update
This commit is contained in:
432
terminal/metriclearning
Normal file
432
terminal/metriclearning
Normal file
@@ -0,0 +1,432 @@
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mawesome-metric-learning[0m
|
||||
[38;5;12m😎 Awesome list about practical Metric Learning and its applications[39m
|
||||
|
||||
[38;2;255;187;0m[4mMotivation 🤓[0m
|
||||
[38;5;12mAt[39m[38;5;12m [39m[38;5;12mQdrant,[39m[38;5;12m [39m[38;5;12mwe[39m[38;5;12m [39m[38;5;12mhave[39m[38;5;12m [39m[38;5;12mone[39m[38;5;12m [39m[38;5;12mgoal:[39m[38;5;12m [39m[38;5;12mmake[39m[38;5;12m [39m[38;5;12mmetric[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12mpractical.[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mlisting[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mline[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mpurpose,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mwe[39m[38;5;12m [39m[38;5;12maim[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mproviding[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mconcise[39m[38;5;12m [39m[38;5;12myet[39m[38;5;12m [39m[38;5;12museful[39m[38;5;12m [39m[38;5;12mlist[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mawesomeness[39m[38;5;12m [39m[38;5;12maround[39m[38;5;12m [39m[38;5;12mmetric[39m[38;5;12m [39m[38;5;12mlearning.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mintended[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12minspirational[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m
|
||||
[38;5;12mproductivity[39m[38;5;12m [39m[38;5;12mrather[39m[38;5;12m [39m[38;5;12mthan[39m[38;5;12m [39m[38;5;12mserve[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mfull[39m[38;5;12m [39m[38;5;12mbibliography.[39m
|
||||
|
||||
[38;5;12mIf you find it useful or like it in some other way, you may want to join our Discord server, where we are running a paper reading club on metric learning.[39m
|
||||
|
||||
|
||||
[48;5;235m[38;5;249m[49m[39m
|
||||
|
||||
|
||||
|
||||
[38;2;255;187;0m[4mContributing 🤩[0m
|
||||
[38;5;12mIf you want to contribute to this project, but don't know how, you may want to check out the [39m[38;5;14m[1mcontributing guide[0m[38;5;12m (/CONTRIBUTING.md). It's easy! 😌[39m
|
||||
|
||||
|
||||
[38;2;255;187;0m[4mSurveys 📖[0m
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mhas[39m[38;5;12m [39m[38;5;12mproceeding[39m[38;5;12m [39m[38;5;12mguides[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;14m[1msupervised[0m[38;5;12m [39m[38;5;12m(http://contrib.scikit-learn.org/metric-learn/supervised.html),[39m[38;5;12m [39m[38;5;14m[1mweakly[0m[38;5;14m[1m [0m[38;5;14m[1msupervised[0m[38;5;12m [39m[38;5;12m(http://contrib.scikit-learn.org/metric-learn/weakly_supervised.html)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;14m[1munsupervised[0m[38;5;12m [39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12m(http://contrib.scikit-learn.org/metric-learn/unsupervised.html)[39m[38;5;12m [39m[38;5;12mmetric[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[48;5;235m[38;5;249m[1mmetric_learn[0m[38;5;12m [39m[38;5;12m(http://contrib.scikit-learn.org/metric-learn/metric_learn.html)[39m[38;5;12m [39m[38;5;12mpackage.[39m
|
||||
|
||||
|
||||
|
||||
[38;5;12m - A comprehensive [39m
|
||||
[38;5;12mstudy for newcomers.[39m
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mFactors such as sampling strategies, distance metrics, and network structures are systematically analyzed by comparing the quantitative results of the methods.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mIt discusses the need for metric learning, old and state-of-the-art approaches, and some real-world use cases.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;2;255;187;0m[4mApplications 🎮[0m
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mCLIP offers state-of-the-art zero-shot image classification and image retrieval with a natural language query. See [39m[38;5;14m[1mdemo[0m[38;5;12m (https://colab.research.google.com/github/openai/clip/blob/master/notebooks/Interacting_with_CLIP.ipynb).[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mThis work achieves zero-shot classification and cross-modal audio retrieval from natural language queries.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mIt is an open-class object detector to detect any label encoded by CLIP without finetuning. See [39m[38;5;14m[1mdemo[0m[38;5;12m (https://huggingface.co/spaces/akhaliq/Detic).[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mTensorFlow Hub offers a collection of pretrained models from the paper [39m[38;5;14m[1mLarge Dual Encoders Are Generalizable Retrievers[0m[38;5;12m (https://arxiv.org/abs/2112.07899).[39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mGTR models are first initialized from a pre-trained T5 checkpoint. They are then further pre-trained with a set of community question-answer pairs. Finally, they are fine-tuned on the MS Marco dataset.[39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mThe two encoders are shared so the GTR model functions as a single text encoder. The input is variable-length English text and the output is a 768-dimensional vector.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mThe method and pretrained models found in Flair go beyond zero-shot sequence classification and offers zero-shot span tagging abilities for tasks such as named entity recognition and part of speech tagging.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mleverages[39m[38;5;12m [39m[38;5;12mHuggingFace[39m[38;5;12m [39m[38;5;12mTransformers[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mc-TF-IDF[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcreate[39m[38;5;12m [39m[38;5;12mdense[39m[38;5;12m [39m[38;5;12mclusters[39m[38;5;12m [39m[38;5;12mallowing[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12measily[39m[38;5;12m [39m[38;5;12minterpretable[39m[38;5;12m [39m[38;5;12mtopics[39m[38;5;12m [39m[38;5;12mwhile[39m[38;5;12m [39m[38;5;12mkeeping[39m[38;5;12m [39m[38;5;12mimportant[39m[38;5;12m [39m[38;5;12mwords[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mtopic[39m[38;5;12m [39m[38;5;12mdescriptions.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12msupports[39m[38;5;12m [39m[38;5;12mguided,[39m[38;5;12m [39m[38;5;12m(semi-)[39m[38;5;12m [39m[38;5;12msupervised,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdynamic[39m[38;5;12m [39m[38;5;12mtopic[39m[38;5;12m [39m[38;5;12mmodeling[39m[38;5;12m [39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mbeautiful[39m[38;5;12m [39m[38;5;12mvisualizations.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mIdentification of substances based on spectral analysis plays a vital role in forensic science. Similarly, the material identification process is of paramount importance for malfunction reasoning in manufacturing sectors and materials research.[39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12menables[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12midentify[39m[38;5;12m [39m[38;5;12mmaterials[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mmetric[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mapplied[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mX-Ray[39m[38;5;12m [39m[38;5;12mDiffraction[39m[38;5;12m [39m[38;5;12m(XRD)[39m[38;5;12m [39m[38;5;12mspectrum.[39m[38;5;12m [39m[38;5;12mRead[39m[38;5;12m [39m[38;5;14m[1mthis[0m[38;5;14m[1m [0m[38;5;14m[1mpost[0m[38;5;12m [39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12m(https://towardsdatascience.com/automatic-spectral-identification-using-deep-metric-learning-with-1d-regnet-and-adacos-8b7fb36f2d5f)[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12mbackground.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mDifferent[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mtypical[39m[38;5;12m [39m[38;5;12minformation[39m[38;5;12m [39m[38;5;12mretrieval[39m[38;5;12m [39m[38;5;12mtasks,[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mrequires[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbridge[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12msemantic[39m[38;5;12m [39m[38;5;12mgap[39m[38;5;12m [39m[38;5;12mbetween[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mprogramming[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mnatural[39m[38;5;12m [39m[38;5;12mlanguage,[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mbetter[39m[38;5;12m [39m[38;5;12mdescribing[39m[38;5;12m [39m[38;5;12mintrinsic[39m[38;5;12m [39m[38;5;12mconcepts[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12msemantics.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mrepository[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mpretrained[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12msource[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mDeep[0m[38;5;14m[1m [0m[38;5;14m[1mSemantic[0m[38;5;14m[1m [0m[38;5;14m[1mModel[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mCode[0m[38;5;14m[1m [0m[38;5;14m[1mSearch[0m[38;5;14m[1m [0m[38;5;14m[1musing[0m[38;5;14m[1m [0m[38;5;14m[1mCodeSearchNet[0m[38;5;14m[1m [0m[38;5;14m[1mCorpus[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/abs/2201.11313),[39m[38;5;12m [39m[38;5;12mwhere[39m[38;5;12m [39m[38;5;12mthey[39m[38;5;12m [39m[38;5;12mapply[39m[38;5;12m [39m[38;5;12mseveral[39m[38;5;12m [39m[38;5;12mtricks[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12machieve[39m[38;5;12m [39m[38;5;12mthis.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mState-of-the-art[39m[38;5;12m [39m[38;5;12mmethods[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mincapable[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mleveraging[39m[38;5;12m [39m[38;5;12mattributes[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mdifferent[39m[38;5;12m [39m[38;5;12mtypes[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mitems[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthus[39m[38;5;12m [39m[38;5;12msuffer[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12msparsity[39m[38;5;12m [39m[38;5;12mproblems[39m[38;5;12m [39m[38;5;12mbecause[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mquite[39m[38;5;12m [39m[38;5;12mchallenging[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mrepresent[39m[38;5;12m [39m[38;5;12mitems[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mdifferent[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12mspaces[39m[38;5;12m [39m[38;5;12mjointly.[39m[38;5;12m [39m[38;5;12mTo[39m[38;5;12m [39m[38;5;12mtackle[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mproblem,[39m[38;5;12m [39m[38;5;12mthey[39m[38;5;12m [39m[38;5;12mpropose[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mkernel-based[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetwork,[39m[38;5;12m [39m[38;5;12mnamely[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12munified[39m[38;5;12m [39m[38;5;12mrepresentation[39m[38;5;12m [39m[38;5;12m(DURation)[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mheterogeneous[39m[38;5;12m [39m[38;5;12mrecommendation,[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mjointly[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12munified[39m[38;5;12m [39m[38;5;12mrepresentations[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mheterogeneous[39m[38;5;12m [39m[38;5;12mitems[39m[38;5;12m [39m[38;5;12mwhile[39m[38;5;12m [39m[38;5;12mpreserving[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m[38;5;12moriginal[39m[38;5;12m [39m[38;5;12mfeature[39m[38;5;12m [39m[38;5;12mspace[39m[38;5;12m [39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mtopology[39m[38;5;12m [39m[38;5;12mstructures.[39m[38;5;12m [39m[38;5;12mSee[39m[38;5;12m [39m[38;5;14m[1mpaper[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/abs/2201.05861).[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mIt provides the implementation of [39m[38;5;14m[1mItem2Vec: Neural Item Embedding for Collaborative Filtering[0m[38;5;12m (https://arxiv.org/abs/1603.04259), wrapped as a [39m[48;5;235m[38;5;249msklearn[49m[39m[38;5;12m estimator compatible with [39m[48;5;235m[38;5;249mGridSearchCV[49m[39m[38;5;12m and [39m[48;5;235m[38;5;249mBayesSearchCV[49m[39m[38;5;12m for hyperparameter tuning.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mYou can search for the overall closest fit, or choose to focus matching genre, mood, or instrumentation.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mIt searches phrase-level answers to your questions in real-time or retrieves passages for downstream tasks. Check out [39m[38;5;14m[1mdemo[0m[38;5;12m (http://densephrases.korea.ac.kr/), or see [39m[38;5;14m[1mpaper[0m[38;5;12m (https://arxiv.org/abs/2109.08133).[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mInstead of leveraging NLI/XNLI, they make use of the text encoder of the CLIP model, concluding from casual experiments that this sometimes gives better accuracy than NLI-based models.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mApplication of the SimCLR method to musical data with out-of-domain generalization in million-scale music classification. See [39m[38;5;14m[1mdemo[0m[38;5;12m (https://spijkervet.github.io/CLMR/examples/clmr-onnxruntime-web/) or [39m[38;5;14m[1mpaper[0m[38;5;12m (https://arxiv.org/abs/2103.09410).[39m
|
||||
|
||||
|
||||
[38;2;255;187;0m[4mCase Studies ✍️[0m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;2;255;187;0m[4mLibraries 🧰[0m
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mQuaterion[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mfine-tuning[39m[38;5;12m [39m[38;5;12msimilarity[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mmodels.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mcloses[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12m"last[39m[38;5;12m [39m[38;5;12mmile"[39m[38;5;12m [39m[38;5;12mproblem[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12msemantic[39m[38;5;12m [39m[38;5;12msearch,[39m[38;5;12m [39m[38;5;12mrecommendations,[39m[38;5;12m [39m[38;5;12manomaly[39m[38;5;12m [39m[38;5;12mdetection,[39m[38;5;12m [39m[38;5;12mextreme[39m[38;5;12m [39m[38;5;12mclassification,[39m[38;5;12m [39m[38;5;12mmatching[39m[38;5;12m [39m[38;5;12mengines,[39m[38;5;12m [39m[38;5;12me.t.c.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mdesigned[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcombine[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mperformance[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mpre-trained[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mspecialization[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mcustom[39m[38;5;12m [39m[38;5;12mtask[39m[38;5;12m [39m[38;5;12mwhile[39m[38;5;12m [39m[38;5;12mavoiding[39m[38;5;12m [39m[38;5;12mslow[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcostly[39m[38;5;12m [39m[38;5;12mtraining.[39m
|
||||
|
||||
|
||||
|
||||
[38;5;12m - A library for [39m
|
||||
[38;5;12msentence-level embeddings. [39m
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mDeveloped on top of the well-known [39m[38;5;14m[1mTransformers[0m[38;5;12m (https://github.com/huggingface/transformers) library, it provides an easy way to finetune Transformer-based models to obtain sequence-level embeddings.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[48;5;235m[38;5;249m[49m[39m
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mThe goal of MatchZoo is to provide a high-quality codebase for deep text matching research, such as document retrieval, question answering, conversational response ranking, and paraphrase identification.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;12m - A metric learning library in [39m
|
||||
[38;5;12mTensorFlow with a Keras-like API.[39m
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mIt provides support for self-supervised contrastive learning and state-of-the-art methods such as SimCLR, SimSian, and Barlow Twins.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mA PyTorch library to train and inference with contextually-keyed word vectors augmented with part-of-speech tags to achieve multi-word queries.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mA PyTorch library to efficiently train self-supervised computer vision models with state-of-the-art techniques such as SimCLR, SimSian, Barlow Twins, BYOL, among others.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mA library that helps you benchmark pretrained and custom embedding models on tens of datasets and tasks with ease.[39m
|
||||
|
||||
|
||||
|
||||
[38;5;12m - A Python implementation of a number of popular [39m
|
||||
[38;5;12mrecommender algorithms. [39m
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mIt supports incorporating user and item features to the traditional matrix factorization. It represents users and items as a sum of the latent representations of their features, thus achieving a better generalization.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12mefficient[39m[38;5;12m [39m[38;5;12mmulticore[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmemory-independent[39m[38;5;12m [39m[38;5;12mimplementations[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mpopular[39m[38;5;12m [39m[38;5;12malgorithms,[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12monline[39m[38;5;12m [39m[38;5;12mLatent[39m[38;5;12m [39m[38;5;12mSemantic[39m[38;5;12m [39m[38;5;12mAnalysis[39m[38;5;12m [39m[38;5;12m(LSA/LSI/SVD),[39m[38;5;12m [39m[38;5;12mLatent[39m[38;5;12m [39m[38;5;12mDirichlet[39m[38;5;12m [39m[38;5;12mAllocation[39m[38;5;12m [39m[38;5;12m(LDA),[39m[38;5;12m [39m[38;5;12mRandom[39m[38;5;12m [39m[38;5;12mProjections[39m[38;5;12m [39m[38;5;12m(RP),[39m[38;5;12m [39m[38;5;12mHierarchical[39m[38;5;12m [39m[38;5;12mDirichlet[39m[38;5;12m [39m[38;5;12mProcess[39m[38;5;12m [39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12m(HDP)[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mword2vec.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mIt provides implementations of algorithms such as KNN, LFM, SLIM, NeuMF, FM, DeepFM, VAE and so on, in order to ensure fair comparison of recommender system benchmarks.[39m
|
||||
|
||||
|
||||
|
||||
[38;2;255;187;0m[4mTools ⚒️[0m
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mIt supports UMAP, T-SNE, PCA, or custom techniques to analyze embeddings of encoders.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mallows[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mvisualize[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12membedding[39m[38;5;12m [39m[38;5;12mspace[39m[38;5;12m [39m[38;5;12mselecting[39m[38;5;12m [39m[38;5;12mexplicitly[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12maxis[39m[38;5;12m [39m[38;5;12mthrough[39m[38;5;12m [39m[38;5;12malgebraic[39m[38;5;12m [39m[38;5;12mformulas[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12membeddings[39m[38;5;12m [39m[38;5;12m(like[39m[38;5;12m [39m[38;5;12mking-man+woman)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mhighlight[39m[38;5;12m [39m[38;5;12mspecific[39m[38;5;12m [39m[38;5;12mitems[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12membedding[39m[38;5;12m [39m[38;5;12mspace.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12msupports[39m[38;5;12m [39m[38;5;12mimplicit[39m[38;5;12m [39m[38;5;12maxes[39m[38;5;12m [39m[38;5;12mvia[39m[38;5;12m [39m[38;5;12mPCA[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mt-SNE.[39m[38;5;12m [39m[38;5;12mSee[39m[38;5;12m [39m[38;5;14m[1mpaper[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/abs/1905.12099).[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;2;255;187;0m[4mApproximate Nearest Neighbors ⚡[0m
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12mbenchmarking[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12m20+[39m[38;5;12m [39m[38;5;12mANN[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mnine[39m[38;5;12m [39m[38;5;12mstandard[39m[38;5;12m [39m[38;5;12mdatasets[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12msupport[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbring[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mdataset.[39m[38;5;12m [39m[38;5;12m([39m[38;5;14m[1mMedium[0m[38;5;14m[1m [0m[38;5;14m[1mPost[0m[38;5;12m [39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12m(https://medium.com/towards-artificial-intelligence/how-to-choose-the-best-nearest-neighbors-algorithm-8d75d42b16ab?sk=889bc0006f5ff773e3a30fa283d91ee7))[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mIt is not the fastest ANN algorithm but achieves memory efficiency thanks to various quantization and indexing methods such as IVF, PQ, and IVF-PQ. ([39m[38;5;14m[1mTutorial[0m[38;5;12m (https://www.pinecone.io/learn/faiss-tutorial/))[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mstill[39m[38;5;12m [39m[38;5;12mone[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mfastest[39m[38;5;12m [39m[38;5;12mANN[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12mout[39m[38;5;12m [39m[38;5;12mthere,[39m[38;5;12m [39m[38;5;12mrequiring[39m[38;5;12m [39m[38;5;12mrelatively[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mhigher[39m[38;5;12m [39m[38;5;12mmemory[39m[38;5;12m [39m[38;5;12musage.[39m[38;5;12m [39m[38;5;12m(Paper:[39m[38;5;12m [39m[38;5;14m[1mEfficient[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mrobust[0m[38;5;14m[1m [0m[38;5;14m[1mapproximate[0m[38;5;14m[1m [0m[38;5;14m[1mnearest[0m[38;5;14m[1m [0m[38;5;14m[1mneighbor[0m[38;5;14m[1m [0m[38;5;14m[1msearch[0m[38;5;14m[1m [0m[38;5;14m[1musing[0m[38;5;14m[1m [0m[38;5;14m[1mHierarchical[0m[38;5;14m[1m [0m[38;5;14m[1mNavigable[0m[38;5;14m[1m [0m[38;5;14m[1mSmall[0m[38;5;14m[1m [0m[38;5;14m[1mWorld[0m[38;5;14m[1m [0m[38;5;14m[1mgraphs[0m[38;5;12m [39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/abs/1603.09320))[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mPaper: [39m[38;5;14m[1mAccelerating Large-Scale Inference with Anisotropic Vector Quantization[0m[38;5;12m (https://arxiv.org/abs/1908.10396)[39m
|
||||
|
||||
|
||||
|
||||
[38;2;255;187;0m[4mPapers 🔬[0m
|
||||
|
||||
[38;5;12mDimensionality Reduction by [39m
|
||||
[38;5;12mLearning an Invariant Mapping[39m
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mPublished[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mYann[39m[38;5;12m [39m[38;5;12mLe[39m[38;5;12m [39m[38;5;12mCun[39m[38;5;12m [39m[38;5;12met[39m[38;5;12m [39m[38;5;12mal.[39m[38;5;12m [39m[38;5;12m(2005),[39m[38;5;12m [39m[38;5;12mits[39m[38;5;12m [39m[38;5;12mmain[39m[38;5;12m [39m[38;5;12mfocus[39m[38;5;12m [39m[38;5;12mwas[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mdimensionality[39m[38;5;12m [39m[38;5;12mreduction.[39m[38;5;12m [39m[38;5;12mHowever,[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mmethod[39m[38;5;12m [39m[38;5;12mproposed[39m[38;5;12m [39m[38;5;12mhas[39m[38;5;12m [39m[38;5;12mexcellent[39m[38;5;12m [39m[38;5;12mproperties[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmetric[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mpreserving[39m[38;5;12m [39m[38;5;12mneighbourhood[39m[38;5;12m [39m[38;5;12mrelationships[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mgeneralization[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12munseen[39m[38;5;12m [39m[38;5;12mdata,[39m[38;5;12m [39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mhas[39m[38;5;12m [39m[38;5;12mextensive[39m[38;5;12m [39m[38;5;12mapplications[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgreat[39m[38;5;12m [39m[38;5;12mnumber[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mvariations[39m[38;5;12m [39m[38;5;12mever[39m[38;5;12m [39m[38;5;12msince.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12madvised[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mread[39m[38;5;12m [39m[38;5;14m[1mthis[0m[38;5;14m[1m [0m[38;5;14m[1mgreat[0m[38;5;14m[1m [0m[38;5;14m[1mpost[0m[38;5;12m [39m[38;5;12m(https://medium.com/@maksym.bekuzarov/losses-explained-contrastive-loss-f8f57fe32246)[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbetter[39m[38;5;12m [39m[38;5;12munderstand[39m[38;5;12m [39m[38;5;12mits[39m[38;5;12m [39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mimportance[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmetric[39m[38;5;12m [39m[38;5;12mlearning.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mThe paper introduces Triplet Loss, which can be seen as the "ImageNet moment" for deep metric learning. It is still one of the state-of-the-art methods and has a great number of applications in almost any data modality.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;12m - A novel loss function [39m
|
||||
[38;5;12mwith better properties.[39m
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mIt provides scale invariance, robustness against feature variance, and better convergence than Contrastive and Triplet Loss.[39m
|
||||
|
||||
|
||||
|
||||
[38;5;12m [39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mSupervised metric learning without pairs or triplets.[39m
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mAlthough[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12moriginally[39m[38;5;12m [39m[38;5;12mdesigned[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mface[39m[38;5;12m [39m[38;5;12mrecognition[39m[38;5;12m [39m[38;5;12mtask,[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mloss[39m[38;5;12m [39m[38;5;12mfunction[39m[38;5;12m [39m[38;5;12machieves[39m[38;5;12m [39m[38;5;12mstate-of-the-art[39m[38;5;12m [39m[38;5;12mresults[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[38;5;12mmetric[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mproblems[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msimpler[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mfaster[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mfeeding.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mrobust[39m[38;5;12m [39m[38;5;12magainst[39m[38;5;12m [39m[38;5;12munclean[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12munbalanced[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mwhen[39m[38;5;12m [39m[38;5;12mmodified[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12msub-centers[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mdynamic[39m[38;5;12m [39m[38;5;12mmargin.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;12mVICReg: Variance-Invariance-Covariance Regularization for [39m
|
||||
[38;5;12mSelf-Supervised Learning[39m
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mpaper[39m[38;5;12m [39m[38;5;12mintroduces[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mmethod[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mexplicitly[39m[38;5;12m [39m[38;5;12mavoids[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mcollapse[39m[38;5;12m [39m[38;5;12mproblem[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mhigh[39m[38;5;12m [39m[38;5;12mdimensions[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msimple[39m[38;5;12m [39m[38;5;12mregularization[39m[38;5;12m [39m[38;5;12mterm[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mvariance[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12membeddings[39m[38;5;12m [39m[38;5;12malong[39m[38;5;12m [39m[38;5;12meach[39m[38;5;12m [39m[38;5;12mdimension[39m[38;5;12m [39m[38;5;12mindividually.[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mnew[39m[38;5;12m [39m[38;5;12mterm[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mincorporated[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mmethods[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mstabilize[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mperformance[39m[38;5;12m [39m[38;5;12mimprovements.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mpaper[39m[38;5;12m [39m[38;5;12mproposes[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mmean[39m[38;5;12m [39m[38;5;12mcentroid[39m[38;5;12m [39m[38;5;12mrepresentation[39m[38;5;12m [39m[38;5;12mduring[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mretrieval[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mrobustness[39m[38;5;12m [39m[38;5;12magainst[39m[38;5;12m [39m[38;5;12moutliers[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12mstable[39m[38;5;12m [39m[38;5;12mfeatures.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mfurther[39m[38;5;12m [39m[38;5;12mreduces[39m[38;5;12m [39m[38;5;12mretrieval[39m[38;5;12m [39m[38;5;12mtime[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mstorage[39m[38;5;12m [39m[38;5;12mrequirements,[39m[38;5;12m [39m[38;5;12mmaking[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12msuitable[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mproduction[39m[38;5;12m [39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mdeployments.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mIt demonstrates among other things that[39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12m- composition of data augmentations plays a critical role - Random Crop + Random Color distortion provides the best downstream classifier accuracy,[39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12m- introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations,[39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12m- and Contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mThey[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mincorporates[39m[38;5;12m [39m[38;5;12mannotated[39m[38;5;12m [39m[38;5;12mpairs[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mnatural[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12minference[39m[38;5;12m [39m[38;5;12mdatasets[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m[38;5;12mcontrastive[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msupervised[39m[38;5;12m [39m[38;5;12msetting,[39m[38;5;12m [39m[38;5;12mshowing[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcontrastive[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mobjective[39m[38;5;12m [39m[38;5;12mregularizes[39m[38;5;12m [39m[38;5;12mpre-trained[39m[38;5;12m [39m[38;5;12membeddings’[39m[38;5;12m [39m[38;5;12manisotropic[39m[38;5;12m [39m[38;5;12mspace[39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12muniform,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mbetter[39m[38;5;12m [39m[38;5;12maligns[39m[38;5;12m [39m[38;5;12mpositive[39m[38;5;12m [39m[38;5;12mpairs[39m[38;5;12m [39m[38;5;12mwhen[39m[38;5;12m [39m[38;5;12msupervised[39m[38;5;12m [39m[38;5;12msignals[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mavailable.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[48;5;235m[38;5;249m[49m[39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mMining[39m[38;5;12m [39m[38;5;12minformative[39m[38;5;12m [39m[38;5;12mnegative[39m[38;5;12m [39m[38;5;12minstances[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mcentral[39m[38;5;12m [39m[38;5;12mimportance[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mmetric[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12m(DML),[39m[38;5;12m [39m[38;5;12mhowever[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mtask[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mintrinsically[39m[38;5;12m [39m[38;5;12mlimited[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mmini-batch[39m[38;5;12m [39m[38;5;12mtraining,[39m[38;5;12m [39m[38;5;12mwhere[39m[38;5;12m [39m[38;5;12monly[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mmini-batch[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12minstances[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12maccessible[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12meach[39m[38;5;12m [39m[38;5;12miteration.[39m[38;5;12m [39m[38;5;12mIn[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mpaper,[39m[38;5;12m [39m[38;5;12mwe[39m[38;5;12m [39m[38;5;12midentify[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12m"slow[39m[38;5;12m [39m[38;5;12mdrift"[39m[38;5;12m [39m[38;5;12mphenomena[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mobserving[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12membedding[39m[38;5;12m [39m[38;5;12mfeatures[39m[38;5;12m [39m[38;5;12mdrift[39m[38;5;12m [39m[38;5;12mexceptionally[39m[38;5;12m [39m[38;5;12mslow[39m[38;5;12m [39m[38;5;12meven[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mparameters[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mupdating[39m[38;5;12m [39m[38;5;12mthroughout[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mprocess.[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12msuggests[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mfeatures[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12minstances[39m[38;5;12m [39m[38;5;12mcomputed[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mpreceding[39m[38;5;12m [39m[38;5;12miterations[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mused[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mconsiderably[39m[38;5;12m [39m[38;5;12mapproximate[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m[38;5;12mfeatures[39m[38;5;12m [39m[38;5;12mextracted[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mcurrent[39m[38;5;12m [39m[38;5;12mmodel.[39m
|
||||
[48;5;235m[38;5;249m[49m[39m
|
||||
|
||||
|
||||
[38;2;255;187;0m[4mDatasets ℹ️[0m
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mPractitioners can use any labeled or unlabelled data for metric learning with an appropriate method chosen. However, some datasets are particularly important in the literature for benchmarking or other ways, and we list them in this section.[39m
|
||||
|
||||
|
||||
[38;5;12m - The Stanford Natural Language Inference Corpus, [39m
|
||||
[38;5;12mserving as a useful benchmark. [39m
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mThe dataset contains pairs of sentences labeled as [39m[48;5;235m[38;5;249mcontradiction[49m[39m[38;5;12m, [39m[48;5;235m[38;5;249mentailment[49m[39m[38;5;12m, and [39m[48;5;235m[38;5;249mneutral[49m[39m[38;5;12m regarding semantic relationships. Useful to train semantic search models in metric learning.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mModeled on the SNLI corpus, the dataset contains sentence pairs from various genres of spoken and written text, and it also offers a distinctive cross-genre generalization evaluation.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mShared as a part of a Kaggle competition by Google, this dataset is more diverse and thus more interesting than the first version.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mThe dataset consists of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mThe dataset is published along with [39m[38;5;14m[1m"Deep Metric Learning via Lifted Structured Feature Embedding"[0m[38;5;12m (https://github.com/rksltnl/Deep-Metric-Learning-CVPR16) paper.[39m
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;11m[1m▐[0m[38;5;12m [39m[38;5;12mThe dataset is published along with [39m[38;5;14m[1m"The 2021 Image Similarity Dataset and Challenge"[0m[38;5;12m (http://arxiv.org/abs/2106.09672) paper.[39m
|
||||
|
||||
|
||||
[38;5;12mmetriclearning Github: https://github.com/qdrant/awesome-metric-learning[39m
|
||||
Reference in New Issue
Block a user