peter V. de Souza, P. S. Gopalakrishnan, David
Nahamoo, Michael Picheny</li>
<li><a
href="https://www.aclweb.org/anthology/H91-1051.pdf">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-31">1989</h2>
<ul>
<li><strong>Performance Comparisons Between Backpropagation Networks and
Classification Trees on Three Real-World Applications (NIPS
1989)</strong>
<ul>
<li>Les E. Atlas, Ronald A. Cole, Jerome T. Connor, Mohamed A.
El-Sharkawi, Robert J. Marks II, Yeshwant K. Muthusamy, Etienne
Barnard</li>
<li><a
href="https://papers.nips.cc/paper/203-performance-comparisons-between-backpropagation-networks-and-classification-trees-on-three-real-world-applications">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-32">1988</h2>
<ul>
<li><strong>Multiple Decision Trees (UAI 1988)</strong>
<ul>
<li>Suk Wah Kwok, Chris Carter</li>
<li><a href="https://arxiv.org/abs/1304.2363">[Paper]</a></li>
</ul></li>
</ul>
<h2 id="section-33">1987</h2>
<ul>
<li><strong>Decision Tree Induction Systems: A Bayesian Analysis (UAI
1987)</strong>
<ul>
<li>Wray L. Buntine</li>
<li><a href="https://arxiv.org/abs/1304.2732">[Paper]</a></li>
</ul></li>
</ul>
<hr />
<p><strong>License</strong></p>
<ul>
<li><a
href="https://github.com/benedekrozemberczki/awesome-decision-tree-papers/blob/master/LICENSE">CC0
Universal</a></li>
</ul>
<p><a
href="https://github.com/benedekrozemberczki/awesome-decision-tree-papers">decisiontreepapers.md
Github</a></p>