This commit is contained in:
2025-07-18 23:13:11 +02:00
parent c9485bf576
commit 652812eed0
2354 changed files with 1266414 additions and 1 deletions

View File

@@ -0,0 +1,546 @@
<h1 id="awesome-materials-informatics-awesome">Awesome Materials
Informatics <a href="https://github.com/sindresorhus/awesome"><img
src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg"
alt="Awesome" /></a></h1>
<p><a href="https://doi.org/10.5281/zenodo.7693349"><img
src="https://zenodo.org/badge/121643986.svg" alt="DOI" /></a></p>
<p>The novel discipline of <em>materials informatics</em> is a junction
of materials, computer, and data sciences. It aims to unite the nowadays
competing physics- and data-intensive efforts for the most impactful
applied science, that transformed our society in the 20th century.</p>
<p>Contributions are very welcome - please follow the <a
href="CONTRIBUTING.md">guidelines</a>.</p>
<h2 id="contents">Contents</h2>
<ul>
<li><a href="#software-and-products">Software and products</a></li>
<li><a href="#cloud-simulation-platforms-and-ai-startups">Cloud
simulation platforms and AI startups</a></li>
<li><a href="#machine-readable-materials-datasets">Machine-readable
materials datasets</a></li>
<li><a href="#standardization-initiatives">Standardization
initiatives</a></li>
<li><a href="#similar-compilations">Similar compilations</a></li>
<li><a href="#license">License</a></li>
</ul>
<h2 id="software-and-products">Software and products</h2>
<ul>
<li><a href="http://materials.duke.edu/AFLOW">AFLOW</a> -
High-Throughput ab-initio Computing (<strong>C++</strong>).</li>
<li><a href="http://aiida.net">AiiDA</a> - Automated Infrastructure and
Database for Ab-initio design (<strong>Python</strong>). <a
href="https://github.com/aiidateam/aiida-core"><img
src="https://img.shields.io/github/stars/aiidateam/aiida-core?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://wiki.fysik.dtu.dk/ase">ASE</a> - Atomic Simulation
Environment (<strong>Python</strong>). <a
href="https://gitlab.com/ase/ase"><img
src="https://img.shields.io/gitlab/stars/ase%2Fase"
alt="Gitlab Stars" /></a></li>
<li><a href="https://gitlab.com/dtorel/asr">ASR</a> - Atomic Simulation
Recipes, based on ASE (<strong>Python</strong>). <a
href="https://gitlab.com/dtorel/asr"><img
src="https://img.shields.io/gitlab/stars/dtorel%2Fasr"
alt="Gitlab Stars" /></a></li>
<li><a href="https://hackingmaterials.github.io/atomate">atomate</a> -
Materials science workflows based on FireWorks, developed at LBNL
(<strong>Python</strong>). <a
href="https://github.com/hackingmaterials/atomate"><img
src="https://img.shields.io/github/stars/hackingmaterials/atomate?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://github.com/CompRhys/aviary">aviary</a> - Predict
materials properties using compositions and Wyckoff representations
(<strong>Python</strong>). <a
href="https://github.com/CompRhys/aviary"><img
src="https://img.shields.io/github/stars/CompRhys/aviary?style=social"
alt="Github Stars" /></a></li>
<li><a
href="https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/">BIOVIA
Materials Studio</a> - <em>Proprietary</em> simulation
infrastructure.</li>
<li><a href="https://github.com/tri-amdd/camd">CAMD</a> - Agent-based
sequential learning software for materials discovery
(<strong>Python</strong>). <a
href="https://github.com//tri-amdd/camd"><img
src="https://img.shields.io/github/stars/tri-amdd/camd?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://cclib.github.io">cclib</a> - Parse and interpret
the results of computational chemistry packages
(<strong>Python</strong>). <a href="https://github.com/cclib/cclib"><img
src="https://img.shields.io/github/stars/cclib/cclib?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://cctbx.github.io">cctbx</a> - Computational
Crystallography Toolbox (<strong>C++</strong>). <a
href="https://github.com/cctbx/cctbx_project"><img
src="https://img.shields.io/github/stars/cctbx/cctbx_project?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://github.com/txie-93/cdvae">CDVAE</a> -
<strong>Python</strong> Crystal Diffusion Variational AutoEncoder
(CDVAE) generates novel stable materials via inverse design. <a
href="https://github.com/txie-93/cdvae"><img
src="https://img.shields.io/github/stars/txie-93/cdvae?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://github.com/anthony-wang/CrabNet">CrabNet</a> -
Predict materials properties using only the composition information.
(<strong>Python</strong>). <img
src="https://img.shields.io/github/stars/anthony-wang/CrabNet?style=social"
alt="GitHub Repo stars" /></li>
<li><a href="https://docs.crystaltoolkit.org">Crystal Toolkit</a> - A
framework for building web apps for materials science powering the new
Materials Project website. <a
href="https://github.com/materialsproject/crystaltoolkit"><img
src="https://img.shields.io/github/stars/materialsproject/crystaltoolkit?style=social"
alt="Github Stars" /></a></li>
<li><a
href="https://github.com/materialsproject/custodian">Custodian</a> -
Simple, robust and flexible just-in-time (JIT) job management framework
(<strong>Python</strong>). <a
href="https://github.com/materialsproject/custodian"><img
src="https://img.shields.io/github/stars/materialsproject/custodian?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://github.com/datamol-org/datamol">datamol</a> -
Molecular Manipulation Made Easy. A light wrapper built on top of RDKit
(<strong>Python</strong>). <a
href="https://github.com/datamol-org/datamol"><img
src="https://img.shields.io/github/stars/datamol-org/datamol?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://github.com/lrcfmd/ElMD">ElMD</a> - Quantify the
chemical similarity between two compositions using the Element Movers
Distance. <a href="https://github.com/lrcfmd/ElMD/"><img
src="https://img.shields.io/github/stars/lrcfmd/ElMD?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://materialsproject.github.io/fireworks">FireWorks</a>
- Workflow engine developed at LBNL (<strong>Python</strong>). <a
href="https://github.com/materialsproject/fireworks"><img
src="https://img.shields.io/github/stars/materialsproject/fireworks?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://www.grantadesign.com/products/mi">Granta MI</a> -
<em>Proprietary</em> enterprise infrastructure for the materials
data.</li>
<li><a href="https://github.com/lfoppiano/grobid-superconductors">Grobid
superconductors</a> - Open source <a
href="https://github.com/kermitt2/grobid">Grobid</a> module for
extracting superconductor material and related properties</li>
<li><a href="https://httk.openmaterialsdb.se">httk</a> - High-throughput
toolkit (<strong>Python</strong>). <a
href="https://github.com/rartino/httk"><img
src="https://img.shields.io/github/stars/rartino/httk?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://www.questek.com/software">ICMD</a> - A digital
materials design platform in the cloud from QuesTek Innovations LLC
(<em>proprietary</em>).</li>
<li><a href="https://www.iochem-bd.org">ioChem-BD</a> - Solution to
manage computational chemistry Big Data (<strong>Java</strong>).</li>
<li><a href="https://github.com/uw-cmg/MAST-ML">MAST-ML</a> - An
open-source Python package designed to broaden and accelerate the use of
machine learning in materials science research
(<strong>Python</strong>). <a
href="https://github.com/uw-cmg/MAST-ML"><img
src="https://img.shields.io/github/stars/uw-cmg/MAST-ML?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://github.com/ml-evs/matador">matador</a> - A library
for aggregation and analysis of high-throughput DFT
(<strong>Python</strong>). <a
href="https://github.com/ml-evs/matador"><img
src="https://img.shields.io/github/stars/ml-evs/matador?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://github.com/materialsproject/matbench">matbench</a>
- Matbench: Benchmarks for materials science property prediction
(<strong>Python</strong>). <a
href="https://github.com/materialsproject/matbench"><img
src="https://img.shields.io/github/stars/materialsproject/matbench?style=social"
alt="Github Stars" /></a></li>
<li><a
href="https://github.com/sparks-baird/matbench-genmetrics">matbench-genmetrics</a>
- Generative materials benchmarking metrics, inspired by <a
href="https://www.benevolent.com/guacamol">guacamol</a> and <a
href="https://github.com/txie-93/cdvae">CDVAE</a>
(<strong>Python</strong>). <a
href="https://github.com/sparks-baird/matbench-genmetrics"><img
src="https://img.shields.io/github/stars/sparks-baird/matbench-genmetrics?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://github.com/hackingmaterials/matminer">matminer</a>
- A library for data mining in materials science
(<strong>Python</strong>). <a
href="https://github.com/hackingmaterials/matminer"><img
src="https://img.shields.io/github/stars/hackingmaterials/matminer?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://huggingface.co/m3rg-iitd/matscibert">MatSciBERT</a>
- A Materials Domain Language Model for Text Mining and Information
Extraction (<strong>Python</strong>).<img
src="https://img.shields.io/github/stars/M3RG-IITD/MatSciBERT?style=social"
alt="GitHub Repo stars" /></li>
<li><a
href="https://sparks-baird.github.io/mat_discover/">mat_discover</a> -
Find high-performance candidates in chemical spaces, composition-only
(<strong>Python</strong>). <img
src="https://img.shields.io/github/stars/sparks-baird/mat_discover?style=social"
alt="GitHub Repo stars" /></li>
<li><a href="https://github.com/usnistgov/MDCS">MDCS</a> - Materials
Data Curation System (<strong>Python</strong>). <a
href="https://github.com/usnistgov/MDCS"><img
src="https://img.shields.io/github/stars/usnistgov/MDCS?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://www.materialsdesign.com/medea-software">MedeA</a> -
<em>Proprietary</em> computational <strong>Tcl</strong> environment by
Materials Design, Inc.</li>
<li><a href="https://github.com/ppdebreuck/modnet">MODNet</a> - Select
optimal descriptions and build models for predicting materials
properties (<strong>Python</strong>). <a
href="https://github.com/ppdebreuck/modnet"><img
src="https://img.shields.io/github/stars/ppdebreuck/modnet?style=social"
alt="Github Stars" /></a></li>
<li><a
href="https://github.com/sparks-baird/mp-time-split">mp-time-split</a> -
Use time-based cross-validation splits from Materials Project for
generative modeling benchmarking (<strong>Python</strong>). <a
href="https://github.com/sparks-baird/mp-time-split"><img
src="https://img.shields.io/github/stars/sparks-baird/mp-time-split?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://nomad-lab.eu/nomad-lab/nomad-oasis.html">NOMAD
Oasis</a> - A web-based software to manage and share materials data
(<strong>Python/javascript</strong>). <a
href="https://github.com/nomad-coe/nomad"><img
src="https://img.shields.io/github/stars/nomad-coe/nomad?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://crest-cassia.github.io/oacis/en/">OACIS</a> - Job
management software for simulation studies using a <strong>Ruby on
Rails</strong> webserver. <a
href="https://github.com/crest-cassia/oacis"><img
src="https://img.shields.io/github/stars/crest-cassia/oacis?style=social"
alt="Github Stars" /></a></li>
<li><a
href="https://github.com/Materials-Consortia/optimade-python-tools">optimade-python-tools</a>
- Tools for <a href="https://www.optimade.org">OPTIMADE APIs</a> in
<strong>Python</strong>. <a
href="https://github.com/Materials-Consortia/optimade-python-tools"><img
src="https://img.shields.io/github/stars/Materials-Consortia/optimade-python-tools?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://github.com/TRI-AMDD/piro">piro</a> - Software for
evaluating pareto-optimal synthesis pathways (<strong>Python</strong>).
<a href="https://github.com/TRI-AMDD/piro"><img
src="https://img.shields.io/github/stars/TRI-AMDD/piro?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://github.com/pyiron">pyiron</a> - Integrated
development environment (IDE) for computational materials science
(<strong>Python</strong>). <a
href="https://github.com/pyiron/pyiron"><img
src="https://img.shields.io/github/stars/pyiron/pyiron?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://github.com/DeqiTang/pymatflow">pymatflow</a> -
Toolbox for (high-throughput) DFT modeling of materials
(<strong>Python</strong>). <a
href="https://github.com/deqitang/pymatflow"><img
src="https://img.shields.io/github/stars/deqitang/pymatflow?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://pymatgen.org">Pymatgen</a> - A robust, open-source
<strong>Python</strong> library for materials analysis. <a
href="https://github.com/materialsproject/pymatgen"><img
src="https://img.shields.io/github/stars/materialsproject/pymatgen?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://github.com/janosh/pymatviz">Pymatviz</a> - A
toolkit for visualizations in materials informatics. <a
href="https://github.com/janosh/pymatviz"><img
src="https://img.shields.io/github/stars/janosh/pymatviz?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://pymks.org">pymks</a> - Materials Knowledge System
(<strong>Python</strong>). <a
href="https://github.com/materialsinnovation/pymks"><img
src="https://img.shields.io/github/stars/materialsinnovation/pymks?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://sourceforge.net/projects/qmforge/">QMForge</a> -
<strong>Python</strong> framework and GUI for analyzing results of
quantum chemistry codes.</li>
<li><a href="https://github.com/SCM-NV/qmflows">QMflows</a> -
<strong>Python</strong> library for input generation and task handling
in computational chemistry. <a
href="https://github.com/SCM-NV/qmflows"><img
src="https://img.shields.io/github/stars/SCM-NV/qmflows?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://pythonhosted.org/qmpy">qmpy</a> -
<strong>Python</strong> backend creating and running the Open Quantum
Materials Database. <a
href="https://github.com/wolverton-research-group/qmpy"><img
src="https://img.shields.io/github/stars/wolverton-research-group/qmpy?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://github.com/arosen93/quacc">quacc</a> -
<strong>Python</strong> platform for high-throughput, database-driven
computational materials science and quantum chemistry <a
href="https://github.com/arosen93/quacc"><img
src="https://img.shields.io/github/stars/arosen93/quacc?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://github.com/rdkit/rdkit">RDKit</a> - A collection of
cheminformatics and machine-learning software written in
<strong>C++</strong> and <strong>Python</strong>. <a
href="https://github.com/rdkit/rdkit"><img
src="https://img.shields.io/github/stars/rdkit/rdkit?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://molssi-seamm.github.io/">SEAMM</a> - Simulation
Environment for Atomistic and Molecular Modeling
(<strong>Python</strong>). <a
href="https://github.com/molssi-seamm/seamm"><img
src="https://img.shields.io/github/stars/molssi-seamm/seamm?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://github.com/lfoppiano/supercon2">SuperCon2</a> - A
user interface for curating Superconductors materials and properties
extracted by <a
href="https://github.com/lfoppiano/grobid-superconductors">grobid-superconductors</a></li>
<li><a href="https://github.com/BAMresearch/WEBSLAMD">SLAMD</a> - An
open source web app for data driven acceleration of cement and concrete
development through digital lab twin and AI optimization
(<strong>Python/javascript</strong>). <a
href="https://github.com/BAMresearch/WEBSLAMD"><img
src="https://img.shields.io/github/stars/BAMresearch/WEBSLAMD?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://github.com/tilde-lab/tilde">tilde</a> -
<strong>Python</strong> framework for ab initio data repositories. <a
href="https://github.com/tilde-lab/tilde"><img
src="https://img.shields.io/github/stars/tilde-lab/tilde?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://github.com/yoshida-lab/XenonPy">XenonPy</a> - A
Python library that implements a comprehensive set of machine learning
tools for materials informatics. <a
href="https://github.com/yoshida-lab/XenonPy"><img
src="https://img.shields.io/github/stars/yoshida-lab/XenonPy?style=social"
alt="Github Stars" /></a></li>
<li><a href="https://github.com/sparks-baird/xtal2png">xtal2png</a> -
<strong>Python</strong> package for invertibly representing crystal
structures as PNG images for screening state-of-the-art image-processing
generative models. <a
href="https://github.com/sparks-baird/xtal2png"><img
src="https://img.shields.io/github/stars/sparks-baird/xtal2png?style=social"
alt="Github Stars" /></a></li>
</ul>
<h2 id="cloud-simulation-platforms-and-ai-startups">Cloud simulation
platforms and AI startups</h2>
<ul>
<li><a href="https://absolidix.com">Absolidix</a> - An early preview of
the on-demand cloud simulations of materials from <strong>MPDS</strong>
(PAULING FILE) with <strong>AiiDA</strong> framework.</li>
<li><a href="https://www.materialscloud.org/aiidalab">AiiDAlab</a> - Web
platform &amp; GUI for AiiDA in the Cloud (<em>cf.</em>
<strong>AiiDA</strong> framework).</li>
<li><a href="https://www.angstrom-ai.com">Ångström AI</a> - Accelerating
molecular simulation using generative AI (California, USA).</li>
<li><a href="https://atomictessellator.com">Atomic Tessellator</a> -
Computational chemistry cloud and AI lab from New Zealand.</li>
<li><a href="https://quantum.microsoft.com">Azure Quantum Elements</a> -
Microsofts Quantum Computing including generative chemistry and
accelerated DFT.</li>
<li><a href="https://compulartech.com">Compular</a> - New materials
development cloud from Sweden.</li>
<li><a href="https://www.cusp.ai">CuspAI</a> - Combat Climate Change
with AI-Designed Materials (Cambridge, UK).</li>
<li><a href="https://dunia.ai">Dunia Innovations</a> - A Berlin-based
materials discovery startup (Germany).</li>
<li><a href="https://entalpic.ai">Entalpic</a> - AI-driven company for
discovering new chemical processes and materials (France).</li>
<li><a href="https://lmds.liverpool.ac.uk">LMDS</a> - The Liverpool
materials discovery server hosts computational tools to help
experimental chemists search for new materials.<br />
</li>
<li><a href="https://www.mat3ra.com">Mat3ra</a> - Materials Modeling 2.0
(cloud engine from Silicon Valley). <a
href="https://github.com/Exabyte-io"><img
src="https://img.shields.io/github/followers/Exabyte-io?style=social"
alt="GitHub followers" /></a></li>
<li><a href="http://matcloud.cnic.cn">MatCloud</a> - Cloud-based
computational infrastructure of the Chinese Materials Genome Project
(China).</li>
<li><a href="https://www.materialssquare.com">Materials Square</a> - Ab
initio and CALPHAD simulations cloud (South Korea).</li>
<li><a href="https://matlantis.com">Matlantis</a> - Accelerated
materials discovery platform (Japan). <a
href="https://github.com/matlantis-pfcc"><img
src="https://img.shields.io/github/followers/matlantis-pfcc?style=social"
alt="GitHub followers" /></a></li>
<li><a href="https://orbitalmaterials.com">Orbital Materials</a> -
Advanced materials, made with AI (UK).</li>
<li><a href="https://periodiclabs.ai">Periodic Labs</a> - A new
materials AI startup from OpenAI and Google DeepMind (USA and UK).</li>
<li><a href="https://www.radical-ai.com">Radical AI</a> - Accelerating
materials R&amp;D (New York, USA).</li>
<li><a href="https://quantistry.com/en/product">Quantistry Lab</a> -
Cloud-based simulations of syntheses, designing novel materials,
computational chemistry (Germany).</li>
<li><a href="https://rolos.com">SIT Rolos</a> - Research platform for
materials from Schaffhausen Institute of Technology (Switzerland).</li>
</ul>
<h2 id="machine-readable-materials-datasets">Machine-readable materials
datasets</h2>
<ul>
<li><a href="http://www.aflowlib.org">AFLOW</a> - Flow for Materials
Discovery repository (<em>cf.</em> <strong>AFLOW</strong>
framework).</li>
<li><a href="https://atb.uq.edu.au">ATB</a> - Automated Topology Builder
and Repository.</li>
<li><a href="https://crystdb.nims.go.jp/en">AtomWork</a> and <a
href="https://atomwork-adv.nims.go.jp">AtomWork-Adv</a> - Data platform
of NIMS, Japan (based on the PAULING FILE experimental database).</li>
<li><a href="https://imet-db.ru">Baikov Institute of Metallurgy and
Materials Science</a> - Databases of Russian Academy of Sciences.</li>
<li><a href="http://www.carolinamatdb.org">Carolina Materials
Database</a> - an ML-DFT database of the University of South
Carolina.</li>
<li><a href="https://cascadesdb.org">CascadesDB</a> - Molecular dynamics
simulations of collision cascades, by the International Atomic Energy
Agency.</li>
<li><a href="https://www.catalysis-hub.org">Catalysis Hub</a> -
Web-platform for sharing data and software for computational catalysis
research.</li>
<li><a href="http://cccbdb.nist.gov">cccbdb</a> - Computational
Chemistry Comparison and Benchmark Database.</li>
<li><a href="https://www.ccdc.cam.ac.uk">CCDC</a> - Cambridge
Crystallographic Data Centre (partly <em>proprietary</em>).</li>
<li><a href="https://citrination.com">Citrination</a> - AI-Powered
Materials Data Platform (partly <em>proprietary</em>).</li>
<li><a href="https://wiki.fysik.dtu.dk/cmr">CMR</a> - Computational
Materials Repository (<em>cf.</em> <strong>ASE</strong> framework).</li>
<li><a href="https://www.crystallography.net">COD</a> - Crystallography
Open Database (including theoretical database).</li>
<li><a href="http://gurka.fysik.uu.se/ESP">ESP</a> - Electronic
Structure Project.</li>
<li><a href="https://materials.hybrid3.duke.edu/">HybriD3 Materials
Database</a> - A comprehensive collection of experimental and
computational materials data for crystalline organic-inorganic
compounds.</li>
<li><a href="https://icsd.products.fiz-karlsruhe.de">ICSD</a> -
Inorganic Crystal Structure Database (partly <em>proprietary</em>).</li>
<li><a href="https://jarvis.nist.gov">JARVIS</a> - Joint Automated
Repository for Various Integrated Simulations (NIST).</li>
<li><a href="https://khazana.gatech.edu">Khazana</a> - Repository for
data created in atomistic simulations, features also the polymer
genome.</li>
<li><a href="https://www.materialscloud.org">Materials Cloud</a> - A
Platform for Open Materials Science (<em>cf.</em> <strong>AiiDA</strong>
framework).</li>
<li><a href="https://www.mgedata.cn">Materials Genome Engineering
Databases of China</a> - National integration platform (<em>cf.</em>
<strong>MatCloud</strong>).</li>
<li><a href="https://materialsmine.org">MaterialsMine</a> - An
open-source repository for nanocomposite data (NanoMine) and mechanical
metamaterials data (MetaMine).</li>
<li><a href="https://www.materialsproject.org">Materials Project</a> -
Computed information on known and predicted materials (<em>cf.</em>
<strong>Pymatgen</strong> framework).</li>
<li><a href="https://materialsdatafacility.org">MDF</a> - Materials Data
Facility, a set of data services built specifically to support materials
science researchers.</li>
<li><a href="https://qcarchive.molssi.org">MolSSI</a> - The MolSSI
Quantum Chemistry Archive.</li>
<li><a href="https://mpds.io">MPDS</a> - Materials Platform for Data
Science (based on the PAULING FILE experimental database, partly
<em>proprietary</em>).</li>
<li><a href="http://mpod.cimav.edu.mx">MPOD</a> - Material Properties
Open Database.</li>
<li><a href="http://mse.fhi-berlin.mpg.de">MSE</a> - Test Set for
Materials Science and Engineering.</li>
<li><a href="https://nanohub.org/developer">nanoHUB</a> - Place for
computational nanotechnology research, education, and
collaboration.</li>
<li><a href="https://nomad-lab.eu">NOMAD</a> - Novel Materials
Discovery, Repository, and Laboratory (<em>cf.</em> <strong>NOMAD
Oasis</strong>).</li>
<li><a href="http://materials.nrel.gov">NREL MatDB</a> - Computational
database of thermochemical and electronic properties of materials for
renewable energy applications</li>
<li><a href="https://omdb.mathub.io">Organic Materials Database</a> -
Electronic structure database for 3-dimensional organic crystals
(Nordita).</li>
<li><a href="http://openmaterialsdb.se">Open Materials Database</a> -
Materials-genome-type repository from ab-inito calculations
(<em>cf.</em> <strong>httk</strong> framework).</li>
<li><a href="https://openkim.org">OpenKIM</a> - Repository of
interatomic potential implementations and computational protocols for
testing them.</li>
<li><a href="http://oqmd.org">OQMD</a> - Open Quantum Materials Database
(<em>cf.</em> <strong>qmpy</strong> framework).</li>
<li><a href="http://phonondb.mtl.kyoto-u.ac.jp">Phonon database at Kyoto
university</a> - Computational phonon band structures, density of states
and thermal properties.</li>
<li><a href="https://pqr.pitt.edu">Pitt Quantum Repository</a> -
Molecular properties predicted from quantum mechanics.</li>
<li><a href="https://solsa.crystallography.net/rod/">ROD</a> - Raman
Open Database.</li>
<li><a href="https://github.com/lfoppiano/SuperMat">SuperMat</a> - A
dataset of superconductors materials</li>
<li><a href="https://www.topologicalquantumchemistry.org">Topological
Materials Database</a> - A Complete Catalogue of High-Quality
Topological Materials.</li>
</ul>
<h2 id="standardization-initiatives">Standardization initiatives</h2>
<ul>
<li><a href="https://blueobelisk.github.io">Blue Obelisk</a> - Movement
for open data, open source and open standards in chemistry and materials
science (by Murray-Rust).</li>
<li><a href="https://www.iucr.org/resources/cif">CIF</a> -
Crystallographic Information File, a standard for crystallographic
information (by IUCr, International Union of Crystallography).</li>
<li><a href="http://www.xml-cml.org">CML</a> - Chemical Markup Language:
molecules, compounds, reactions, spectra, crystals <em>etc.</em> (by
Murray-Rust).</li>
<li><a href="https://colabfit.org">ColabFit</a> - Collaborative
infrastructure for the development and distribution of state-of-the-art
data-driven interatomic potentials (DDIPs).</li>
<li><a href="https://github.com/emmo-repo/EMMO">EMMO</a> - European
Materials Modelling Ontology.</li>
<li><a
href="https://gitlab.com/ElectronicStructureLibrary/escdf/escdf-specifications">ESCDF</a>
- Electronic Structure Common Data Format.</li>
<li><a href="https://github.com/Exabyte-io/esse">ESSE</a> - Exabyte
Source of Schemas and Examples designed for digital materials
science.</li>
<li><a href="https://citrineinformatics.github.io/gemd-docs/">GEMD</a> -
Graphical Expression of Materials Data (by Citrine), supersedes
<em>PIF</em>.</li>
<li><a href="http://www.jcamp-dx.org">JCAMP-DX</a> - Electronic data
standards for chemical and spectroscopy information (by IUPAC).</li>
<li><a href="https://openkim.org/kim-api/">KIM API</a> - API standard
for connecting molecular simulation codes with interatomic models.</li>
<li><a href="https://nomad-lab.eu/services/metainfo">NOMAD Meta Info</a>
- Schema for storing results of ab initio and force-field atomistic
simulations (by NOMAD Laboratory).</li>
<li><a href="https://www.optimade.org">OPTIMADE</a> - Open Databases
Integration for Materials Design, a REST API standard for exchanging
materials information.</li>
<li><a
href="https://citrineinformatics.github.io/pif-documentation/index.html">PIF</a>
- Physical Information File schema (by Citrine), superseded by
<em>GEMD</em>.</li>
<li><a href="https://doi.org/10.5281/zenodo.2456346">Semantic Assets for
Materials Science</a> - Task group within the <a
href="https://rd-alliance.org/groups/vocabulary-services-interest-group.html">vocabulary
services interest group</a> of the Research Data Alliance.</li>
<li><a href="https://open-forcefield-toolkit.readthedocs.io">Open Force
Field Toolkit</a> - Specification for encoding molecular mechanics force
fields (by <a href="http://openforcefield.org">Open Force Field
Initiative</a>).</li>
</ul>
<h2 id="similar-compilations">Similar compilations</h2>
<ul>
<li><a href="https://atomistic.software">atomistic.software</a> - a
collection of major atomistic simulation engines with citation info</li>
<li><a
href="https://github.com/JuDFTteam/best-of-atomistic-machine-learning">Best
of Atomistic Machine Learning</a> - curated list with 510+ atomistic
projects</li>
<li><a href="https://doi.org/10.1002/advs.201900808">DataDriven
Materials Science: Status, Challenges, and Perspectives</a></li>
<li><a
href="https://github.com/neo-chem/awesome-chemical-data">Experimental
chemistry and materials science data</a></li>
<li><a href="https://emmc.info/taxonda">European Materials Modelling
Council Taxondas</a></li>
<li><a href="http://en.iric.imet-db.ru">Information Resources on
Inorganic Chemistry</a> - a collection from Baikov Institute of
Metallurgy and Materials Science, Russia.</li>
<li><a
href="https://github.com/blaiszik/Materials-Databases">Materials-Related
Databases</a></li>
</ul>
<h2 id="license">License</h2>
<p><a href="https://creativecommons.org/publicdomain/zero/1.0/"><img
src="http://mirrors.creativecommons.org/presskit/buttons/88x31/svg/cc-zero.svg"
alt="CC0" /></a></p>
<p><a
href="https://github.com/tilde-lab/awesome-materials-informatics">materialsinformatics.md
Github</a></p>