Update and add index
This commit is contained in:
238
terminal/bigdata
238
terminal/bigdata
@@ -1,10 +1,9 @@
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome Big Data[0m
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome Big Data[0m
|
||||
|
||||
[38;5;14m[1m![0m[38;5;12mAwesome[39m[38;5;14m[1m (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)[0m[38;5;12m (https://github.com/sindresorhus/awesome)[39m
|
||||
|
||||
[38;5;12mA[39m[38;5;12m [39m[38;5;12mcurated[39m[38;5;12m [39m[38;5;12mlist[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mawesome[39m[38;5;12m [39m[38;5;12mbig[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mframeworks,[39m[38;5;12m [39m[38;5;12mresources[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[38;5;12mawesomeness.[39m[38;5;12m [39m[38;5;12mInspired[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;14m[1mawesome-php[0m[38;5;12m [39m[38;5;12m(https://github.com/ziadoz/awesome-php),[39m[38;5;12m [39m[38;5;14m[1mawesome-python[0m[38;5;12m [39m
|
||||
[38;5;12m(https://github.com/vinta/awesome-python),[39m[38;5;12m [39m[38;5;14m[1mawesome-ruby[0m[38;5;12m [39m[38;5;12m(https://github.com/Sdogruyol/awesome-ruby),[39m[38;5;12m [39m[38;5;14m[1mhadoopecosystemtable[0m[38;5;12m [39m[38;5;12m(http://hadoopecosystemtable.github.io/)[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;14m[1mbig-data[0m[38;5;12m [39m
|
||||
[38;5;12m(http://usefulstuff.io/big-data/).[39m
|
||||
[38;5;12mA[39m[38;5;12m [39m[38;5;12mcurated[39m[38;5;12m [39m[38;5;12mlist[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mawesome[39m[38;5;12m [39m[38;5;12mbig[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mframeworks,[39m[38;5;12m [39m[38;5;12mresources[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[38;5;12mawesomeness.[39m[38;5;12m [39m[38;5;12mInspired[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;14m[1mawesome-php[0m[38;5;12m [39m[38;5;12m(https://github.com/ziadoz/awesome-php),[39m[38;5;12m [39m[38;5;14m[1mawesome-python[0m[38;5;12m [39m[38;5;12m(https://github.com/vinta/awesome-python),[39m[38;5;12m [39m[38;5;14m[1mawesome-ruby[0m[38;5;12m [39m
|
||||
[38;5;12m(https://github.com/Sdogruyol/awesome-ruby),[39m[38;5;12m [39m[38;5;14m[1mhadoopecosystemtable[0m[38;5;12m [39m[38;5;12m(http://hadoopecosystemtable.github.io/)[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;14m[1mbig-data[0m[38;5;12m [39m[38;5;12m(http://usefulstuff.io/big-data/).[39m
|
||||
|
||||
[38;5;12mYour contributions are always welcome![39m
|
||||
|
||||
@@ -60,10 +59,10 @@
|
||||
|
||||
[38;2;255;187;0m[4mFrameworks[0m
|
||||
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBistro[0m[38;5;12m [39m[38;5;12m(https://github.com/facebook/bistro)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mgeneral-purpose[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mengine[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mboth[39m[38;5;12m [39m[38;5;12mbatch[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mstream[39m[38;5;12m [39m[38;5;12manalytics.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mnovel[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mmodel,[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mrepresents[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mvia[39m[38;5;12m [39m
|
||||
[48;2;30;30;40m[38;5;13m[3mfunctions[0m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mprocesses[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mvia[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mcolumn[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3moperations[0m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mopposed[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mhaving[39m[38;5;12m [39m[38;5;12monly[39m[38;5;12m [39m[38;5;12mset[39m[38;5;12m [39m[38;5;12moperations[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mconventional[39m[38;5;12m [39m[38;5;12mapproaches[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m[38;5;12mMapReduce[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mSQL.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIBM[0m[38;5;14m[1m [0m[38;5;14m[1mStreams[0m[38;5;12m [39m[38;5;12m(https://www.ibm.com/analytics/us/en/technology/stream-computing/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mplatform[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mreal-time[39m[38;5;12m [39m[38;5;12manalytics.[39m[38;5;12m [39m[38;5;12mIntegrates[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mpopular[39m[38;5;12m [39m
|
||||
[38;5;12mtechnologies[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mBig[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mecosystem[39m[38;5;12m [39m[38;5;12m(Kafka,[39m[38;5;12m [39m[38;5;12mHDFS,[39m[38;5;12m [39m[38;5;12mSpark,[39m[38;5;12m [39m[38;5;12metc.)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBistro[0m[38;5;12m [39m[38;5;12m(https://github.com/facebook/bistro)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mgeneral-purpose[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mengine[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mboth[39m[38;5;12m [39m[38;5;12mbatch[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mstream[39m[38;5;12m [39m[38;5;12manalytics.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mnovel[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mmodel,[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mrepresents[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mvia[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mfunctions[0m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mprocesses[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mvia[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mcolumn[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3moperations[0m[38;5;12m [39m
|
||||
[38;5;12mas[39m[38;5;12m [39m[38;5;12mopposed[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mhaving[39m[38;5;12m [39m[38;5;12monly[39m[38;5;12m [39m[38;5;12mset[39m[38;5;12m [39m[38;5;12moperations[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mconventional[39m[38;5;12m [39m[38;5;12mapproaches[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m[38;5;12mMapReduce[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mSQL.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIBM Streams[0m
|
||||
[38;5;12m (https://www.ibm.com/analytics/us/en/technology/stream-computing/) - platform for distributed processing and real-time analytics. Integrates with many of the popular technologies in the Big Data ecosystem (Kafka, HDFS, Spark, etc.)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Hadoop[0m[38;5;12m (http://hadoop.apache.org/) - framework for distributed processing. Integrates MapReduce (parallel processing), YARN (job scheduling) and HDFS (distributed file system).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTigon[0m[38;5;12m (https://github.com/caskdata/tigon) - High Throughput Real-time Stream Processing Framework.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPachyderm[0m[38;5;12m (http://pachyderm.io/) - Pachyderm is a data storage platform built on Docker and Kubernetes to provide reproducible data processing and analysis.[39m
|
||||
@@ -92,24 +91,21 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Samza[0m[38;5;12m (http://samza.apache.org/) - stream processing framework, based on Kafka and YARN.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Tez[0m[38;5;12m (http://tez.apache.org/) - application framework for executing a complex DAG (directed acyclic graph) of tasks, built on YARN.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Twill[0m[38;5;12m (https://incubator.apache.org/projects/twill.html) - abstraction over YARN that reduces the complexity of developing distributed applications.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBaidu[0m[38;5;14m[1m [0m[38;5;14m[1mBigflow[0m[38;5;12m [39m[38;5;12m(http://bigflow.cloud/en/index.html)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12minterface[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mallows[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mwriting[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12mcomputing[39m[38;5;12m [39m[38;5;12mprograms[39m[38;5;12m [39m[38;5;12mproviding[39m[38;5;12m [39m[38;5;12mlots[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12msimple,[39m[38;5;12m [39m[38;5;12mflexible,[39m[38;5;12m [39m[38;5;12mpowerful[39m[38;5;12m [39m[38;5;12mAPIs[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12measily[39m[38;5;12m [39m[38;5;12mhandle[39m[38;5;12m [39m
|
||||
[38;5;12mdata[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12many[39m[38;5;12m [39m[38;5;12mscale.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBaidu Bigflow[0m[38;5;12m (http://bigflow.cloud/en/index.html) - an interface that allows for writing distributed computing programs providing lots of simple, flexible, powerful APIs to easily handle data of any scale.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCascalog[0m[38;5;12m (http://cascalog.org/) - data processing and querying library.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCheetah[0m[38;5;12m (http://vldbarc.org/pvldb/vldb2010/pvldb_vol3/I08.pdf) - High Performance, Custom Data Warehouse on Top of MapReduce.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mConcurrent Cascading[0m[38;5;12m (http://www.cascading.org/) - framework for data management/analytics on Hadoop.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDamballa Parkour[0m[38;5;12m (https://github.com/damballa/parkour) - MapReduce library for Clojure.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDatasalt Pangool[0m[38;5;12m (https://github.com/datasalt/pangool) - alternative MapReduce paradigm.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDataTorrent[0m[38;5;14m[1m [0m[38;5;14m[1mStrAM[0m[38;5;12m [39m[38;5;12m(https://www.datatorrent.com/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mreal-time[39m[38;5;12m [39m[38;5;12mengine[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mdesigned[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12menable[39m[38;5;12m [39m[38;5;12mdistributed,[39m[38;5;12m [39m[38;5;12masynchronous,[39m[38;5;12m [39m[38;5;12mreal[39m[38;5;12m [39m[38;5;12mtime[39m[38;5;12m [39m[38;5;12min-memory[39m[38;5;12m [39m[38;5;12mbig-data[39m[38;5;12m [39m[38;5;12mcomputations[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12munblocked[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mway[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m
|
||||
[38;5;12mpossible,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mminimal[39m[38;5;12m [39m[38;5;12moverhead[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mimpact[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mperformance.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook[0m[38;5;14m[1m [0m[38;5;14m[1mCorona[0m[38;5;12m [39m[38;5;12m(https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mHadoop[39m[38;5;12m [39m[38;5;12menhancement[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m
|
||||
[38;5;12mremoves[39m[38;5;12m [39m[38;5;12msingle[39m[38;5;12m [39m[38;5;12mpoint[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mfailure.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDataTorrent StrAM[0m
|
||||
[38;5;12m (https://www.datatorrent.com/) - real-time engine is designed to enable distributed, asynchronous, real time in-memory big-data computations in as unblocked a way as possible, with minimal overhead and impact on performance.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook Corona[0m[38;5;12m (https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920) - Hadoop enhancement which removes single point of failure.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook Peregrine[0m[38;5;12m (http://peregrine_mapreduce.bitbucket.org/) - Map Reduce framework.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook Scuba[0m[38;5;12m (https://www.facebook.com/notes/facebook-engineering/under-the-hood-data-diving-with-scuba/10150599692628920) - distributed in-memory datastore.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGoogle Dataflow[0m[38;5;12m (https://googledevelopers.blogspot.it/2014/06/cloud-platform-at-google-io-new-big.html) - create data pipelines to help themæingest, transform and analyze data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGoogle MapReduce[0m[38;5;12m (https://research.google.com/archive/mapreduce.html) - map reduce framework.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGoogle MillWheel[0m[38;5;12m (https://research.google.com/pubs/pub41378.html) - fault tolerant stream processing framework.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIBM[0m[38;5;14m[1m [0m[38;5;14m[1mStreams[0m[38;5;12m [39m[38;5;12m(https://www.ibm.com/analytics/us/en/technology/stream-computing/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mplatform[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mreal-time[39m[38;5;12m [39m[38;5;12manalytics.[39m[38;5;12m [39m[38;5;12mProvides[39m[38;5;12m [39m[38;5;12mtoolkits[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12madvanced[39m[38;5;12m [39m[38;5;12manalytics[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m
|
||||
[38;5;12mgeospatial,[39m[38;5;12m [39m[38;5;12mtime[39m[38;5;12m [39m[38;5;12mseries,[39m[38;5;12m [39m[38;5;12metc.[39m[38;5;12m [39m[38;5;12mout[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbox.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIBM Streams[0m[38;5;12m (https://www.ibm.com/analytics/us/en/technology/stream-computing/) - platform for distributed processing and real-time analytics. Provides toolkits for advanced analytics like geospatial, time series, etc. out of the box.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mJAQL[0m[38;5;12m (https://code.google.com/p/jaql/) - declarative programming language for working with structured, semi-structured and unstructured data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKite[0m[38;5;12m (http://kitesdk.org/docs/current/) - is a set of libraries, tools, examples, and documentation focused on making it easier to build systems on top of the Hadoop ecosystem.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMetamarkets Druid[0m[38;5;12m (http://druid.io/) - framework for real-time analysis of large datasets.[39m
|
||||
@@ -171,20 +167,18 @@
|
||||
|
||||
[38;2;255;187;0m[4mKey Map Data Model[0m
|
||||
|
||||
[38;5;14m[1mNote[0m[38;5;12m:[39m[38;5;12m [39m[38;5;12mThere[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m[38;5;12mterm[39m[38;5;12m [39m[38;5;12mconfusion[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mindustry,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mtwo[39m[38;5;12m [39m[38;5;12mdifferent[39m[38;5;12m [39m[38;5;12mthings[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mcalled[39m[38;5;12m [39m[38;5;12m"Columnar[39m[38;5;12m [39m[38;5;12mDatabases".[39m[38;5;12m [39m[38;5;12mSome,[39m[38;5;12m [39m[38;5;12mlisted[39m[38;5;12m [39m[38;5;12mhere,[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mdistributed,[39m[38;5;12m [39m[38;5;12mpersistent[39m[38;5;12m [39m[38;5;12mdatabases[39m[38;5;12m [39m[38;5;12mbuilt[39m[38;5;12m [39m[38;5;12maround[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m
|
||||
[38;5;12m"key-map"[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mmodel:[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mhas[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12m(possibly[39m[38;5;12m [39m[38;5;12mcomposite)[39m[38;5;12m [39m[38;5;12mkey,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mmap[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mkey-value[39m[38;5;12m [39m[38;5;12mpairs[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12massociated.[39m[38;5;12m [39m[38;5;12mIn[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m[38;5;12msystems,[39m[38;5;12m [39m[38;5;12mmultiple[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mvalue[39m[38;5;12m [39m[38;5;12mmaps[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12massociated[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mkey,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||||
[38;5;12mthese[39m[38;5;12m [39m[38;5;12mmaps[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mreferred[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12m"column[39m[38;5;12m [39m[38;5;12mfamilies"[39m[38;5;12m [39m[38;5;12m(with[39m[38;5;12m [39m[38;5;12mvalue[39m[38;5;12m [39m[38;5;12mmap[39m[38;5;12m [39m[38;5;12mkeys[39m[38;5;12m [39m[38;5;12mbeing[39m[38;5;12m [39m[38;5;12mreferred[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12m"columns").[39m
|
||||
[38;5;14m[1mNote[0m[38;5;12m:[39m[38;5;12m [39m[38;5;12mThere[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m[38;5;12mterm[39m[38;5;12m [39m[38;5;12mconfusion[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mindustry,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mtwo[39m[38;5;12m [39m[38;5;12mdifferent[39m[38;5;12m [39m[38;5;12mthings[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mcalled[39m[38;5;12m [39m[38;5;12m"Columnar[39m[38;5;12m [39m[38;5;12mDatabases".[39m[38;5;12m [39m[38;5;12mSome,[39m[38;5;12m [39m[38;5;12mlisted[39m[38;5;12m [39m[38;5;12mhere,[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mdistributed,[39m[38;5;12m [39m[38;5;12mpersistent[39m[38;5;12m [39m[38;5;12mdatabases[39m[38;5;12m [39m[38;5;12mbuilt[39m[38;5;12m [39m[38;5;12maround[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12m"key-map"[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mmodel:[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mhas[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12m(possibly[39m[38;5;12m [39m
|
||||
[38;5;12mcomposite)[39m[38;5;12m [39m[38;5;12mkey,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mmap[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mkey-value[39m[38;5;12m [39m[38;5;12mpairs[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12massociated.[39m[38;5;12m [39m[38;5;12mIn[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m[38;5;12msystems,[39m[38;5;12m [39m[38;5;12mmultiple[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mvalue[39m[38;5;12m [39m[38;5;12mmaps[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12massociated[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mkey,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthese[39m[38;5;12m [39m[38;5;12mmaps[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mreferred[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12m"column[39m[38;5;12m [39m[38;5;12mfamilies"[39m[38;5;12m [39m[38;5;12m(with[39m[38;5;12m [39m[38;5;12mvalue[39m[38;5;12m [39m[38;5;12mmap[39m[38;5;12m [39m[38;5;12mkeys[39m[38;5;12m [39m[38;5;12mbeing[39m[38;5;12m [39m[38;5;12mreferred[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m
|
||||
[38;5;12m"columns").[39m
|
||||
|
||||
[38;5;12mAnother[39m[38;5;12m [39m[38;5;12mgroup[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mtechnologies[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mcalled[39m[38;5;12m [39m[38;5;12m"columnar[39m[38;5;12m [39m[38;5;12mdatabases"[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mdistinguished[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mstores[39m[38;5;12m [39m[38;5;12mdata,[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mdisk[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mmemory[39m[38;5;12m [39m[38;5;12m--[39m[38;5;12m [39m[38;5;12mrather[39m[38;5;12m [39m[38;5;12mthan[39m[38;5;12m [39m[38;5;12mstoring[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mtraditional[39m[38;5;12m [39m[38;5;12mway,[39m[38;5;12m [39m[38;5;12mwhere[39m[38;5;12m [39m
|
||||
[38;5;12mall[39m[38;5;12m [39m[38;5;12mcolumn[39m[38;5;12m [39m[38;5;12mvalues[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgiven[39m[38;5;12m [39m[38;5;12mkey[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mstored[39m[38;5;12m [39m[38;5;12mnext[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12meach[39m[38;5;12m [39m[38;5;12mother,[39m[38;5;12m [39m[38;5;12m"row[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mrow",[39m[38;5;12m [39m[38;5;12mthese[39m[38;5;12m [39m[38;5;12msystems[39m[38;5;12m [39m[38;5;12mstore[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mcolumn[0m[38;5;12m [39m[38;5;12mvalues[39m[38;5;12m [39m[38;5;12mnext[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12meach[39m[38;5;12m [39m[38;5;12mother.[39m[38;5;12m [39m[38;5;12mSo[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12mwork[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mneeded[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mget[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mcolumns[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgiven[39m[38;5;12m [39m
|
||||
[38;5;12mkey,[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12mless[39m[38;5;12m [39m[38;5;12mwork[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mneeded[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mget[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mvalues[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgiven[39m[38;5;12m [39m[38;5;12mcolumn.[39m
|
||||
[38;5;12mAnother[39m[38;5;12m [39m[38;5;12mgroup[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mtechnologies[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mcalled[39m[38;5;12m [39m[38;5;12m"columnar[39m[38;5;12m [39m[38;5;12mdatabases"[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mdistinguished[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mstores[39m[38;5;12m [39m[38;5;12mdata,[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mdisk[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mmemory[39m[38;5;12m [39m[38;5;12m--[39m[38;5;12m [39m[38;5;12mrather[39m[38;5;12m [39m[38;5;12mthan[39m[38;5;12m [39m[38;5;12mstoring[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mtraditional[39m[38;5;12m [39m[38;5;12mway,[39m[38;5;12m [39m[38;5;12mwhere[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mcolumn[39m[38;5;12m [39m[38;5;12mvalues[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgiven[39m[38;5;12m [39m[38;5;12mkey[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mstored[39m[38;5;12m [39m
|
||||
[38;5;12mnext[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12meach[39m[38;5;12m [39m[38;5;12mother,[39m[38;5;12m [39m[38;5;12m"row[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mrow",[39m[38;5;12m [39m[38;5;12mthese[39m[38;5;12m [39m[38;5;12msystems[39m[38;5;12m [39m[38;5;12mstore[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mcolumn[0m[38;5;12m [39m[38;5;12mvalues[39m[38;5;12m [39m[38;5;12mnext[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12meach[39m[38;5;12m [39m[38;5;12mother.[39m[38;5;12m [39m[38;5;12mSo[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12mwork[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mneeded[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mget[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mcolumns[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgiven[39m[38;5;12m [39m[38;5;12mkey,[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12mless[39m[38;5;12m [39m[38;5;12mwork[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mneeded[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mget[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mvalues[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgiven[39m[38;5;12m [39m[38;5;12mcolumn.[39m
|
||||
|
||||
[38;5;12mThe former group is referred to as "key map data model" here. The line between these and the [39m[38;5;14m[1mKey-value Data Model[0m[38;5;12m (#key-value-data-model) stores is fairly blurry.[39m
|
||||
|
||||
[38;5;12mThe latter, being more about the storage format than about the data model, is listed under [39m[38;5;14m[1mColumnar Databases[0m[38;5;12m (#columnar-databases).[39m
|
||||
|
||||
[38;5;12mYou[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mread[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12mabout[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mdistinction[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mProf.[39m[38;5;12m [39m[38;5;12mDaniel[39m[38;5;12m [39m[38;5;12mAbadi's[39m[38;5;12m [39m[38;5;12mblog:[39m[38;5;12m [39m[38;5;14m[1mDistinguishing[0m[38;5;14m[1m [0m[38;5;14m[1mtwo[0m[38;5;14m[1m [0m[38;5;14m[1mmajor[0m[38;5;14m[1m [0m[38;5;14m[1mtypes[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mColumn[0m[38;5;14m[1m [0m[38;5;14m[1mStores[0m[38;5;12m [39m
|
||||
[38;5;12m(http://dbmsmusings.blogspot.com/2010/03/distinguishing-two-major-types-of_29.html).[39m
|
||||
[38;5;12mYou can read more about this distinction on Prof. Daniel Abadi's blog: [39m[38;5;14m[1mDistinguishing two major types of Column Stores[0m[38;5;12m (http://dbmsmusings.blogspot.com/2010/03/distinguishing-two-major-types-of_29.html).[39m
|
||||
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Accumulo[0m[38;5;12m (http://accumulo.apache.org/) - distributed key/value store, built on Hadoop.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Cassandra[0m[38;5;12m (http://cassandra.apache.org/) - column-oriented distributed datastore, inspired by BigTable.[39m
|
||||
@@ -196,15 +190,13 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHypertable[0m[38;5;12m (http://www.hypertable.org/) - column-oriented distributed datastore, inspired by BigTable.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mInfiniDB[0m[38;5;12m (https://github.com/infinidb/infinidb/) - is accessed through a MySQL interface and use massive parallel processing to parallelize queries.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTephra[0m[38;5;12m (https://github.com/caskdata/tephra) - Transactions for HBase.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTwitter[0m[38;5;14m[1m [0m[38;5;14m[1mManhattan[0m[38;5;12m [39m[38;5;12m(https://blog.twitter.com/engineering/en_us/a/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale.html)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mreal-time,[39m[38;5;12m [39m[38;5;12mmulti-tenant[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m
|
||||
[38;5;12mdatabase[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mTwitter[39m[38;5;12m [39m[38;5;12mscale.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTwitter Manhattan[0m[38;5;12m (https://blog.twitter.com/engineering/en_us/a/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale.html) - real-time, multi-tenant distributed database for Twitter scale.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mScyllaDB[0m[38;5;12m (http://www.scylladb.com/) - column-oriented distributed datastore written in C++, totally compatible with Apache Cassandra.[39m
|
||||
|
||||
|
||||
[38;2;255;187;0m[4mKey-value Data Model[0m
|
||||
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAerospike[0m
|
||||
[38;5;12m (http://www.aerospike.com/) - NoSQL flash-optimized, in-memory. Open source and "Server code in 'C' (not Java or Erlang) precisely tuned to avoid context switching and memory copies."[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAerospike[0m[38;5;12m (http://www.aerospike.com/) - NoSQL flash-optimized, in-memory. Open source and "Server code in 'C' (not Java or Erlang) precisely tuned to avoid context switching and memory copies."[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAmazon DynamoDB[0m[38;5;12m (https://aws.amazon.com/dynamodb/) - distributed key/value store, implementation of Dynamo paper.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBadger[0m[38;5;12m (https://open.dgraph.io/post/badger/) - a fast, simple, efficient, and persistent key-value store written natively in Go.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBolt[0m[38;5;12m (https://github.com/boltdb/bolt) - an embedded key-value database for Go.[39m
|
||||
@@ -216,8 +208,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGhostDB[0m[38;5;12m (https://github.com/jakekgrog/GhostDB) - a distributed, in-memory, general purpose key-value data store that delivers microsecond performance at any scale.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGraviton[0m[38;5;12m (https://github.com/deroproject/graviton) - a simple, fast, versioned, authenticated, embeddable key-value store database in pure Go(lang).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGridDB[0m[38;5;12m (https://github.com/griddb/griddb_nosql) - suitable for sensor data stored in a timeseries.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHyperDex[0m
|
||||
[38;5;12m (https://github.com/rescrv/HyperDex) - a scalable, next generation key-value and document store with a wide array of features, including consistency, fault tolerance and high performance.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHyperDex[0m[38;5;12m (https://github.com/rescrv/HyperDex) - a scalable, next generation key-value and document store with a wide array of features, including consistency, fault tolerance and high performance.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIgnite[0m[38;5;12m (https://ignite.apache.org/index.html) - is an in-memory key-value data store providing full SQL-compliant data access that can optionally be backed by disk storage.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLinkedIn Krati[0m[38;5;12m (https://github.com/linkedin-sna/sna-page/tree/master/krati) - is a simple persistent data store with very low latency and high throughput.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLinkedin Voldemort[0m[38;5;12m (http://www.project-voldemort.com/voldemort/) - distributed key/value storage system.[39m
|
||||
@@ -228,8 +219,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSummitDB[0m[38;5;12m (https://github.com/tidwall/summitdb) - an in-memory, NoSQL key/value database, with disk persistance and using the Raft consensus algorithm.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTarantool[0m[38;5;12m (https://github.com/tarantool/tarantool) - an efficient NoSQL database and a Lua application server.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTiKV[0m[38;5;12m (https://github.com/pingcap/tikv) - a distributed key-value database powered by Rust and inspired by Google Spanner and HBase.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTile38[0m[38;5;12m [39m[38;5;12m(https://github.com/tidwall/tile38)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgeolocation[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mstore,[39m[38;5;12m [39m[38;5;12mspatial[39m[38;5;12m [39m[38;5;12mindex,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mrealtime[39m[38;5;12m [39m[38;5;12mgeofence,[39m[38;5;12m [39m[38;5;12msupporting[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mvariety[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mobject[39m[38;5;12m [39m[38;5;12mtypes[39m[38;5;12m [39m[38;5;12mincluding[39m[38;5;12m [39m[38;5;12mlatitude/longitude[39m[38;5;12m [39m[38;5;12mpoints,[39m[38;5;12m [39m
|
||||
[38;5;12mbounding[39m[38;5;12m [39m[38;5;12mboxes,[39m[38;5;12m [39m[38;5;12mXYZ[39m[38;5;12m [39m[38;5;12mtiles,[39m[38;5;12m [39m[38;5;12mGeohashes,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mGeoJSON[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTile38[0m[38;5;12m (https://github.com/tidwall/tile38) - a geolocation data store, spatial index, and realtime geofence, supporting a variety of object types including latitude/longitude points, bounding boxes, XYZ tiles, Geohashes, and GeoJSON[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTreodeDB[0m[38;5;12m (https://github.com/Treode/store) - key-value store that's replicated and sharded and provides atomic multirow writes.[39m
|
||||
|
||||
|
||||
@@ -239,16 +229,14 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Giraph[0m[38;5;12m (http://giraph.apache.org/) - implementation of Pregel, based on Hadoop.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Spark Bagel[0m[38;5;12m (http://spark.apache.org/docs/0.7.3/bagel-programming-guide.html) - implementation of Pregel, part of Spark.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mArangoDB[0m[38;5;12m (https://www.arangodb.com/) - multi model distributed database.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDGraph[0m[38;5;12m [39m[38;5;12m(https://github.com/dgraph-io/dgraph)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mscalable,[39m[38;5;12m [39m[38;5;12mdistributed,[39m[38;5;12m [39m[38;5;12mlow[39m[38;5;12m [39m[38;5;12mlatency,[39m[38;5;12m [39m[38;5;12mhigh[39m[38;5;12m [39m[38;5;12mthroughput[39m[38;5;12m [39m[38;5;12mgraph[39m[38;5;12m [39m[38;5;12mdatabase[39m[38;5;12m [39m[38;5;12maimed[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mproviding[39m[38;5;12m [39m[38;5;12mGoogle[39m[38;5;12m [39m[38;5;12mproduction[39m[38;5;12m [39m[38;5;12mlevel[39m[38;5;12m [39m[38;5;12mscale[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthroughput,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mlow[39m
|
||||
[38;5;12menough[39m[38;5;12m [39m[38;5;12mlatency[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mserving[39m[38;5;12m [39m[38;5;12mreal[39m[38;5;12m [39m[38;5;12mtime[39m[38;5;12m [39m[38;5;12muser[39m[38;5;12m [39m[38;5;12mqueries,[39m[38;5;12m [39m[38;5;12mover[39m[38;5;12m [39m[38;5;12mterabytes[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mstructured[39m[38;5;12m [39m[38;5;12mdata.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDGraph[0m[38;5;12m [39m[38;5;12m(https://github.com/dgraph-io/dgraph)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mscalable,[39m[38;5;12m [39m[38;5;12mdistributed,[39m[38;5;12m [39m[38;5;12mlow[39m[38;5;12m [39m[38;5;12mlatency,[39m[38;5;12m [39m[38;5;12mhigh[39m[38;5;12m [39m[38;5;12mthroughput[39m[38;5;12m [39m[38;5;12mgraph[39m[38;5;12m [39m[38;5;12mdatabase[39m[38;5;12m [39m[38;5;12maimed[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mproviding[39m[38;5;12m [39m[38;5;12mGoogle[39m[38;5;12m [39m[38;5;12mproduction[39m[38;5;12m [39m[38;5;12mlevel[39m[38;5;12m [39m[38;5;12mscale[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthroughput,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mlow[39m[38;5;12m [39m[38;5;12menough[39m[38;5;12m [39m[38;5;12mlatency[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mserving[39m[38;5;12m [39m[38;5;12mreal[39m[38;5;12m [39m[38;5;12mtime[39m[38;5;12m [39m[38;5;12muser[39m[38;5;12m [39m
|
||||
[38;5;12mqueries,[39m[38;5;12m [39m[38;5;12mover[39m[38;5;12m [39m[38;5;12mterabytes[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mstructured[39m[38;5;12m [39m[38;5;12mdata.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEliasDB[0m[38;5;12m (https://github.com/krotik/eliasdb) - a lightweight graph based database that does not require any third-party libraries.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook[0m[38;5;14m[1m [0m[38;5;14m[1mTAO[0m[38;5;12m [39m[38;5;12m(https://www.facebook.com/notes/facebook-engineering/tao-the-power-of-the-graph/10151525983993920)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mTAO[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mstore[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mwidely[39m[38;5;12m [39m[38;5;12mused[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mfacebook[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mstore[39m[38;5;12m [39m
|
||||
[38;5;12mand[39m[38;5;12m [39m[38;5;12mserve[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12msocial[39m[38;5;12m [39m[38;5;12mgraph.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook TAO[0m[38;5;12m (https://www.facebook.com/notes/facebook-engineering/tao-the-power-of-the-graph/10151525983993920) - TAO is the distributed data store that is widely used at facebook to store and serve the social graph.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGCHQ Gaffer[0m[38;5;12m (https://github.com/gchq/Gaffer) - Gaffer by GCHQ is a framework that makes it easy to store large-scale graphs in which the nodes and edges have statistics.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGoogle Cayley[0m[38;5;12m (https://github.com/cayleygraph/cayley) - open-source graph database.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGoogle Pregel[0m[38;5;12m (http://kowshik.github.io/JPregel/pregel_paper.pdf) - graph processing framework.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGraphLab PowerGraph[0m
|
||||
[38;5;12m (https://turi.com/products/create/docs/) - a core C++ GraphLab API and a collection of high-performance machine learning and data mining toolkits built on top of the GraphLab API.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGraphLab PowerGraph[0m[38;5;12m (https://turi.com/products/create/docs/) - a core C++ GraphLab API and a collection of high-performance machine learning and data mining toolkits built on top of the GraphLab API.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGraphX[0m[38;5;12m (https://amplab.cs.berkeley.edu/publication/graphx-grades/) - resilient Distributed Graph System on Spark.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGremlin[0m[38;5;12m (https://github.com/tinkerpop/gremlin) - graph traversal Language.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mInfovore[0m[38;5;12m (https://github.com/paulhoule/infovore) - RDF-centric Map/Reduce framework.[39m
|
||||
@@ -257,8 +245,7 @@
|
||||
[38;5;12m with multiple options for storage backends (Bigtable, HBase, Cassandra, etc.)[39m
|
||||
[38;5;12m and indexing backends (Elasticsearch, Solr, Lucene).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMapGraph[0m[38;5;12m (https://www.blazegraph.com/mapgraph-technology/) - Massively Parallel Graph processing on GPUs.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMicrosoft[0m[38;5;14m[1m [0m[38;5;14m[1mGraph[0m[38;5;14m[1m [0m[38;5;14m[1mEngine[0m[38;5;12m [39m[38;5;12m(https://github.com/Microsoft/GraphEngine)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12min-memory[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mengine,[39m[38;5;12m [39m[38;5;12munderpinned[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mstrongly-typed[39m[38;5;12m [39m[38;5;12min-memory[39m[38;5;12m [39m[38;5;12mkey-value[39m[38;5;12m [39m[38;5;12mstore[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgeneral[39m[38;5;12m [39m
|
||||
[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12mcomputation[39m[38;5;12m [39m[38;5;12mengine.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMicrosoft Graph Engine[0m[38;5;12m (https://github.com/Microsoft/GraphEngine) - a distributed in-memory data processing engine, underpinned by a strongly-typed in-memory key-value store and a general distributed computation engine.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeo4j[0m[38;5;12m (https://neo4j.com/) - graph database written entirely in Java.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOrientDB[0m[38;5;12m (http://orientdb.com/) - document and graph database.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPhoebus[0m[38;5;12m (https://github.com/xslogic/phoebus) - framework for large scale graph processing.[39m
|
||||
@@ -307,8 +294,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMap-D[0m[38;5;12m (https://www.mapd.com/) - GPU in-memory database, big data analysis and visualization platform.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMemSQL[0m[38;5;12m (http://www.memsql.com/) - in memory SQL database witho optimized columnar storage on flash.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNuoDB[0m[38;5;12m (http://www.nuodb.com/) - SQL/ACID compliant distributed database.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOracle TimesTen in-Memory Database[0m
|
||||
[38;5;12m (http://www.oracle.com/technetwork/database/database-technologies/timesten/overview/index.html) - in-memory, relational database management system with persistence and recoverability.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOracle TimesTen in-Memory Database[0m[38;5;12m (http://www.oracle.com/technetwork/database/database-technologies/timesten/overview/index.html) - in-memory, relational database management system with persistence and recoverability.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPivotal GemFire XD[0m[38;5;12m (http://gemfirexd.docs.pivotal.io/latest/) - Low-latency, in-memory, distributed SQL data store. Provides SQL interface to in-memory table data, persistable in HDFS.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSAP HANA[0m[38;5;12m (https://hana.sap.com/abouthana.html) - is an in-memory, column-oriented, relational database management system.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSenseiDB[0m[38;5;12m (http://senseidb.github.io/sensei/) - distributed, realtime, semi-structured database.[39m
|
||||
@@ -320,8 +306,7 @@
|
||||
|
||||
[38;2;255;187;0m[4mTime-Series Databases[0m
|
||||
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAxibase Time Series Database[0m
|
||||
[38;5;12m (http://axibase.com/products/axibase-time-series-database/) - Integrated time series database on top of HBase with built-in visualization, rule-engine and SQL support.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAxibase Time Series Database[0m[38;5;12m (http://axibase.com/products/axibase-time-series-database/) - Integrated time series database on top of HBase with built-in visualization, rule-engine and SQL support.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mChronix[0m[38;5;12m (http://chronix.io/) - a time series storage built to store time series highly compressed and for fast access times.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCube[0m[38;5;12m (http://square.github.io/cube/) - uses MongoDB to store time series data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHeroic[0m[38;5;12m (https://spotify.github.io/heroic/#!/index) - is a scalable time series database based on Cassandra and Elasticsearch.[39m
|
||||
@@ -338,17 +323,14 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTrailDB[0m[38;5;12m (http://traildb.io/) - an efficient tool for storing and querying series of events.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDruid[0m[38;5;12m (https://github.com/druid-io/druid/) Column oriented distributed data store ideal for powering interactive applications[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRiak-TS[0m[38;5;12m (http://basho.com/products/riak-ts/) Riak TS is the only enterprise-grade NoSQL time series database optimized specifically for IoT and Time Series data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAkumuli[0m[38;5;12m [39m[38;5;12m(https://github.com/akumuli/Akumuli)[39m[38;5;12m [39m[38;5;12mAkumuli[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mnumeric[39m[38;5;12m [39m[38;5;12mtime-series[39m[38;5;12m [39m[38;5;12mdatabase.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mused[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcapture,[39m[38;5;12m [39m[38;5;12mstore[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mprocess[39m[38;5;12m [39m[38;5;12mtime-series[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mreal-time.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mword[39m[38;5;12m [39m[38;5;12m"akumuli"[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m
|
||||
[38;5;12mtranslated[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mesperanto[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12m"accumulate".[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAkumuli[0m[38;5;12m (https://github.com/akumuli/Akumuli) Akumuli is a numeric time-series database. It can be used to capture, store and process time-series data in real-time. The word "akumuli" can be translated from esperanto as "accumulate".[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRhombus[0m[38;5;12m (https://github.com/Pardot/Rhombus) A time-series object store for Cassandra that handles all the complexity of building wide row indexes.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDalmatiner DB[0m[38;5;12m (https://github.com/dalmatinerdb/dalmatinerdb) Fast distributed metrics database[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBlueflood[0m[38;5;12m (https://github.com/rackerlabs/blueflood) A distributed system designed to ingest and process time series data[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTimely[0m[38;5;12m (https://github.com/NationalSecurityAgency/timely) Timely is a time series database application that provides secure access to time series data based on Accumulo and Grafana.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSiriDB[0m[38;5;12m (https://github.com/transceptor-technology/siridb-server) Highly-scalable, robust and fast, open source time series database with cluster functionality.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mThanos[0m[38;5;12m [39m[38;5;12m(https://github.com/improbable-eng/thanos)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThanos[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mset[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mcomponents[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcreate[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mhighly[39m[38;5;12m [39m[38;5;12mavailable[39m[38;5;12m [39m[38;5;12mmetric[39m[38;5;12m [39m[38;5;12msystem[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12munlimited[39m[38;5;12m [39m[38;5;12mstorage[39m[38;5;12m [39m[38;5;12mcapacity[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mmultiple[39m[38;5;12m [39m[38;5;12m(existing)[39m[38;5;12m [39m
|
||||
[38;5;12mPrometheus[39m[38;5;12m [39m[38;5;12mdeployments.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVictoriaMetrics[0m
|
||||
[38;5;12m (https://github.com/VictoriaMetrics/VictoriaMetrics) - fast, scalable and resource-effective open-source TSDB compatible with Prometheus. Single-node and cluster versions included[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mThanos[0m[38;5;12m (https://github.com/improbable-eng/thanos) - Thanos is a set of components to create a highly available metric system with unlimited storage capacity using multiple (existing) Prometheus deployments.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVictoriaMetrics[0m[38;5;12m (https://github.com/VictoriaMetrics/VictoriaMetrics) - fast, scalable and resource-effective open-source TSDB compatible with Prometheus. Single-node and cluster versions included[39m
|
||||
|
||||
[38;2;255;187;0m[4mSQL-like processing[0m
|
||||
|
||||
@@ -366,8 +348,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook PrestoDB[0m[38;5;12m (https://prestodb.io/) - distributed SQL query engine.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGoogle BigQuery[0m[38;5;12m (https://research.google.com/pubs/pub36632.html) - framework for interactive analysis, implementation of Dremel.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMaterialize[0m[38;5;12m (https://github.com/materializeinc/materialize) - is a streaming database for real-time applications using SQL for queries and supporting a large fraction of PostgreSQL.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mInvantive[0m[38;5;14m[1m [0m[38;5;14m[1mSQL[0m[38;5;12m [39m[38;5;12m(https://documentation.invantive.com/2017R2/invantive-sql-grammar/invantive-sql-grammar-17.30.html)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mSQL[39m[38;5;12m [39m[38;5;12mengine[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12monline[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mon-premise[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mintegrated[39m[38;5;12m [39m[38;5;12mlocal[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m
|
||||
[38;5;12mreplication[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12m70+[39m[38;5;12m [39m[38;5;12mconnectors.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mInvantive SQL[0m[38;5;12m (https://documentation.invantive.com/2017R2/invantive-sql-grammar/invantive-sql-grammar-17.30.html) - SQL engine for online and on-premise use with integrated local data replication and 70+ connectors.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPipelineDB[0m[38;5;12m (https://www.pipelinedb.com/) - an open-source relational database that runs SQL queries continuously on streams, incrementally storing results in tables.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPivotal HDB[0m[38;5;12m (https://pivotal.io/pivotal-hdb) - SQL-like data warehouse system for Hadoop.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRainstorDB[0m[38;5;12m (http://rainstor.com/products/rainstor-database/) - database for storing petabyte-scale volumes of structured and semi-structured data.[39m
|
||||
@@ -393,8 +374,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook Scribe[0m[38;5;12m (https://github.com/facebookarchive/scribe) - streamed log data aggregator.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFluentd[0m[38;5;12m (http://www.fluentd.org) - tool to collect events and logs.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGazette[0m[38;5;12m (https://github.com/gazette/core) - Distributed streaming infrastructure built on cloud storage which makes it easy to mix and match batch and streaming paradigms.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGoogle[0m[38;5;14m[1m [0m[38;5;14m[1mPhoton[0m[38;5;12m [39m[38;5;12m(https://research.google.com/pubs/pub41318.html)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mgeographically[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12msystem[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mjoining[39m[38;5;12m [39m[38;5;12mmultiple[39m[38;5;12m [39m[38;5;12mcontinuously[39m[38;5;12m [39m[38;5;12mflowing[39m[38;5;12m [39m[38;5;12mstreams[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mreal-time[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mhigh[39m[38;5;12m [39m
|
||||
[38;5;12mscalability[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mlow[39m[38;5;12m [39m[38;5;12mlatency.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGoogle Photon[0m[38;5;12m (https://research.google.com/pubs/pub41318.html) - geographically distributed system for joining multiple continuously flowing streams of data in real-time with high scalability and low latency.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHeka[0m[38;5;12m (https://github.com/mozilla-services/heka) - open source stream processing software system.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHIHO[0m[38;5;12m (https://github.com/sonalgoyal/hiho) - framework for connecting disparate data sources with Hadoop.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKestrel[0m[38;5;12m (https://github.com/papertrail/kestrel) - distributed message queue system.[39m
|
||||
@@ -409,8 +389,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStreamSets Data Collector[0m[38;5;12m (https://github.com/streamsets/datacollector) - continuous big data ingest infrastructure with a simple to use IDE.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAlooma[0m[38;5;12m (https://www.alooma.com/integrations/mysql) - data pipeline as a service enabling moving data sources such as MySQL into data warehouses.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRudderStack[0m[38;5;12m (https://github.com/rudderlabs/rudder-server) - an open source customer data infrastructure (segment, mParticle alternative) written in go.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mZilla[0m[38;5;12m [39m[38;5;12m(https://github.com/aklivity/zilla)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAn[39m[38;5;12m [39m[38;5;12mAPI[39m[38;5;12m [39m[38;5;12mgateway[39m[38;5;12m [39m[38;5;12mbuilt[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mevent-driven[39m[38;5;12m [39m[38;5;12marchitectures[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mstreaming[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12msupports[39m[38;5;12m [39m[38;5;12mstandard[39m[38;5;12m [39m[38;5;12mprotocols[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mHTTP,[39m[38;5;12m [39m[38;5;12mSSE,[39m[38;5;12m [39m[38;5;12mgRPC,[39m[38;5;12m [39m[38;5;12mMQTT[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mnative[39m[38;5;12m [39m
|
||||
[38;5;12mKafka[39m[38;5;12m [39m[38;5;12mprotocol.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mZilla[0m[38;5;12m (https://github.com/aklivity/zilla) - An API gateway built for event-driven architectures and streaming that supports standard protocols such as HTTP, SSE, gRPC, MQTT and the native Kafka protocol.[39m
|
||||
|
||||
[38;2;255;187;0m[4mService Programming[0m
|
||||
|
||||
@@ -426,8 +405,8 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMara[0m[38;5;12m (https://github.com/mara/data-integration) - A lightweight opinionated ETL framework, halfway between plain scripts and Apache Airflow[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpenMPI[0m[38;5;12m (https://www.open-mpi.org/) - message passing framework.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSerf[0m[38;5;12m (https://www.serf.io/) - decentralized solution for service discovery and orchestration.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpotify[0m[38;5;14m[1m [0m[38;5;14m[1mLuigi[0m[38;5;12m [39m[38;5;12m(https://github.com/spotify/luigi)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mpackage[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mbuilding[39m[38;5;12m [39m[38;5;12mcomplex[39m[38;5;12m [39m[38;5;12mpipelines[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mbatch[39m[38;5;12m [39m[38;5;12mjobs.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mhandles[39m[38;5;12m [39m[38;5;12mdependency[39m[38;5;12m [39m[38;5;12mresolution,[39m[38;5;12m [39m[38;5;12mworkflow[39m[38;5;12m [39m[38;5;12mmanagement,[39m[38;5;12m [39m[38;5;12mvisualization,[39m[38;5;12m [39m
|
||||
[38;5;12mhandling[39m[38;5;12m [39m[38;5;12mfailures,[39m[38;5;12m [39m[38;5;12mcommand[39m[38;5;12m [39m[38;5;12mline[39m[38;5;12m [39m[38;5;12mintegration,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmuch[39m[38;5;12m [39m[38;5;12mmore.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpotify Luigi[0m
|
||||
[38;5;12m (https://github.com/spotify/luigi) - a Python package for building complex pipelines of batch jobs. It handles dependency resolution, workflow management, visualization, handling failures, command line integration, and much more.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpring XD[0m[38;5;12m (https://github.com/spring-projects/spring-xd) - distributed and extensible system for data ingestion, real time analytics, batch processing, and data export.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTwitter Elephant Bird[0m[38;5;12m (https://github.com/twitter/elephant-bird) - libraries for working with LZOP-compressed data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTwitter Finagle[0m[38;5;12m (https://twitter.github.io/finagle/) - asynchronous network stack for the JVM.[39m
|
||||
@@ -455,20 +434,18 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mConcurrent Pattern[0m[38;5;12m (http://www.cascading.org/projects/pattern/) - machine learning library for Cascading.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mconvnetjs[0m[38;5;12m (https://github.com/karpathy/convnetjs) - Deep Learning in Javascript. Train Convolutional Neural Networks (or ordinary ones) in your browser.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDataVec[0m[38;5;12m (https://github.com/deeplearning4j/DataVec) - A vectorization and data preprocessing library for deep learning in Java and Scala. Part of the Deeplearning4j ecosystem. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeeplearning4j[0m[38;5;12m [39m[38;5;12m(https://github.com/deeplearning4j)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mFast,[39m[38;5;12m [39m[38;5;12mopen[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mJVM[39m[38;5;12m [39m[38;5;12m(Java,[39m[38;5;12m [39m[38;5;12mScala,[39m[38;5;12m [39m[38;5;12mClojure).[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetwork[39m[38;5;12m [39m[38;5;12mconfiguration[39m[38;5;12m [39m[38;5;12mlayer[39m[38;5;12m [39m[38;5;12mpowered[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mC++[39m[38;5;12m [39m[38;5;12mlibrary.[39m[38;5;12m [39m[38;5;12mUses[39m[38;5;12m [39m[38;5;12mSpark[39m[38;5;12m [39m
|
||||
[38;5;12mand[39m[38;5;12m [39m[38;5;12mHadoop[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mtrain[39m[38;5;12m [39m[38;5;12mnets[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mmultiple[39m[38;5;12m [39m[38;5;12mGPUs[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mCPUs.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeeplearning4j[0m
|
||||
[38;5;12m (https://github.com/deeplearning4j) - Fast, open deep learning for the JVM (Java, Scala, Clojure). A neural network configuration layer powered by a C++ library. Uses Spark and Hadoop to train nets on multiple GPUs and CPUs.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDecider[0m[38;5;12m (https://github.com/danielsdeleo/Decider) - Flexible and Extensible Machine Learning in Ruby.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mENCOG[0m[38;5;12m (http://www.heatonresearch.com/encog/) - machine learning framework that supports a variety of advanced algorithms, as well as support classes to normalize and process data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1metcML[0m[38;5;12m (http://www.etcml.com/) - text classification with machine learning.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEtsy Conjecture[0m[38;5;12m (https://github.com/etsy/Conjecture) - scalable Machine Learning in Scalding.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFeast[0m[38;5;12m [39m[38;5;12m(https://github.com/gojek/feast)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12mstore[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mmanagement,[39m[38;5;12m [39m[38;5;12mdiscovery,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12maccess[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mfeatures.[39m[38;5;12m [39m[38;5;12mFeast[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mconsistent[39m[38;5;12m [39m[38;5;12mview[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mboth[39m[38;5;12m [39m
|
||||
[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mserving.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFeast[0m[38;5;12m (https://github.com/gojek/feast) - A feature store for the management, discovery, and access of machine learning features. Feast provides a consistent view of feature data for both model training and model serving.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGraphLab Create[0m[38;5;12m (https://dato.com/products/create/) - A machine learning platform in Python with a broad collection of ML toolkits, data engineering, and deployment tools.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mH2O[0m[38;5;12m (https://github.com/h2oai/h2o-3/) - statistical, machine learning and math runtime with Hadoop. R and Python.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKarate Club[0m[38;5;12m (https://github.com/benedekrozemberczki/karateclub) - An unsupervised machine learning library for graph structured data. Python[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKeras[0m[38;5;12m (https://github.com/fchollet/keras) - An intuitive neural net API inspired by Torch that runs atop Theano and Tensorflow.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLambdo[0m
|
||||
[38;5;12m (https://github.com/johnsonc/lambdo) - Lambdo is a workflow engine which significantly simplifies the analysis process by unifying feature engineering and machine learning operations.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLambdo[0m[38;5;12m (https://github.com/johnsonc/lambdo) - Lambdo is a workflow engine which significantly simplifies the analysis process by unifying feature engineering and machine learning operations.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLittle Ball of Fur[0m[38;5;12m (https://github.com/benedekrozemberczki/littleballoffur) - A subsampling library for graph structured data. Python[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMahout[0m[38;5;12m (http://mahout.apache.org/) - An Apache-backed machine learning library for Hadoop.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMLbase[0m[38;5;12m (http://www.mlbase.org/) - distributed machine learning libraries for the BDAS stack.[39m
|
||||
@@ -477,12 +454,10 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMOA[0m[38;5;12m (http://moa.cms.waikato.ac.nz) - MOA performs big data stream mining in real time, and large scale machine learning.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMonkeyLearn[0m[38;5;12m (https://monkeylearn.com/) - Text mining made easy. Extract and classify data from text.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mND4J[0m[38;5;12m (https://github.com/deeplearning4j/nd4j) - A matrix library for the JVM. Numpy for Java. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnupic[0m[38;5;12m [39m[38;5;12m(https://github.com/numenta/nupic)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mNumenta[39m[38;5;12m [39m[38;5;12mPlatform[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mIntelligent[39m[38;5;12m [39m[38;5;12mComputing:[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mbrain-inspired[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mintelligence[39m[38;5;12m [39m[38;5;12mplatform,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mbiologically[39m[38;5;12m [39m[38;5;12maccurate[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetwork[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m
|
||||
[38;5;12mcortical[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12malgorithms.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnupic[0m[38;5;12m (https://github.com/numenta/nupic) - Numenta Platform for Intelligent Computing: a brain-inspired machine intelligence platform, and biologically accurate neural network based on cortical learning algorithms.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPredictionIO[0m[38;5;12m (http://predictionio.incubator.apache.org/index.html) - machine learning server buit on Hadoop, Mahout and Cascading.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyTorch Geometric Temporal[0m[38;5;12m (https://github.com/benedekrozemberczki/pytorch_geometric_temporal) - a temporal extension library for PyTorch Geometric .[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRL4J[0m[38;5;12m [39m[38;5;12m(https://github.com/deeplearning4j/rl4j)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mReinforcement[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mJava[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mScala.[39m[38;5;12m [39m[38;5;12mIncludes[39m[38;5;12m [39m[38;5;12mDeep-Q[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mA3C[39m[38;5;12m [39m[38;5;12malgorithms,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mintegrates[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mOpen[39m[38;5;12m [39m[38;5;12mAI's[39m[38;5;12m [39m[38;5;12mGym.[39m[38;5;12m [39m[38;5;12mRuns[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m
|
||||
[38;5;12mDeeplearning4j[39m[38;5;12m [39m[38;5;12mecosystem.[39m[38;5;12m [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRL4J[0m[38;5;12m (https://github.com/deeplearning4j/rl4j) - Reinforcement learning for Java and Scala. Includes Deep-Q learning and A3C algorithms, and integrates with Open AI's Gym. Runs in the Deeplearning4j ecosystem. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSAMOA[0m[38;5;12m (http://samoa.incubator.apache.org/) - distributed streaming machine learning framework.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscikit-learn[0m[38;5;12m (https://github.com/scikit-learn/scikit-learn) - scikit-learn: machine learning in Python.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mShapley[0m[38;5;12m (https://github.com/benedekrozemberczki/shapley) - A data-driven framework to quantify the value of classifiers in a machine learning ensemble. [39m
|
||||
@@ -537,14 +512,12 @@
|
||||
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m411[0m[38;5;12m (https://github.com/etsy/411) - an web application for alert management resulting from scheduled searches into Elasticsearch.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAdobe spindle[0m[38;5;12m (https://github.com/adobe-research/spindle) - Next-generation web analytics processing with Scala, Spark, and Parquet.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Metron[0m
|
||||
[38;5;12m (http://metron.apache.org/) - a platform that integrates a variety of open source big data technologies in order to offer a centralized tool for security monitoring and analysis.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Metron[0m[38;5;12m (http://metron.apache.org/) - a platform that integrates a variety of open source big data technologies in order to offer a centralized tool for security monitoring and analysis.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Nutch[0m[38;5;12m (http://nutch.apache.org/) - open source web crawler.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache OODT[0m[38;5;12m (http://oodt.apache.org/) - capturing, processing and sharing of data for NASA's scientific archives.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Tika[0m[38;5;12m (https://tika.apache.org/) - content analysis toolkit.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mArgus[0m[38;5;12m (https://github.com/salesforce/Argus) - Time series monitoring and alerting platform.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAthenaX[0m
|
||||
[38;5;12m (https://github.com/uber/AthenaX) - a streaming analytics platform that enables users to run production-quality, large scale streaming analytics using Structured Query Language (SQL).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAthenaX[0m[38;5;12m (https://github.com/uber/AthenaX) - a streaming analytics platform that enables users to run production-quality, large scale streaming analytics using Structured Query Language (SQL).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAtlas[0m[38;5;12m (https://github.com/Netflix/atlas) - a backend for managing dimensional time series data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCountly[0m[38;5;12m (https://count.ly/) - open source mobile and web analytics platform, based on Node.js & MongoDB.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDomino[0m[38;5;12m (https://www.dominodatalab.com/) - Run, scale, share, and deploy models — without any infrastructure.[39m
|
||||
@@ -563,8 +536,8 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPivotalR[0m[38;5;12m (https://github.com/pivotalsoftware/PivotalR) - R on Pivotal HD / HAWQ and PostgreSQL.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRakam[0m[38;5;12m (https://github.com/rakam-io/rakam) - open-source real-time custom analytics platform powered by Postgresql, Kinesis and PrestoDB. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mQubole[0m[38;5;12m (https://www.qubole.com/) - auto-scaling Hadoop cluster, built-in data connectors.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSnappyData[0m[38;5;12m [39m[38;5;12m(https://github.com/SnappyDataInc/snappydata)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12min-memory[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mstore[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mreal-time[39m[38;5;12m [39m[38;5;12moperational[39m[38;5;12m [39m[38;5;12manalytics,[39m[38;5;12m [39m[38;5;12mdelivering[39m[38;5;12m [39m[38;5;12mstream[39m[38;5;12m [39m[38;5;12manalytics,[39m[38;5;12m [39m[38;5;12mOLTP[39m[38;5;12m [39m[38;5;12m(online[39m[38;5;12m [39m[38;5;12mtransaction[39m[38;5;12m [39m
|
||||
[38;5;12mprocessing)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mOLAP[39m[38;5;12m [39m[38;5;12m(online[39m[38;5;12m [39m[38;5;12manalytical[39m[38;5;12m [39m[38;5;12mprocessing)[39m[38;5;12m [39m[38;5;12mbuilt[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mSpark[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msingle[39m[38;5;12m [39m[38;5;12mintegrated[39m[38;5;12m [39m[38;5;12mcluster.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSnappyData[0m[38;5;12m [39m[38;5;12m(https://github.com/SnappyDataInc/snappydata)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12min-memory[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mstore[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mreal-time[39m[38;5;12m [39m[38;5;12moperational[39m[38;5;12m [39m[38;5;12manalytics,[39m[38;5;12m [39m[38;5;12mdelivering[39m[38;5;12m [39m[38;5;12mstream[39m[38;5;12m [39m[38;5;12manalytics,[39m[38;5;12m [39m[38;5;12mOLTP[39m[38;5;12m [39m[38;5;12m(online[39m[38;5;12m [39m[38;5;12mtransaction[39m[38;5;12m [39m[38;5;12mprocessing)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mOLAP[39m[38;5;12m [39m[38;5;12m(online[39m[38;5;12m [39m[38;5;12manalytical[39m[38;5;12m [39m
|
||||
[38;5;12mprocessing)[39m[38;5;12m [39m[38;5;12mbuilt[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mSpark[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msingle[39m[38;5;12m [39m[38;5;12mintegrated[39m[38;5;12m [39m[38;5;12mcluster.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSnowplow[0m[38;5;12m (https://github.com/snowplow/snowplow) - enterprise-strength web and event analytics, powered by Hadoop, Kinesis, Redshift and Postgres.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSparkR[0m[38;5;12m (http://amplab-extras.github.io/SparkR-pkg/) - R frontend for Spark.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSplunk[0m[38;5;12m (https://www.splunk.com/) - analyzer for machine-generated data.[39m
|
||||
@@ -587,16 +560,14 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLinkedIn Cleo[0m[38;5;12m (https://github.com/linkedin/cleo) - is a flexible software library for enabling rapid development of partial, out-of-order and real-time typeahead search.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLinkedIn Galene[0m[38;5;12m (https://engineering.linkedin.com/search/did-you-mean-galene) - search architecture at LinkedIn.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLinkedIn Zoie[0m[38;5;12m (https://github.com/senseidb/zoie) - is a realtime search/indexing system written in Java.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMG4J[0m[38;5;12m [39m[38;5;12m(http://mg4j.di.unimi.it/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mMG4J[39m[38;5;12m [39m[38;5;12m(Managing[39m[38;5;12m [39m[38;5;12mGigabytes[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mJava)[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mfull-text[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mengine[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mdocument[39m[38;5;12m [39m[38;5;12mcollections[39m[38;5;12m [39m[38;5;12mwritten[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mJava.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mhighly[39m[38;5;12m [39m[38;5;12mcustomisable,[39m[38;5;12m [39m[38;5;12mhigh-performance[39m
|
||||
[38;5;12mand[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12mstate-of-the-art[39m[38;5;12m [39m[38;5;12mfeatures[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mnew[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12malgorithms.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMG4J[0m[38;5;12m [39m[38;5;12m(http://mg4j.di.unimi.it/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mMG4J[39m[38;5;12m [39m[38;5;12m(Managing[39m[38;5;12m [39m[38;5;12mGigabytes[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mJava)[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mfull-text[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mengine[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mdocument[39m[38;5;12m [39m[38;5;12mcollections[39m[38;5;12m [39m[38;5;12mwritten[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mJava.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mhighly[39m[38;5;12m [39m[38;5;12mcustomisable,[39m[38;5;12m [39m[38;5;12mhigh-performance[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12mstate-of-the-art[39m[38;5;12m [39m[38;5;12mfeatures[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||||
[38;5;12mnew[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12malgorithms.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSphinx Search Server[0m[38;5;12m (http://sphinxsearch.com/) - fulltext search engine.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVespa[0m[38;5;12m [39m[38;5;12m(http://vespa.ai/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12mengine[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mlow-latency[39m[38;5;12m [39m[38;5;12mcomputation[39m[38;5;12m [39m[38;5;12mover[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12msets.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mstores[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mindexes[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mqueries,[39m[38;5;12m [39m[38;5;12mselection[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mover[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m
|
||||
[38;5;12mperformed[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mserving[39m[38;5;12m [39m[38;5;12mtime.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook[0m[38;5;14m[1m [0m[38;5;14m[1mFaiss[0m[38;5;12m [39m[38;5;12m(https://github.com/facebookresearch/faiss)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mefficient[39m[38;5;12m [39m[38;5;12msimilarity[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mclustering[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdense[39m[38;5;12m [39m[38;5;12mvectors.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mcontains[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12msets[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m
|
||||
[38;5;12mvectors[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12many[39m[38;5;12m [39m[38;5;12msize,[39m[38;5;12m [39m[38;5;12mup[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mones[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mpossibly[39m[38;5;12m [39m[38;5;12mdo[39m[38;5;12m [39m[38;5;12mnot[39m[38;5;12m [39m[38;5;12mfit[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mRAM.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mcontains[39m[38;5;12m [39m[38;5;12msupporting[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mevaluation[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mparameter[39m[38;5;12m [39m[38;5;12mtuning.[39m[38;5;12m [39m[38;5;12mFaiss[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mwritten[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mC++[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mcomplete[39m[38;5;12m [39m[38;5;12mwrappers[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m
|
||||
[38;5;12mPython/numpy.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAnnoy[0m[38;5;12m [39m[38;5;12m(https://github.com/spotify/annoy)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mC++[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mbindings[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mpoints[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mspace[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mclose[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgiven[39m[38;5;12m [39m[38;5;12mquery[39m[38;5;12m [39m[38;5;12mpoint.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mcreates[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mread-only[39m[38;5;12m [39m
|
||||
[38;5;12mfile-based[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mstructures[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mmmapped[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12mmemory[39m[38;5;12m [39m[38;5;12mso[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mprocesses[39m[38;5;12m [39m[38;5;12mmay[39m[38;5;12m [39m[38;5;12mshare[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12msame[39m[38;5;12m [39m[38;5;12mdata.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVespa[0m[38;5;12m (http://vespa.ai/) - is an engine for low-latency computation over large data sets. It stores and indexes your data such that queries, selection and processing over the data can be performed at serving time.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook[0m[38;5;14m[1m [0m[38;5;14m[1mFaiss[0m[38;5;12m [39m[38;5;12m(https://github.com/facebookresearch/faiss)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mefficient[39m[38;5;12m [39m[38;5;12msimilarity[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mclustering[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdense[39m[38;5;12m [39m[38;5;12mvectors.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mcontains[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12msets[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mvectors[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12many[39m[38;5;12m [39m[38;5;12msize,[39m[38;5;12m [39m[38;5;12mup[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mones[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mpossibly[39m[38;5;12m [39m[38;5;12mdo[39m[38;5;12m [39m
|
||||
[38;5;12mnot[39m[38;5;12m [39m[38;5;12mfit[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mRAM.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mcontains[39m[38;5;12m [39m[38;5;12msupporting[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mevaluation[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mparameter[39m[38;5;12m [39m[38;5;12mtuning.[39m[38;5;12m [39m[38;5;12mFaiss[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mwritten[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mC++[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mcomplete[39m[38;5;12m [39m[38;5;12mwrappers[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mPython/numpy.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAnnoy[0m[38;5;12m [39m[38;5;12m(https://github.com/spotify/annoy)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mC++[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mbindings[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mpoints[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mspace[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mclose[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgiven[39m[38;5;12m [39m[38;5;12mquery[39m[38;5;12m [39m[38;5;12mpoint.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mcreates[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mread-only[39m[38;5;12m [39m[38;5;12mfile-based[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mstructures[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mmmapped[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m
|
||||
[38;5;12mmemory[39m[38;5;12m [39m[38;5;12mso[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mprocesses[39m[38;5;12m [39m[38;5;12mmay[39m[38;5;12m [39m[38;5;12mshare[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12msame[39m[38;5;12m [39m[38;5;12mdata.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mWeaviate[0m[38;5;12m (https://github.com/semi-technologies/weaviate) - Weaviate is a GraphQL-based semantic search engine with build-in (word) embeddings.[39m
|
||||
|
||||
[38;2;255;187;0m[4mMySQL forks and evolutions[0m
|
||||
@@ -620,8 +591,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStado[0m[38;5;12m (http://www.stormdb.com/community/stado) - open source MPP database system solely targeted at data warehousing and data mart applications.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mYahoo Everest[0m[38;5;12m (https://www.scribd.com/doc/3159239/70-Everest-PGCon-RT) - multi-peta-byte database / MPP derived by PostgreSQL.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTimescaleDB[0m[38;5;12m (http://www.timescale.com/) - An open-source time-series database optimized for fast ingest and complex queries[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPipelineDB[0m
|
||||
[38;5;12m (https://www.pipelinedb.com/) - The Streaming SQL Database. An open-source relational database that runs SQL queries continuously on streams, incrementally storing results in tables[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPipelineDB[0m[38;5;12m (https://www.pipelinedb.com/) - The Streaming SQL Database. An open-source relational database that runs SQL queries continuously on streams, incrementally storing results in tables[39m
|
||||
|
||||
[38;2;255;187;0m[4mMemcached forks and evolutions[0m
|
||||
|
||||
@@ -674,8 +644,8 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mArbor[0m[38;5;12m (https://github.com/samizdatco/arbor) - graph visualization library using web workers and jQuery.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBanana[0m[38;5;12m (https://github.com/LucidWorks/banana) - visualize logs and time-stamped data stored in Solr. Port of Kibana.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBloomery[0m[38;5;12m (https://github.com/ufukomer/bloomery) - Web UI for Impala.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBokeh[0m[38;5;12m [39m[38;5;12m(http://bokeh.pydata.org/en/latest/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mpowerful[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12minteractive[39m[38;5;12m [39m[38;5;12mvisualization[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mtargets[39m[38;5;12m [39m[38;5;12mmodern[39m[38;5;12m [39m[38;5;12mweb[39m[38;5;12m [39m[38;5;12mbrowsers[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mpresentation,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mgoal[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mproviding[39m[38;5;12m [39m[38;5;12melegant,[39m[38;5;12m [39m
|
||||
[38;5;12mconcise[39m[38;5;12m [39m[38;5;12mconstruction[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mnovel[39m[38;5;12m [39m[38;5;12mgraphics[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mstyle[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mD3.js,[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mdelivering[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mcapability[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mhigh-performance[39m[38;5;12m [39m[38;5;12minteractivity[39m[38;5;12m [39m[38;5;12mover[39m[38;5;12m [39m[38;5;12mvery[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mstreaming[39m[38;5;12m [39m[38;5;12mdatasets.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBokeh[0m[38;5;12m [39m[38;5;12m(http://bokeh.pydata.org/en/latest/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mpowerful[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12minteractive[39m[38;5;12m [39m[38;5;12mvisualization[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mtargets[39m[38;5;12m [39m[38;5;12mmodern[39m[38;5;12m [39m[38;5;12mweb[39m[38;5;12m [39m[38;5;12mbrowsers[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mpresentation,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mgoal[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mproviding[39m[38;5;12m [39m[38;5;12melegant,[39m[38;5;12m [39m[38;5;12mconcise[39m[38;5;12m [39m[38;5;12mconstruction[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mnovel[39m[38;5;12m [39m[38;5;12mgraphics[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m
|
||||
[38;5;12mstyle[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mD3.js,[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mdelivering[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mcapability[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mhigh-performance[39m[38;5;12m [39m[38;5;12minteractivity[39m[38;5;12m [39m[38;5;12mover[39m[38;5;12m [39m[38;5;12mvery[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mstreaming[39m[38;5;12m [39m[38;5;12mdatasets.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mC3[0m[38;5;12m (http://c3js.org/) - D3-based reusable chart library[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCartoDB[0m[38;5;12m (https://github.com/CartoDB/cartodb) - open-source or freemium hosting for geospatial databases with powerful front-end editing capabilities and a robust API.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mchartd[0m[38;5;12m (http://chartd.co/) - responsive, retina-compatible charts with just an img tag.[39m
|
||||
@@ -684,8 +654,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCrossfilter[0m[38;5;12m (http://square.github.io/crossfilter/) - JavaScript library for exploring large multivariate datasets in the browser. Works well with dc.js and d3.js.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCubism[0m[38;5;12m (https://github.com/square/cubism) - JavaScript library for time series visualization.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCytoscape[0m[38;5;12m (http://cytoscape.github.io/) - JavaScript library for visualizing complex networks.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDC.js[0m[38;5;12m [39m[38;5;12m(http://dc-js.github.io/dc.js/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mDimensional[39m[38;5;12m [39m[38;5;12mcharting[39m[38;5;12m [39m[38;5;12mbuilt[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mwork[39m[38;5;12m [39m[38;5;12mnatively[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mcrossfilter[39m[38;5;12m [39m[38;5;12mrendered[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12md3.js.[39m[38;5;12m [39m[38;5;12mExcellent[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mconnecting[39m[38;5;12m [39m[38;5;12mcharts/additional[39m[38;5;12m [39m[38;5;12mmetadata[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mhover[39m[38;5;12m [39m
|
||||
[38;5;12mevents[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mD3.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDC.js[0m[38;5;12m (http://dc-js.github.io/dc.js/) - Dimensional charting built to work natively with crossfilter rendered using d3.js. Excellent for connecting charts/additional metadata to hover events in D3.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mD3[0m[38;5;12m (https://d3js.org/) - javaScript library for manipulating documents.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mD3.compose[0m[38;5;12m (https://github.com/CSNW/d3.compose) - Compose complex, data-driven visualizations from reusable charts and components.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mD3Plus[0m[38;5;12m (http://d3plus.org) - A fairly robust set of reusable charts and styles for d3.js.[39m
|
||||
@@ -697,8 +666,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFnordMetric[0m[38;5;12m (https://metrictools.org/) - write SQL queries that return SVG charts rather than tables[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFrappe Charts[0m[38;5;12m (https://frappe.io/charts) - GitHub-inspired simple and modern SVG charts for the web with zero dependencies.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFreeboard[0m[38;5;12m (https://github.com/Freeboard/freeboard) - pen source real-time dashboard builder for IOT and other web mashups.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGephi[0m[38;5;12m [39m[38;5;12m(https://github.com/gephi/gephi)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAn[39m[38;5;12m [39m[38;5;12maward-winning[39m[38;5;12m [39m[38;5;12mopen-source[39m[38;5;12m [39m[38;5;12mplatform[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mvisualizing[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmanipulating[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mgraphs[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mnetwork[39m[38;5;12m [39m[38;5;12mconnections.[39m[38;5;12m [39m[38;5;12mIt's[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m[38;5;12mPhotoshop,[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mgraphs.[39m[38;5;12m [39m
|
||||
[38;5;12mAvailable[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mWindows[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mMac[39m[38;5;12m [39m[38;5;12mOS[39m[38;5;12m [39m[38;5;12mX.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGephi[0m[38;5;12m (https://github.com/gephi/gephi) - An award-winning open-source platform for visualizing and manipulating large graphs and network connections. It's like Photoshop, but for graphs. Available for Windows and Mac OS X.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGoogle Charts[0m[38;5;12m (https://developers.google.com/chart/) - simple charting API.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGrafana[0m[38;5;12m (https://grafana.com/) - graphite dashboard frontend, editor and graph composer.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGraphite[0m[38;5;12m (http://graphiteapp.org/) - scalable Realtime Graphing.[39m
|
||||
@@ -710,24 +678,21 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMetricsgraphic.js[0m[38;5;12m (https://metricsgraphicsjs.org/) - a library built on top of D3 that is optimized for time-series data[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNVD3[0m[38;5;12m (http://nvd3.org/) - chart components for d3.js.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPeity[0m[38;5;12m (https://github.com/benpickles/peity) - Progressive SVG bar, line and pie charts.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPlot.ly[0m[38;5;12m [39m[38;5;12m(https://plot.ly/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mEasy-to-use[39m[38;5;12m [39m[38;5;12mweb[39m[38;5;12m [39m[38;5;12mservice[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mallows[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mrapid[39m[38;5;12m [39m[38;5;12mcreation[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mcomplex[39m[38;5;12m [39m[38;5;12mcharts,[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mheatmaps[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mhistograms.[39m[38;5;12m [39m[38;5;12mUpload[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcreate[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mstyle[39m[38;5;12m [39m[38;5;12mcharts[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mPlotly's[39m[38;5;12m [39m
|
||||
[38;5;12monline[39m[38;5;12m [39m[38;5;12mspreadsheet.[39m[38;5;12m [39m[38;5;12mFork[39m[38;5;12m [39m[38;5;12mothers'[39m[38;5;12m [39m[38;5;12mplots.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPlot.ly[0m[38;5;12m (https://plot.ly/) - Easy-to-use web service that allows for rapid creation of complex charts, from heatmaps to histograms. Upload data to create and style charts with Plotly's online spreadsheet. Fork others' plots.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPlotly.js[0m[38;5;12m (https://github.com/plotly/plotly.js) The open source javascript graphing library that powers plotly.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRecline[0m[38;5;12m (https://github.com/okfn/recline) - simple but powerful library for building data applications in pure Javascript and HTML.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRedash[0m[38;5;12m (https://github.com/getredash/redash) - open-source platform to query and visualize data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mReCharts[0m[38;5;12m (http://recharts.org/) - A composable charting library built on React components[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mShiny[0m[38;5;12m (http://shiny.rstudio.com/) - a web application framework for R.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSigma.js[0m[38;5;12m (https://github.com/jacomyal/sigma.js) - JavaScript library dedicated to graph drawing.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSuperset[0m[38;5;12m [39m[38;5;12m(https://github.com/apache/incubator-superset)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mexploration[39m[38;5;12m [39m[38;5;12mplatform[39m[38;5;12m [39m[38;5;12mdesigned[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mvisual,[39m[38;5;12m [39m[38;5;12mintuitive[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12minteractive,[39m[38;5;12m [39m[38;5;12mmaking[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12measy[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mslice,[39m[38;5;12m [39m[38;5;12mdice[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mvisualize[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||||
[38;5;12mperform[39m[38;5;12m [39m[38;5;12manalytics[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mspeed[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthought.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSuperset[0m[38;5;12m (https://github.com/apache/incubator-superset) - a data exploration platform designed to be visual, intuitive and interactive, making it easy to slice, dice and visualize data and perform analytics at the speed of thought.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVega[0m[38;5;12m (https://github.com/vega/vega) - a visualization grammar.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mZeppelin[0m[38;5;12m (https://github.com/ZEPL/zeppelin) - a notebook-style collaborative data analysis.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mZing Charts[0m[38;5;12m (https://www.zingchart.com/) - JavaScript charting library for big data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDataSphere Studio[0m[38;5;12m (https://github.com/WeBankFinTech/DataSphereStudio) - one-stop data application development management portal.[39m
|
||||
|
||||
[38;2;255;187;0m[4mInternet of things and sensor data[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache[0m[38;5;14m[1m [0m[38;5;14m[1mEdgent[0m[38;5;14m[1m [0m[38;5;14m[1m(Incubating)[0m[38;5;12m [39m[38;5;12m(http://edgent.apache.org/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mprogramming[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmicro-kernel[39m[38;5;12m [39m[38;5;12mstyle[39m[38;5;12m [39m[38;5;12mruntime[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12membedded[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mgateways[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12msmall[39m[38;5;12m [39m[38;5;12mfootprint[39m[38;5;12m [39m[38;5;12medge[39m[38;5;12m [39m[38;5;12mdevices[39m[38;5;12m [39m[38;5;12menabling[39m[38;5;12m [39m[38;5;12mlocal,[39m
|
||||
[38;5;12mreal-time,[39m[38;5;12m [39m[38;5;12manalytics[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12medge[39m[38;5;12m [39m[38;5;12mdevices.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Edgent (Incubating)[0m[38;5;12m (http://edgent.apache.org/) - a programming model and micro-kernel style runtime that can be embedded in gateways and small footprint edge devices enabling local, real-time, analytics on the edge devices.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAzure IoT Hub[0m[38;5;12m (https://azure.microsoft.com/en-us/services/iot-hub/) - Cloud-based bi-directional monitoring and messaging hub[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTempoIQ[0m[38;5;12m (https://www.tempoiq.com/) - Cloud-based sensor analytics.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2lemetry[0m[38;5;12m (http://2lemetry.com/) - Platform for Internet of things.[39m
|
||||
@@ -741,14 +706,11 @@
|
||||
[38;2;255;187;0m[4mInteresting Readings[0m
|
||||
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBig Data Benchmark[0m[38;5;12m (https://amplab.cs.berkeley.edu/benchmark/) - Benchmark of Redshift, Hive, Shark, Impala and Stiger/Tez.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNoSQL[0m[38;5;14m[1m [0m[38;5;14m[1mComparison[0m[38;5;12m [39m[38;5;12m(https://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mCassandra[39m[38;5;12m [39m[38;5;12mvs[39m[38;5;12m [39m[38;5;12mMongoDB[39m[38;5;12m [39m[38;5;12mvs[39m[38;5;12m [39m[38;5;12mCouchDB[39m[38;5;12m [39m[38;5;12mvs[39m[38;5;12m [39m[38;5;12mRedis[39m[38;5;12m [39m[38;5;12mvs[39m[38;5;12m [39m[38;5;12mRiak[39m[38;5;12m [39m[38;5;12mvs[39m[38;5;12m [39m[38;5;12mHBase[39m[38;5;12m [39m[38;5;12mvs[39m[38;5;12m [39m[38;5;12mCouchbase[39m[38;5;12m [39m[38;5;12mvs[39m[38;5;12m [39m[38;5;12mNeo4j[39m[38;5;12m [39m[38;5;12mvs[39m[38;5;12m [39m[38;5;12mHypertable[39m[38;5;12m [39m[38;5;12mvs[39m[38;5;12m [39m
|
||||
[38;5;12mElasticSearch[39m[38;5;12m [39m[38;5;12mvs[39m[38;5;12m [39m[38;5;12mAccumulo[39m[38;5;12m [39m[38;5;12mvs[39m[38;5;12m [39m[38;5;12mVoltDB[39m[38;5;12m [39m[38;5;12mvs[39m[38;5;12m [39m[38;5;12mScalaris[39m[38;5;12m [39m[38;5;12mcomparison.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMonitoring Kafka performance[0m
|
||||
[38;5;12m (https://www.datadoghq.com/blog/monitoring-kafka-performance-metrics?ref=awesome) - Guide to monitoring Apache Kafka, including native methods for metrics collection.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMonitoring Hadoop performance[0m
|
||||
[38;5;12m (https://www.datadoghq.com/blog/monitor-hadoop-metrics?ref=awesome) - Guide to monitoring Hadoop, with an overview of Hadoop architecture, and native methods for metrics collection.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMonitoring Cassandra performance[0m
|
||||
[38;5;12m (https://www.datadoghq.com/blog/how-to-monitor-cassandra-performance-metrics/?ref=awesome) - Guide to monitoring Cassandra, including native methods for metrics collection.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNoSQL Comparison[0m
|
||||
[38;5;12m (https://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis) - Cassandra vs MongoDB vs CouchDB vs Redis vs Riak vs HBase vs Couchbase vs Neo4j vs Hypertable vs ElasticSearch vs Accumulo vs VoltDB vs Scalaris comparison.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMonitoring Kafka performance[0m[38;5;12m (https://www.datadoghq.com/blog/monitoring-kafka-performance-metrics?ref=awesome) - Guide to monitoring Apache Kafka, including native methods for metrics collection.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMonitoring Hadoop performance[0m[38;5;12m (https://www.datadoghq.com/blog/monitor-hadoop-metrics?ref=awesome) - Guide to monitoring Hadoop, with an overview of Hadoop architecture, and native methods for metrics collection.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMonitoring Cassandra performance[0m[38;5;12m (https://www.datadoghq.com/blog/how-to-monitor-cassandra-performance-metrics/?ref=awesome) - Guide to monitoring Cassandra, including native methods for metrics collection.[39m
|
||||
|
||||
[38;2;255;187;0m[4mInteresting Papers[0m
|
||||
|
||||
@@ -761,8 +723,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2013[0m[38;5;12m (https://amplab.cs.berkeley.edu/wp-content/uploads/2013/01/dmx1.pdf) - [39m[38;5;14m[1mAMPLab[0m[38;5;12m - MLbase: A Distributed Machine-learning System.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2013[0m[38;5;12m (https://amplab.cs.berkeley.edu/wp-content/uploads/2013/02/shark_sigmod2013.pdf) - [39m[38;5;14m[1mAMPLab[0m[38;5;12m - Shark: SQL and Rich Analytics at Scale.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2013[0m[38;5;12m (https://amplab.cs.berkeley.edu/wp-content/uploads/2013/05/grades-graphx_with_fonts.pdf) - [39m[38;5;14m[1mAMPLab[0m[38;5;12m - GraphX: A Resilient Distributed Graph System on Spark.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2013[0m[38;5;12m [39m[38;5;12m(http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/40671.pdf)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mGoogle[0m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mHyperLogLog[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mPractice:[39m[38;5;12m [39m[38;5;12mAlgorithmic[39m[38;5;12m [39m[38;5;12mEngineering[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mState[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mArt[39m[38;5;12m [39m[38;5;12mCardinality[39m
|
||||
[38;5;12mEstimation[39m[38;5;12m [39m[38;5;12mAlgorithm.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2013[0m[38;5;12m (http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/40671.pdf) - [39m[38;5;14m[1mGoogle[0m[38;5;12m - HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2013[0m[38;5;12m (http://research.microsoft.com/pubs/200169/now-vldb.pdf) - [39m[38;5;14m[1mMicrosoft[0m[38;5;12m - Scalable Progressive Analytics on Big Data in the Cloud.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2013[0m[38;5;12m (http://static.druid.io/docs/druid.pdf) - [39m[38;5;14m[1mMetamarkets[0m[38;5;12m - Druid: A Real-time Analytical Data Store.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2013[0m[38;5;12m (http://db.disi.unitn.eu/pages/VLDBProgram/pdf/industry/p764-rae.pdf) - [39m[38;5;14m[1mGoogle[0m[38;5;12m - Online, Asynchronous Schema Change in F1.[39m
|
||||
@@ -785,8 +746,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2012[0m[38;5;12m (http://vldb.org/pvldb/vol5/p1436_alexanderhall_vldb2012.pdf) - [39m[38;5;14m[1mGoogle[0m[38;5;12m - Processing a trillion cells per mouse click.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2012[0m[38;5;12m (http://static.googleusercontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf) - [39m[38;5;14m[1mGoogle[0m[38;5;12m - Spanner: Google’s Globally-Distributed Database.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2011[0m[38;5;12m (https://amplab.cs.berkeley.edu/wp-content/uploads/2011/06/euro118-ananthanarayanan.pdf) - [39m[38;5;14m[1mAMPLab[0m[38;5;12m - Scarlett: Coping with Skewed Popularity Content in MapReduce Clusters.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2011[0m[38;5;12m [39m[38;5;12m(https://amplab.cs.berkeley.edu/wp-content/uploads/2011/06/Mesos-A-Platform-for-Fine-Grained-Resource-Sharing-in-the-Data-Center.pdf)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mAMPLab[0m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mMesos:[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mPlatform[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mFine-Grained[39m[38;5;12m [39m
|
||||
[38;5;12mResource[39m[38;5;12m [39m[38;5;12mSharing[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mCenter.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2011[0m[38;5;12m (https://amplab.cs.berkeley.edu/wp-content/uploads/2011/06/Mesos-A-Platform-for-Fine-Grained-Resource-Sharing-in-the-Data-Center.pdf) - [39m[38;5;14m[1mAMPLab[0m[38;5;12m - Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2011[0m[38;5;12m (http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36971.pdf) - [39m[38;5;14m[1mGoogle[0m[38;5;12m - Megastore: Providing Scalable, Highly Available Storage for Interactive Services.[39m
|
||||
|
||||
[38;2;255;187;0m[4m2001 - 2010[0m
|
||||
@@ -794,59 +754,51 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2010[0m[38;5;12m (https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf) - [39m[38;5;14m[1mFacebook[0m[38;5;12m - Finding a needle in Haystack: Facebook’s photo storage.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2010[0m[38;5;12m (https://amplab.cs.berkeley.edu/wp-content/uploads/2011/06/Spark-Cluster-Computing-with-Working-Sets.pdf) - [39m[38;5;14m[1mAMPLab[0m[38;5;12m - Spark: Cluster Computing with Working Sets.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2010[0m[38;5;12m (http://kowshik.github.io/JPregel/pregel_paper.pdf) - [39m[38;5;14m[1mGoogle[0m[38;5;12m - Pregel: A System for Large-Scale Graph Processing.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2010[0m[38;5;12m [39m[38;5;12m(http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36726.pdf)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mGoogle[0m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mLarge-scale[39m[38;5;12m [39m[38;5;12mIncremental[39m[38;5;12m [39m[38;5;12mProcessing[39m[38;5;12m [39m[38;5;12mUsing[39m[38;5;12m [39m[38;5;12mDistributed[39m[38;5;12m [39m[38;5;12mTransactions[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mNotifications[39m
|
||||
[38;5;12mbase[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mPercolator[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mCaffeine.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2010[0m[38;5;12m (http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36726.pdf) - [39m[38;5;14m[1mGoogle[0m[38;5;12m - Large-scale Incremental Processing Using Distributed Transactions and Notifications base of Percolator and Caffeine.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2010[0m[38;5;12m (http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36632.pdf) - [39m[38;5;14m[1mGoogle[0m[38;5;12m - Dremel: Interactive Analysis of Web-Scale Datasets.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2010[0m[38;5;12m (http://leoneu.github.io/) - [39m[38;5;14m[1mYahoo[0m[38;5;12m - S4: Distributed Stream Computing Platform.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2009[0m[38;5;12m (http://www.cs.umd.edu/~abadi/papers/hadoopdb.pdf) - HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2008[0m[38;5;12m [39m[38;5;12m(https://cwiki.apache.org/confluence/download/attachments/120729877/chukwa_cca08.pdf?version=1&modificationDate=1562667399000&api=v2)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mAMPLab[0m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mChukwa:[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mlarge-scale[39m[38;5;12m [39m[38;5;12mmonitoring[39m[38;5;12m [39m
|
||||
[38;5;12msystem.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2008[0m[38;5;12m (https://cwiki.apache.org/confluence/download/attachments/120729877/chukwa_cca08.pdf?version=1&modificationDate=1562667399000&api=v2) - [39m[38;5;14m[1mAMPLab[0m[38;5;12m - Chukwa: A large-scale monitoring system.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2007[0m[38;5;12m (http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/decandia07dynamo.pdf) - [39m[38;5;14m[1mAmazon[0m[38;5;12m - Dynamo: Amazon’s Highly Available Key-value Store.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2006[0m[38;5;12m (http://static.googleusercontent.com/media/research.google.com/en//archive/chubby-osdi06.pdf) - [39m[38;5;14m[1mGoogle[0m[38;5;12m - The Chubby lock service for loosely-coupled distributed systems.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2006[0m[38;5;12m [39m[38;5;12m(http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//archive/bigtable-osdi06.pdf)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mGoogle[0m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mBigtable:[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mDistributed[39m[38;5;12m [39m[38;5;12mStorage[39m[38;5;12m [39m[38;5;12mSystem[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m
|
||||
[38;5;12mStructured[39m[38;5;12m [39m[38;5;12mData.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2006[0m[38;5;12m (http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//archive/bigtable-osdi06.pdf) - [39m[38;5;14m[1mGoogle[0m[38;5;12m - Bigtable: A Distributed Storage System for Structured Data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2004[0m[38;5;12m (http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf) - [39m[38;5;14m[1mGoogle[0m[38;5;12m - MapReduce: Simplied Data Processing on Large Clusters.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2003[0m[38;5;12m (http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf) - [39m[38;5;14m[1mGoogle[0m[38;5;12m - The Google File System.[39m
|
||||
|
||||
[38;2;255;187;0m[4mVideos[0m
|
||||
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpark in Motion[0m[38;5;12m (https://www.manning.com/livevideo/spark-in-motion) - Spark in Motion teaches you how to use Spark for batch and streaming data analytics.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMachine[0m[38;5;14m[1m [0m[38;5;14m[1mLearning,[0m[38;5;14m[1m [0m[38;5;14m[1mData[0m[38;5;14m[1m [0m[38;5;14m[1mScience[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mDeep[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1mPython[0m[38;5;14m[1m [0m[38;5;12m [39m[38;5;12m(https://www.manning.com/livevideo/machine-learning-data-science-and-deep-learning-with-python)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mLiveVideo[39m[38;5;12m [39m[38;5;12mtutorial[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m
|
||||
[38;5;12mcovers[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning,[39m[38;5;12m [39m[38;5;12mTensorflow,[39m[38;5;12m [39m[38;5;12martificial[39m[38;5;12m [39m[38;5;12mintelligence,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetworks.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mData warehouse schema design - dimensional modeling and star schema[0m
|
||||
[38;5;12m (https://snir.dev/talks/data-warehouse-schema-design) - Introduction to schema design for data warehouse using the star schema method.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mElasticsearch[0m[38;5;14m[1m [0m[38;5;14m[1m7[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mElastic[0m[38;5;14m[1m [0m[38;5;14m[1mStack[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/livevideo/elasticsearch-7-and-elastic-stack)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mLiveVideo[39m[38;5;12m [39m[38;5;12mtutorial[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcovers[39m[38;5;12m [39m[38;5;12msearching,[39m[38;5;12m [39m[38;5;12manalyzing,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mvisualizing[39m[38;5;12m [39m[38;5;12mbig[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m
|
||||
[38;5;12mcluster[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mElasticsearch,[39m[38;5;12m [39m[38;5;12mLogstash,[39m[38;5;12m [39m[38;5;12mBeats,[39m[38;5;12m [39m[38;5;12mKibana,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmore.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMachine Learning, Data Science and Deep Learning with Python [0m
|
||||
[38;5;12m (https://www.manning.com/livevideo/machine-learning-data-science-and-deep-learning-with-python) - LiveVideo tutorial that covers machine learning, Tensorflow, artificial intelligence, and neural networks.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mData warehouse schema design - dimensional modeling and star schema[0m[38;5;12m (https://snir.dev/talks/data-warehouse-schema-design) - Introduction to schema design for data warehouse using the star schema method.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mElasticsearch 7 and Elastic Stack[0m
|
||||
[38;5;12m (https://www.manning.com/livevideo/elasticsearch-7-and-elastic-stack) - LiveVideo tutorial that covers searching, analyzing, and visualizing big data on a cluster with Elasticsearch, Logstash, Beats, Kibana, and more.[39m
|
||||
|
||||
[38;2;255;187;0m[4mBooks[0m
|
||||
|
||||
[38;2;255;187;0m[4mStreaming[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mData[0m[38;5;14m[1m [0m[38;5;14m[1mScience[0m[38;5;14m[1m [0m[38;5;14m[1mat[0m[38;5;14m[1m [0m[38;5;14m[1mScale[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1mPython[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mDask[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/data-science-at-scale-with-python-and-dask)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mScience[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mScale[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mDask[39m[38;5;12m [39m[38;5;12mteaches[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbuild[39m[38;5;12m [39m
|
||||
[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mprojects[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mhandle[39m[38;5;12m [39m[38;5;12mhuge[39m[38;5;12m [39m[38;5;12mamounts[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdata.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mData Science at Scale with Python and Dask[0m
|
||||
[38;5;12m (https://www.manning.com/books/data-science-at-scale-with-python-and-dask) - Data Science at Scale with Python and Dask teaches you how to build distributed data projects that can handle huge amounts of data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStreaming Data[0m[38;5;12m (https://www.manning.com/books/streaming-data) - Streaming Data introduces the concepts and requirements of streaming and real-time data systems.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStorm[0m[38;5;14m[1m [0m[38;5;14m[1mApplied[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/storm-applied)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mStorm[39m[38;5;12m [39m[38;5;12mApplied[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mpractical[39m[38;5;12m [39m[38;5;12mguide[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mApache[39m[38;5;12m [39m[38;5;12mStorm[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mreal-world[39m[38;5;12m [39m[38;5;12mtasks[39m[38;5;12m [39m[38;5;12massociated[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12manalyzing[39m[38;5;12m [39m
|
||||
[38;5;12mreal-time[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mstreams.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStorm Applied[0m[38;5;12m (https://www.manning.com/books/storm-applied) - Storm Applied is a practical guide to using Apache Storm for the real-world tasks associated with processing and analyzing real-time data streams.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFundamentals[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mStream[0m[38;5;14m[1m [0m[38;5;14m[1mProcessing:[0m[38;5;14m[1m [0m[38;5;14m[1mApplication[0m[38;5;14m[1m [0m[38;5;14m[1mDesign,[0m[38;5;14m[1m [0m[38;5;14m[1mSystems,[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mAnalytics[0m[38;5;12m [39m
|
||||
[38;5;12m(http://www.cambridge.org/us/academic/subjects/engineering/communications-and-signal-processing/fundamentals-stream-processing-application-design-systems-and-analytics)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mcomprehensive,[39m[38;5;12m [39m
|
||||
[38;5;12mhands-on[39m[38;5;12m [39m[38;5;12mguide[39m[38;5;12m [39m[38;5;12mcombining[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mfundamental[39m[38;5;12m [39m[38;5;12mbuilding[39m[38;5;12m [39m[38;5;12mblocks[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12memerging[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mstream[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mideal[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mapplication[39m[38;5;12m [39m[38;5;12mdesigners,[39m[38;5;12m [39m[38;5;12msystem[39m[38;5;12m [39m[38;5;12mbuilders,[39m[38;5;12m [39m[38;5;12manalytic[39m[38;5;12m [39m[38;5;12mdevelopers,[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m
|
||||
[38;5;12mstudents[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mresearchers[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mfield.[39m
|
||||
[38;5;12m(http://www.cambridge.org/us/academic/subjects/engineering/communications-and-signal-processing/fundamentals-stream-processing-application-design-systems-and-analytics)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mcomprehensive,[39m[38;5;12m [39m[38;5;12mhands-on[39m[38;5;12m [39m[38;5;12mguide[39m[38;5;12m [39m[38;5;12mcombining[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mfundamental[39m[38;5;12m [39m
|
||||
[38;5;12mbuilding[39m[38;5;12m [39m[38;5;12mblocks[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12memerging[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mstream[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mideal[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mapplication[39m[38;5;12m [39m[38;5;12mdesigners,[39m[38;5;12m [39m[38;5;12msystem[39m[38;5;12m [39m[38;5;12mbuilders,[39m[38;5;12m [39m[38;5;12manalytic[39m[38;5;12m [39m[38;5;12mdevelopers,[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mstudents[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mresearchers[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mfield.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStream Data Processing: A Quality of Service Perspective[0m[38;5;12m (http://www.springer.com/us/book/9780387710020) - Presents a new paradigm suitable for stream and complex event processing.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mUnified Log Processing[0m
|
||||
[38;5;12m (https://www.manning.com/books/event-streams-in-action) - Unified Log Processing is a practical guide to implementing a unified log of event streams (Kafka or Kinesis) in your business[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKafka[0m[38;5;14m[1m [0m[38;5;14m[1mStreams[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mAction[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/kafka-streams-in-action)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mKafka[39m[38;5;12m [39m[38;5;12mStreams[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mAction[39m[38;5;12m [39m[38;5;12mteaches[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12meverything[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mneed[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mknow[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mimplement[39m[38;5;12m [39m[38;5;12mstream[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m
|
||||
[38;5;12mflowing[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mKafka[39m[38;5;12m [39m[38;5;12mplatform,[39m[38;5;12m [39m[38;5;12mallowing[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mfocus[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mgetting[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mwithout[39m[38;5;12m [39m[38;5;12msacrificing[39m[38;5;12m [39m[38;5;12mtime[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12meffort.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBig[0m[38;5;14m[1m [0m[38;5;14m[1mData[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/big-data)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mBig[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mteaches[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbuild[39m[38;5;12m [39m[38;5;12mbig[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12msystems[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12marchitecture[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mtakes[39m[38;5;12m [39m[38;5;12madvantage[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mclustered[39m[38;5;12m [39m[38;5;12mhardware[39m[38;5;12m [39m[38;5;12malong[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mnew[39m[38;5;12m [39m[38;5;12mtools[39m[38;5;12m [39m
|
||||
[38;5;12mdesigned[39m[38;5;12m [39m[38;5;12mspecifically[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcapture[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12manalyze[39m[38;5;12m [39m[38;5;12mweb-scale[39m[38;5;12m [39m[38;5;12mdata.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpark[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mAction[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/spark-in-action)[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;14m[1mSpark[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mAction[0m[38;5;14m[1m [0m[38;5;14m[1m2nd[0m[38;5;14m[1m [0m[38;5;14m[1mEd.[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/spark-in-action-second-edition)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mSpark[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mAction[39m[38;5;12m [39m[38;5;12mteaches[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m
|
||||
[38;5;12mtheory[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mskills[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mneed[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12meffectively[39m[38;5;12m [39m[38;5;12mhandle[39m[38;5;12m [39m[38;5;12mbatch[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mstreaming[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mSpark.[39m[38;5;12m [39m[38;5;12mFully[39m[38;5;12m [39m[38;5;12mupdated[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mSpark[39m[38;5;12m [39m[38;5;12m2.0.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mUnified Log Processing[0m[38;5;12m (https://www.manning.com/books/event-streams-in-action) - Unified Log Processing is a practical guide to implementing a unified log of event streams (Kafka or Kinesis) in your business[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKafka[0m[38;5;14m[1m [0m[38;5;14m[1mStreams[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mAction[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/kafka-streams-in-action)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mKafka[39m[38;5;12m [39m[38;5;12mStreams[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mAction[39m[38;5;12m [39m[38;5;12mteaches[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12meverything[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mneed[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mknow[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mimplement[39m[38;5;12m [39m[38;5;12mstream[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mflowing[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mKafka[39m[38;5;12m [39m[38;5;12mplatform,[39m[38;5;12m [39m[38;5;12mallowing[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mto[39m
|
||||
[38;5;12mfocus[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mgetting[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mwithout[39m[38;5;12m [39m[38;5;12msacrificing[39m[38;5;12m [39m[38;5;12mtime[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12meffort.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBig[0m[38;5;14m[1m [0m[38;5;14m[1mData[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/big-data)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mBig[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mteaches[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbuild[39m[38;5;12m [39m[38;5;12mbig[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12msystems[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12marchitecture[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mtakes[39m[38;5;12m [39m[38;5;12madvantage[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mclustered[39m[38;5;12m [39m[38;5;12mhardware[39m[38;5;12m [39m[38;5;12malong[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mnew[39m[38;5;12m [39m[38;5;12mtools[39m[38;5;12m [39m[38;5;12mdesigned[39m[38;5;12m [39m[38;5;12mspecifically[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcapture[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12manalyze[39m[38;5;12m [39m
|
||||
[38;5;12mweb-scale[39m[38;5;12m [39m[38;5;12mdata.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpark[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mAction[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/spark-in-action)[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;14m[1mSpark[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mAction[0m[38;5;14m[1m [0m[38;5;14m[1m2nd[0m[38;5;14m[1m [0m[38;5;14m[1mEd.[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/spark-in-action-second-edition)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mSpark[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mAction[39m[38;5;12m [39m[38;5;12mteaches[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mtheory[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mskills[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mneed[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12meffectively[39m[38;5;12m [39m
|
||||
[38;5;12mhandle[39m[38;5;12m [39m[38;5;12mbatch[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mstreaming[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mSpark.[39m[38;5;12m [39m[38;5;12mFully[39m[38;5;12m [39m[38;5;12mupdated[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mSpark[39m[38;5;12m [39m[38;5;12m2.0.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKafka in Action[0m[38;5;12m (https://www.manning.com/books/kafka-in-action) - Kafka in Action is a fast-paced introduction to every aspect of working with Kafka you need to really reap its benefits.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFusion[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mAction[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/fusion-in-action)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mFusion[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mAction[39m[38;5;12m [39m[38;5;12mteaches[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbuild[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mfull-featured[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12manalytics[39m[38;5;12m [39m[38;5;12mpipeline,[39m[38;5;12m [39m[38;5;12mincluding[39m[38;5;12m [39m[38;5;12mdocument[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||||
[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mclustering.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mReactive[0m[38;5;14m[1m [0m[38;5;14m[1mData[0m[38;5;14m[1m [0m[38;5;14m[1mHandling[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/reactive-data-handling)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mReactive[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mHandling[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcollection[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mfive[39m[38;5;12m [39m[38;5;12mhand-picked[39m[38;5;12m [39m[38;5;12mchapters,[39m[38;5;12m [39m[38;5;12mselected[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mManuel[39m[38;5;12m [39m[38;5;12mBernhardt,[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m
|
||||
[38;5;12mintroduce[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbuilding[39m[38;5;12m [39m[38;5;12mreactive[39m[38;5;12m [39m[38;5;12mapplications[39m[38;5;12m [39m[38;5;12mcapable[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mhandling[39m[38;5;12m [39m[38;5;12mreal-time[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mloads--free[39m[38;5;12m [39m[38;5;12meBook![39m[38;5;12m [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFusion in Action[0m[38;5;12m (https://www.manning.com/books/fusion-in-action) - Fusion in Action teaches you to build a full-featured data analytics pipeline, including document and data search and distributed data clustering.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mReactive[0m[38;5;14m[1m [0m[38;5;14m[1mData[0m[38;5;14m[1m [0m[38;5;14m[1mHandling[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/reactive-data-handling)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mReactive[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mHandling[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcollection[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mfive[39m[38;5;12m [39m[38;5;12mhand-picked[39m[38;5;12m [39m[38;5;12mchapters,[39m[38;5;12m [39m[38;5;12mselected[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mManuel[39m[38;5;12m [39m[38;5;12mBernhardt,[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mintroduce[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbuilding[39m[38;5;12m [39m[38;5;12mreactive[39m[38;5;12m [39m[38;5;12mapplications[39m[38;5;12m [39m
|
||||
[38;5;12mcapable[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mhandling[39m[38;5;12m [39m[38;5;12mreal-time[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mloads--free[39m[38;5;12m [39m[38;5;12meBook![39m[38;5;12m [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAzure Data Engineering[0m[38;5;12m (https://www.manning.com/books/azure-data-engineering) - A book about data engineering in general and the Azure platform specifically [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGrokking[0m[38;5;14m[1m [0m[38;5;14m[1mStreaming[0m[38;5;14m[1m [0m[38;5;14m[1mSystems[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/grokking-streaming-systems)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mGrokking[39m[38;5;12m [39m[38;5;12mStreaming[39m[38;5;12m [39m[38;5;12mSystems[39m[38;5;12m [39m[38;5;12mhelps[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12munravel[39m[38;5;12m [39m[38;5;12mwhat[39m[38;5;12m [39m[38;5;12mstreaming[39m[38;5;12m [39m[38;5;12msystems[39m[38;5;12m [39m[38;5;12mare,[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mthey[39m[38;5;12m [39m[38;5;12mwork,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mwhether[39m[38;5;12m [39m
|
||||
[38;5;12mthey’re[39m[38;5;12m [39m[38;5;12mright[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mbusiness.[39m[38;5;12m [39m[38;5;12mWritten[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mtool-agnostic,[39m[38;5;12m [39m[38;5;12myou’ll[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mable[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mapply[39m[38;5;12m [39m[38;5;12mwhat[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mlearn[39m[38;5;12m [39m[38;5;12mno[39m[38;5;12m [39m[38;5;12mmatter[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mchoose.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGrokking[0m[38;5;14m[1m [0m[38;5;14m[1mStreaming[0m[38;5;14m[1m [0m[38;5;14m[1mSystems[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/grokking-streaming-systems)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mGrokking[39m[38;5;12m [39m[38;5;12mStreaming[39m[38;5;12m [39m[38;5;12mSystems[39m[38;5;12m [39m[38;5;12mhelps[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12munravel[39m[38;5;12m [39m[38;5;12mwhat[39m[38;5;12m [39m[38;5;12mstreaming[39m[38;5;12m [39m[38;5;12msystems[39m[38;5;12m [39m[38;5;12mare,[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mthey[39m[38;5;12m [39m[38;5;12mwork,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mwhether[39m[38;5;12m [39m[38;5;12mthey’re[39m[38;5;12m [39m[38;5;12mright[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mbusiness.[39m[38;5;12m [39m[38;5;12mWritten[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbe[39m
|
||||
[38;5;12mtool-agnostic,[39m[38;5;12m [39m[38;5;12myou’ll[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mable[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mapply[39m[38;5;12m [39m[38;5;12mwhat[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mlearn[39m[38;5;12m [39m[38;5;12mno[39m[38;5;12m [39m[38;5;12mmatter[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mchoose.[39m
|
||||
|
||||
[38;2;255;187;0m[4mDistributed systems[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDistributed Systems for fun and profit[0m[38;5;12m (http://book.mixu.net/distsys/) – Theory of distributed systems. Include parts about time and ordering, replication and impossibility results.[39m
|
||||
@@ -861,7 +813,7 @@
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIce Bucket Challenge Data Visualization[0m[38;5;12m (https://www.youtube.com/watch?v=qTEchen97rQ)[39m
|
||||
|
||||
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mOther Awesome Lists[0m
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mOther Awesome Lists[0m
|
||||
[38;5;12m- Other awesome lists [39m[38;5;14m[1mawesome-awesomeness[0m[38;5;12m (https://github.com/bayandin/awesome-awesomeness).[39m
|
||||
[38;5;12m- Even more lists [39m[38;5;14m[1mawesome[0m[38;5;12m (https://github.com/sindresorhus/awesome).[39m
|
||||
[38;5;12m- Another list? [39m[38;5;14m[1mlist[0m[38;5;12m (https://github.com/jnv/lists).[39m
|
||||
|
||||
Reference in New Issue
Block a user