Update and add index

This commit is contained in:
Jonas Zeunert
2024-04-23 15:17:38 +02:00
parent 4d0cd768f7
commit 8d4db5d359
726 changed files with 41721 additions and 53949 deletions

View File

@@ -1,4 +1,4 @@
 Awesome - Most Cited Deep Learning Papers
 Awesome - Most Cited Deep Learning Papers
!Awesome (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg) (https://github.com/sindresorhus/awesome)
@@ -6,25 +6,24 @@
A curated list of the most cited deep learning papers (2012-2016)
We believe that there exist classic deep learning papers which are worth reading regardless of their application domain. Rather than providing overwhelming amount of papers, We would like to 
provide a curated list of the awesome deep learning papers which are considered as must-reads in certain research domains.
We believe that there exist classic deep learning papers which are worth reading regardless of their application domain. Rather than providing overwhelming amount of papers, We would like to provide a curated list of the awesome deep 
learning papers which are considered as must-reads in certain research domains.
Background
Before this list, there exist other awesome deep learning lists, for example, Deep Vision (https://github.com/kjw0612/awesome-deep-vision) and Awesome Recurrent Neural Networks 
(https://github.com/kjw0612/awesome-rnn). Also, after this list comes out, another awesome list for deep learning beginners, called Deep Learning Papers Reading Roadmap 
(https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadmap), has been created and loved by many deep learning researchers.
Before this list, there exist other awesome deep learning lists, for example, Deep Vision (https://github.com/kjw0612/awesome-deep-vision) and Awesome Recurrent Neural Networks (https://github.com/kjw0612/awesome-rnn). Also, after this 
list comes out, another awesome list for deep learning beginners, called Deep Learning Papers Reading Roadmap (https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadmap), has been created and loved by many deep learning 
researchers.
Although the Roadmap List includes lots of important deep learning papers, it feels overwhelming for me to read them all. As I mentioned in the introduction, I believe that seminal works can 
give us lessons regardless of their application domain. Thus, I would like to introduce top 100 deep learning papers here as a good starting point of overviewing deep learning researches.
Although the Roadmap List includes lots of important deep learning papers, it feels overwhelming for me to read them all. As I mentioned in the introduction, I believe that seminal works can give us lessons regardless of their 
application domain. Thus, I would like to introduce top 100 deep learning papers here as a good starting point of overviewing deep learning researches.
To get the news for newly released papers everyday, follow my twitter (https://twitter.com/TerryUm_ML) or facebook page (https://www.facebook.com/terryum.io/)! 
Awesome list criteria
1. A list of top 100 deep learning papers published from 2012 to 2016 is suggested.
2. If a paper is added to the list, another paper (usually from 
More Papers from 2016" section) should be removed to keep top 100 papers. (Thus, removing papers is also important contributions as well as adding papers)
2. If a paper is added to the list, another paper (usually from More Papers from 2016" section) should be removed to keep top 100 papers. (Thus, removing papers is also important contributions as well as adding papers)
3. Papers that are important, but failed to be included in the list, will be listed in More than Top 100 section.
4. Please refer to New Papers and Old Papers sections for the papers published in recent 6 months or before 2012.
@@ -37,18 +36,17 @@
- 2012 : +800 citations
- ~2012 : Old Papers (by discussion)
Please note that we prefer seminal deep learning papers that can be applied to various researches rather than application papers. For that reason, some papers that meet the criteria may not 
be accepted while others can be. It depends on the impact of the paper, applicability to other researches scarcity of the research domain, and so on.
Please note that we prefer seminal deep learning papers that can be applied to various researches rather than application papers. For that reason, some papers that meet the criteria may not be accepted while others can be. It depends on
the impact of the paper, applicability to other researches scarcity of the research domain, and so on.
We need your contributions!
If you have any suggestions (missing papers, new papers, key researchers or typos), please feel free to edit and pull a request.
(Please read the contributing guide (https://github.com/terryum/awesome-deep-learning-papers/blob/master/Contributing.md) for further instructions, though just letting me know the title of 
papers can also be a big contribution to us.)
(Please read the contributing guide (https://github.com/terryum/awesome-deep-learning-papers/blob/master/Contributing.md) for further instructions, though just letting me know the title of papers can also be a big contribution to us.)
(Update) You can download all top-100 papers with this (https://github.com/terryum/awesome-deep-learning-papers/blob/master/fetch_papers.py) and collect all authors' names with this 
(https://github.com/terryum/awesome-deep-learning-papers/blob/master/get_authors.py). Also, bib file (https://github.com/terryum/awesome-deep-learning-papers/blob/master/top100papers.bib) for
all top-100 papers are available. Thanks, doodhwala, Sven (https://github.com/sunshinemyson) and grepinsight (https://github.com/grepinsight)!
(https://github.com/terryum/awesome-deep-learning-papers/blob/master/get_authors.py). Also, bib file (https://github.com/terryum/awesome-deep-learning-papers/blob/master/top100papers.bib) for all top-100 papers are available. Thanks, 
doodhwala, Sven (https://github.com/sunshinemyson) and grepinsight (https://github.com/grepinsight)!
+ Can anyone contribute the code for obtaining the statistics of the authors of Top-100 papers?
@@ -93,8 +91,7 @@
Optimization / Training Techniques
- Training very deep networks (2015), R. Srivastava et al. pdf  (http://papers.nips.cc/paper/5850-training-very-deep-networks.pdf)
- Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015), S. Loffe and C. Szegedy pdf  (http://arxiv.org/pdf/1502.03167)
- Delving deep into rectifiers: Surpassing human-level performance on imagenet classification (2015), K. He et al. pdf  
(http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf)
- Delving deep into rectifiers: Surpassing human-level performance on imagenet classification (2015), K. He et al. pdf  (http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf)
- Dropout: A simple way to prevent neural networks from overfitting (2014), N. Srivastava et al. pdf  (http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf)
- Adam: A method for stochastic optimization (2014), D. Kingma and J. Ba pdf  (http://arxiv.org/pdf/1412.6980)
- Improving neural networks by preventing co-adaptation of feature detectors (2012), G. Hinton et al. pdf  (http://arxiv.org/pdf/1207.0580.pdf)
@@ -113,8 +110,7 @@
Convolutional Neural Network Models
- Rethinking the inception architecture for computer vision (2016), C. Szegedy et al. pdf  
(http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf)
- Rethinking the inception architecture for computer vision (2016), C. Szegedy et al. pdf  (http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf)
- Inception-v4, inception-resnet and the impact of residual connections on learning (2016), C. Szegedy et al. pdf  (http://arxiv.org/pdf/1602.07261)
- Identity Mappings in Deep Residual Networks (2016), K. He et al. pdf  (https://arxiv.org/pdf/1603.05027v2.pdf)
- Deep residual learning for image recognition (2016), K. He et al. pdf  (http://arxiv.org/pdf/1512.03385)
@@ -125,21 +121,16 @@
- OverFeat: Integrated recognition, localization and detection using convolutional networks (2013), P. Sermanet et al. pdf  (http://arxiv.org/pdf/1312.6229)
- Maxout networks (2013), I. Goodfellow et al. pdf  (http://arxiv.org/pdf/1302.4389v4)
- Network in network (2013), M. Lin et al. pdf  (http://arxiv.org/pdf/1312.4400)
- ImageNet classification with deep convolutional neural networks (2012), A. Krizhevsky et al. pdf  
(http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)
- ImageNet classification with deep convolutional neural networks (2012), A. Krizhevsky et al. pdf  (http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)
Image: Segmentation / Object Detection
- You only look once: Unified, real-time object detection (2016), J. Redmon et al. pdf  
(http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf)
- Fully convolutional networks for semantic segmentation (2015), J. Long et al. pdf  
(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf)
- Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks (2015), S. Ren et al. pdf  
(http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf)
- You only look once: Unified, real-time object detection (2016), J. Redmon et al. pdf  (http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf)
- Fully convolutional networks for semantic segmentation (2015), J. Long et al. pdf  (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf)
- Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks (2015), S. Ren et al. pdf  (http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf)
- Fast R-CNN (2015), R. Girshick pdf  (http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf)
- Rich feature hierarchies for accurate object detection and semantic segmentation (2014), R. Girshick et al. pdf  
(http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf)
- Rich feature hierarchies for accurate object detection and semantic segmentation (2014), R. Girshick et al. pdf  (http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf)
- Spatial pyramid pooling in deep convolutional networks for visual recognition (2014), K. He et al. pdf  (http://arxiv.org/pdf/1406.4729)
- Semantic image segmentation with deep convolutional nets and fully connected CRFs, L. Chen et al. pdf  (https://arxiv.org/pdf/1412.7062)
- Learning hierarchical features for scene labeling (2013), C. Farabet et al. pdf  (https://hal-enpc.archives-ouvertes.fr/docs/00/74/20/77/PDF/farabet-pami-13.pdf)
@@ -149,18 +140,15 @@
Image / Video / Etc
- Image Super-Resolution Using Deep Convolutional Networks (2016), C. Dong et al. pdf  (https://arxiv.org/pdf/1501.00092v3.pdf)
- A neural algorithm of artistic style (2015), L. Gatys et al. pdf  (https://arxiv.org/pdf/1508.06576)
- Deep visual-semantic alignments for generating image descriptions (2015), A. Karpathy and L. Fei-Fei pdf  
(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Karpathy_Deep_Visual-Semantic_Alignments_2015_CVPR_paper.pdf)
- Deep visual-semantic alignments for generating image descriptions (2015), A. Karpathy and L. Fei-Fei pdf  (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Karpathy_Deep_Visual-Semantic_Alignments_2015_CVPR_paper.pdf)
- Show, attend and tell: Neural image caption generation with visual attention (2015), K. Xu et al. pdf  (http://arxiv.org/pdf/1502.03044)
- Show and tell: A neural image caption generator (2015), O. Vinyals et al. pdf  (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Vinyals_Show_and_Tell_2015_CVPR_paper.pdf)
- Long-term recurrent convolutional networks for visual recognition and description (2015), J. Donahue et al. pdf  
(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf)
- VQA: Visual question answering (2015), S. Antol et al. pdf  (http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Antol_VQA_Visual_Question_ICCV_2015_paper.pdf)
- DeepFace: Closing the gap to human-level performance in face verification (2014), Y. Taigman et al. pdf  
(http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf):
- DeepFace: Closing the gap to human-level performance in face verification (2014), Y. Taigman et al. pdf  (http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf):
- Large-scale video classification with convolutional neural networks (2014), A. Karpathy et al. pdf  (http://vision.stanford.edu/pdf/karpathy14.pdf)
- Two-stream convolutional networks for action recognition in videos (2014), K. Simonyan et al. pdf  
(http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf)
- Two-stream convolutional networks for action recognition in videos (2014), K. Simonyan et al. pdf  (http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf)
- 3D convolutional neural networks for human action recognition (2013), S. Ji et al. pdf  (http://machinelearning.wustl.edu/mlpapers/paper_files/icml2010_JiXYY10.pdf)
@@ -172,8 +160,7 @@
- Exploring the limits of language modeling (2016), R. Jozefowicz et al. pdf  (http://arxiv.org/pdf/1602.02410)
- Teaching machines to read and comprehend (2015), K. Hermann et al. pdf  (http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf)
- Effective approaches to attention-based neural machine translation (2015), M. Luong et al. pdf  (https://arxiv.org/pdf/1508.04025)
- Conditional random fields as recurrent neural networks (2015), S. Zheng and S. Jayasumana. pdf  
(http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Conditional_Random_Fields_ICCV_2015_paper.pdf)
- Conditional random fields as recurrent neural networks (2015), S. Zheng and S. Jayasumana. pdf  (http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Conditional_Random_Fields_ICCV_2015_paper.pdf)
- Memory networks (2014), J. Weston et al. pdf  (https://arxiv.org/pdf/1410.3916)
- Neural turing machines (2014), A. Graves et al. pdf  (https://arxiv.org/pdf/1410.5401)
- Neural machine translation by jointly learning to align and translate (2014), D. Bahdanau et al. pdf  (http://arxiv.org/pdf/1409.0473)
@@ -183,11 +170,9 @@
- Convolutional neural networks for sentence classification (2014), Y. Kim pdf  (http://arxiv.org/pdf/1408.5882)
- Glove: Global vectors for word representation (2014), J. Pennington et al. pdf  (http://anthology.aclweb.org/D/D14/D14-1162.pdf)
- Distributed representations of sentences and documents (2014), Q. Le and T. Mikolov pdf  (http://arxiv.org/pdf/1405.4053)
- Distributed representations of words and phrases and their compositionality (2013), T. Mikolov et al. pdf  
(http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf)
- Distributed representations of words and phrases and their compositionality (2013), T. Mikolov et al. pdf  (http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf)
- Efficient estimation of word representations in vector space (2013), T. Mikolov et al. pdf  (http://arxiv.org/pdf/1301.3781)
- Recursive deep models for semantic compositionality over a sentiment treebank (2013), R. Socher et al. pdf  
(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.383.1327&rep=rep1&type=pdf)
- Recursive deep models for semantic compositionality over a sentiment treebank (2013), R. Socher et al. pdf  (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.383.1327&rep=rep1&type=pdf)
- Generating sequences with recurrent neural networks (2013), A. Graves. pdf  (https://arxiv.org/pdf/1308.0850)
@@ -196,10 +181,8 @@
- End-to-end attention-based large vocabulary speech recognition (2016), D. Bahdanau et al. pdf  (https://arxiv.org/pdf/1508.04395)
- Deep speech 2: End-to-end speech recognition in English and Mandarin (2015), D. Amodei et al. pdf  (https://arxiv.org/pdf/1512.02595)
- Speech recognition with deep recurrent neural networks (2013), A. Graves pdf  (http://arxiv.org/pdf/1303.5778.pdf)
- Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups (2012), G. Hinton et al. pdf  
(http://www.cs.toronto.edu/~asamir/papers/SPM_DNN_12.pdf)
- Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition (2012) G. Dahl et al. pdf  
(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.337.7548&rep=rep1&type=pdf)
- Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups (2012), G. Hinton et al. pdf  (http://www.cs.toronto.edu/~asamir/papers/SPM_DNN_12.pdf)
- Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition (2012) G. Dahl et al. pdf  (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.337.7548&rep=rep1&type=pdf)
- Acoustic modeling using deep belief networks (2012), A. Mohamed et al. pdf  (http://www.cs.toronto.edu/~asamir/papers/speechDBN_jrnl.pdf)
@@ -230,8 +213,7 @@
- Eie: Efficient inference engine on compressed deep neural network (2016), S. Han et al. pdf  (http://arxiv.org/pdf/1602.01528)
- Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1 (2016), M. Courbariaux et al. pdf  (https://arxiv.org/pdf/1602.02830)
- Dynamic memory networks for visual and textual question answering (2016), C. Xiong et al. pdf  (http://www.jmlr.org/proceedings/papers/v48/xiong16.pdf)
- Stacked attention networks for image question answering (2016), Z. Yang et al. pdf  
(http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yang_Stacked_Attention_Networks_CVPR_2016_paper.pdf)
- Stacked attention networks for image question answering (2016), Z. Yang et al. pdf  (http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yang_Stacked_Attention_Networks_CVPR_2016_paper.pdf)
- Hybrid computing using a neural network with dynamic external memory (2016), A. Graves et al. pdf  (https://www.gwern.net/docs/2016-graves.pdf)
- Google's neural machine translation system: Bridging the gap between human and machine translation (2016), Y. Wu et al. pdf  (https://arxiv.org/pdf/1609.08144)
@@ -264,20 +246,15 @@
- Deep sparse rectifier neural networks (2011), X. Glorot et al. pdf  (http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_GlorotBB11.pdf)
- Natural language processing (almost) from scratch (2011), R. Collobert et al. pdf  (http://arxiv.org/pdf/1103.0398)
- Recurrent neural network based language model (2010), T. Mikolov et al. pdf  (http://www.fit.vutbr.cz/research/groups/speech/servite/2010/rnnlm_mikolov.pdf)
- Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion (2010), P. Vincent et al. pdf  
(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.297.3484&rep=rep1&type=pdf)
- Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion (2010), P. Vincent et al. pdf  (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.297.3484&rep=rep1&type=pdf)
- Learning mid-level features for recognition (2010), Y. Boureau pdf  (http://ece.duke.edu/~lcarin/boureau-cvpr-10.pdf)
- A practical guide to training restricted boltzmann machines (2010), G. Hinton pdf  (http://www.csri.utoronto.ca/~hinton/absps/guideTR.pdf)
- Understanding the difficulty of training deep feedforward neural networks (2010), X. Glorot and Y. Bengio pdf  
(http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_GlorotB10.pdf)
- Understanding the difficulty of training deep feedforward neural networks (2010), X. Glorot and Y. Bengio pdf  (http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_GlorotB10.pdf)
- Why does unsupervised pre-training help deep learning (2010), D. Erhan et al. pdf  (http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_ErhanCBV10.pdf)
- Learning deep architectures for AI (2009), Y. Bengio. pdf  
(http://sanghv.com/download/soft/machine%20learning,%20artificial%20intelligence,%20mathematics%20ebooks/ML/learning%20deep%20architectures%20for%20AI%20(2009).pdf)
- Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations (2009), H. Lee et al. pdf  
(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.802&rep=rep1&type=pdf)
- Learning deep architectures for AI (2009), Y. Bengio. pdf  (http://sanghv.com/download/soft/machine%20learning,%20artificial%20intelligence,%20mathematics%20ebooks/ML/learning%20deep%20architectures%20for%20AI%20(2009).pdf)
- Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations (2009), H. Lee et al. pdf  (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.802&rep=rep1&type=pdf)
- Greedy layer-wise training of deep networks (2007), Y. Bengio et al. pdf  (http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2006_739.pdf)
- Reducing the dimensionality of data with neural networks, G. Hinton and R. Salakhutdinov. pdf  
(http://homes.mpimf-heidelberg.mpg.de/~mhelmsta/pdf/2006%20Hinton%20Salakhudtkinov%20Science.pdf)
- Reducing the dimensionality of data with neural networks, G. Hinton and R. Salakhutdinov. pdf  (http://homes.mpimf-heidelberg.mpg.de/~mhelmsta/pdf/2006%20Hinton%20Salakhudtkinov%20Science.pdf)
- A fast learning algorithm for deep belief nets (2006), G. Hinton et al. pdf  (http://nuyoo.utm.mx/~jjf/rna/A8%20A%20fast%20learning%20algorithm%20for%20deep%20belief%20nets.pdf)
- Gradient-based learning applied to document recognition (1998), Y. LeCun et al. pdf  (http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf)
- Long short-term memory (1997), S. Hochreiter and J. Schmidhuber. pdf  (http://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.1997.9.8.1735)
@@ -347,29 +324,23 @@
- Achieving open vocabulary neural machine translation with hybrid word-character models, M. Luong and C. Manning. pdf  (https://arxiv.org/pdf/1604.00788)
- Very Deep Convolutional Networks for Natural Language Processing (2016), A. Conneau et al. pdf  (https://arxiv.org/pdf/1606.01781)
- Bag of tricks for efficient text classification (2016), A. Joulin et al. pdf  (https://arxiv.org/pdf/1607.01759)
- Efficient piecewise training of deep structured models for semantic segmentation (2016), G. Lin et al. pdf  
(http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Lin_Efficient_Piecewise_Training_CVPR_2016_paper.pdf)
- Efficient piecewise training of deep structured models for semantic segmentation (2016), G. Lin et al. pdf  (http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Lin_Efficient_Piecewise_Training_CVPR_2016_paper.pdf)
- Learning to compose neural networks for question answering (2016), J. Andreas et al. pdf  (https://arxiv.org/pdf/1601.01705)
- Perceptual losses for real-time style transfer and super-resolution (2016), J. Johnson et al. pdf  (https://arxiv.org/pdf/1603.08155)
- Reading text in the wild with convolutional neural networks (2016), M. Jaderberg et al. pdf  (http://arxiv.org/pdf/1412.1842)
- What makes for effective detection proposals? (2016), J. Hosang et al. pdf  (https://arxiv.org/pdf/1502.05082)
- Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks (2016), S. Bell et al. pdf  
(http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Bell_Inside-Outside_Net_Detecting_CVPR_2016_paper.pdf).
- Instance-aware semantic segmentation via multi-task network cascades (2016), J. Dai et al. pdf  
(http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Dai_Instance-Aware_Semantic_Segmentation_CVPR_2016_paper.pdf)
- Conditional image generation with pixelcnn decoders (2016), A. van den Oord et al. pdf  
(http://papers.nips.cc/paper/6527-tree-structured-reinforcement-learning-for-sequential-object-localization.pdf)
- Instance-aware semantic segmentation via multi-task network cascades (2016), J. Dai et al. pdf  (http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Dai_Instance-Aware_Semantic_Segmentation_CVPR_2016_paper.pdf)
- Conditional image generation with pixelcnn decoders (2016), A. van den Oord et al. pdf  (http://papers.nips.cc/paper/6527-tree-structured-reinforcement-learning-for-sequential-object-localization.pdf)
- Deep networks with stochastic depth (2016), G. Huang et al., pdf  (https://arxiv.org/pdf/1603.09382)
- Consistency and Fluctuations For Stochastic Gradient Langevin Dynamics (2016), Yee Whye Teh et al. pdf  (http://www.jmlr.org/papers/volume17/teh16a/teh16a.pdf)
(2015)
- Ask your neurons: A neural-based approach to answering questions about images (2015), M. Malinowski et al. pdf  
(http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Malinowski_Ask_Your_Neurons_ICCV_2015_paper.pdf)
- Ask your neurons: A neural-based approach to answering questions about images (2015), M. Malinowski et al. pdf  (http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Malinowski_Ask_Your_Neurons_ICCV_2015_paper.pdf)
- Exploring models and data for image question answering (2015), M. Ren et al. pdf  (http://papers.nips.cc/paper/5640-stochastic-variational-inference-for-hidden-markov-models.pdf)
- Are you talking to a machine? dataset and methods for multilingual image question (2015), H. Gao et al. pdf  
(http://papers.nips.cc/paper/5641-are-you-talking-to-a-machine-dataset-and-methods-for-multilingual-image-question.pdf)
- Mind's eye: A recurrent visual representation for image caption generation (2015), X. Chen and C. Zitnick. pdf  
(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Chen_Minds_Eye_A_2015_CVPR_paper.pdf)
- Are you talking to a machine? dataset and methods for multilingual image question (2015), H. Gao et al. pdf  (http://papers.nips.cc/paper/5641-are-you-talking-to-a-machine-dataset-and-methods-for-multilingual-image-question.pdf)
- Mind's eye: A recurrent visual representation for image caption generation (2015), X. Chen and C. Zitnick. pdf  (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Chen_Minds_Eye_A_2015_CVPR_paper.pdf)
- From captions to visual concepts and back (2015), H. Fang et al. pdf  (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Fang_From_Captions_to_2015_CVPR_paper.pdf).
- Towards AI-complete question answering: A set of prerequisite toy tasks (2015), J. Weston et al. pdf  (http://arxiv.org/pdf/1502.05698)
- Ask me anything: Dynamic memory networks for natural language processing (2015), A. Kumar et al. pdf  (http://arxiv.org/pdf/1506.07285)
@@ -381,15 +352,12 @@
- Trust Region Policy Optimization (2015), J. Schulman et al. pdf  (http://www.jmlr.org/proceedings/papers/v37/schulman15.pdf)
- Beyond short snippents: Deep networks for video classification (2015) pdf  (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf)
- Learning Deconvolution Network for Semantic Segmentation (2015), H. Noh et al. pdf  (https://arxiv.org/pdf/1505.04366v1)
- Learning spatiotemporal features with 3d convolutional networks (2015), D. Tran et al. pdf  
(http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf)
- Learning spatiotemporal features with 3d convolutional networks (2015), D. Tran et al. pdf  (http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf)
- Understanding neural networks through deep visualization (2015), J. Yosinski et al. pdf  (https://arxiv.org/pdf/1506.06579)
- An Empirical Exploration of Recurrent Network Architectures (2015), R. Jozefowicz et al. pdf  (http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf)
- Deep generative image models using a laplacian pyramid of adversarial networks (2015), E.Denton et al. pdf  
(http://papers.nips.cc/paper/5773-deep-generative-image-models-using-a-laplacian-pyramid-of-adversarial-networks.pdf)
- Deep generative image models using a laplacian pyramid of adversarial networks (2015), E.Denton et al. pdf  (http://papers.nips.cc/paper/5773-deep-generative-image-models-using-a-laplacian-pyramid-of-adversarial-networks.pdf)
- Gated Feedback Recurrent Neural Networks (2015), J. Chung et al. pdf  (http://www.jmlr.org/proceedings/papers/v37/chung15.pdf)
- Fast and accurate deep network learning by exponential linear units (ELUS) (2015), D. Clevert et al. pdf  
(https://arxiv.org/pdf/1511.07289.pdf%5Cnhttp://arxiv.org/abs/1511.07289%5Cnhttp://arxiv.org/abs/1511.07289)
- Fast and accurate deep network learning by exponential linear units (ELUS) (2015), D. Clevert et al. pdf  (https://arxiv.org/pdf/1511.07289.pdf%5Cnhttp://arxiv.org/abs/1511.07289%5Cnhttp://arxiv.org/abs/1511.07289)
- Pointer networks (2015), O. Vinyals et al. pdf  (http://papers.nips.cc/paper/5866-pointer-networks.pdf)
- Visualizing and Understanding Recurrent Networks (2015), A. Karpathy et al. pdf  (https://arxiv.org/pdf/1506.02078)
- Attention-based models for speech recognition (2015), J. Chorowski et al. pdf  (http://papers.nips.cc/paper/5847-attention-based-models-for-speech-recognition.pdf)
@@ -403,8 +371,7 @@
(~2014)
- DeepPose: Human pose estimation via deep neural networks (2014), A. Toshev and C. Szegedy pdf  
(http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Toshev_DeepPose_Human_Pose_2014_CVPR_paper.pdf)
- DeepPose: Human pose estimation via deep neural networks (2014), A. Toshev and C. Szegedy pdf  (http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Toshev_DeepPose_Human_Pose_2014_CVPR_paper.pdf)
- Learning a Deep Convolutional Network for Image Super-Resolution (2014, C. Dong et al. pdf  
(https://www.researchgate.net/profile/Chen_Change_Loy/publication/264552416_Lecture_Notes_in_Computer_Science/links/53e583e50cf25d674e9c280e.pdf)
- Recurrent models of visual attention (2014), V. Mnih et al. pdf  (http://arxiv.org/pdf/1406.6247.pdf)
@@ -414,8 +381,7 @@
- Recurrent neural network regularization (2014), W. Zaremba et al. pdf  (http://arxiv.org/pdf/1409.2329)
- Intriguing properties of neural networks (2014), C. Szegedy et al. pdf  (https://arxiv.org/pdf/1312.6199.pdf)
- Towards end-to-end speech recognition with recurrent neural networks (2014), A. Graves and N. Jaitly. pdf  (http://www.jmlr.org/proceedings/papers/v32/graves14.pdf)
- Scalable object detection using deep neural networks (2014), D. Erhan et al. pdf  
(http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Erhan_Scalable_Object_Detection_2014_CVPR_paper.pdf)
- Scalable object detection using deep neural networks (2014), D. Erhan et al. pdf  (http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Erhan_Scalable_Object_Detection_2014_CVPR_paper.pdf)
- On the importance of initialization and momentum in deep learning (2013), I. Sutskever et al. pdf  (http://machinelearning.wustl.edu/mlpapers/paper_files/icml2013_sutskever13.pdf)
- Regularization of neural networks using dropconnect (2013), L. Wan et al. pdf  (http://machinelearning.wustl.edu/mlpapers/paper_files/icml2013_wan13.pdf)
- Learning Hierarchical Features for Scene Labeling (2013), C. Farabet et al. pdf  (https://hal-enpc.archives-ouvertes.fr/docs/00/74/20/77/PDF/farabet-pami-13.pdf)
@@ -427,8 +393,7 @@
Acknowledgement
Thank you for all your contributions. Please make sure to read the contributing guide (https://github.com/terryum/awesome-deep-learning-papers/blob/master/Contributing.md) before you make a 
pull request.
Thank you for all your contributions. Please make sure to read the contributing guide (https://github.com/terryum/awesome-deep-learning-papers/blob/master/Contributing.md) before you make a pull request.
License
!CC0 (http://mirrors.creativecommons.org/presskit/buttons/88x31/svg/cc-zero.svg) (https://creativecommons.org/publicdomain/zero/1.0/)