Awesome Monte Carlo Tree Search Papers. !Awesome (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg) (https://github.com/sindresorhus/awesome) !PRs Welcome (https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)  (http://makeapullrequest.com)!repo size (https://img.shields.io/github/repo-size/benedekrozemberczki/awesome-monte-carlo-tree-search-papers.svg) (https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers/archive/master.zip) ! License (https://img.shields.io/github/license/benedekrozemberczki/awesome-tree-search-papers.svg?color=blue) !benedekrozemberczki (https://img.shields.io/twitter/follow/benrozemberczki?style=social&logo=twitter)  (https://twitter.com/intent/follow?screen_name=benrozemberczki)    ―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― A curated list of Monte Carlo tree search papers with implementations from the following conferences/journals: - Machine learning    ⟡ NeurIPS (https://nips.cc/)    ⟡ ICML (https://icml.cc/) - Computer vision    ⟡ CVPR (http://cvpr2019.thecvf.com/)    ⟡ ICCV (http://iccv2019.thecvf.com/) - Natural language processing    ⟡ ACL (http://www.acl2019.org/EN/index.xhtml) - Data    ⟡ KDD (https://www.kdd.org/) - Artificial intelligence    ⟡ AAAI (https://www.aaai.org/)    ⟡ AISTATS (https://www.aistats.org/)    ⟡ IJCAI (https://www.ijcai.org/)    ⟡ UAI (http://www.auai.org/) - Robotics    ⟡ RAS (https://www.journals.elsevier.com/robotics-and-autonomous-systems) - Games    ⟡ CIG (http://www.ieee-cig.org/) Similar collections about graph classification (https://github.com/benedekrozemberczki/awesome-graph-classification), gradient boosting (https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers), classification/regression trees  (https://github.com/benedekrozemberczki/awesome-decision-tree-papers), fraud detection (https://github.com/benedekrozemberczki/awesome-fraud-detection-papers), and community detection  (https://github.com/benedekrozemberczki/awesome-community-detection) papers with implementations. 2023 - Symbolic Physics Learner: Discovering governing equations via Monte Carlo tree search (ICLR 2023)  - Fangzheng Sun, Yang Liu, Jian-Xun Wang, Hao Sun  - Paper  (https://arxiv.org/abs/2205.13134) 2022 - Finding Backdoors to Integer Programs: A Monte Carlo Tree Search Framework (AAAI 2022)  - Elias B. Khalil, Pashootan Vaezipoor, Bistra Dilkina  - Paper  (https://arxiv.org/abs/2110.08423) - NSGZero: Efficiently Learning Non-exploitable Policy in Large-Scale Network Security Games with Neural Monte Carlo Tree Search (AAAI 2022)  - Wanqi Xue, Bo An, Chai Kiat Yeo  - Paper  (https://arxiv.org/abs/2201.07224) - Solving Disjunctive Temporal Networks with Uncertainty under Restricted Time-Based Controllability Using Tree Search and Graph Neural Networks (AAAI 2022)  - Kevin Osanlou, Jeremy Frank, Andrei Bursuc, Tristan Cazenave, Eric Jacopin, Christophe Guettier, J. Benton  - Paper  (https://ojs.aaai.org/index.php/AAAI/article/view/21224) - Qubit Routing Using Graph Neural Network Aided Monte Carlo Tree Search (AAAI 2022)  - Animesh Sinha, Utkarsh Azad, Harjinder Singh  - Paper  (https://arxiv.org/abs/2104.01992) - Split Moves for Monte-Carlo Tree Search (AAAI 2022)  - Jakub Kowalski, Maksymilian Mika, Wojciech Pawlik, Jakub Sutowicz, Marek Szykula, Mark H. M. Winands  - Paper  (https://arxiv.org/abs/2112.07761) - Procrastinated Tree Search: Black-Box Optimization with Delayed%2C Noisy and Multi-Fidelity Feedback (AAAI 2022)  - Junxiong Wang, Debabrota Basu, Immanuel Trummer  - Paper  (https://arxiv.org/abs/2110.07232) - Enabling Arbitrary Translation Objectives with Adaptive Tree Search (ICLR 2022)  - Wang Ling, Wojciech Stokowiec, Domenic Donato, Chris Dyer, Lei Yu, Laurent Sartran, Austin Matthews  - Paper  (https://en.x-mol.com/paper/article/1496885785571840000) - What's Wrong with Deep Learning in Tree Search for Combinatorial Optimization (ICLR 2022)  - Maximili1an Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, Tobias Friedrich  - Paper  (https://arxiv.org/abs/2201.10494) - Anytime Capacity Expansion in Medical Residency Match by Monte Carlo Tree Search (IJCAI 2022)  - Kenshi Abe, Junpei Komiyama, Atsushi Iwasaki  - Paper  (https://www.ijcai.org/proceedings/2022/1) - Fast and Accurate User Cold-Start Learning Using Monte Carlo Tree Search (RECSYS 2022)  - Dilina Chandika Rajapakse, Douglas Leith  - Paper  (https://www.scss.tcd.ie/Doug.Leith/pubs/recsys22-35.pdf) 2021 - Learning to Stop: Dynamic Simulation Monte-Carlo Tree Search (AAAI 2021)  - Li-Cheng Lan, Ti-Rong Wu, I-Chen Wu, Cho-Jui Hsieh  - Paper  (https://arxiv.org/abs/2012.07910) - Dec-SGTS: Decentralized Sub-Goal Tree Search for Multi-Agent Coordination (AAAI 2021)  - Minglong Li, Zhongxuan Cai, Wenjing Yang, Lixia Wu, Yinghui Xu, Ji Wang  - Paper  (https://ojs.aaai.org/index.php/AAAI/article/view/17345) - Improved POMDP Tree Search Planning with Prioritized Action Branching (AAAI 2021)  - John Mern, Anil Yildiz, Lawrence Bush, Tapan Mukerji, Mykel J. Kochenderfer  - Paper  (https://arxiv.org/abs/2010.03599) - Dynamic Automaton-Guided Reward Shaping for Monte Carlo Tree Search (AAAI 2021)  - Alvaro Velasquez, Brett Bissey, Lior Barak, Andre Beckus, Ismail Alkhouri, Daniel Melcer, George K. Atia  - Paper  (https://ojs.aaai.org/index.php/AAAI/article/view/17427) - Single Player Monte-Carlo Tree Search Based on the Plackett-Luce Model (AAAI 2021)  - Felix Mohr, Viktor Bengs, Eyke Hüllermeier  - Paper  (https://ojs.aaai.org/index.php/AAAI/article/view/17468) - Learning to Pack: A Data-Driven Tree Search Algorithm for Large-Scale 3D Bin Packing Problem (CIKM 2021)  - Qianwen Zhu, Xihan Li, Zihan Zhang, Zhixing Luo, Xialiang Tong, Mingxuan Yuan, Jia Zeng  - Paper  (https://dl.acm.org/doi/abs/10.1145/3459637.3481933) - Practical Massively Parallel Monte-Carlo Tree Search Applied to Molecular Design (ICLR 2021)  - Xiufeng Yang, Tanuj Kr Aasawat, Kazuki Yoshizoe  - Paper  (https://arxiv.org/abs/2006.10504) - Convex Regularization in Monte-Carlo Tree Search (ICML 2021)  - Tuan Dam, Carlo D'Eramo, Jan Peters, Joni Pajarinen  - Paper  (https://arxiv.org/abs/2007.00391) - Combining Tree Search and Action Prediction for State-of-the-Art Performance in DouDiZhu (IJCAI 2021)  - Yunsheng Zhang, Dong Yan, Bei Shi, Haobo Fu, Qiang Fu, Hang Su, Jun Zhu, Ning Chen  - Paper  (https://www.ijcai.org/proceedings/2021/470) 2020 - Monte Carlo Tree Search in Continuous Spaces Using Voronoi Optimistic Optimization with Regret Bounds (AAAI 2020)  - Beomjoon Kim, Kyungjae Lee, Sungbin Lim, Leslie Pack Kaelbling, Tomás Lozano-Pérez  - Paper  (https://www.aaai.org/Papers/AAAI/2020GB/AAAI-KimB.1282.pdf) - Neural Architecture Search Using Deep Neural Networks and Monte Carlo Tree Search (AAAI 2020)  - Linnan Wang, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, Rodrigo Fonseca  - Paper  (https://arxiv.org/abs/1805.07440)  - Code  (https://github.com/linnanwang/AlphaX-NASBench101) - Monte-Carlo Tree Search in Continuous Action Spaces with Value Gradients (AAAI 2020)  - Jongmin Lee, Wonseok Jeon, Geon-Hyeong Kim, Kee-Eung Kim  - Paper  (https://www.ijcai.org/Proceedings/16/Papers/104.pdf)  - Code  (https://github.com/leekwoon/KR-DL-UCT)   - Approximate Inference in Discrete Distributions with Monte Carlo Tree Search and Value Functions (AISTATS 2020)  - Lars Buesing, Nicolas Heess, Theophane Weber  - Paper  (https://arxiv.org/abs/1910.06862) - Watch the Unobserved: A Simple Approach to Parallelizing Monte Carlo Tree Search (ICLR 2020)  - Anji Liu, Jianshu Chen, Mingze Yu, Yu Zhai, Xuewen Zhou, Ji Liu  - Paper  (https://openreview.net/forum?id=BJlQtJSKDB)  - Code  (https://github.com/brilee/python_uct)   - Information Particle Filter Tree: An Online Algorithm for POMDPs with Belief-Based Rewards on Continuous Domains (ICML 2020)  - Johannes Fischer, Ömer Sahin Tas  - Paper  (http://proceedings.mlr.press/v119/fischer20a.html)  - Code  (https://github.com/johannes-fischer/icml2020_ipft) - Sub-Goal Trees a Framework for Goal-Based Reinforcement Learning (ICML 2020)  - Tom Jurgenson, Or Avner, Edward Groshev, Aviv Tamar  - Paper  (https://arxiv.org/abs/2002.12361)   - Monte-Carlo Tree Search for Scalable Coalition Formation (IJCAI 2020)  - Feng Wu, Sarvapali D. Ramchurn  - Paper  (https://www.ijcai.org/Proceedings/2020/57) - Generalized Mean Estimation in Monte-Carlo Tree Search (IJCAI 2020)  - Tuan Dam, Pascal Klink, Carlo D'Eramo, Jan Peters, Joni Pajarinen  - Paper  (https://arxiv.org/abs/1911.00384) - Sparse Tree Search Optimality Guarantees in POMDPs with Continuous Observation Spaces (IJCAI 2020)  - Michael H. Lim, Claire Tomlin, Zachary N. Sunberg  - Paper  (https://arxiv.org/abs/1910.04332)   - Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions (NeurIPS 2020)  - Matthew Faw, Rajat Sen, Karthikeyan Shanmugam, Constantine Caramanis, Sanjay Shakkottai  - Paper  (https://arxiv.org/abs/1907.10154) - Extracting Knowledge from Web Text with Monte Carlo Tree Search (WWW 2020)  - Guiliang Liu, Xu Li, Jiakang Wang, Mingming Sun, Ping Li  - Paper  (https://dl.acm.org/doi/abs/10.1145/3366423.3380010) 2019 - ACE: An Actor Ensemble Algorithm for Continuous Control with Tree Search (AAAI 2019)  - Shangtong Zhang, Hengshuai Yao  - Paper  (https://arxiv.org/abs/1811.02696)  - Code  (https://github.com/ShangtongZhang/DeepRL) - A Monte Carlo Tree Search Player for Birds of a Feather Solitaire (AAAI 2019)  - Christian Roberson, Katarina Sperduto  - Paper  (https://aaai.org/ojs/index.php/AAAI/article/view/5036)  - Code  (http://cs.gettysburg.edu/~tneller/puzzles/boaf/) - Vine Copula Structure Learning via Monte Carlo Tree Search (AISTATS 2019)  - Bo Chang, Shenyi Pan, Harry Joe  - Paper  (http://proceedings.mlr.press/v89/chang19a/chang19a.pdf)  - Code  (https://github.com/changebo/Vine_MCTS) - Noisy Blackbox Optimization using Multi-fidelity Queries: A Tree Search Approach (AISTATS 2019)  - Rajat Sen, Kirthevasan Kandasamy, Sanjay Shakkottai  - Paper  (https://arxiv.org/abs/1810.10482)  - Code  (https://github.com/rajatsen91/MFTREE_DET) - Reinforcement Learning Based Monte Carlo Tree Search for Temporal Path Discovery (ICDM 2019)  - Pengfei Ding, Guanfeng Liu, Pengpeng Zhao, An Liu, Zhixu Li, Kai Zheng  - Paper  (https://zheng-kai.com/paper/icdm_2019_b.pdf) - Monte Carlo Tree Search for Policy Optimization (IJCAI 2019)  - Xiaobai Ma, Katherine Rose Driggs-Campbell, Zongzhang Zhang, Mykel J. Kochenderfer  - Paper  (https://www.ijcai.org/proceedings/2019/0432.pdf) - Subgoal-Based Temporal Abstraction in Monte-Carlo Tree Search (IJCAI 2019)  - Thomas Gabor, Jan Peter, Thomy Phan, Christian Meyer, Claudia Linnhoff-Popien  - Paper  (https://www.ijcai.org/proceedings/2019/0772.pdf)  - Code  (https://github.com/jnptr/subgoal-mcts) - Automated Machine Learning with Monte-Carlo Tree Search (IJCAI 2019)  - Herilalaina Rakotoarison, Marc Schoenauer, Michèle Sebag  - Paper  (https://www.ijcai.org/proceedings/2019/0457.pdf)  - Code  (https://github.com/herilalaina/mosaic_ml) - Multiple Policy Value Monte Carlo Tree Search (IJCAI 2019)  - Li-Cheng Lan, Wei Li, Ting-Han Wei, I-Chen Wu  - Paper  (https://www.ijcai.org/proceedings/2019/0653.pdf) - Learning Compositional Neural Programs with Recursive Tree Search and Planning (NeurIPS 2019)  - Thomas Pierrot, Guillaume Ligner, Scott E. Reed, Olivier Sigaud, Nicolas Perrin, Alexandre Laterre, David Kas, Karim Beguir, Nando de Freitas  - Paper  (https://arxiv.org/abs/1905.12941) 2018 - Monte Carlo Methods for the Game Kingdomino (CIG 2018)  - Magnus Gedda, Mikael Z. Lagerkvist, Martin Butler  - Paper  (https://arxiv.org/abs/1807.04458)  - Code  (https://github.com/mgedda/kdom-ai)  - Game Server  (https://github.com/mratin/kdom) - Reset-free Trial-and-Error Learning for Robot Damage Recovery (RAS 2018)  - Konstantinos Chatzilygeroudis, Vassilis Vassiliades, Jean-Baptiste Mouret  - Paper  (https://arxiv.org/pdf/1610.04213.pdf)  - Code  (https://github.com/resibots/chatzilygeroudis_2018_rte)  - MCTS C++ Library  (https://github.com/resibots/mcts) - Memory-Augmented Monte Carlo Tree Search (AAAI 2018)  - Chenjun Xiao, Jincheng Mei, Martin Müller  - Paper  (https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17139) - Feedback-Based Tree Search for Reinforcement Learning (ICML 2018)  - Daniel R. Jiang, Emmanuel Ekwedike, Han Liu  - Paper  (https://arxiv.org/abs/1805.05935) - Extended Increasing Cost Tree Search for Non-Unit Cost Domains (IJCAI 2018)  - Thayne T. Walker, Nathan R. Sturtevant, Ariel Felner  - Paper  (https://www.ijcai.org/proceedings/2018/74) - Three-Head Neural Network Architecture for Monte Carlo Tree Search (IJCAI 2018)  - Chao Gao, Martin Müller, Ryan Hayward  - Paper  (https://www.ijcai.org/proceedings/2018/523) - Bidding in Periodic Double Auctions Using Heuristics and Dynamic Monte Carlo Tree Search (IJCAI 2018)  - Moinul Morshed Porag Chowdhury, Christopher Kiekintveld, Son Tran, William Yeoh  - Paper  (https://www.ijcai.org/proceedings/2018/23) - Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search (NIPS 2018)  - Zhuwen Li, Qifeng Chen, Vladlen Koltun  - Paper  (https://arxiv.org/abs/1810.10659) - M-Walk: Learning to Walk over Graphs using Monte Carlo Tree Search (NIPS 2018)  - Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, Jianfeng Gao  - Paper  (https://arxiv.org/abs/1802.04394) - Single-Agent Policy Tree Search With Guarantees (NIPS 2018)  - Laurent Orseau, Levi Lelis, Tor Lattimore, Theophane Weber  - Paper  (https://arxiv.org/abs/1811.10928) - Monte-Carlo Tree Search for Constrained POMDPs (NIPS 2018)  - Jongmin Lee, Geon-hyeong Kim, Pascal Poupart, Kee-Eung Kim  - Paper  (https://cs.uwaterloo.ca/~ppoupart/publications/constrained-pomdps/mcts-constrained-pomdps-paper.pdf) 2017 - An Analysis of Monte Carlo Tree Search (AAAI 2017)  - Steven James, George Dimitri Konidaris, Benjamin Rosman  - Paper  (https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14886) - Beyond Monte Carlo Tree Search: Playing Go with Deep Alternative Neural Network and Long-Term Evaluation (AAAI 2017)  - Jinzhuo Wang, Wenmin Wang, Ronggang Wang, Wen Gao  - Paper  (https://arxiv.org/abs/1706.04052) - Designing Better Playlists with Monte Carlo Tree Search (AAAI 2017)  - Elad Liebman, Piyush Khandelwal, Maytal Saar-Tsechansky, Peter Stone  - Paper  (https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/IAAI2017-eladlieb.pdf) - Learning in POMDPs with Monte Carlo Tree Search (ICML 2017)  - Sammie Katt, Frans A. Oliehoek, Christopher Amato  - Paper  (https://arxiv.org/abs/1806.05631) - Learning to Run Heuristics in Tree Search (IJCAI 2017)  - Elias B. Khalil, Bistra Dilkina, George L. Nemhauser, Shabbir Ahmed, Yufen Shao  - Paper  (https://www.ijcai.org/proceedings/2017/92) - Estimating the Size of Search Trees by Sampling with Domain Knowledge (IJCAI 2017)  - Gleb Belov, Samuel Esler, Dylan Fernando, Pierre Le Bodic, George L. Nemhauser  - Paper  (https://www.ijcai.org/proceedings/2017/67) - A Monte Carlo Tree Search Approach to Active Malware Analysis (IJCAI 2017)  - Riccardo Sartea, Alessandro Farinelli  - Paper  (https://www.ijcai.org/proceedings/2017/535) - Monte-Carlo Tree Search by Best Arm Identification (NIPS 2017)  - Emilie Kaufmann, Wouter M. Koolen  - Paper  (https://arxiv.org/abs/1706.02986) - Thinking Fast and Slow with Deep Learning and Tree Search (NIPS 2017)  - Thomas Anthony, Zheng Tian, David Barber  - Paper  (https://arxiv.org/abs/1705.08439) - Monte-Carlo Tree Search using Batch Value of Perfect Information (UAI 2017)  - Shahaf S. Shperberg, Solomon Eyal Shimony, Ariel Felner  - Paper  (http://auai.org/uai2017/proceedings/papers/37.pdf) 2016 - Using Domain Knowledge to Improve Monte-Carlo Tree Search Performance in Parameterized Poker Squares (AAAI 2016)  - Robert Arrington, Clay Langley, Steven Bogaerts  - Paper  (https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11809) - Monte Carlo Tree Search for Multi-Robot Task Allocation (AAAI 2016)  - Bilal Kartal, Ernesto Nunes, Julio Godoy, Maria L. Gini  - Paper  (https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12154) - Large Scale Hard Sample Mining with Monte Carlo Tree Search (CVPR 2016)  - Olivier Canévet, François Fleuret  - Paper  (https://www.idiap.ch/~fleuret/papers/canevet-fleuret-cvpr2016.pdf) - On the Analysis of Complex Backup Strategies in Monte Carlo Tree Search (ICML 2016)  - Piyush Khandelwal, Elad Liebman, Scott Niekum, Peter Stone  - Paper  (https://www.cs.utexas.edu/~eladlieb/ICML2016.pdf) - Deep Learning for Reward Design to Improve Monte Carlo Tree Search in ATARI Games (IJCAI 2016)  - Xiaoxiao Guo, Satinder P. Singh, Richard L. Lewis, Honglak Lee  - Paper  (https://arxiv.org/abs/1604.07095) - Monte Carlo Tree Search in Continuous Action Spaces with Execution Uncertainty (IJCAI 2016)  - Timothy Yee, Viliam Lisý, Michael H. Bowling  - Paper  (https://www.ijcai.org/Proceedings/16/Papers/104.pdf) - Learning Predictive State Representations via Monte-Carlo Tree Search (IJCAI 2016)  - Yunlong Liu, Hexing Zhu, Yifeng Zeng, Zongxiong Dai  - Paper  (https://pdfs.semanticscholar.org/8056/df11094fc96d76826403f8b339dc14aa821f.pdf) 2015 - Efficient Globally Optimal Consensus Maximisation with Tree Search (CVPR 2015)  - Tat-Jun Chin, Pulak Purkait, Anders P. Eriksson, David Suter  - Paper  (https://zpascal.net/cvpr2015/Chin_Efficient_Globally_Optimal_2015_CVPR_paper.pdf) - Interplanetary Trajectory Planning with Monte Carlo Tree Search (IJCAI 2015)  - Daniel Hennes, Dario Izzo  - Paper  (https://pdfs.semanticscholar.org/ce42/53ca1c5b16e96cdbefae75649cd2588f42f3.pdf) 2014 - State Aggregation in Monte Carlo Tree Search (AAAI 2014)  - Jesse Hostetler, Alan Fern, Tom Dietterich  - Paper  (https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/download/8439/8712) - Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning (NIPS 2014)  - Xiaoxiao Guo, Satinder P. Singh, Honglak Lee, Richard L. Lewis, Xiaoshi Wang  - Paper  (https://web.eecs.umich.edu/~baveja/Papers/UCTtoCNNsAtariGames-FinalVersion.pdf) - Learning Partial Policies to Speedup MDP Tree Search (UAI 2014)  - Jervis Pinto, Alan Fern  - Paper  (http://www.jmlr.org/papers/volume18/15-251/15-251.pdf) 2013 - Monte Carlo Tree Search for Scheduling Activity Recognition (ICCV 2013)  - Mohamed R. Amer, Sinisa Todorovic, Alan Fern, Song-Chun Zhu  - Paper  (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.405.5916&rep=rep1&type=pdf) - Convergence of Monte Carlo Tree Search in Simultaneous Move Games (NIPS 2013)  - Viliam Lisý, Vojtech Kovarík, Marc Lanctot, Branislav Bosanský  - Paper  (https://papers.nips.cc/paper/5145-convergence-of-monte-carlo-tree-search-in-simultaneous-move-games) - Bayesian Mixture Modelling and Inference based Thompson Sampling in Monte-Carlo Tree Search (NIPS 2013)  - Aijun Bai, Feng Wu, Xiaoping Chen  - Paper  (https://papers.nips.cc/paper/5111-bayesian-mixture-modelling-and-inference-based-thompson-sampling-in-monte-carlo-tree-search) 2012 - Generalized Monte-Carlo Tree Search Extensions for General Game Playing (AAAI 2012)  - Hilmar Finnsson  - Paper  (https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/viewFile/4935/5300) 2011 - A Local Monte Carlo Tree Search Approach in Deterministic Planning (AAAI 2011)  - Fan Xie, Hootan Nakhost, Martin Müller  - Paper  (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.699.3833&rep=rep1&type=pdf) - Real-Time Solving of Quantified CSPs Based on Monte-Carlo Game Tree Search (IJCAI 2011)  - Satomi Baba, Yongjoon Joe, Atsushi Iwasaki, Makoto Yokoo  - Paper  (https://www.ijcai.org/Proceedings/11/Papers/116.pdf) - Nested Rollout Policy Adaptation for Monte Carlo Tree Search (IJCAI 2011)  - Christopher D. Rosin  - Paper  (https://www.ijcai.org/Proceedings/11/Papers/115.pdf) - Variance Reduction in Monte-Carlo Tree Search (NIPS 2011)  - Joel Veness, Marc Lanctot, Michael H. Bowling  - Paper  (https://papers.nips.cc/paper/4288-variance-reduction-in-monte-carlo-tree-search) - Learning Is Planning: Near Bayes-Optimal Reinforcement Learning via Monte-Carlo Tree Search (UAI 2011)  - John Asmuth, Michael L. Littman  - Paper  (https://arxiv.org/abs/1202.3699) 2010 - Understanding the Success of Perfect Information Monte Carlo Sampling in Game Tree Search (AAAI 2010)  - Jeffrey Richard Long, Nathan R. Sturtevant, Michael Buro, Timothy Furtak  - Paper  (https://pdfs.semanticscholar.org/011e/2c79575721764c127e210c9d8105a6305e70.pdf) - Bayesian Inference in Monte-Carlo Tree Search (UAI 2010)  - Gerald Tesauro, V. T. Rajan, Richard Segal  - Paper  (https://arxiv.org/abs/1203.3519) 2009 - Monte Carlo Tree Search Techniques in the Game of Kriegspiel (IJCAI 2009)  - Paolo Ciancarini, Gian Piero Favini  - Paper  (https://www.aaai.org/ocs/index.php/IJCAI/IJCAI-09/paper/viewFile/396/693) - Bootstrapping from Game Tree Search (NIPS 2009)  - Joel Veness, David Silver, William T. B. Uther, Alan Blair  - Paper  (https://papers.nips.cc/paper/3722-bootstrapping-from-game-tree-search) 2008 - Direct Mining of Discriminative and Essential Frequent Patterns via Model-Based Search Tree (KDD 2008)  - Wei Fan, Kun Zhang, Hong Cheng, Jing Gao, Xifeng Yan, Jiawei Han, Philip S. Yu, Olivier Verscheure  - Paper  (http://www1.se.cuhk.edu.hk/~hcheng/paper/kdd08mbt.pdf) 2007 - Bandit Algorithms for Tree Search (UAI 2007)  - Pierre-Arnaud Coquelin, Rémi Munos  - Paper  (https://arxiv.org/pdf/1408.2028.pdf) 2006 - Properties of Forward Pruning in Game-Tree Search (AAAI 2006)  - Yew Jin Lim, Wee Sun Lee  - Paper  (https://dl.acm.org/citation.cfm?id=1597351) - Graph Branch Algorithm: An Optimum Tree Search Method for Scored Dependency Graph with Arc Co-Occurrence Constraints (ACL 2006)  - Hideki Hirakawa  - Paper  (https://www.aclweb.org/anthology/P06-2047/) 2005 - Game-Tree Search with Combinatorially Large Belief States (IJCAI 2005)  - Austin Parker, Dana S. Nau, V. S. Subrahmanian  - Paper  (https://www.ijcai.org/Proceedings/05/Papers/0878.pdf) 2003 - Solving Finite Domain Constraint Hierarchies by Local Consistency and Tree Search (IJCAI 2003)  - Stefano Bistarelli, Philippe Codognet, Kin Chuen Hui, Jimmy Ho-Man Lee  - Paper  (https://www.ijcai.org/Proceedings/03/Papers/200.pdf) 2001 - Incomplete Tree Search using Adaptive Probing (IJCAI 2001)  - Wheeler Ruml  - Paper  (https://dash.harvard.edu/bitstream/handle/1/23017275/tr-02-01.pdf?sequence%3D1) 1998 - KnightCap: A Chess Programm That Learns by Combining TD with Game-Tree Search (ICML 1998)  - Jonathan Baxter, Andrew Tridgell, Lex Weaver  - Paper  (https://arxiv.org/abs/cs/9901002) 1988 - A Tree Search Algorithm for Target Detection in Image Sequences (CVPR 1988)  - Steven D. Blostein, Thomas S. Huang  - Paper  (https://ieeexplore.ieee.org/document/196309) ―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― License - CC0 Universal (https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers/blob/master/LICENSE) ―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― montecarlotreesearchpapers Github: https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers