Files
awesome-awesomeness/html/computervision.md2.html
2025-07-18 23:13:11 +02:00

1696 lines
72 KiB
HTML
Raw Permalink Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<h1 id="awesome-computer-vision-awesome">Awesome Computer Vision: <a
href="https://github.com/sindresorhus/awesome"><img
src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg"
alt="Awesome" /></a></h1>
<p>A curated list of awesome computer vision resources, inspired by <a
href="https://github.com/ziadoz/awesome-php">awesome-php</a>.</p>
<p>For a list people in computer vision listed with their academic
genealogy, please visit <a
href="https://github.com/jbhuang0604/awesome-computer-vision/blob/master/people.md">here</a></p>
<h2 id="contributing">Contributing</h2>
<p>Please feel free to send me <a
href="https://github.com/jbhuang0604/awesome-computer-vision/pulls">pull
requests</a> or email (jbhuang@vt.edu) to add links.</p>
<h2 id="table-of-contents">Table of Contents</h2>
<ul>
<li><a href="#awesome-lists">Awesome Lists</a></li>
<li><a href="#books">Books</a></li>
<li><a href="#courses">Courses</a></li>
<li><a href="#papers">Papers</a></li>
<li><a href="#software">Software</a></li>
<li><a href="#datasets">Datasets</a></li>
<li><a href="#Pre-trained-Computer-Vision-Models">Pre-trained Computer
Vision Models</a></li>
<li><a href="#tutorials-and-talks">Tutorials and Talks</a></li>
<li><a href="#resources-for-students">Resources for students</a></li>
<li><a href="#blogs">Blogs</a></li>
<li><a href="#links">Links</a></li>
<li><a href="#songs">Songs</a></li>
</ul>
<h2 id="awesome-lists">Awesome Lists</h2>
<ul>
<li><a
href="https://github.com/josephmisiti/awesome-machine-learning">Awesome
Machine Learning</a></li>
<li><a href="https://github.com/kjw0612/awesome-deep-vision">Awesome
Deep Vision</a></li>
<li><a
href="https://github.com/zhaoxin94/awesome-domain-adaptation">Awesome
Domain Adaptation</a></li>
<li><a href="https://github.com/amusi/awesome-object-detection">Awesome
Object Detection</a></li>
<li><a href="https://github.com/timzhang642/3D-Machine-Learning">Awesome
3D Machine Learning</a></li>
<li><a
href="https://github.com/jinwchoi/awesome-action-recognition">Awesome
Action Recognition</a></li>
<li><a
href="https://github.com/bertjiazheng/awesome-scene-understanding">Awesome
Scene Understanding</a></li>
<li><a
href="https://github.com/yenchenlin/awesome-adversarial-machine-learning">Awesome
Adversarial Machine Learning</a></li>
<li><a
href="https://github.com/chbrian/awesome-adversarial-examples-dl">Awesome
Adversarial Deep Learning</a></li>
<li><a href="https://github.com/polarisZhao/awesome-face">Awesome
Face</a></li>
<li><a
href="https://github.com/ChanChiChoi/awesome-Face_Recognition">Awesome
Face Recognition</a></li>
<li><a
href="https://github.com/wangzheallen/awesome-human-pose-estimation">Awesome
Human Pose Estimation</a></li>
<li><a href="https://github.com/fepegar/awesome-medical-imaging">Awesome
medical imaging</a></li>
<li><a href="https://github.com/heyalexej/awesome-images">Awesome
Images</a></li>
<li><a href="https://github.com/ericjang/awesome-graphics">Awesome
Graphics</a></li>
<li><a href="https://github.com/yenchenlin/awesome-NeRF">Awesome Neural
Radiance Fields</a></li>
<li><a
href="https://github.com/vsitzmann/awesome-implicit-representations">Awesome
Implicit Neural Representations</a></li>
<li><a
href="https://github.com/weihaox/awesome-neural-rendering">Awesome
Neural Rendering</a></li>
<li><a
href="https://github.com/awesomedata/awesome-public-datasets">Awesome
Public Datasets</a></li>
<li><a href="https://github.com/jsbroks/awesome-dataset-tools">Awesome
Dataset Tools</a></li>
<li><a
href="https://github.com/sunglok/awesome-robotics-datasets">Awesome
Robotics Datasets</a></li>
<li><a
href="https://github.com/fritzlabs/Awesome-Mobile-Machine-Learning">Awesome
Mobile Machine Learning</a></li>
<li><a
href="https://github.com/wangyongjie-ntu/Awesome-explainable-AI">Awesome
Explainable AI</a></li>
<li><a
href="https://github.com/datamllab/awesome-fairness-in-ai">Awesome
Fairness in AI</a></li>
<li><a
href="https://github.com/jphall663/awesome-machine-learning-interpretability">Awesome
Machine Learning Interpretability</a></li>
<li><a
href="https://github.com/EthicalML/awesome-production-machine-learning">Awesome
Production Machine Learning</a></li>
<li><a
href="https://github.com/danieljf24/awesome-video-text-retrieval">Awesome
Video Text Retrieval</a></li>
<li><a
href="https://github.com/weihaox/awesome-image-translation">Awesome
Image-to-Image Translation</a></li>
<li><a
href="https://github.com/1900zyh/Awesome-Image-Inpainting">Awesome Image
Inpainting</a></li>
<li><a href="https://github.com/vinthony/awesome-deep-hdr">Awesome Deep
HDR</a></li>
<li><a
href="https://github.com/matthewvowels1/Awesome-Video-Generation">Awesome
Video Generation</a></li>
<li><a
href="https://github.com/nashory/gans-awesome-applications">Awesome GAN
applications</a></li>
<li><a
href="https://github.com/zhoubolei/awesome-generative-modeling">Awesome
Generative Modeling</a></li>
<li><a
href="https://github.com/weiaicunzai/awesome-image-classification">Awesome
Image Classification</a></li>
<li><a
href="https://github.com/ChristosChristofidis/awesome-deep-learning">Awesome
Deep Learning</a></li>
<li><a
href="https://github.com/XindiWu/Awesome-Machine-Learning-in-Biomedical-Healthcare-Imaging">Awesome
Machine Learning in Biomedical(Healthcare) Imaging</a></li>
<li><a
href="https://github.com/abhineet123/Deep-Learning-for-Tracking-and-Detection">Awesome
Deep Learning for Tracking and Detection</a></li>
<li><a
href="https://github.com/wangzheallen/awesome-human-pose-estimation">Awesome
Human Pose Estimation</a></li>
<li><a
href="https://github.com/HuaizhengZhang/Awsome-Deep-Learning-for-Video-Analysis">Awesome
Deep Learning for Video Analysis</a></li>
<li><a
href="https://github.com/yuewang-cuhk/awesome-vision-language-pretraining-papers">Awesome
Vision + Language</a></li>
<li><a href="https://github.com/kiloreux/awesome-robotics">Awesome
Robotics</a></li>
<li><a
href="https://github.com/dk-liang/Awesome-Visual-Transformer">Awesome
Visual Transformer</a></li>
<li><a
href="https://github.com/ChanganVR/awesome-embodied-vision">Awesome
Embodied Vision</a></li>
<li><a
href="https://github.com/hoya012/awesome-anomaly-detection">Awesome
Anomaly Detection</a></li>
<li><a
href="https://github.com/thaoshibe/awesome-makeup-transfer">Awesome
Makeup Transfer</a></li>
<li><a
href="https://github.com/subeeshvasu/Awesome-Learning-with-Label-Noise">Awesome
Learning with Label Noise</a></li>
<li><a href="https://github.com/subeeshvasu/Awesome-Deblurring">Awesome
Deblurring</a></li>
<li><a
href="https://github.com/subeeshvasu/Awsome_Deep_Geometry_Learning">Awsome
Deep Geometry Learning</a></li>
<li><a
href="https://github.com/subeeshvasu/Awesome-Image-Distortion-Correction">Awesome
Image Distortion Correction</a></li>
<li><a
href="https://github.com/subeeshvasu/Awesome-Neuron-Segmentation-in-EM-Images">Awesome
Neuron Segmentation in EM Images</a></li>
<li><a href="https://github.com/subeeshvasu/Awsome_Delineation">Awsome
Delineation</a></li>
<li><a
href="https://github.com/subeeshvasu/Awesome-ImageHarmonization">Awesome
ImageHarmonization</a></li>
<li><a href="https://github.com/subeeshvasu/Awsome-GAN-Training">Awsome
GAN Training</a></li>
<li><a
href="https://github.com/tstanislawek/awesome-document-understanding">Awesome
Document Understanding</a></li>
</ul>
<h2 id="books">Books</h2>
<h4 id="computer-vision">Computer Vision</h4>
<ul>
<li><a href="http://www.computervisionmodels.com/">Computer Vision:
Models, Learning, and Inference</a> - Simon J. D. Prince 2012</li>
<li><a href="http://szeliski.org/Book/">Computer Vision: Theory and
Application</a> - Rick Szeliski 2010</li>
<li><a
href="http://www.amazon.com/Computer-Vision-Modern-Approach-2nd/dp/013608592X/ref=dp_ob_title_bk">Computer
Vision: A Modern Approach (2nd edition)</a> - David Forsyth and Jean
Ponce 2011</li>
<li><a href="http://www.robots.ox.ac.uk/~vgg/hzbook/">Multiple View
Geometry in Computer Vision</a> - Richard Hartley and Andrew Zisserman
2004</li>
<li><a
href="http://www.amazon.com/Computer-Vision-Linda-G-Shapiro/dp/0130307963">Computer
Vision</a> - Linda G. Shapiro 2001</li>
<li><a
href="http://www.amazon.com/Vision-Science-Phenomenology-Stephen-Palmer/dp/0262161834/">Vision
Science: Photons to Phenomenology</a> - Stephen E. Palmer 1999</li>
<li><a
href="http://www.morganclaypool.com/doi/abs/10.2200/S00332ED1V01Y201103AIM011">Visual
Object Recognition synthesis lecture</a> - Kristen Grauman and Bastian
Leibe 2011</li>
<li><a href="http://cvfxbook.com/">Computer Vision for Visual
Effects</a> - Richard J. Radke, 2012</li>
<li><a
href="http://www.amazon.com/High-Dynamic-Range-Imaging-Second/dp/012374914X">High
dynamic range imaging: acquisition, display, and image-based
lighting</a> - Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S.,
Ward, G., Myszkowski, K 2010</li>
<li><a
href="https://people.csail.mit.edu/jsolomon/share/book/numerical_book.pdf">Numerical
Algorithms: Methods for Computer Vision, Machine Learning, and
Graphics</a> - Justin Solomon 2015</li>
<li><a
href="https://www.amazon.com/Processing-Analysis-Activate-Learning-Engineering/dp/1285179528">Image
Processing and Analysis</a> - Stan Birchfield 2018</li>
<li><a href="http://web.stanford.edu/class/cs231a/">Computer Vision,
From 3D Reconstruction to Recognition</a> - Silvio Savarese 2018</li>
</ul>
<h4 id="opencv-programming">OpenCV Programming</h4>
<ul>
<li><a
href="http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134">Learning
OpenCV: Computer Vision with the OpenCV Library</a> - Gary Bradski and
Adrian Kaehler</li>
<li><a
href="https://www.pyimagesearch.com/practical-python-opencv/">Practical
Python and OpenCV</a> - Adrian Rosebrock</li>
<li><a
href="http://www.amazon.com/OpenCV-Essentials-Oscar-Deniz-Suarez/dp/1783984244/ref=sr_1_1?s=books&amp;ie=UTF8&amp;qid=1424594237&amp;sr=1-1&amp;keywords=opencv+essentials#">OpenCV
Essentials</a> - Oscar Deniz Suarez, Mª del Milagro Fernandez Carrobles,
Noelia Vallez Enano, Gloria Bueno Garcia, Ismael Serrano Gracia</li>
</ul>
<h4 id="machine-learning">Machine Learning</h4>
<ul>
<li><a
href="http://research.microsoft.com/en-us/um/people/cmbishop/prml/index.htm">Pattern
Recognition and Machine Learning</a> - Christopher M. Bishop 2007</li>
<li><a
href="http://www.engineering.upm.ro/master-ie/sacpi/mat_did/info068/docum/Neural%20Networks%20for%20Pattern%20Recognition.pdf">Neural
Networks for Pattern Recognition</a> - Christopher M. Bishop 1995</li>
<li><a href="http://pgm.stanford.edu/">Probabilistic Graphical Models:
Principles and Techniques</a> - Daphne Koller and Nir Friedman 2009</li>
<li><a
href="http://www.amazon.com/Pattern-Classification-2nd-Richard-Duda/dp/0471056693">Pattern
Classification</a> - Peter E. Hart, David G. Stork, and Richard O. Duda
2000</li>
<li><a
href="http://www.amazon.com/Machine-Learning-Tom-M-Mitchell/dp/0070428077/">Machine
Learning</a> - Tom M. Mitchell 1997</li>
<li><a href="http://www.gaussianprocess.org/gpml/">Gaussian processes
for machine learning</a> - Carl Edward Rasmussen and Christopher K. I.
Williams 2005</li>
<li><a href="https://work.caltech.edu/telecourse.html">Learning From
Data</a>- Yaser S. Abu-Mostafa, Malik Magdon-Ismail and Hsuan-Tien Lin
2012</li>
<li><a href="http://neuralnetworksanddeeplearning.com/">Neural Networks
and Deep Learning</a> - Michael Nielsen 2014</li>
<li><a href="http://www.cs.ucl.ac.uk/staff/d.barber/brml/">Bayesian
Reasoning and Machine Learning</a> - David Barber, Cambridge University
Press, 2012</li>
</ul>
<h4 id="fundamentals">Fundamentals</h4>
<ul>
<li><a
href="http://www.amazon.com/Linear-Algebra-Its-Applications-4th/dp/0030105676/ref=sr_1_4?ie=UTF8&amp;qid=1421433773&amp;sr=8-4&amp;keywords=Linear+Algebra+and+Its+Applications">Linear
Algebra and Its Applications</a> - Gilbert Strang 1995</li>
</ul>
<h2 id="courses">Courses</h2>
<h4 id="computer-vision-1">Computer Vision</h4>
<ul>
<li><a href="http://inside.mines.edu/~whoff/courses/EENG512/">EENG 512 /
CSCI 512 - Computer Vision</a> - William Hoff (Colorado School of
Mines)</li>
<li><a href="https://sites.google.com/site/ucbcs29443/">Visual Object
and Activity Recognition</a> - Alexei A. Efros and Trevor Darrell (UC
Berkeley)</li>
<li><a
href="http://courses.cs.washington.edu/courses/cse455/12wi/">Computer
Vision</a> - Steve Seitz (University of Washington)</li>
<li>Visual Recognition <a
href="http://vision.cs.utexas.edu/381V-spring2016/">Spring 2016</a>, <a
href="http://vision.cs.utexas.edu/381V-fall2016/">Fall 2016</a> -
Kristen Grauman (UT Austin)</li>
<li><a href="http://www.tamaraberg.com/teaching/Spring_15/">Language and
Vision</a> - Tamara Berg (UNC Chapel Hill)</li>
<li><a href="http://vision.stanford.edu/teaching/cs231n/">Convolutional
Neural Networks for Visual Recognition</a> - Fei-Fei Li and Andrej
Karpathy (Stanford University)</li>
<li><a
href="http://cs.nyu.edu/~fergus/teaching/vision/index.html">Computer
Vision</a> - Rob Fergus (NYU)</li>
<li><a href="https://courses.engr.illinois.edu/cs543/sp2015/">Computer
Vision</a> - Derek Hoiem (UIUC)</li>
<li><a
href="http://vision.stanford.edu/teaching/cs131_fall1415/index.html">Computer
Vision: Foundations and Applications</a> - Kalanit Grill-Spector and
Fei-Fei Li (Stanford University)</li>
<li><a
href="http://vision.stanford.edu/teaching/cs431_spring1314/">High-Level
Vision: Behaviors, Neurons and Computational Models</a> - Fei-Fei Li
(Stanford University)</li>
<li><a href="http://6.869.csail.mit.edu/fa15/">Advances in Computer
Vision</a> - Antonio Torralba and Bill Freeman (MIT)</li>
<li><a href="http://www.vision.rwth-aachen.de/course/11/">Computer
Vision</a> - Bastian Leibe (RWTH Aachen University)</li>
<li><a href="http://www.vision.rwth-aachen.de/course/9/">Computer Vision
2</a> - Bastian Leibe (RWTH Aachen University)</li>
<li><a
href="http://klewel.com/conferences/epfl-computer-vision/">Computer
Vision</a> Pascal Fua (EPFL):</li>
<li><a
href="http://cvlab-dresden.de/courses/computer-vision-1/">Computer
Vision 1</a> Carsten Rother (TU Dresden):</li>
<li><a href="http://cvlab-dresden.de/courses/CV2/">Computer Vision 2</a>
Carsten Rother (TU Dresden):</li>
<li><a
href="https://youtu.be/RDkwklFGMfo?list=PLTBdjV_4f-EJn6udZ34tht9EVIW7lbeo4">Multiple
View Geometry</a> Daniel Cremers (TU Munich):</li>
</ul>
<h4 id="computational-photography">Computational Photography</h4>
<ul>
<li><a href="http://inst.eecs.berkeley.edu/~cs194-26/fa14/">Image
Manipulation and Computational Photography</a> - Alexei A. Efros (UC
Berkeley)</li>
<li><a
href="http://graphics.cs.cmu.edu/courses/15-463/2012_fall/463.html">Computational
Photography</a> - Alexei A. Efros (CMU)</li>
<li><a href="https://courses.engr.illinois.edu/cs498dh3/">Computational
Photography</a> - Derek Hoiem (UIUC)</li>
<li><a href="http://cs.brown.edu/courses/csci1290/">Computational
Photography</a> - James Hays (Brown University)</li>
<li><a href="http://stellar.mit.edu/S/course/6/sp12/6.815/">Digital
&amp; Computational Photography</a> - Fredo Durand (MIT)</li>
<li><a
href="http://ocw.mit.edu/courses/media-arts-and-sciences/mas-531-computational-camera-and-photography-fall-2009/">Computational
Camera and Photography</a> - Ramesh Raskar (MIT Media Lab)</li>
<li><a
href="https://www.udacity.com/course/computational-photography--ud955">Computational
Photography</a> - Irfan Essa (Georgia Tech)</li>
<li><a href="http://graphics.stanford.edu/courses/">Courses in
Graphics</a> - Stanford University</li>
<li><a
href="http://cs.nyu.edu/~fergus/teaching/comp_photo/index.html">Computational
Photography</a> - Rob Fergus (NYU)</li>
<li><a href="http://www.cs.toronto.edu/~kyros/courses/320/">Introduction
to Visual Computing</a> - Kyros Kutulakos (University of Toronto)</li>
<li><a
href="http://www.cs.toronto.edu/~kyros/courses/2530/">Computational
Photography</a> - Kyros Kutulakos (University of Toronto)</li>
<li><a href="https://www.ecse.rpi.edu/~rjradke/cvfxcourse.html">Computer
Vision for Visual Effects</a> - Rich Radke (Rensselaer Polytechnic
Institute)</li>
<li><a
href="https://www.ecse.rpi.edu/~rjradke/improccourse.html">Introduction
to Image Processing</a> - Rich Radke (Rensselaer Polytechnic
Institute)</li>
</ul>
<h4 id="machine-learning-and-statistical-learning">Machine Learning and
Statistical Learning</h4>
<ul>
<li><a href="https://www.coursera.org/learn/machine-learning">Machine
Learning</a> - Andrew Ng (Stanford University)</li>
<li><a href="https://work.caltech.edu/telecourse.html">Learning from
Data</a> - Yaser S. Abu-Mostafa (Caltech)</li>
<li><a
href="https://class.stanford.edu/courses/HumanitiesandScience/StatLearning/Winter2015/about">Statistical
Learning</a> - Trevor Hastie and Rob Tibshirani (Stanford
University)</li>
<li><a href="http://www.mit.edu/~9.520/fall14/">Statistical Learning
Theory and Applications</a> - Tomaso Poggio, Lorenzo Rosasco, Carlo
Ciliberto, Charlie Frogner, Georgios Evangelopoulos, Ben Deen (MIT)</li>
<li><a href="http://www.stat.rice.edu/~gallen/stat640.html">Statistical
Learning</a> - Genevera Allen (Rice University)</li>
<li><a
href="http://www.cs.berkeley.edu/~jordan/courses/294-fall09/">Practical
Machine Learning</a> - Michael Jordan (UC Berkeley)</li>
<li><a
href="http://videolectures.net/course_information_theory_pattern_recognition/">Course
on Information Theory, Pattern Recognition, and Neural Networks</a> -
David MacKay (University of Cambridge)</li>
<li><a href="http://web.stanford.edu/~lmackey/stats306b/">Methods for
Applied Statistics: Unsupervised Learning</a> - Lester Mackey
(Stanford)</li>
<li><a
href="http://www.robots.ox.ac.uk/~az/lectures/ml/index.html">Machine
Learning</a> - Andrew Zisserman (University of Oxford)</li>
<li><a
href="https://www.udacity.com/course/intro-to-machine-learning--ud120">Intro
to Machine Learning</a> - Sebastian Thrun (Stanford University)</li>
<li><a
href="https://www.udacity.com/course/machine-learning--ud262">Machine
Learning</a> - Charles Isbell, Michael Littman (Georgia Tech)</li>
<li><a href="https://cs231n.github.io/">(Convolutional) Neural Networks
for Visual Recognition</a> - Fei-Fei Li, Andrej Karphaty, Justin Johnson
(Stanford University)</li>
<li><a
href="https://youtu.be/QZmZFeZxEKI?list=PLTBdjV_4f-EIiongKlS9OKrBEp8QR47Wl">Machine
Learning for Computer Vision</a> - Rudolph Triebel (TU Munich)</li>
</ul>
<h4 id="optimization">Optimization</h4>
<ul>
<li><a href="http://stanford.edu/class/ee364a/">Convex Optimization
I</a> - Stephen Boyd (Stanford University)</li>
<li><a href="http://stanford.edu/class/ee364b/">Convex Optimization
II</a> - Stephen Boyd (Stanford University)</li>
<li><a
href="https://class.stanford.edu/courses/Engineering/CVX101/Winter2014/about">Convex
Optimization</a> - Stephen Boyd (Stanford University)</li>
<li><a href="http://optimization.mit.edu/classes.php">Optimization at
MIT</a> - (MIT)</li>
<li><a href="http://www.stat.cmu.edu/~ryantibs/convexopt/">Convex
Optimization</a> - Ryan Tibshirani (CMU)</li>
</ul>
<h2 id="papers">Papers</h2>
<h4 id="conference-papers-on-the-web">Conference papers on the web</h4>
<ul>
<li><a href="http://www.cvpapers.com/">CVPapers</a> - Computer vision
papers on the web</li>
<li><a href="http://kesen.realtimerendering.com/">SIGGRAPH Paper on the
web</a> - Graphics papers on the web</li>
<li><a href="http://papers.nips.cc/">NIPS Proceedings</a> - NIPS papers
on the web</li>
<li><a href="http://www.cv-foundation.org/openaccess/menu.py">Computer
Vision Foundation open access</a></li>
<li><a
href="http://iris.usc.edu/Vision-Notes/bibliography/contents.html">Annotated
Computer Vision Bibliography</a> - Keith Price (USC)</li>
<li><a
href="http://iris.usc.edu/Information/Iris-Conferences.html">Calendar of
Computer Image Analysis, Computer Vision Conferences</a> - (USC)</li>
</ul>
<h4 id="survey-papers">Survey Papers</h4>
<ul>
<li><a href="http://surveys.visionbib.com/index.html">Visionbib Survey
Paper List</a></li>
<li><a href="http://www.nowpublishers.com/CGV">Foundations and Trends®
in Computer Graphics and Vision</a></li>
<li><a
href="http://link.springer.com/book/10.1007/978-0-387-31439-6">Computer
Vision: A Reference Guide</a></li>
</ul>
<p>## Pre-trained Computer Vision Models * <a
href="https://github.com/shubham-shahh/Open-Source-Models">List of
Computer Vision models</a> These models are trained on custom
objects</p>
<h2 id="tutorials-and-talks">Tutorials and talks</h2>
<h4 id="computer-vision-2">Computer Vision</h4>
<ul>
<li><a href="http://www.computervisiontalks.com/">Computer Vision
Talks</a> - Lectures, keynotes, panel discussions on computer
vision</li>
<li><a href="https://www.youtube.com/watch?v=Mqg6eorYRIQ">The Three Rs
of Computer Vision</a> - Jitendra Malik (UC Berkeley) 2013</li>
<li><a href="http://videolectures.net/epsrcws08_blake_amv/">Applications
to Machine Vision</a> - Andrew Blake (Microsoft Research) 2008</li>
<li><a href="http://videolectures.net/kdd08_malik_fis/?q=image">The
Future of Image Search</a> - Jitendra Malik (UC Berkeley) 2008</li>
<li><a href="https://www.youtube.com/watch?v=M17oGxh3Ny8">Should I do a
PhD in Computer Vision?</a> - Fatih Porikli (Australian National
University)</li>
<li><a
href="http://www.ipam.ucla.edu/programs/summer-schools/graduate-summer-school-computer-vision/?tab=schedule">Graduate
Summer School 2013: Computer Vision</a> - IPAM, 2013</li>
</ul>
<h4 id="recent-conference-talks">Recent Conference Talks</h4>
<ul>
<li><a href="http://www.pamitc.org/cvpr15/">CVPR 2015</a> - Jun
2015</li>
<li><a href="http://videolectures.net/eccv2014_zurich/">ECCV 2014</a> -
Sep 2014</li>
<li><a href="http://techtalks.tv/cvpr-2014-oral-talks/">CVPR 2014</a> -
Jun 2014</li>
<li><a href="http://techtalks.tv/iccv2013/">ICCV 2013</a> - Dec
2013</li>
<li><a href="http://techtalks.tv/icml/2013/">ICML 2013</a> - Jul
2013</li>
<li><a href="http://techtalks.tv/cvpr2013/">CVPR 2013</a> - Jun
2013</li>
<li><a href="http://videolectures.net/eccv2012_firenze/">ECCV 2012</a> -
Oct 2012</li>
<li><a href="http://techtalks.tv/icml/2012/orals/">ICML 2012</a> - Jun
2012</li>
<li><a href="http://techtalks.tv/cvpr2012webcast/">CVPR 2012</a> - Jun
2012</li>
</ul>
<h4 id="d-computer-vision">3D Computer Vision</h4>
<ul>
<li><a href="https://www.youtube.com/watch?v=kyIzMr917Rc">3D Computer
Vision: Past, Present, and Future</a> - Steve Seitz (University of
Washington) 2011</li>
<li><a href="https://www.youtube.com/watch?v=04Kgg3QEXFI">Reconstructing
the World from Photos on the Internet</a> - Steve Seitz (University of
Washington) 2013</li>
</ul>
<h4 id="internet-vision">Internet Vision</h4>
<ul>
<li><a
href="http://www.technologyreview.com/video/426265/meet-2011-tr35-winner-noah-snavely/">The
Distributed Camera</a> - Noah Snavely (Cornell University) 2011</li>
<li><a href="https://www.youtube.com/watch?v=UHkCa9-Z1Ps">Planet-Scale
Visual Understanding</a> - Noah Snavely (Cornell University) 2014</li>
<li><a href="https://www.youtube.com/watch?v=6MWEfpKUfRc">A Trillion
Photos</a> - Steve Seitz (University of Washington) 2013</li>
</ul>
<h4 id="computational-photography-1">Computational Photography</h4>
<ul>
<li><a href="https://www.youtube.com/watch?v=j90_0Ndk7XM">Reflections on
Image-Based Modeling and Rendering</a> - Richard Szeliski (Microsoft
Research) 2013</li>
<li><a href="https://www.youtube.com/watch?v=ZvPaHZZVPRk">Photographing
Events over Time</a> - William T. Freeman (MIT) 2011</li>
<li><a
href="http://videolectures.net/nipsworkshops2011_weiss_deconvolution/">Old
and New algorithm for Blind Deconvolution</a> - Yair Weiss (The Hebrew
University of Jerusalem) 2011</li>
<li><a href="http://videolectures.net/nipsworkshops2010_milanfar_tmi/">A
Tour of Modern “Image Processing”</a> - Peyman Milanfar (UC Santa
Cruz/Google) 2010</li>
<li><a href="http://videolectures.net/mlss07_blake_tiivp/">Topics in
image and video processing</a> Andrew Blake (Microsoft Research)
2007</li>
<li><a href="https://www.youtube.com/watch?v=HJVNI0mkmqk">Computational
Photography</a> - William T. Freeman (MIT) 2012</li>
<li><a href="https://www.youtube.com/watch?v=_BWnIQY_X98">Revealing the
Invisible</a> - Frédo Durand (MIT) 2012</li>
<li><a href="https://www.youtube.com/watch?v=rE-hVtytT-I">Overview of
Computer Vision and Visual Effects</a> - Rich Radke (Rensselaer
Polytechnic Institute) 2014</li>
</ul>
<h4 id="learning-and-vision">Learning and Vision</h4>
<ul>
<li><a
href="http://videolectures.net/colt2011_freeman_help/?q=computer%20vision">Where
machine vision needs help from machine learning</a> - William T. Freeman
(MIT) 2011</li>
<li><a href="http://videolectures.net/mlss08au_lucey_linv/">Learning in
Computer Vision</a> - Simon Lucey (CMU) 2008</li>
<li><a
href="http://videolectures.net/nips09_weiss_lil/?q=computer%20vision">Learning
and Inference in Low-Level Vision</a> - Yair Weiss (The Hebrew
University of Jerusalem) 2009</li>
</ul>
<h4 id="object-recognition">Object Recognition</h4>
<ul>
<li><a
href="http://research.microsoft.com/apps/video/dl.aspx?id=231358">Object
Recognition</a> - Larry Zitnick (Microsoft Research)</li>
<li><a
href="http://videolectures.net/mlas06_li_gmvoo/?q=Fei-Fei%20Li">Generative
Models for Visual Objects and Object Recognition via Bayesian
Inference</a> - Fei-Fei Li (Stanford University)</li>
</ul>
<h4 id="graphical-models">Graphical Models</h4>
<ul>
<li><a
href="http://videolectures.net/uai2012_felzenszwalb_computer_vision/?q=computer%20vision">Graphical
Models for Computer Vision</a> - Pedro Felzenszwalb (Brown University)
2012</li>
<li><a href="http://videolectures.net/mlss09uk_ghahramani_gm/">Graphical
Models</a> - Zoubin Ghahramani (University of Cambridge) 2009</li>
<li><a href="http://videolectures.net/mlss06tw_roweis_mlpgm/">Machine
Learning, Probability and Graphical Models</a> - Sam Roweis (NYU)
2006</li>
<li><a
href="http://videolectures.net/mlss09us_weiss_gma/?q=Graphical%20Models">Graphical
Models and Applications</a> - Yair Weiss (The Hebrew University of
Jerusalem) 2009</li>
</ul>
<h4 id="machine-learning-1">Machine Learning</h4>
<ul>
<li><a
href="https://nikola-rt.ee.washington.edu/people/bulyko/papers/em.pdf">A
Gentle Tutorial of the EM Algorithm</a> - Jeff A. Bilmes (UC Berkeley)
1998</li>
<li><a href="http://videolectures.net/mlss09uk_bishop_ibi/">Introduction
To Bayesian Inference</a> - Christopher Bishop (Microsoft Research)
2009</li>
<li><a href="http://videolectures.net/mlss06tw_lin_svm/">Support Vector
Machines</a> - Chih-Jen Lin (National Taiwan University) 2006</li>
<li><a href="http://videolectures.net/mlss09uk_jordan_bfway/">Bayesian
or Frequentist, Which Are You?</a> - Michael I. Jordan (UC
Berkeley)</li>
</ul>
<h4 id="optimization-1">Optimization</h4>
<ul>
<li><a
href="http://videolectures.net/nips2010_wright_oaml/">Optimization
Algorithms in Machine Learning</a> - Stephen J. Wright (University of
Wisconsin-Madison)</li>
<li><a
href="http://videolectures.net/mlss07_vandenberghe_copt/?q=convex%20optimization">Convex
Optimization</a> - Lieven Vandenberghe (University of California, Los
Angeles)</li>
<li><a href="https://www.youtube.com/watch?v=oZqoWozVDVg">Continuous
Optimization in Computer Vision</a> - Andrew Fitzgibbon (Microsoft
Research)</li>
<li><a
href="http://videolectures.net/sahd2014_bach_stochastic_gradient/">Beyond
stochastic gradient descent for large-scale machine learning</a> -
Francis Bach (INRIA)</li>
<li><a
href="https://www.youtube.com/playlist?list=PLTBdjV_4f-EJ7A2iIH5L5ztqqrWYjP2RI">Variational
Methods for Computer Vision</a> - Daniel Cremers (Technische Universität
München) (<a href="https://www.youtube.com/watch?v=GgcbVPNd3SI">lecture
18 missing from playlist</a>)</li>
</ul>
<h4 id="deep-learning">Deep Learning</h4>
<ul>
<li><a href="http://videolectures.net/jul09_hinton_deeplearn/">A
tutorial on Deep Learning</a> - Geoffrey E. Hinton (University of
Toronto)</li>
<li><a
href="http://videolectures.net/kdd2014_salakhutdinov_deep_learning/?q=Hidden%20Markov%20model#">Deep
Learning</a> - Ruslan Salakhutdinov (University of Toronto)</li>
<li><a
href="http://videolectures.net/kdd2014_bengio_deep_learning/">Scaling up
Deep Learning</a> - Yoshua Bengio (University of Montreal)</li>
<li><a
href="http://videolectures.net/machine_krizhevsky_imagenet_classification/?q=deep%20learning">ImageNet
Classification with Deep Convolutional Neural Networks</a> - Alex
Krizhevsky (University of Toronto)</li>
<li><a href="http://videolectures.net/sahd2014_lecun_deep_learning/">The
Unreasonable Effectivness Of Deep Learning</a> Yann LeCun (NYU/Facebook
Research) 2014</li>
<li><a href="https://www.youtube.com/watch?v=qgx57X0fBdA">Deep Learning
for Computer Vision</a> - Rob Fergus (NYU/Facebook Research)</li>
<li><a
href="http://videolectures.net/sahd2014_mallat_dimensional_learning/">High-dimensional
learning with deep network contractions</a> - Stéphane Mallat (Ecole
Normale Superieure)</li>
<li><a
href="http://www.ipam.ucla.edu/programs/summer-schools/graduate-summer-school-deep-learning-feature-learning/?tab=schedule">Graduate
Summer School 2012: Deep Learning, Feature Learning</a> - IPAM,
2012</li>
<li><a
href="http://www.fields.utoronto.ca/programs/scientific/14-15/bigdata/machine/">Workshop
on Big Data and Statistical Machine Learning</a></li>
<li><a
href="https://www.youtube.com/channel/UC3ywjSv5OsDiDAnOP8C1NiQ">Machine
Learning Summer School</a> - Reykjavik, Iceland 2014
<ul>
<li><a href="https://www.youtube.com/watch?v=JuimBuvEWBg">Deep Learning
Session 1</a> - Yoshua Bengio (Universtiy of Montreal)</li>
<li><a href="https://www.youtube.com/watch?v=Fl-W7_z3w3o">Deep Learning
Session 2</a> - Yoshua Bengio (University of Montreal)</li>
<li><a href="https://www.youtube.com/watch?v=_cohR7LAgWA">Deep Learning
Session 3</a> - Yoshua Bengio (University of Montreal)</li>
</ul></li>
</ul>
<h2 id="software">Software</h2>
<h4 id="annotation-tools">Annotation tools</h4>
<ul>
<li><a href="http://commacoloring.herokuapp.com/">Comma
Coloring</a></li>
<li><a href="https://annotorious.github.io/">Annotorious</a></li>
<li><a href="http://labelme.csail.mit.edu/Release3.0/">LabelME</a></li>
<li><a href="https://github.com/sanko-shoko/gtmaker">gtmaker</a></li>
</ul>
<h4 id="external-resource-links">External Resource Links</h4>
<ul>
<li><a
href="https://sites.google.com/site/jbhuang0604/resources/vision">Computer
Vision Resources</a> - Jia-Bin Huang (UIUC)</li>
<li><a href="http://www.cvpapers.com/rr.html">Computer Vision Algorithm
Implementations</a> - CVPapers</li>
<li><a
href="http://www.csee.wvu.edu/~xinl/reproducible_research.html">Source
Code Collection for Reproducible Research</a> - Xin Li (West Virginia
University)</li>
<li><a
href="http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/v-source.html">CMU
Computer Vision Page</a></li>
</ul>
<h4 id="general-purpose-computer-vision-library">General Purpose
Computer Vision Library</h4>
<ul>
<li><a href="http://opencv.org/">Open CV</a></li>
<li><a href="http://kyamagu.github.io/mexopencv/">mexopencv</a></li>
<li><a href="http://simplecv.org/">SimpleCV</a></li>
<li><a href="https://github.com/jesolem/PCV">Open source Python module
for computer vision</a></li>
<li><a href="https://github.com/liuliu/ccv">ccv: A Modern Computer
Vision Library</a></li>
<li><a href="http://www.vlfeat.org/">VLFeat</a></li>
<li><a href="http://www.mathworks.com/products/computer-vision/">Matlab
Computer Vision System Toolbox</a></li>
<li><a
href="http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html">Piotrs
Computer Vision Matlab Toolbox</a></li>
<li><a href="http://pointclouds.org/">PCL: Point Cloud Library</a></li>
<li><a
href="https://gitorious.org/imageutilities">ImageUtilities</a></li>
</ul>
<h4 id="multiple-view-computer-vision">Multiple-view Computer
Vision</h4>
<ul>
<li><a href="http://www.robots.ox.ac.uk/~vgg/hzbook/code/">MATLAB
Functions for Multiple View Geometry</a></li>
<li><a
href="http://staffhome.ecm.uwa.edu.au/~00011811/Research/MatlabFns/index.html">Peter
Kovesis Matlab Functions for Computer Vision and Image
Analysis</a></li>
<li><a href="http://laurentkneip.github.io/opengv/">OpenGV</a> -
geometric computer vision algorithms</li>
<li><a href="http://cmp.felk.cvut.cz/mini/">MinimalSolvers</a> - Minimal
problems solver</li>
<li><a href="http://www.gcc.tu-darmstadt.de/home/proj/mve/">Multi-View
Environment</a></li>
<li><a href="http://ccwu.me/vsfm/">Visual SFM</a></li>
<li><a href="http://www.cs.cornell.edu/~snavely/bundler/">Bundler
SFM</a></li>
<li><a href="http://imagine.enpc.fr/~moulonp/openMVG/">openMVG: open
Multiple View Geometry</a> - Multiple View Geometry; Structure from
Motion library &amp; softwares</li>
<li><a href="http://www.di.ens.fr/pmvs/">Patch-based Multi-view Stereo
V2</a></li>
<li><a href="http://www.di.ens.fr/cmvs/">Clustering Views for Multi-view
Stereo</a></li>
<li><a
href="http://www.gris.informatik.tu-darmstadt.de/projects/floating-scale-surface-recon/">Floating
Scale Surface Reconstruction</a></li>
<li><a
href="http://www.gcc.tu-darmstadt.de/home/proj/texrecon/">Large-Scale
Texturing of 3D Reconstructions</a></li>
<li><a
href="https://github.com/openMVG/awesome_3DReconstruction_list">Awesome
3D reconstruction list</a></li>
</ul>
<h4 id="feature-detection-and-extraction">Feature Detection and
Extraction</h4>
<ul>
<li><a href="http://www.vlfeat.org/">VLFeat</a></li>
<li><a href="http://www.cs.ubc.ca/~lowe/keypoints/">SIFT</a>
<ul>
<li>David G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, 60, 2 (2004),
pp. 91-110.</li>
</ul></li>
<li><a
href="http://www.robots.ox.ac.uk/~vedaldi/code/siftpp.html">SIFT++</a></li>
<li><a
href="http://www.asl.ethz.ch/people/lestefan/personal/BRISK">BRISK</a>
<ul>
<li>Stefan Leutenegger, Margarita Chli and Roland Siegwart, “BRISK:
Binary Robust Invariant Scalable Keypoints”, ICCV 2011</li>
</ul></li>
<li><a href="http://www.vision.ee.ethz.ch/~surf/">SURF</a>
<ul>
<li>Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, “SURF:
Speeded Up Robust Features”, Computer Vision and Image Understanding
(CVIU), Vol. 110, No. 3, pp. 346359, 2008</li>
</ul></li>
<li><a href="http://www.ivpe.com/freak.htm">FREAK</a>
<ul>
<li>A. Alahi, R. Ortiz, and P. Vandergheynst, “FREAK: Fast Retina
Keypoint”, CVPR 2012</li>
</ul></li>
<li><a
href="http://www.robesafe.com/personal/pablo.alcantarilla/kaze.html">AKAZE</a>
<ul>
<li>Pablo F. Alcantarilla, Adrien Bartoli and Andrew J. Davison, “KAZE
Features”, ECCV 2012</li>
</ul></li>
<li><a href="https://github.com/nourani/LBP">Local Binary
Patterns</a></li>
</ul>
<h4 id="high-dynamic-range-imaging">High Dynamic Range Imaging</h4>
<ul>
<li><a
href="https://github.com/banterle/HDR_Toolbox">HDR_Toolbox</a></li>
</ul>
<h4 id="semantic-segmentation">Semantic Segmentation</h4>
<ul>
<li><a
href="http://www.it-caesar.com/list-of-contemporary-semantic-segmentation-datasets/">List
of Semantic Segmentation algorithms</a></li>
</ul>
<h4 id="low-level-vision">Low-level Vision</h4>
<h6 id="stereo-vision">Stereo Vision</h6>
<ul>
<li><a href="http://vision.middlebury.edu/stereo/">Middlebury Stereo
Vision</a></li>
<li><a
href="http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stero">The
KITTI Vision Benchmark Suite</a></li>
<li><a href="http://www.cvlibs.net/software/libelas/">LIBELAS: Library
for Efficient Large-scale Stereo Matching</a></li>
<li><a
href="http://www.6d-vision.com/ground-truth-stixel-dataset">Ground Truth
Stixel Dataset</a></li>
</ul>
<h6 id="optical-flow">Optical Flow</h6>
<ul>
<li><a href="http://vision.middlebury.edu/flow/">Middlebury Optical Flow
Evaluation</a></li>
<li><a href="http://sintel.is.tue.mpg.de/">MPI-Sintel Optical Flow
Dataset and Evaluation</a></li>
<li><a
href="http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow">The
KITTI Vision Benchmark Suite</a></li>
<li><a
href="http://hci.iwr.uni-heidelberg.de/Benchmarks/document/Challenging_Data_for_Stereo_and_Optical_Flow/">HCI
Challenge</a></li>
<li><a href="http://people.csail.mit.edu/celiu/OpticalFlow/">Coarse2Fine
Optical Flow</a> - Ce Liu (MIT)</li>
<li><a
href="http://cs.brown.edu/~dqsun/code/cvpr10_flow_code.zip">Secrets of
Optical Flow Estimation and Their Principles</a></li>
<li><a href="http://people.csail.mit.edu/celiu/OpticalFlow/">C++/MatLab
Optical Flow by C. Liu (based on Brox et al. and Bruhn et al.)</a></li>
<li><a
href="http://www.ctim.es/research_works/parallel_robust_optical_flow/">Parallel
Robust Optical Flow by Sánchez Pérez et al.</a></li>
</ul>
<h6 id="image-denoising">Image Denoising</h6>
<p>BM3D, KSVD,</p>
<h6 id="super-resolution">Super-resolution</h6>
<ul>
<li><a href="http://www.robots.ox.ac.uk/~vgg/software/SR/">Multi-frame
image super-resolution</a>
<ul>
<li>Pickup, L. C. Machine Learning in Multi-frame Image
Super-resolution, PhD thesis 2008</li>
</ul></li>
<li><a
href="http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%20Fields%20for%20Super-Resolution.html">Markov
Random Fields for Super-Resolution</a>
<ul>
<li>W. T Freeman and C. Liu. Markov Random Fields for Super-resolution
and Texture Synthesis. In A. Blake, P. Kohli, and C. Rother, eds.,
Advances in Markov Random Fields for Vision and Image Processing,
Chapter 10. MIT Press, 2011</li>
</ul></li>
<li><a
href="https://people.mpi-inf.mpg.de/~kkim/supres/supres.htm">Sparse
regression and natural image prior</a>
<ul>
<li>K. I. Kim and Y. Kwon, “Single-image super-resolution using sparse
regression and natural image prior”, IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 32, no. 6, pp. 1127-1133, 2010.</li>
</ul></li>
<li><a
href="http://www.cs.technion.ac.il/~elad/Various/SingleImageSR_TIP14_Box.zip">Single-Image
Super Resolution via a Statistical Model</a>
<ul>
<li>T. Peleg and M. Elad, A Statistical Prediction Model Based on Sparse
Representations for Single Image Super-Resolution, IEEE Transactions on
Image Processing, Vol. 23, No. 6, Pages 2569-2582, June 2014</li>
</ul></li>
<li><a
href="http://www.cs.technion.ac.il/~elad/Various/Single_Image_SR.zip">Sparse
Coding for Super-Resolution</a>
<ul>
<li>R. Zeyde, M. Elad, and M. Protter On Single Image Scale-Up using
Sparse-Representations, Curves &amp; Surfaces, Avignon-France, June
24-30, 2010 (appears also in Lecture-Notes-on-Computer-Science -
LNCS).</li>
</ul></li>
<li><a href="http://www.ifp.illinois.edu/~jyang29/ScSR.htm">Patch-wise
Sparse Recovery</a>
<ul>
<li>Jianchao Yang, John Wright, Thomas Huang, and Yi Ma. Image
super-resolution via sparse representation. IEEE Transactions on Image
Processing (TIP), vol. 19, issue 11, 2010.</li>
</ul></li>
<li><a href="http://www.jdl.ac.cn/user/hchang/doc/code.rar">Neighbor
embedding</a>
<ul>
<li>H. Chang, D.Y. Yeung, Y. Xiong. Super-resolution through neighbor
embedding. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), vol.1, pp.275-282,
Washington, DC, USA, 27 June - 2 July 2004.</li>
</ul></li>
<li><a
href="https://sites.google.com/site/yuzhushome/single-image-super-resolution-using-deformable-patches">Deformable
Patches</a>
<ul>
<li>Yu Zhu, Yanning Zhang and Alan Yuille, Single Image Super-resolution
using Deformable Patches, CVPR 2014</li>
</ul></li>
<li><a href="http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html">SRCNN</a>
<ul>
<li>Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Learning a Deep
Convolutional Network for Image Super-Resolution, in ECCV 2014</li>
</ul></li>
<li><a
href="http://www.vision.ee.ethz.ch/~timofter/ACCV2014_ID820_SUPPLEMENTARY/index.html">A+:
Adjusted Anchored Neighborhood Regression</a>
<ul>
<li>R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted Anchored
Neighborhood Regression for Fast Super-Resolution, ACCV 2014</li>
</ul></li>
<li><a
href="https://sites.google.com/site/jbhuang0604/publications/struct_sr">Transformed
Self-Exemplars</a>
<ul>
<li>Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja, Single Image
Super-Resolution using Transformed Self-Exemplars, IEEE Conference on
Computer Vision and Pattern Recognition, 2015</li>
</ul></li>
</ul>
<h6 id="image-deblurring">Image Deblurring</h6>
<p>Non-blind deconvolution * <a
href="http://homes.cs.washington.edu/~shanqi/work/spvdeconv/">Spatially
variant non-blind deconvolution</a> * <a
href="http://cg.postech.ac.kr/research/deconv_outliers/">Handling
Outliers in Non-blind Image Deconvolution</a> * <a
href="http://cs.nyu.edu/~dilip/research/fast-deconvolution/">Hyper-Laplacian
Priors</a> * <a
href="http://people.csail.mit.edu/danielzoran/epllcode.zip">From
Learning Models of Natural Image Patches to Whole Image Restoration</a>
* <a href="http://lxu.me/projects/dcnn/">Deep Convolutional Neural
Network for Image Deconvolution</a> * <a
href="http://webdav.is.mpg.de/pixel/neural_deconvolution/">Neural
Deconvolution</a></p>
<p>Blind deconvolution * <a
href="http://www.cs.nyu.edu/~fergus/research/deblur.html">Removing
Camera Shake From A Single Photograph</a> * <a
href="http://www.cse.cuhk.edu.hk/leojia/projects/motion_deblurring/">High-quality
motion deblurring from a single image</a> * <a
href="http://www.cse.cuhk.edu.hk/leojia/projects/robust_deblur/">Two-Phase
Kernel Estimation for Robust Motion Deblurring</a> * <a
href="http://people.csail.mit.edu/taegsang/Documents/RadonDeblurringCode.zip">Blur
kernel estimation using the radon transform</a> * <a
href="http://cg.postech.ac.kr/research/fast_motion_deblurring/">Fast
motion deblurring</a> * <a
href="http://cs.nyu.edu//~dilip/research/blind-deconvolution/">Blind
Deconvolution Using a Normalized Sparsity Measure</a> * <a
href="http://www.cs.huji.ac.il/~raananf/projects/deblur/">Blur-kernel
estimation from spectral irregularities</a> * <a
href="http://www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR2011Code.zip">Efficient
marginal likelihood optimization in blind deconvolution</a> * <a
href="http://www.cse.cuhk.edu.hk/leojia/projects/l0deblur/">Unnatural L0
Sparse Representation for Natural Image Deblurring</a> * <a
href="http://cs.brown.edu/~lbsun/deblur2013/deblur2013iccp.html">Edge-based
Blur Kernel Estimation Using Patch Priors</a> * <a
href="http://www.wisdom.weizmann.ac.il/~vision/BlindDeblur.html">Blind
Deblurring Using Internal Patch Recurrence</a></p>
<p>Non-uniform Deblurring * <a
href="http://www.di.ens.fr/willow/research/deblurring/">Non-uniform
Deblurring for Shaken Images</a> * <a
href="http://grail.cs.washington.edu/projects/mdf_deblurring/">Single
Image Deblurring Using Motion Density Functions</a> * <a
href="http://research.microsoft.com/en-us/um/redmond/groups/ivm/imudeblurring/">Image
Deblurring using Inertial Measurement Sensors</a> * <a
href="http://webdav.is.mpg.de/pixel/fast_removal_of_camera_shake/">Fast
Removal of Non-uniform Camera Shake</a></p>
<h6 id="image-completion">Image Completion</h6>
<ul>
<li><a href="http://registry.gimp.org/node/27986">GIMP
Resynthesizer</a></li>
<li><a href="http://lafarren.com/image-completer/">Priority BP</a></li>
<li><a
href="http://www.ece.ucsb.edu/~psen/melding">ImageMelding</a></li>
<li><a
href="https://sites.google.com/site/jbhuang0604/publications/struct_completion">PlanarStructureCompletion</a></li>
</ul>
<h6 id="image-retargeting">Image Retargeting</h6>
<ul>
<li><a
href="http://people.csail.mit.edu/mrub/retargetme/">RetargetMe</a></li>
</ul>
<h6 id="alpha-matting">Alpha Matting</h6>
<ul>
<li><a href="http://www.alphamatting.com/">Alpha Matting
Evaluation</a></li>
<li><a
href="http://people.csail.mit.edu/alevin/matting.tar.gz">Closed-form
image matting</a></li>
<li><a href="http://www.vision.huji.ac.il/SpectralMatting/">Spectral
Matting</a></li>
<li><a
href="http://www.mathworks.com/matlabcentral/fileexchange/31412-learning-based-digital-matting">Learning-based
Matting</a></li>
<li><a
href="http://www.alphamatting.com/ImprovingMattingComprehensiveSamplingSets_CVPR2013.zip">Improving
Image Matting using Comprehensive Sampling Sets</a></li>
</ul>
<h6 id="image-pyramid">Image Pyramid</h6>
<ul>
<li><a href="http://www.cns.nyu.edu/~eero/steerpyr/">The Steerable
Pyramid</a></li>
<li><a href="http://www.curvelet.org/">CurveLab</a></li>
</ul>
<h6 id="edge-preserving-image-processing">Edge-preserving image
processing</h6>
<ul>
<li><a href="http://people.csail.mit.edu/sparis/bf/">Fast Bilateral
Filter</a></li>
<li><a
href="http://www.cs.cityu.edu.hk/~qiyang/publications/code/qx.cvpr09.ctbf.zip">O(1)
Bilateral Filter</a></li>
<li><a
href="http://www.cs.cityu.edu.hk/~qiyang/publications/eccv-12/">Recursive
Bilateral Filtering</a></li>
<li><a
href="http://www.cse.cuhk.edu.hk/leojia/projects/rollguidance/">Rolling
Guidance Filter</a></li>
<li><a
href="http://www.cse.cuhk.edu.hk/leojia/projects/texturesep/index.html">Relative
Total Variation</a></li>
<li><a
href="http://www.cse.cuhk.edu.hk/leojia/projects/L0smoothing/index.html">L0
Gradient Optimization</a></li>
<li><a href="http://www.inf.ufrgs.br/~eslgastal/DomainTransform/">Domain
Transform</a></li>
<li><a href="http://inf.ufrgs.br/~eslgastal/AdaptiveManifolds/">Adaptive
Manifold</a></li>
<li><a
href="http://research.microsoft.com/en-us/um/people/kahe/eccv10/">Guided
image filtering</a></li>
</ul>
<h4 id="intrinsic-images">Intrinsic Images</h4>
<ul>
<li><a
href="http://people.tuebingen.mpg.de/mkiefel/projects/intrinsic/">Recovering
Intrinsic Images with a global Sparsity Prior on Reflectance</a></li>
<li><a
href="http://giga.cps.unizar.es/~elenag/projects/EGSR2012_intrinsic/">Intrinsic
Images by Clustering</a></li>
</ul>
<h4 id="contour-detection-and-image-segmentation">Contour Detection and
Image Segmentation</h4>
<ul>
<li><a href="http://coewww.rutgers.edu/riul/research/code/EDISON/">Mean
Shift Segmentation</a></li>
<li><a href="http://cs.brown.edu/~pff/segment/">Graph-based
Segmentation</a></li>
<li><a href="http://www.cis.upenn.edu/~jshi/software/">Normalized
Cut</a></li>
<li><a href="http://grabcut.weebly.com/background--algorithm.html">Grab
Cut</a></li>
<li><a
href="http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html">Contour
Detection and Image Segmentation</a></li>
<li><a
href="http://research.microsoft.com/en-us/downloads/389109f6-b4e8-404c-84bf-239f7cbf4e3d/">Structured
Edge Detection</a></li>
<li><a href="http://web.mit.edu/phillipi/pmi-boundaries/">Pointwise
Mutual Information</a></li>
<li><a href="http://ivrl.epfl.ch/research/superpixels">SLIC
Super-pixel</a></li>
<li><a
href="http://www.vlfeat.org/overview/quickshift.html">QuickShift</a></li>
<li><a
href="http://www.cs.toronto.edu/~babalex/research.html">TurboPixels</a></li>
<li><a href="http://mingyuliu.net/">Entropy Rate Superpixel</a></li>
<li><a
href="http://www.vsi.cs.uni-frankfurt.de/research/current-projects/research/superpixel-segmentation/">Contour
Relaxed Superpixels</a></li>
<li><a href="http://www.mvdblive.org/seeds/">SEEDS</a></li>
<li><a href="https://github.com/davidstutz/seeds-revised">SEEDS
Revised</a></li>
<li><a
href="http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/mcg/">Multiscale
Combinatorial Grouping</a></li>
<li><a href="https://github.com/pdollar/edges">Fast Edge Detection Using
Structured Forests</a></li>
</ul>
<h4 id="interactive-image-segmentation">Interactive Image
Segmentation</h4>
<ul>
<li><a href="http://cns.bu.edu/~lgrady/software.html">Random
Walker</a></li>
<li><a href="http://www.tc.umn.edu/~baixx015/">Geodesic
Segmentation</a></li>
<li><a
href="http://research.microsoft.com/apps/pubs/default.aspx?id=69040">Lazy
Snapping</a></li>
<li><a href="http://powerwatershed.sourceforge.net/">Power
Watershed</a></li>
<li><a
href="http://www.adobe.com/technology/people/san-jose/brian-price.html">Geodesic
Graph Cut</a></li>
<li><a href="http://www.cs.cmu.edu/~olivierd/">Segmentation by
Transduction</a></li>
</ul>
<h4 id="video-segmentation">Video Segmentation</h4>
<ul>
<li><a
href="http://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/image-and-video-segmentation/video-segmentation-with-superpixels/">Video
Segmentation with Superpixels</a></li>
<li><a
href="http://www.cc.gatech.edu/cpl/projects/videosegmentation/">Efficient
hierarchical graph-based video segmentation</a></li>
<li><a
href="http://lmb.informatik.uni-freiburg.de/Publications/2011/OB11/">Object
segmentation in video</a></li>
<li><a
href="http://www.cse.buffalo.edu/~jcorso/r/supervoxels/">Streaming
hierarchical video segmentation</a></li>
</ul>
<h4 id="camera-calibration">Camera calibration</h4>
<ul>
<li><a href="http://www.vision.caltech.edu/bouguetj/calib_doc/">Camera
Calibration Toolbox for Matlab</a></li>
<li><a
href="http://docs.opencv.org/trunk/doc/tutorials/calib3d/camera_calibration/camera_calibration.html#">Camera
calibration With OpenCV</a></li>
<li><a href="https://sites.google.com/site/prclibo/toolbox">Multiple
Camera Calibration Toolbox</a></li>
</ul>
<h4 id="simultaneous-localization-and-mapping">Simultaneous localization
and mapping</h4>
<h6 id="slam-community">SLAM community:</h6>
<ul>
<li><a href="https://www.openslam.org/">openSLAM</a></li>
<li><a
href="http://www.cvlibs.net/datasets/kitti/eval_odometry.php">Kitti
Odometry: benchmark for outdoor visual odometry (codes may be
available)</a></li>
</ul>
<h6 id="trackingodometry">Tracking/Odometry:</h6>
<ul>
<li><a href="http://www.cvlibs.net/software/libviso/">LIBVISO2: C++
Library for Visual Odometry 2</a></li>
<li><a href="http://www.robots.ox.ac.uk/~gk/PTAM/">PTAM: Parallel
tracking and mapping</a></li>
<li><a href="https://github.com/GerhardR/kfusion">KFusion:
Implementation of KinectFusion</a></li>
<li><a href="https://github.com/Nerei/kinfu_remake">kinfu_remake:
Lightweight, reworked and optimized version of Kinfu.</a></li>
<li><a
href="http://las-vegas.uni-osnabrueck.de/related-projects/lvr-kinfu/">LVR-KinFu:
kinfu_remake based Large Scale KinectFusion with online
reconstruction</a></li>
<li><a href="http://www.robots.ox.ac.uk/~victor/infinitam/">InfiniTAM:
Implementation of multi-platform large-scale depth tracking and
fusion</a></li>
<li><a href="https://github.com/nachtmar/VoxelHashing">VoxelHashing:
Large-scale KinectFusion</a></li>
<li><a
href="http://apt.cs.manchester.ac.uk/projects/PAMELA/tools/SLAMBench/">SLAMBench:
Multiple-implementation of KinectFusion</a></li>
<li><a href="https://github.com/uzh-rpg/rpg_svo">SVO: Semi-direct visual
odometry</a></li>
<li><a href="https://github.com/tum-vision/dvo_slam">DVO: dense visual
odometry</a></li>
<li><a href="https://code.google.com/p/fovis/">FOVIS: RGB-D visual
odometry</a></li>
</ul>
<h6 id="graph-optimization">Graph Optimization:</h6>
<ul>
<li><a
href="https://collab.cc.gatech.edu/borg/gtsam?destination=node%2F299">GTSAM:
General smoothing and mapping library for Robotics and SFM</a> Georgia
Institute of Technology</li>
<li><a href="https://github.com/RainerKuemmerle/g2o">G2O: General
framework for graph optomization</a></li>
</ul>
<h6 id="loop-closure">Loop Closure:</h6>
<ul>
<li><a href="http://www.robots.ox.ac.uk/~mjc/Software.htm">FabMap:
appearance-based loop closure system</a> - also available in <a
href="http://docs.opencv.org/2.4/modules/contrib/doc/openfabmap.html">OpenCV2.4.11</a></li>
<li><a href="http://webdiis.unizar.es/~dorian/index.php?p=32">DBoW2:
binary bag-of-words loop detection system</a></li>
</ul>
<h6 id="localization-mapping">Localization &amp; Mapping:</h6>
<ul>
<li><a href="https://code.google.com/p/ratslam/">RatSLAM</a></li>
<li><a href="https://github.com/tum-vision/lsd_slam">LSD-SLAM</a></li>
<li><a href="https://github.com/raulmur/ORB_SLAM">ORB-SLAM</a></li>
</ul>
<h4 id="single-view-spatial-understanding">Single-view Spatial
Understanding</h4>
<ul>
<li><a
href="http://web.engr.illinois.edu/~dhoiem/projects/software.html">Geometric
Context</a> - Derek Hoiem (CMU)</li>
<li><a
href="http://web.engr.illinois.edu/~dhoiem/software/counter.php?Down=varsha_spatialLayout.zip">Recovering
Spatial Layout</a> - Varsha Hedau (UIUC)</li>
<li><a href="http://www.cs.cmu.edu/~./dclee/code/index.html">Geometric
Reasoning</a> - David C. Lee (CMU)</li>
<li><a href="https://github.com/arron2003/rgbd2full3d">RGBD2Full3D</a> -
Ruiqi Guo (UIUC)</li>
</ul>
<h4 id="object-detection">Object Detection</h4>
<ul>
<li><a href="http://pascal.inrialpes.fr/soft/olt/">INRIA Object
Detection and Localization Toolkit</a></li>
<li><a href="http://www.cs.berkeley.edu/~rbg/latent/">Discriminatively
trained deformable part models</a></li>
<li><a href="https://github.com/rbgirshick/voc-dpm">VOC-DPM</a></li>
<li><a
href="http://www.ics.uci.edu/~dramanan/software/sparse/">Histograms of
Sparse Codes for Object Detection</a></li>
<li><a href="https://github.com/rbgirshick/rcnn">R-CNN: Regions with
Convolutional Neural Network Features</a></li>
<li><a href="https://github.com/ShaoqingRen/SPP_net">SPP-Net</a></li>
<li><a href="http://mmcheng.net/bing/comment-page-9/">BING: Objectness
Estimation</a></li>
<li><a href="https://github.com/pdollar/edges">Edge Boxes</a></li>
<li><a href="https://github.com/Russell91/ReInspect">ReInspect</a></li>
</ul>
<h4 id="nearest-neighbor-search">Nearest Neighbor Search</h4>
<h6 id="general-purpose-nearest-neighbor-search">General purpose nearest
neighbor search</h6>
<ul>
<li><a href="http://www.cs.umd.edu/~mount/ANN/">ANN: A Library for
Approximate Nearest Neighbor Searching</a></li>
<li><a href="http://www.cs.ubc.ca/research/flann/">FLANN - Fast Library
for Approximate Nearest Neighbors</a></li>
<li><a href="http://vincentfpgarcia.github.io/kNN-CUDA/">Fast k nearest
neighbor search using GPU</a></li>
</ul>
<h6 id="nearest-neighbor-field-estimation">Nearest Neighbor Field
Estimation</h6>
<ul>
<li><a
href="http://gfx.cs.princeton.edu/gfx/pubs/Barnes_2009_PAR/index.php">PatchMatch</a></li>
<li><a
href="http://gfx.cs.princeton.edu/pubs/Barnes_2010_TGP/index.php">Generalized
PatchMatch</a></li>
<li><a href="http://www.eng.tau.ac.il/~simonk/CSH/">Coherency Sensitive
Hashing</a></li>
<li><a href="https://github.com/fbesse/pmbp">PMBP: PatchMatch Belief
Propagation</a></li>
<li><a
href="http://www.eng.tau.ac.il/~avidan/papers/TreeCANN_code_20121022.rar">TreeCANN</a></li>
</ul>
<h4 id="visual-tracking">Visual Tracking</h4>
<ul>
<li><a
href="https://sites.google.com/site/trackerbenchmark/benchmarks/v10">Visual
Tracker Benchmark</a></li>
<li><a href="http://www.votchallenge.net/">Visual Tracking
Challenge</a></li>
<li><a href="http://www.ces.clemson.edu/~stb/klt/">Kanade-Lucas-Tomasi
Feature Tracker</a></li>
<li><a href="http://www.eng.tau.ac.il/~oron/ELK/ELK.html">Extended
Lucas-Kanade Tracking</a></li>
<li><a
href="http://www.vision.ee.ethz.ch/boostingTrackers/">Online-boosting
Tracking</a></li>
<li><a
href="http://www4.comp.polyu.edu.hk/~cslzhang/STC/STC.htm">Spatio-Temporal
Context Learning</a></li>
<li><a
href="http://www.shengfenghe.com/visual-tracking-via-locality-sensitive-histograms.html">Locality
Sensitive Histograms</a></li>
<li><a
href="http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W03/papers/Xiao_An_Enhanced_Adaptive_2013_ICCV_paper.pdf">Enhanced
adaptive coupled-layer LGTracker++</a></li>
<li><a
href="http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html">TLD:
Tracking - Learning - Detection</a></li>
<li><a href="http://www.gnebehay.com/cmt/">CMT: Clustering of
Static-Adaptive Correspondences for Deformable Object Tracking</a></li>
<li><a href="http://home.isr.uc.pt/~henriques/circulant/">Kernelized
Correlation Filters</a></li>
<li><a
href="http://www.cvl.isy.liu.se/en/research/objrec/visualtracking/scalvistrack/index.html">Accurate
Scale Estimation for Robust Visual Tracking</a></li>
<li><a href="http://cs-people.bu.edu/jmzhang/MEEM/MEEM.html">Multiple
Experts using Entropy Minimization</a></li>
<li><a
href="http://www.dabi.temple.edu/~hbling/code/TGPR.htm">TGPR</a></li>
<li><a
href="https://sites.google.com/site/jbhuang0604/publications/cf2">CF2:
Hierarchical Convolutional Features for Visual Tracking</a></li>
<li><a href="http://webdocs.cs.ualberta.ca/~vis/mtf/index.html">Modular
Tracking Framework</a></li>
</ul>
<h4 id="saliency-detection">Saliency Detection</h4>
<h4 id="attributes">Attributes</h4>
<h4 id="action-reconition">Action Reconition</h4>
<h4 id="egocentric-cameras">Egocentric cameras</h4>
<h4 id="human-in-the-loop-systems">Human-in-the-loop systems</h4>
<h4 id="image-captioning">Image Captioning</h4>
<ul>
<li><a href="https://github.com/karpathy/neuraltalk">NeuralTalk</a>
-</li>
</ul>
<h4 id="optimization-2">Optimization</h4>
<ul>
<li><a href="http://ceres-solver.org/">Ceres Solver</a> - Nonlinear
least-square problem and unconstrained optimization solver</li>
<li><a href="http://ab-initio.mit.edu/wiki/index.php/NLopt">NLopt</a>-
Nonlinear least-square problem and unconstrained optimization
solver</li>
<li><a href="http://hci.iwr.uni-heidelberg.de/opengm2/">OpenGM</a> -
Factor graph based discrete optimization and inference solver</li>
<li><a href="https://collab.cc.gatech.edu/borg/gtsam/">GTSAM</a> -
Factor graph based lease-square optimization solver</li>
</ul>
<h4 id="deep-learning-1">Deep Learning</h4>
<ul>
<li><a href="https://github.com/kjw0612/awesome-deep-vision">Awesome
Deep Vision</a></li>
</ul>
<h4 id="machine-learning-2">Machine Learning</h4>
<ul>
<li><a
href="https://github.com/josephmisiti/awesome-machine-learning">Awesome
Machine Learning</a></li>
<li><a href="http://idiap.github.io/bob/">Bob: a free signal processing
and machine learning toolbox for researchers</a></li>
<li><a href="https://www.csie.ntu.edu.tw/~cjlin/libsvm/">LIBSVM A
Library for Support Vector Machines</a></li>
</ul>
<h2 id="datasets">Datasets</h2>
<h4 id="external-dataset-link-collection">External Dataset Link
Collection</h4>
<ul>
<li><a href="http://www.cvpapers.com/datasets.html">CV Datasets on the
web</a> - CVPapers</li>
<li><a href="http://rodrigob.github.io/are_we_there_yet/build/">Are we
there yet?</a> - Which paper provides the best results on standard
dataset X?</li>
<li><a href="http://www.cvpapers.com/datasets.html">Computer Vision
Dataset on the web</a></li>
<li><a href="http://riemenschneider.hayko.at/vision/dataset/">Yet
Another Computer Vision Index To Datasets</a></li>
<li><a
href="http://www.computervisiononline.com/datasets">ComputerVisionOnline
Datasets</a></li>
<li><a
href="http://homepages.inf.ed.ac.uk/cgi/rbf/CVONLINE/entries.pl?TAG363">CVOnline
Dataset</a></li>
<li><a href="http://clickdamage.com/sourcecode/cv_datasets.php">CV
datasets</a></li>
<li><a
href="http://datasets.visionbib.com/info-index.html">visionbib</a></li>
<li><a href="http://www.visualdata.io/">VisualData</a></li>
</ul>
<h4 id="low-level-vision-1">Low-level Vision</h4>
<h6 id="stereo-vision-1">Stereo Vision</h6>
<ul>
<li><a href="http://vision.middlebury.edu/stereo/">Middlebury Stereo
Vision</a></li>
<li><a
href="http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stero">The
KITTI Vision Benchmark Suite</a></li>
<li><a href="http://www.cvlibs.net/software/libelas/">LIBELAS: Library
for Efficient Large-scale Stereo Matching</a></li>
<li><a
href="http://www.6d-vision.com/ground-truth-stixel-dataset">Ground Truth
Stixel Dataset</a></li>
</ul>
<h6 id="optical-flow-1">Optical Flow</h6>
<ul>
<li><a href="http://vision.middlebury.edu/flow/">Middlebury Optical Flow
Evaluation</a></li>
<li><a href="http://sintel.is.tue.mpg.de/">MPI-Sintel Optical Flow
Dataset and Evaluation</a></li>
<li><a
href="http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow">The
KITTI Vision Benchmark Suite</a></li>
<li><a
href="http://hci.iwr.uni-heidelberg.de/Benchmarks/document/Challenging_Data_for_Stereo_and_Optical_Flow/">HCI
Challenge</a></li>
</ul>
<h6 id="video-object-segmentation">Video Object Segmentation</h6>
<ul>
<li><a href="http://davischallenge.org/">DAVIS: Densely Annotated VIdeo
Segmentation</a></li>
<li><a
href="http://web.engr.oregonstate.edu/~lif/SegTrack2/dataset.html">SegTrack
v2</a></li>
</ul>
<h6 id="change-detection">Change Detection</h6>
<ul>
<li><a href="http://www.gti.ssr.upm.es/data/LASIESTA">Labeled and
Annotated Sequences for Integral Evaluation of SegmenTation
Algorithms</a></li>
<li><a
href="http://www.changedetection.net/">ChangeDetection.net</a></li>
</ul>
<h6 id="image-super-resolutions">Image Super-resolutions</h6>
<ul>
<li><a
href="https://eng.ucmerced.edu/people/cyang35/ECCV14/ECCV14.html">Single-Image
Super-Resolution: A Benchmark</a></li>
</ul>
<h4 id="intrinsic-images-1">Intrinsic Images</h4>
<ul>
<li><a
href="http://www.mit.edu/~kimo/publications/intrinsic/">Ground-truth
dataset and baseline evaluations for intrinsic image algorithms</a></li>
<li><a href="http://opensurfaces.cs.cornell.edu/intrinsic/">Intrinsic
Images in the Wild</a></li>
<li><a
href="http://www.cic.uab.cat/Datasets/synthetic_intrinsic_image_dataset/">Intrinsic
Image Evaluation on Synthetic Complex Scenes</a></li>
</ul>
<h4 id="material-recognition">Material Recognition</h4>
<ul>
<li><a href="http://opensurfaces.cs.cornell.edu/">OpenSurface</a></li>
<li><a href="http://people.csail.mit.edu/celiu/CVPR2010/">Flickr
Material Database</a></li>
<li><a
href="http://opensurfaces.cs.cornell.edu/publications/minc/">Materials
in Context Dataset</a></li>
</ul>
<h4 id="multi-view-reconsturction">Multi-view Reconsturction</h4>
<ul>
<li><a href="http://vision.middlebury.edu/mview/">Multi-View Stereo
Reconstruction</a></li>
</ul>
<h4 id="saliency-detection-1">Saliency Detection</h4>
<h4 id="visual-tracking-1">Visual Tracking</h4>
<ul>
<li><a
href="https://sites.google.com/site/trackerbenchmark/benchmarks/v10">Visual
Tracker Benchmark</a></li>
<li><a href="https://sites.google.com/site/benchmarkpami/">Visual
Tracker Benchmark v1.1</a></li>
<li><a href="http://www.votchallenge.net/">VOT Challenge</a></li>
<li><a href="http://tracking.cs.princeton.edu/">Princeton Tracking
Benchmark</a></li>
<li><a href="http://webdocs.cs.ualberta.ca/~vis/trackDB/">Tracking
Manipulation Tasks (TMT)</a></li>
</ul>
<h4 id="visual-surveillance">Visual Surveillance</h4>
<ul>
<li><a href="http://www.viratdata.org/">VIRAT</a></li>
<li><a href="https://cam2.ecn.purdue.edu/">CAM2</a></li>
</ul>
<h4 id="saliency-detection-2">Saliency Detection</h4>
<h4 id="change-detection-1">Change detection</h4>
<ul>
<li><a href="http://changedetection.net/">ChangeDetection.net</a></li>
</ul>
<h4 id="visual-recognition">Visual Recognition</h4>
<h6 id="image-classification">Image Classification</h6>
<ul>
<li><a href="http://pascallin.ecs.soton.ac.uk/challenges/VOC/">The
PASCAL Visual Object Classes</a></li>
<li><a href="http://www.image-net.org/challenges/LSVRC/2014/">ImageNet
Large Scale Visual Recognition Challenge</a></li>
</ul>
<h6 id="self-supervised-learning">Self-supervised Learning</h6>
<ul>
<li><a href="https://github.com/yukimasano/PASS">PASS: An An ImageNet
replacement for self-supervised pretraining without humans</a></li>
</ul>
<h6 id="scene-recognition">Scene Recognition</h6>
<ul>
<li><a href="http://groups.csail.mit.edu/vision/SUN/">SUN
Database</a></li>
<li><a href="http://places.csail.mit.edu/">Place Dataset</a></li>
</ul>
<h6 id="object-detection-1">Object Detection</h6>
<ul>
<li><a href="http://pascallin.ecs.soton.ac.uk/challenges/VOC/">The
PASCAL Visual Object Classes</a></li>
<li><a href="http://www.image-net.org/challenges/LSVRC/2014/">ImageNet
Object Detection Challenge</a></li>
<li><a href="http://mscoco.org/">Microsoft COCO</a></li>
</ul>
<h6 id="semantic-labeling">Semantic labeling</h6>
<ul>
<li><a
href="http://dags.stanford.edu/projects/scenedataset.html">Stanford
background dataset</a></li>
<li><a
href="http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/">CamVid</a></li>
<li><a href="http://www.cs.unc.edu/~jtighe/Papers/ECCV10/">Barcelona
Dataset</a></li>
<li><a
href="http://www.cs.unc.edu/~jtighe/Papers/ECCV10/siftflow/SiftFlowDataset.zip">SIFT
Flow Dataset</a></li>
</ul>
<h6 id="multi-view-object-detection">Multi-view Object Detection</h6>
<ul>
<li><a href="http://cvgl.stanford.edu/resources.html">3D Object
Dataset</a></li>
<li><a href="http://cvlab.epfl.ch/data/pose">EPFL Car Dataset</a></li>
<li><a href="http://www.cvlibs.net/datasets/kitti/eval_object.php">KTTI
Dection Dataset</a></li>
<li><a href="http://sun3d.cs.princeton.edu/">SUN 3D Dataset</a></li>
<li><a href="http://cvgl.stanford.edu/projects/pascal3d.html">PASCAL
3D+</a></li>
<li><a href="http://nyc3d.cs.cornell.edu/">NYU Car Dataset</a></li>
</ul>
<h6 id="fine-grained-visual-recognition">Fine-grained Visual
Recognition</h6>
<ul>
<li><a href="https://sites.google.com/site/fgcomp2013/">Fine-grained
Classification Challenge</a></li>
<li><a
href="http://www.vision.caltech.edu/visipedia/CUB-200.html">Caltech-UCSD
Birds 200</a></li>
</ul>
<h6 id="pedestrian-detection">Pedestrian Detection</h6>
<ul>
<li><a
href="http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/">Caltech
Pedestrian Detection Benchmark</a></li>
<li><a href="https://data.vision.ee.ethz.ch/cvl/aess/dataset/">ETHZ
Pedestrian Detection</a></li>
</ul>
<h4 id="action-recognition">Action Recognition</h4>
<h6 id="image-based">Image-based</h6>
<h6 id="video-based">Video-based</h6>
<ul>
<li><a
href="http://www.di.ens.fr/~laptev/actions/hollywood2/">HOLLYWOOD2
Dataset</a></li>
<li><a href="http://crcv.ucf.edu/data/UCF_Sports_Action.php">UCF Sports
Action Data Set</a></li>
</ul>
<h6 id="image-deblurring-1">Image Deblurring</h6>
<ul>
<li><a
href="http://cs.brown.edu/~lbsun/deblur2013/deblur2013iccp.html">Sun
dataset</a></li>
<li><a
href="http://www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR09Data.rar">Levin
dataset</a></li>
</ul>
<h4 id="image-captioning-1">Image Captioning</h4>
<ul>
<li><a
href="http://nlp.cs.illinois.edu/HockenmaierGroup/Framing_Image_Description/KCCA.html">Flickr
8K</a></li>
<li><a href="http://shannon.cs.illinois.edu/DenotationGraph/">Flickr
30K</a></li>
<li><a href="http://mscoco.org/">Microsoft COCO</a></li>
</ul>
<h4 id="scene-understanding">Scene Understanding</h4>
<p># <a href="http://rgbd.cs.princeton.edu/">SUN RGB-D</a> - A RGB-D
Scene Understanding Benchmark Suite # <a
href="http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html">NYU depth
v2</a> - Indoor Segmentation and Support Inference from RGBD Images</p>
<h4 id="aerial-images">Aerial images</h4>
<p># <a href="https://zenodo.org/record/1154821#.WmN9kHWnHIp">Aerial
Image Segmentation</a> - Learning Aerial Image Segmentation From Online
Maps</p>
<h2 id="resources-for-students">Resources for students</h2>
<h4 id="resource-link-collection">Resource link collection</h4>
<ul>
<li><a href="http://people.csail.mit.edu/fredo/student.html">Resources
for students</a> - Frédo Durand (MIT)</li>
<li><a href="http://www.dgp.toronto.edu/~hertzman/advice/">Advice for
Graduate Students</a> - Aaron Hertzmann (Adobe Research)</li>
<li><a
href="http://www.dgp.toronto.edu/~hertzman/courses/gradSkills/2010/">Graduate
Skills Seminars</a> - Yashar Ganjali, Aaron Hertzmann (University of
Toronto)</li>
<li><a
href="http://research.microsoft.com/en-us/um/people/simonpj/papers/giving-a-talk/giving-a-talk.htm">Research
Skills</a> - Simon Peyton Jones (Microsoft Research)</li>
<li><a href="http://web.engr.illinois.edu/~taoxie/advice.htm">Resource
collection</a> - Tao Xie (UIUC) and Yuan Xie (UCSB)</li>
</ul>
<h4 id="writing">Writing</h4>
<ul>
<li><a
href="http://people.csail.mit.edu/fredo/FredoGoodWriting.pdf">Write Good
Papers</a> - Frédo Durand (MIT)</li>
<li><a href="http://people.csail.mit.edu/fredo/PUBLI/writing.pdf">Notes
on writing</a> - Frédo Durand (MIT)</li>
<li><a href="http://people.csail.mit.edu/fredo/FredoBadWriting.pdf">How
to Write a Bad Article</a> - Frédo Durand (MIT)</li>
<li><a
href="http://billf.mit.edu/sites/default/files/documents/cvprPapers.pdf">How
to write a good CVPR submission</a> - William T. Freeman (MIT)</li>
<li><a href="https://www.youtube.com/watch?v=g3dkRsTqdDA">How to write a
great research paper</a> - Simon Peyton Jones (Microsoft Research)</li>
<li><a
href="http://www.slideshare.net/jdily/how-to-write-a-siggraph-paper">How
to write a SIGGRAPH paper</a> - SIGGRAPH ASIA 2011 Course</li>
<li><a
href="http://www.dgp.toronto.edu/~hertzman/advice/writing-technical-papers.pdf">Writing
Research Papers</a> - Aaron Hertzmann (Adobe Research)</li>
<li><a
href="http://www.computer.org/csdl/mags/cg/1987/12/mcg1987120062.pdf">How
to Write a Paper for SIGGRAPH</a> - Jim Blinn</li>
<li><a href="http://www.siggraph.org/sites/default/files/kajiya.pdf">How
to Get Your SIGGRAPH Paper Rejected</a> - Jim Kajiya (Microsoft
Research)</li>
<li><a href="www.liyiwei.org/courses/how-siga11/liyiwei.pptx">How to
write a SIGGRAPH paper</a> - Li-Yi Wei (The University of Hong
Kong)</li>
<li><a
href="http://www-hagen.informatik.uni-kl.de/~bertram/talks/getpublished.pdf">How
to Write a Great Paper</a> - Martin Martin Hering HeringBertram
(Hochschule Bremen University of Applied Sciences)</li>
<li><a
href="http://www-ui.is.s.u-tokyo.ac.jp/~takeo/writings/siggraph.html">How
to have a paper get into SIGGRAPH?</a> - Takeo Igarashi (The University
of Tokyo)</li>
<li><a href="http://www.cs.cmu.edu/~pausch/Randy/Randy/raibert.htm">Good
Writing</a> - Marc H. Raibert (Boston Dynamics, Inc.)</li>
<li><a
href="http://web.engr.illinois.edu/~dhoiem/presentations/How%20to%20Write%20a%20Computer%20Vison%20Paper.ppt">How
to Write a Computer Vision Paper</a> - Derek Hoiem (UIUC)</li>
<li><a href="http://www.cs.dartmouth.edu/~wjarosz/writing.html">Common
mistakes in technical writing</a> - Wojciech Jarosz (Dartmouth
College)</li>
</ul>
<h4 id="presentation">Presentation</h4>
<ul>
<li><a href="http://people.csail.mit.edu/fredo/TalkAdvice.pdf">Giving a
Research Talk</a> - Frédo Durand (MIT)</li>
<li><a
href="http://www.dgp.toronto.edu/~hertzman/courses/gradSkills/2010/GivingGoodTalks.pdf">How
to give a good talk</a> - David Fleet (University of Toronto) and Aaron
Hertzmann (Adobe Research)</li>
<li><a href="http://colinpurrington.com/tips/poster-design">Designing
conference posters</a> - Colin Purrington</li>
</ul>
<h4 id="research">Research</h4>
<ul>
<li><a
href="http://people.csail.mit.edu/billf/www/papers/doresearch.pdf">How
to do research</a> - William T. Freeman (MIT)</li>
<li><a
href="http://www.cs.virginia.edu/~robins/YouAndYourResearch.html">You
and Your Research</a> - Richard Hamming</li>
<li><a href="http://yima.csl.illinois.edu/psfile/bogus.pdf">Warning
Signs of Bogus Progress in Research in an Age of Rich Computation and
Information</a> - Yi Ma (UIUC)</li>
<li><a
href="http://www.quackwatch.com/01QuackeryRelatedTopics/signs.html">Seven
Warning Signs of Bogus Science</a> - Robert L. Park</li>
<li><a href="https://www.youtube.com/watch?v=v2Qaf8t8I6c">Five
Principles for Choosing Research Problems in Computer Graphics</a> -
Thomas Funkhouser (Cornell University)</li>
<li><a href="http://www.cs.indiana.edu/mit.research.how.to.html">How To
Do Research In the MIT AI Lab</a> - David Chapman (MIT)</li>
<li><a
href="http://www.slideshare.net/antiw/recent-advances-in-computer-vision">Recent
Advances in Computer Vision</a> - Ming-Hsuan Yang (UC Merced)</li>
<li><a
href="http://www.slideshare.net/jbhuang/how-to-come-up-with-new-research-ideas-4005840">How
to Come Up with Research Ideas in Computer Vision?</a> - Jia-Bin Huang
(UIUC)</li>
<li><a
href="http://www.slideshare.net/jbhuang/how-to-read-academic-papers">How
to Read Academic Papers</a> - Jia-Bin Huang (UIUC)</li>
</ul>
<h4 id="time-management">Time Management</h4>
<ul>
<li><a href="https://www.youtube.com/watch?v=oTugjssqOT0">Time
Management</a> - Randy Pausch (CMU)</li>
</ul>
<h2 id="blogs">Blogs</h2>
<ul>
<li><a href="http://www.learnopencv.com/">Learn OpenCV</a> - Satya
Mallick</li>
<li><a href="http://www.computervisionblog.com/">Tombones Computer
Vision Blog</a> - Tomasz Malisiewicz</li>
<li><a href="http://www.visiondummy.com/">Computer vision for
dummies</a> - Vincent Spruyt</li>
<li><a href="http://karpathy.github.io/">Andrej Karpathy blog</a> -
Andrej Karpathy</li>
<li><a href="http://aishack.in/">AI Shack</a> - Utkarsh Sinha</li>
<li><a href="http://computer-vision-talks.com/">Computer Vision
Talks</a> - Eugene Khvedchenya</li>
<li><a
href="https://github.com/jrobchin/Computer-Vision-Basics-with-Python-Keras-and-OpenCV">Computer
Vision Basics with Python Keras and OpenCV</a> - Jason Chin (University
of Western Ontario)</li>
</ul>
<h2 id="links">Links</h2>
<ul>
<li><a href="http://www.cs.ubc.ca/~lowe/vision.html">The Computer Vision
Industry</a> - David Lowe</li>
<li><a
href="http://hci.iwr.uni-heidelberg.de/Links/German_Vision/">German
Computer Vision Research Groups &amp; Companies</a></li>
<li><a
href="https://github.com/ChristosChristofidis/awesome-deep-learning">awesome-deep-learning</a></li>
<li><a
href="https://github.com/josephmisiti/awesome-machine-learning">awesome-machine-learning</a></li>
<li><a
href="http://www.eecs.berkeley.edu/~junyanz/cat/cat_papers.html">Cat
Paper Collection</a></li>
<li><a href="http://www.rsipvision.com/computer-vision-news/">Computer
Vision News</a></li>
<li><h2 id="songs">Songs</h2></li>
<li><a href="http://danielwedge.com/fmatrix/">The Fundamental Matrix
Song</a></li>
<li><a href="http://danielwedge.com/ransac/">The RANSAC Song</a></li>
<li><a href="https://www.youtube.com/watch?v=DQWI1kvmwRg">Machine
Learning A Cappella - Overfitting Thriller</a></li>
</ul>
<h2 id="licenses">Licenses</h2>
<p>License</p>
<p><a href="http://creativecommons.org/publicdomain/zero/1.0/"><img
src="http://i.creativecommons.org/p/zero/1.0/88x31.png"
alt="CC0" /></a></p>
<p>To the extent possible under law, <a
href="www.jiabinhuang.com">Jia-Bin Huang</a> has waived all copyright
and related or neighboring rights to this work.</p>
<p><a
href="https://github.com/jbhuang0604/awesome-computer-vision">computervision.md
Github</a></p>