update
This commit is contained in:
811
html/deeplearningpapers.md2.html
Normal file
811
html/deeplearningpapers.md2.html
Normal file
@@ -0,0 +1,811 @@
|
||||
<h1 id="awesome---most-cited-deep-learning-papers">Awesome - Most Cited
|
||||
Deep Learning Papers</h1>
|
||||
<p><a href="https://github.com/sindresorhus/awesome"><img
|
||||
src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg"
|
||||
alt="Awesome" /></a></p>
|
||||
<p>[Notice] This list is not being maintained anymore because of the
|
||||
overwhelming amount of deep learning papers published every day since
|
||||
2017.</p>
|
||||
<p>A curated list of the most cited deep learning papers (2012-2016)</p>
|
||||
<p>We believe that there exist <em>classic</em> deep learning papers
|
||||
which are worth reading regardless of their application domain. Rather
|
||||
than providing overwhelming amount of papers, We would like to provide a
|
||||
<em>curated list</em> of the awesome deep learning papers which are
|
||||
considered as <em>must-reads</em> in certain research domains.</p>
|
||||
<h2 id="background">Background</h2>
|
||||
<p>Before this list, there exist other <em>awesome deep learning
|
||||
lists</em>, for example, <a
|
||||
href="https://github.com/kjw0612/awesome-deep-vision">Deep Vision</a>
|
||||
and <a href="https://github.com/kjw0612/awesome-rnn">Awesome Recurrent
|
||||
Neural Networks</a>. Also, after this list comes out, another awesome
|
||||
list for deep learning beginners, called <a
|
||||
href="https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadmap">Deep
|
||||
Learning Papers Reading Roadmap</a>, has been created and loved by many
|
||||
deep learning researchers.</p>
|
||||
<p>Although the <em>Roadmap List</em> includes lots of important deep
|
||||
learning papers, it feels overwhelming for me to read them all. As I
|
||||
mentioned in the introduction, I believe that seminal works can give us
|
||||
lessons regardless of their application domain. Thus, I would like to
|
||||
introduce <strong>top 100 deep learning papers</strong> here as a good
|
||||
starting point of overviewing deep learning researches.</p>
|
||||
<p>To get the news for newly released papers everyday, follow my <a
|
||||
href="https://twitter.com/TerryUm_ML">twitter</a> or <a
|
||||
href="https://www.facebook.com/terryum.io/">facebook page</a>!</p>
|
||||
<h2 id="awesome-list-criteria">Awesome list criteria</h2>
|
||||
<ol type="1">
|
||||
<li>A list of <strong>top 100 deep learning papers</strong> published
|
||||
from 2012 to 2016 is suggested.</li>
|
||||
<li>If a paper is added to the list, another paper (usually from *More
|
||||
Papers from 2016” section) should be removed to keep top 100 papers.
|
||||
(Thus, removing papers is also important contributions as well as adding
|
||||
papers)</li>
|
||||
<li>Papers that are important, but failed to be included in the list,
|
||||
will be listed in <em>More than Top 100</em> section.</li>
|
||||
<li>Please refer to <em>New Papers</em> and <em>Old Papers</em> sections
|
||||
for the papers published in recent 6 months or before 2012.</li>
|
||||
</ol>
|
||||
<p><em>(Citation criteria)</em> - <strong>< 6 months</strong> :
|
||||
<em>New Papers</em> (by discussion) - <strong>2016</strong> : +60
|
||||
citations or “More Papers from 2016” - <strong>2015</strong> : +200
|
||||
citations - <strong>2014</strong> : +400 citations -
|
||||
<strong>2013</strong> : +600 citations - <strong>2012</strong> : +800
|
||||
citations - <strong>~2012</strong> : <em>Old Papers</em> (by
|
||||
discussion)</p>
|
||||
<p>Please note that we prefer seminal deep learning papers that can be
|
||||
applied to various researches rather than application papers. For that
|
||||
reason, some papers that meet the criteria may not be accepted while
|
||||
others can be. It depends on the impact of the paper, applicability to
|
||||
other researches scarcity of the research domain, and so on.</p>
|
||||
<p><strong>We need your contributions!</strong></p>
|
||||
<p>If you have any suggestions (missing papers, new papers, key
|
||||
researchers or typos), please feel free to edit and pull a request.
|
||||
(Please read the <a
|
||||
href="https://github.com/terryum/awesome-deep-learning-papers/blob/master/Contributing.md">contributing
|
||||
guide</a> for further instructions, though just letting me know the
|
||||
title of papers can also be a big contribution to us.)</p>
|
||||
<p>(Update) You can download all top-100 papers with <a
|
||||
href="https://github.com/terryum/awesome-deep-learning-papers/blob/master/fetch_papers.py">this</a>
|
||||
and collect all authors’ names with <a
|
||||
href="https://github.com/terryum/awesome-deep-learning-papers/blob/master/get_authors.py">this</a>.
|
||||
Also, <a
|
||||
href="https://github.com/terryum/awesome-deep-learning-papers/blob/master/top100papers.bib">bib
|
||||
file</a> for all top-100 papers are available. Thanks, doodhwala, <a
|
||||
href="https://github.com/sunshinemyson">Sven</a> and <a
|
||||
href="https://github.com/grepinsight">grepinsight</a>!</p>
|
||||
<ul>
|
||||
<li>Can anyone contribute the code for obtaining the statistics of the
|
||||
authors of Top-100 papers?</li>
|
||||
</ul>
|
||||
<h2 id="contents">Contents</h2>
|
||||
<ul>
|
||||
<li><a href="#understanding--generalization--transfer">Understanding /
|
||||
Generalization / Transfer</a></li>
|
||||
<li><a href="#optimization--training-techniques">Optimization / Training
|
||||
Techniques</a></li>
|
||||
<li><a href="#unsupervised--generative-models">Unsupervised / Generative
|
||||
Models</a></li>
|
||||
<li><a href="#convolutional-neural-network-models">Convolutional Network
|
||||
Models</a></li>
|
||||
<li><a href="#image-segmentation--object-detection">Image Segmentation /
|
||||
Object Detection</a></li>
|
||||
<li><a href="#image--video--etc">Image / Video / Etc</a></li>
|
||||
<li><a href="#natural-language-processing--rnns">Natural Language
|
||||
Processing / RNNs</a></li>
|
||||
<li><a href="#speech--other-domain">Speech / Other Domain</a></li>
|
||||
<li><a href="#reinforcement-learning--robotics">Reinforcement Learning /
|
||||
Robotics</a></li>
|
||||
<li><a href="#more-papers-from-2016">More Papers from 2016</a></li>
|
||||
</ul>
|
||||
<p><em>(More than Top 100)</em></p>
|
||||
<ul>
|
||||
<li><a href="#new-papers">New Papers</a> : Less than 6 months</li>
|
||||
<li><a href="#old-papers">Old Papers</a> : Before 2012</li>
|
||||
<li><a href="#hw--sw--dataset">HW / SW / Dataset</a> : Technical
|
||||
reports</li>
|
||||
<li><a href="#book--survey--review">Book / Survey / Review</a></li>
|
||||
<li><a href="#video-lectures--tutorials--blogs">Video Lectures /
|
||||
Tutorials / Blogs</a></li>
|
||||
<li><a href="#appendix-more-than-top-100">Appendix: More than Top
|
||||
100</a> : More papers not in the list</li>
|
||||
</ul>
|
||||
<hr />
|
||||
<h3 id="understanding-generalization-transfer">Understanding /
|
||||
Generalization / Transfer</h3>
|
||||
<ul>
|
||||
<li><strong>Distilling the knowledge in a neural network</strong>
|
||||
(2015), G. Hinton et al. <a
|
||||
href="http://arxiv.org/pdf/1503.02531">[pdf]</a></li>
|
||||
<li><strong>Deep neural networks are easily fooled: High confidence
|
||||
predictions for unrecognizable images</strong> (2015), A. Nguyen et
|
||||
al. <a href="http://arxiv.org/pdf/1412.1897">[pdf]</a></li>
|
||||
<li><strong>How transferable are features in deep neural
|
||||
networks?</strong> (2014), J. Yosinski et al. <a
|
||||
href="http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks.pdf">[pdf]</a></li>
|
||||
<li><strong>CNN features off-the-Shelf: An astounding baseline for
|
||||
recognition</strong> (2014), A. Razavian et al. <a
|
||||
href="http://www.cv-foundation.org//openaccess/content_cvpr_workshops_2014/W15/papers/Razavian_CNN_Features_Off-the-Shelf_2014_CVPR_paper.pdf">[pdf]</a></li>
|
||||
<li><strong>Learning and transferring mid-Level image representations
|
||||
using convolutional neural networks</strong> (2014), M. Oquab et al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Oquab_Learning_and_Transferring_2014_CVPR_paper.pdf">[pdf]</a></li>
|
||||
<li><strong>Visualizing and understanding convolutional
|
||||
networks</strong> (2014), M. Zeiler and R. Fergus <a
|
||||
href="http://arxiv.org/pdf/1311.2901">[pdf]</a></li>
|
||||
<li><strong>Decaf: A deep convolutional activation feature for generic
|
||||
visual recognition</strong> (2014), J. Donahue et al. <a
|
||||
href="http://arxiv.org/pdf/1310.1531">[pdf]</a></li>
|
||||
</ul>
|
||||
<!---[Key researchers] [Geoffrey Hinton](https://scholar.google.ca/citations?user=JicYPdAAAAAJ), [Yoshua Bengio](https://scholar.google.ca/citations?user=kukA0LcAAAAJ), [Jason Yosinski](https://scholar.google.ca/citations?hl=en&user=gxL1qj8AAAAJ) -->
|
||||
<h3 id="optimization-training-techniques">Optimization / Training
|
||||
Techniques</h3>
|
||||
<ul>
|
||||
<li><strong>Training very deep networks</strong> (2015), R. Srivastava
|
||||
et al. <a
|
||||
href="http://papers.nips.cc/paper/5850-training-very-deep-networks.pdf">[pdf]</a></li>
|
||||
<li><strong>Batch normalization: Accelerating deep network training by
|
||||
reducing internal covariate shift</strong> (2015), S. Loffe and C.
|
||||
Szegedy <a href="http://arxiv.org/pdf/1502.03167">[pdf]</a></li>
|
||||
<li><strong>Delving deep into rectifiers: Surpassing human-level
|
||||
performance on imagenet classification</strong> (2015), K. He et al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf">[pdf]</a></li>
|
||||
<li><strong>Dropout: A simple way to prevent neural networks from
|
||||
overfitting</strong> (2014), N. Srivastava et al. <a
|
||||
href="http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf">[pdf]</a></li>
|
||||
<li><strong>Adam: A method for stochastic optimization</strong> (2014),
|
||||
D. Kingma and J. Ba <a
|
||||
href="http://arxiv.org/pdf/1412.6980">[pdf]</a></li>
|
||||
<li><strong>Improving neural networks by preventing co-adaptation of
|
||||
feature detectors</strong> (2012), G. Hinton et al. <a
|
||||
href="http://arxiv.org/pdf/1207.0580.pdf">[pdf]</a></li>
|
||||
<li><strong>Random search for hyper-parameter optimization</strong>
|
||||
(2012) J. Bergstra and Y. Bengio <a
|
||||
href="http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a">[pdf]</a></li>
|
||||
</ul>
|
||||
<!---[Key researchers] [Geoffrey Hinton](https://scholar.google.ca/citations?user=JicYPdAAAAAJ), [Yoshua Bengio](https://scholar.google.ca/citations?user=kukA0LcAAAAJ), [Christian Szegedy](https://scholar.google.ca/citations?hl=en&user=3QeF7mAAAAAJ), [Sergey Ioffe](https://scholar.google.ca/citations?user=S5zOyIkAAAAJ), [Kaming He](https://scholar.google.ca/citations?hl=en&user=DhtAFkwAAAAJ), [Diederik P. Kingma](https://scholar.google.ca/citations?hl=en&user=yyIoQu4AAAAJ)-->
|
||||
<h3 id="unsupervised-generative-models">Unsupervised / Generative
|
||||
Models</h3>
|
||||
<ul>
|
||||
<li><strong>Pixel recurrent neural networks</strong> (2016), A. Oord et
|
||||
al. <a href="http://arxiv.org/pdf/1601.06759v2.pdf">[pdf]</a></li>
|
||||
<li><strong>Improved techniques for training GANs</strong> (2016), T.
|
||||
Salimans et al. <a
|
||||
href="http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf">[pdf]</a></li>
|
||||
<li><strong>Unsupervised representation learning with deep convolutional
|
||||
generative adversarial networks</strong> (2015), A. Radford et al. <a
|
||||
href="https://arxiv.org/pdf/1511.06434v2">[pdf]</a></li>
|
||||
<li><strong>DRAW: A recurrent neural network for image
|
||||
generation</strong> (2015), K. Gregor et al. <a
|
||||
href="http://arxiv.org/pdf/1502.04623">[pdf]</a></li>
|
||||
<li><strong>Generative adversarial nets</strong> (2014), I. Goodfellow
|
||||
et al. <a
|
||||
href="http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf">[pdf]</a></li>
|
||||
<li><strong>Auto-encoding variational Bayes</strong> (2013), D. Kingma
|
||||
and M. Welling <a href="http://arxiv.org/pdf/1312.6114">[pdf]</a></li>
|
||||
<li><strong>Building high-level features using large scale unsupervised
|
||||
learning</strong> (2013), Q. Le et al. <a
|
||||
href="http://arxiv.org/pdf/1112.6209">[pdf]</a></li>
|
||||
</ul>
|
||||
<!---[Key researchers] [Yoshua Bengio](https://scholar.google.ca/citations?user=kukA0LcAAAAJ), [Ian Goodfellow](https://scholar.google.ca/citations?user=iYN86KEAAAAJ), [Alex Graves](https://scholar.google.ca/citations?user=DaFHynwAAAAJ)-->
|
||||
<h3 id="convolutional-neural-network-models">Convolutional Neural
|
||||
Network Models</h3>
|
||||
<ul>
|
||||
<li><strong>Rethinking the inception architecture for computer
|
||||
vision</strong> (2016), C. Szegedy et al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf">[pdf]</a></li>
|
||||
<li><strong>Inception-v4, inception-resnet and the impact of residual
|
||||
connections on learning</strong> (2016), C. Szegedy et al. <a
|
||||
href="http://arxiv.org/pdf/1602.07261">[pdf]</a></li>
|
||||
<li><strong>Identity Mappings in Deep Residual Networks</strong> (2016),
|
||||
K. He et al. <a
|
||||
href="https://arxiv.org/pdf/1603.05027v2.pdf">[pdf]</a></li>
|
||||
<li><strong>Deep residual learning for image recognition</strong>
|
||||
(2016), K. He et al. <a
|
||||
href="http://arxiv.org/pdf/1512.03385">[pdf]</a></li>
|
||||
<li><strong>Spatial transformer network</strong> (2015), M. Jaderberg et
|
||||
al., <a
|
||||
href="http://papers.nips.cc/paper/5854-spatial-transformer-networks.pdf">[pdf]</a></li>
|
||||
<li><strong>Going deeper with convolutions</strong> (2015), C. Szegedy
|
||||
et al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf">[pdf]</a></li>
|
||||
<li><strong>Very deep convolutional networks for large-scale image
|
||||
recognition</strong> (2014), K. Simonyan and A. Zisserman <a
|
||||
href="http://arxiv.org/pdf/1409.1556">[pdf]</a></li>
|
||||
<li><strong>Return of the devil in the details: delving deep into
|
||||
convolutional nets</strong> (2014), K. Chatfield et al. <a
|
||||
href="http://arxiv.org/pdf/1405.3531">[pdf]</a></li>
|
||||
<li><strong>OverFeat: Integrated recognition, localization and detection
|
||||
using convolutional networks</strong> (2013), P. Sermanet et al. <a
|
||||
href="http://arxiv.org/pdf/1312.6229">[pdf]</a></li>
|
||||
<li><strong>Maxout networks</strong> (2013), I. Goodfellow et al. <a
|
||||
href="http://arxiv.org/pdf/1302.4389v4">[pdf]</a></li>
|
||||
<li><strong>Network in network</strong> (2013), M. Lin et al. <a
|
||||
href="http://arxiv.org/pdf/1312.4400">[pdf]</a></li>
|
||||
<li><strong>ImageNet classification with deep convolutional neural
|
||||
networks</strong> (2012), A. Krizhevsky et al. <a
|
||||
href="http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf">[pdf]</a></li>
|
||||
</ul>
|
||||
<!---[Key researchers] [Christian Szegedy](https://scholar.google.ca/citations?hl=en&user=3QeF7mAAAAAJ), [Kaming He](https://scholar.google.ca/citations?hl=en&user=DhtAFkwAAAAJ), [Shaoqing Ren](https://scholar.google.ca/citations?hl=en&user=AUhj438AAAAJ), [Jian Sun](https://scholar.google.ca/citations?hl=en&user=ALVSZAYAAAAJ), [Geoffrey Hinton](https://scholar.google.ca/citations?user=JicYPdAAAAAJ), [Yoshua Bengio](https://scholar.google.ca/citations?user=kukA0LcAAAAJ), [Yann LeCun](https://scholar.google.ca/citations?hl=en&user=WLN3QrAAAAAJ)-->
|
||||
<h3 id="image-segmentation-object-detection">Image: Segmentation /
|
||||
Object Detection</h3>
|
||||
<ul>
|
||||
<li><strong>You only look once: Unified, real-time object
|
||||
detection</strong> (2016), J. Redmon et al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf">[pdf]</a></li>
|
||||
<li><strong>Fully convolutional networks for semantic
|
||||
segmentation</strong> (2015), J. Long et al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf">[pdf]</a></li>
|
||||
<li><strong>Faster R-CNN: Towards Real-Time Object Detection with Region
|
||||
Proposal Networks</strong> (2015), S. Ren et al. <a
|
||||
href="http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf">[pdf]</a></li>
|
||||
<li><strong>Fast R-CNN</strong> (2015), R. Girshick <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf">[pdf]</a></li>
|
||||
<li><strong>Rich feature hierarchies for accurate object detection and
|
||||
semantic segmentation</strong> (2014), R. Girshick et al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf">[pdf]</a></li>
|
||||
<li><strong>Spatial pyramid pooling in deep convolutional networks for
|
||||
visual recognition</strong> (2014), K. He et al. <a
|
||||
href="http://arxiv.org/pdf/1406.4729">[pdf]</a></li>
|
||||
<li><strong>Semantic image segmentation with deep convolutional nets and
|
||||
fully connected CRFs</strong>, L. Chen et al. <a
|
||||
href="https://arxiv.org/pdf/1412.7062">[pdf]</a></li>
|
||||
<li><strong>Learning hierarchical features for scene labeling</strong>
|
||||
(2013), C. Farabet et al. <a
|
||||
href="https://hal-enpc.archives-ouvertes.fr/docs/00/74/20/77/PDF/farabet-pami-13.pdf">[pdf]</a></li>
|
||||
</ul>
|
||||
<!---[Key researchers] [Ross Girshick](https://scholar.google.ca/citations?hl=en&user=W8VIEZgAAAAJ), [Jeff Donahue](https://scholar.google.ca/citations?hl=en&user=UfbuDH8AAAAJ), [Trevor Darrell](https://scholar.google.ca/citations?hl=en&user=bh-uRFMAAAAJ)-->
|
||||
<h3 id="image-video-etc">Image / Video / Etc</h3>
|
||||
<ul>
|
||||
<li><strong>Image Super-Resolution Using Deep Convolutional
|
||||
Networks</strong> (2016), C. Dong et al. <a
|
||||
href="https://arxiv.org/pdf/1501.00092v3.pdf">[pdf]</a></li>
|
||||
<li><strong>A neural algorithm of artistic style</strong> (2015), L.
|
||||
Gatys et al. <a href="https://arxiv.org/pdf/1508.06576">[pdf]</a></li>
|
||||
<li><strong>Deep visual-semantic alignments for generating image
|
||||
descriptions</strong> (2015), A. Karpathy and L. Fei-Fei <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Karpathy_Deep_Visual-Semantic_Alignments_2015_CVPR_paper.pdf">[pdf]</a></li>
|
||||
<li><strong>Show, attend and tell: Neural image caption generation with
|
||||
visual attention</strong> (2015), K. Xu et al. <a
|
||||
href="http://arxiv.org/pdf/1502.03044">[pdf]</a></li>
|
||||
<li><strong>Show and tell: A neural image caption generator</strong>
|
||||
(2015), O. Vinyals et al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Vinyals_Show_and_Tell_2015_CVPR_paper.pdf">[pdf]</a></li>
|
||||
<li><strong>Long-term recurrent convolutional networks for visual
|
||||
recognition and description</strong> (2015), J. Donahue et al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf">[pdf]</a></li>
|
||||
<li><strong>VQA: Visual question answering</strong> (2015), S. Antol et
|
||||
al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Antol_VQA_Visual_Question_ICCV_2015_paper.pdf">[pdf]</a></li>
|
||||
<li><strong>DeepFace: Closing the gap to human-level performance in face
|
||||
verification</strong> (2014), Y. Taigman et al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf">[pdf]</a>:</li>
|
||||
<li><strong>Large-scale video classification with convolutional neural
|
||||
networks</strong> (2014), A. Karpathy et al. <a
|
||||
href="http://vision.stanford.edu/pdf/karpathy14.pdf">[pdf]</a></li>
|
||||
<li><strong>Two-stream convolutional networks for action recognition in
|
||||
videos</strong> (2014), K. Simonyan et al. <a
|
||||
href="http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf">[pdf]</a></li>
|
||||
<li><strong>3D convolutional neural networks for human action
|
||||
recognition</strong> (2013), S. Ji et al. <a
|
||||
href="http://machinelearning.wustl.edu/mlpapers/paper_files/icml2010_JiXYY10.pdf">[pdf]</a></li>
|
||||
</ul>
|
||||
<!---[Key researchers] [Oriol Vinyals](https://scholar.google.ca/citations?user=NkzyCvUAAAAJ), [Andrej Karpathy](https://scholar.google.ca/citations?user=l8WuQJgAAAAJ)-->
|
||||
<!---[Key researchers] [Alex Graves](https://scholar.google.ca/citations?user=DaFHynwAAAAJ)-->
|
||||
<h3 id="natural-language-processing-rnns">Natural Language Processing /
|
||||
RNNs</h3>
|
||||
<ul>
|
||||
<li><strong>Neural Architectures for Named Entity Recognition</strong>
|
||||
(2016), G. Lample et al. <a
|
||||
href="http://aclweb.org/anthology/N/N16/N16-1030.pdf">[pdf]</a></li>
|
||||
<li><strong>Exploring the limits of language modeling</strong> (2016),
|
||||
R. Jozefowicz et al. <a
|
||||
href="http://arxiv.org/pdf/1602.02410">[pdf]</a></li>
|
||||
<li><strong>Teaching machines to read and comprehend</strong> (2015), K.
|
||||
Hermann et al. <a
|
||||
href="http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf">[pdf]</a></li>
|
||||
<li><strong>Effective approaches to attention-based neural machine
|
||||
translation</strong> (2015), M. Luong et al. <a
|
||||
href="https://arxiv.org/pdf/1508.04025">[pdf]</a></li>
|
||||
<li><strong>Conditional random fields as recurrent neural
|
||||
networks</strong> (2015), S. Zheng and S. Jayasumana. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Conditional_Random_Fields_ICCV_2015_paper.pdf">[pdf]</a></li>
|
||||
<li><strong>Memory networks</strong> (2014), J. Weston et al. <a
|
||||
href="https://arxiv.org/pdf/1410.3916">[pdf]</a></li>
|
||||
<li><strong>Neural turing machines</strong> (2014), A. Graves et al. <a
|
||||
href="https://arxiv.org/pdf/1410.5401">[pdf]</a></li>
|
||||
<li><strong>Neural machine translation by jointly learning to align and
|
||||
translate</strong> (2014), D. Bahdanau et al. <a
|
||||
href="http://arxiv.org/pdf/1409.0473">[pdf]</a></li>
|
||||
<li><strong>Sequence to sequence learning with neural networks</strong>
|
||||
(2014), I. Sutskever et al. <a
|
||||
href="http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf">[pdf]</a></li>
|
||||
<li><strong>Learning phrase representations using RNN encoder-decoder
|
||||
for statistical machine translation</strong> (2014), K. Cho et al. <a
|
||||
href="http://arxiv.org/pdf/1406.1078">[pdf]</a></li>
|
||||
<li><strong>A convolutional neural network for modeling
|
||||
sentences</strong> (2014), N. Kalchbrenner et al. <a
|
||||
href="http://arxiv.org/pdf/1404.2188v1">[pdf]</a></li>
|
||||
<li><strong>Convolutional neural networks for sentence
|
||||
classification</strong> (2014), Y. Kim <a
|
||||
href="http://arxiv.org/pdf/1408.5882">[pdf]</a></li>
|
||||
<li><strong>Glove: Global vectors for word representation</strong>
|
||||
(2014), J. Pennington et al. <a
|
||||
href="http://anthology.aclweb.org/D/D14/D14-1162.pdf">[pdf]</a></li>
|
||||
<li><strong>Distributed representations of sentences and
|
||||
documents</strong> (2014), Q. Le and T. Mikolov <a
|
||||
href="http://arxiv.org/pdf/1405.4053">[pdf]</a></li>
|
||||
<li><strong>Distributed representations of words and phrases and their
|
||||
compositionality</strong> (2013), T. Mikolov et al. <a
|
||||
href="http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf">[pdf]</a></li>
|
||||
<li><strong>Efficient estimation of word representations in vector
|
||||
space</strong> (2013), T. Mikolov et al. <a
|
||||
href="http://arxiv.org/pdf/1301.3781">[pdf]</a></li>
|
||||
<li><strong>Recursive deep models for semantic compositionality over a
|
||||
sentiment treebank</strong> (2013), R. Socher et al. <a
|
||||
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.383.1327&rep=rep1&type=pdf">[pdf]</a></li>
|
||||
<li><strong>Generating sequences with recurrent neural networks</strong>
|
||||
(2013), A. Graves. <a
|
||||
href="https://arxiv.org/pdf/1308.0850">[pdf]</a></li>
|
||||
</ul>
|
||||
<!---[Key researchers] [Kyunghyun Cho](https://scholar.google.ca/citations?user=0RAmmIAAAAAJ), [Oriol Vinyals](https://scholar.google.ca/citations?user=NkzyCvUAAAAJ), [Richard Socher](https://scholar.google.ca/citations?hl=en&user=FaOcyfMAAAAJ), [Tomas Mikolov](https://scholar.google.ca/citations?user=oBu8kMMAAAAJ), [Christopher D. Manning](https://scholar.google.ca/citations?user=1zmDOdwAAAAJ), [Yoshua Bengio](https://scholar.google.ca/citations?user=kukA0LcAAAAJ)-->
|
||||
<h3 id="speech-other-domain">Speech / Other Domain</h3>
|
||||
<ul>
|
||||
<li><strong>End-to-end attention-based large vocabulary speech
|
||||
recognition</strong> (2016), D. Bahdanau et al. <a
|
||||
href="https://arxiv.org/pdf/1508.04395">[pdf]</a></li>
|
||||
<li><strong>Deep speech 2: End-to-end speech recognition in English and
|
||||
Mandarin</strong> (2015), D. Amodei et al. <a
|
||||
href="https://arxiv.org/pdf/1512.02595">[pdf]</a></li>
|
||||
<li><strong>Speech recognition with deep recurrent neural
|
||||
networks</strong> (2013), A. Graves <a
|
||||
href="http://arxiv.org/pdf/1303.5778.pdf">[pdf]</a></li>
|
||||
<li><strong>Deep neural networks for acoustic modeling in speech
|
||||
recognition: The shared views of four research groups</strong> (2012),
|
||||
G. Hinton et al. <a
|
||||
href="http://www.cs.toronto.edu/~asamir/papers/SPM_DNN_12.pdf">[pdf]</a></li>
|
||||
<li><strong>Context-dependent pre-trained deep neural networks for
|
||||
large-vocabulary speech recognition</strong> (2012) G. Dahl et al. <a
|
||||
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.337.7548&rep=rep1&type=pdf">[pdf]</a></li>
|
||||
<li><strong>Acoustic modeling using deep belief networks</strong>
|
||||
(2012), A. Mohamed et al. <a
|
||||
href="http://www.cs.toronto.edu/~asamir/papers/speechDBN_jrnl.pdf">[pdf]</a></li>
|
||||
</ul>
|
||||
<!---[Key researchers] [Alex Graves](https://scholar.google.ca/citations?user=DaFHynwAAAAJ), [Geoffrey Hinton](https://scholar.google.ca/citations?user=JicYPdAAAAAJ), [Dong Yu](https://scholar.google.ca/citations?hl=en&user=tMY31_gAAAAJ)-->
|
||||
<h3 id="reinforcement-learning-robotics">Reinforcement Learning /
|
||||
Robotics</h3>
|
||||
<ul>
|
||||
<li><strong>End-to-end training of deep visuomotor policies</strong>
|
||||
(2016), S. Levine et al. <a
|
||||
href="http://www.jmlr.org/papers/volume17/15-522/source/15-522.pdf">[pdf]</a></li>
|
||||
<li><strong>Learning Hand-Eye Coordination for Robotic Grasping with
|
||||
Deep Learning and Large-Scale Data Collection</strong> (2016), S. Levine
|
||||
et al. <a href="https://arxiv.org/pdf/1603.02199">[pdf]</a></li>
|
||||
<li><strong>Asynchronous methods for deep reinforcement
|
||||
learning</strong> (2016), V. Mnih et al. <a
|
||||
href="http://www.jmlr.org/proceedings/papers/v48/mniha16.pdf">[pdf]</a></li>
|
||||
<li><strong>Deep Reinforcement Learning with Double Q-Learning</strong>
|
||||
(2016), H. Hasselt et al. <a
|
||||
href="https://arxiv.org/pdf/1509.06461.pdf">[pdf]</a></li>
|
||||
<li><strong>Mastering the game of Go with deep neural networks and tree
|
||||
search</strong> (2016), D. Silver et al. <a
|
||||
href="http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html">[pdf]</a></li>
|
||||
<li><strong>Continuous control with deep reinforcement learning</strong>
|
||||
(2015), T. Lillicrap et al. <a
|
||||
href="https://arxiv.org/pdf/1509.02971">[pdf]</a></li>
|
||||
<li><strong>Human-level control through deep reinforcement
|
||||
learning</strong> (2015), V. Mnih et al. <a
|
||||
href="http://www.davidqiu.com:8888/research/nature14236.pdf">[pdf]</a></li>
|
||||
<li><strong>Deep learning for detecting robotic grasps</strong> (2015),
|
||||
I. Lenz et al. <a
|
||||
href="http://www.cs.cornell.edu/~asaxena/papers/lenz_lee_saxena_deep_learning_grasping_ijrr2014.pdf">[pdf]</a></li>
|
||||
<li><strong>Playing atari with deep reinforcement learning</strong>
|
||||
(2013), V. Mnih et al. <a
|
||||
href="http://arxiv.org/pdf/1312.5602.pdf">[pdf]</a>)</li>
|
||||
</ul>
|
||||
<!---[Key researchers] [Sergey Levine](https://scholar.google.ca/citations?user=8R35rCwAAAAJ), [Volodymyr Mnih](https://scholar.google.ca/citations?hl=en&user=rLdfJ1gAAAAJ), [David Silver](https://scholar.google.ca/citations?user=-8DNE4UAAAAJ)-->
|
||||
<h3 id="more-papers-from-2016">More Papers from 2016</h3>
|
||||
<ul>
|
||||
<li><strong>Layer Normalization</strong> (2016), J. Ba et al. <a
|
||||
href="https://arxiv.org/pdf/1607.06450v1.pdf">[pdf]</a></li>
|
||||
<li><strong>Learning to learn by gradient descent by gradient
|
||||
descent</strong> (2016), M. Andrychowicz et al. <a
|
||||
href="http://arxiv.org/pdf/1606.04474v1">[pdf]</a></li>
|
||||
<li><strong>Domain-adversarial training of neural networks</strong>
|
||||
(2016), Y. Ganin et al. <a
|
||||
href="http://www.jmlr.org/papers/volume17/15-239/source/15-239.pdf">[pdf]</a></li>
|
||||
<li><strong>WaveNet: A Generative Model for Raw Audio</strong> (2016),
|
||||
A. Oord et al. <a href="https://arxiv.org/pdf/1609.03499v2">[pdf]</a> <a
|
||||
href="https://deepmind.com/blog/wavenet-generative-model-raw-audio/">[web]</a></li>
|
||||
<li><strong>Colorful image colorization</strong> (2016), R. Zhang et
|
||||
al. <a href="https://arxiv.org/pdf/1603.08511">[pdf]</a></li>
|
||||
<li><strong>Generative visual manipulation on the natural image
|
||||
manifold</strong> (2016), J. Zhu et al. <a
|
||||
href="https://arxiv.org/pdf/1609.03552">[pdf]</a></li>
|
||||
<li><strong>Texture networks: Feed-forward synthesis of textures and
|
||||
stylized images</strong> (2016), D Ulyanov et al. <a
|
||||
href="http://www.jmlr.org/proceedings/papers/v48/ulyanov16.pdf">[pdf]</a></li>
|
||||
<li><strong>SSD: Single shot multibox detector</strong> (2016), W. Liu
|
||||
et al. <a href="https://arxiv.org/pdf/1512.02325">[pdf]</a></li>
|
||||
<li><strong>SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
|
||||
and< 1MB model size</strong> (2016), F. Iandola et al. <a
|
||||
href="http://arxiv.org/pdf/1602.07360">[pdf]</a></li>
|
||||
<li><strong>Eie: Efficient inference engine on compressed deep neural
|
||||
network</strong> (2016), S. Han et al. <a
|
||||
href="http://arxiv.org/pdf/1602.01528">[pdf]</a></li>
|
||||
<li><strong>Binarized neural networks: Training deep neural networks
|
||||
with weights and activations constrained to+ 1 or-1</strong> (2016), M.
|
||||
Courbariaux et al. <a
|
||||
href="https://arxiv.org/pdf/1602.02830">[pdf]</a></li>
|
||||
<li><strong>Dynamic memory networks for visual and textual question
|
||||
answering</strong> (2016), C. Xiong et al. <a
|
||||
href="http://www.jmlr.org/proceedings/papers/v48/xiong16.pdf">[pdf]</a></li>
|
||||
<li><strong>Stacked attention networks for image question
|
||||
answering</strong> (2016), Z. Yang et al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yang_Stacked_Attention_Networks_CVPR_2016_paper.pdf">[pdf]</a></li>
|
||||
<li><strong>Hybrid computing using a neural network with dynamic
|
||||
external memory</strong> (2016), A. Graves et al. <a
|
||||
href="https://www.gwern.net/docs/2016-graves.pdf">[pdf]</a></li>
|
||||
<li><strong>Google’s neural machine translation system: Bridging the gap
|
||||
between human and machine translation</strong> (2016), Y. Wu et al. <a
|
||||
href="https://arxiv.org/pdf/1609.08144">[pdf]</a></li>
|
||||
</ul>
|
||||
<hr />
|
||||
<h3 id="new-papers">New papers</h3>
|
||||
<p><em>Newly published papers (< 6 months) which are worth
|
||||
reading</em> - MobileNets: Efficient Convolutional Neural Networks for
|
||||
Mobile Vision Applications (2017), Andrew G. Howard et al. <a
|
||||
href="https://arxiv.org/pdf/1704.04861.pdf">[pdf]</a> - Convolutional
|
||||
Sequence to Sequence Learning (2017), Jonas Gehring et al. <a
|
||||
href="https://arxiv.org/pdf/1705.03122">[pdf]</a> - A Knowledge-Grounded
|
||||
Neural Conversation Model (2017), Marjan Ghazvininejad et al. <a
|
||||
href="https://arxiv.org/pdf/1702.01932">[pdf]</a> - Accurate, Large
|
||||
Minibatch SGD:Training ImageNet in 1 Hour (2017), Priya Goyal et al. <a
|
||||
href="https://research.fb.com/wp-content/uploads/2017/06/imagenet1kin1h3.pdf">[pdf]</a>
|
||||
- TACOTRON: Towards end-to-end speech synthesis (2017), Y. Wang et
|
||||
al. <a href="https://arxiv.org/pdf/1703.10135.pdf">[pdf]</a> - Deep
|
||||
Photo Style Transfer (2017), F. Luan et al. <a
|
||||
href="http://arxiv.org/pdf/1703.07511v1.pdf">[pdf]</a> - Evolution
|
||||
Strategies as a Scalable Alternative to Reinforcement Learning (2017),
|
||||
T. Salimans et al. <a
|
||||
href="http://arxiv.org/pdf/1703.03864v1.pdf">[pdf]</a> - Deformable
|
||||
Convolutional Networks (2017), J. Dai et al. <a
|
||||
href="http://arxiv.org/pdf/1703.06211v2.pdf">[pdf]</a> - Mask R-CNN
|
||||
(2017), K. He et al. <a
|
||||
href="https://128.84.21.199/pdf/1703.06870">[pdf]</a> - Learning to
|
||||
discover cross-domain relations with generative adversarial networks
|
||||
(2017), T. Kim et al. <a
|
||||
href="http://arxiv.org/pdf/1703.05192v1.pdf">[pdf]</a> - Deep voice:
|
||||
Real-time neural text-to-speech (2017), S. Arik et al., <a
|
||||
href="http://arxiv.org/pdf/1702.07825v2.pdf">[pdf]</a> - PixelNet:
|
||||
Representation of the pixels, by the pixels, and for the pixels (2017),
|
||||
A. Bansal et al. <a
|
||||
href="http://arxiv.org/pdf/1702.06506v1.pdf">[pdf]</a> - Batch
|
||||
renormalization: Towards reducing minibatch dependence in
|
||||
batch-normalized models (2017), S. Ioffe. <a
|
||||
href="https://arxiv.org/abs/1702.03275">[pdf]</a> - Wasserstein GAN
|
||||
(2017), M. Arjovsky et al. <a
|
||||
href="https://arxiv.org/pdf/1701.07875v1">[pdf]</a> - Understanding deep
|
||||
learning requires rethinking generalization (2017), C. Zhang et al. <a
|
||||
href="https://arxiv.org/pdf/1611.03530">[pdf]</a> - Least squares
|
||||
generative adversarial networks (2016), X. Mao et al. <a
|
||||
href="https://arxiv.org/abs/1611.04076v2">[pdf]</a></p>
|
||||
<h3 id="old-papers">Old Papers</h3>
|
||||
<p><em>Classic papers published before 2012</em> - An analysis of
|
||||
single-layer networks in unsupervised feature learning (2011), A. Coates
|
||||
et al. <a
|
||||
href="http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_CoatesNL11.pdf">[pdf]</a>
|
||||
- Deep sparse rectifier neural networks (2011), X. Glorot et al. <a
|
||||
href="http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_GlorotBB11.pdf">[pdf]</a>
|
||||
- Natural language processing (almost) from scratch (2011), R. Collobert
|
||||
et al. <a href="http://arxiv.org/pdf/1103.0398">[pdf]</a> - Recurrent
|
||||
neural network based language model (2010), T. Mikolov et al. <a
|
||||
href="http://www.fit.vutbr.cz/research/groups/speech/servite/2010/rnnlm_mikolov.pdf">[pdf]</a>
|
||||
- Stacked denoising autoencoders: Learning useful representations in a
|
||||
deep network with a local denoising criterion (2010), P. Vincent et
|
||||
al. <a
|
||||
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.297.3484&rep=rep1&type=pdf">[pdf]</a>
|
||||
- Learning mid-level features for recognition (2010), Y. Boureau <a
|
||||
href="http://ece.duke.edu/~lcarin/boureau-cvpr-10.pdf">[pdf]</a> - A
|
||||
practical guide to training restricted boltzmann machines (2010), G.
|
||||
Hinton <a
|
||||
href="http://www.csri.utoronto.ca/~hinton/absps/guideTR.pdf">[pdf]</a> -
|
||||
Understanding the difficulty of training deep feedforward neural
|
||||
networks (2010), X. Glorot and Y. Bengio <a
|
||||
href="http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_GlorotB10.pdf">[pdf]</a>
|
||||
- Why does unsupervised pre-training help deep learning (2010), D. Erhan
|
||||
et al. <a
|
||||
href="http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_ErhanCBV10.pdf">[pdf]</a>
|
||||
- Learning deep architectures for AI (2009), Y. Bengio. <a
|
||||
href="http://sanghv.com/download/soft/machine%20learning,%20artificial%20intelligence,%20mathematics%20ebooks/ML/learning%20deep%20architectures%20for%20AI%20(2009).pdf">[pdf]</a>
|
||||
- Convolutional deep belief networks for scalable unsupervised learning
|
||||
of hierarchical representations (2009), H. Lee et al. <a
|
||||
href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.802&rep=rep1&type=pdf">[pdf]</a>
|
||||
- Greedy layer-wise training of deep networks (2007), Y. Bengio et
|
||||
al. <a
|
||||
href="http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2006_739.pdf">[pdf]</a>
|
||||
- Reducing the dimensionality of data with neural networks, G. Hinton
|
||||
and R. Salakhutdinov. <a
|
||||
href="http://homes.mpimf-heidelberg.mpg.de/~mhelmsta/pdf/2006%20Hinton%20Salakhudtkinov%20Science.pdf">[pdf]</a>
|
||||
- A fast learning algorithm for deep belief nets (2006), G. Hinton et
|
||||
al. <a
|
||||
href="http://nuyoo.utm.mx/~jjf/rna/A8%20A%20fast%20learning%20algorithm%20for%20deep%20belief%20nets.pdf">[pdf]</a>
|
||||
- Gradient-based learning applied to document recognition (1998), Y.
|
||||
LeCun et al. <a
|
||||
href="http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf">[pdf]</a> -
|
||||
Long short-term memory (1997), S. Hochreiter and J. Schmidhuber. <a
|
||||
href="http://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.1997.9.8.1735">[pdf]</a></p>
|
||||
<h3 id="hw-sw-dataset">HW / SW / Dataset</h3>
|
||||
<ul>
|
||||
<li>SQuAD: 100,000+ Questions for Machine Comprehension of Text (2016),
|
||||
Rajpurkar et al. <a
|
||||
href="https://arxiv.org/pdf/1606.05250.pdf">[pdf]</a></li>
|
||||
<li>OpenAI gym (2016), G. Brockman et al. <a
|
||||
href="https://arxiv.org/pdf/1606.01540">[pdf]</a></li>
|
||||
<li>TensorFlow: Large-scale machine learning on heterogeneous
|
||||
distributed systems (2016), M. Abadi et al. <a
|
||||
href="http://arxiv.org/pdf/1603.04467">[pdf]</a></li>
|
||||
<li>Theano: A Python framework for fast computation of mathematical
|
||||
expressions, R. Al-Rfou et al.</li>
|
||||
<li>Torch7: A matlab-like environment for machine learning, R. Collobert
|
||||
et al. <a
|
||||
href="https://ronan.collobert.com/pub/matos/2011_torch7_nipsw.pdf">[pdf]</a></li>
|
||||
<li>MatConvNet: Convolutional neural networks for matlab (2015), A.
|
||||
Vedaldi and K. Lenc <a
|
||||
href="http://arxiv.org/pdf/1412.4564">[pdf]</a></li>
|
||||
<li>Imagenet large scale visual recognition challenge (2015), O.
|
||||
Russakovsky et al. <a
|
||||
href="http://arxiv.org/pdf/1409.0575">[pdf]</a></li>
|
||||
<li>Caffe: Convolutional architecture for fast feature embedding (2014),
|
||||
Y. Jia et al. <a href="http://arxiv.org/pdf/1408.5093">[pdf]</a></li>
|
||||
</ul>
|
||||
<h3 id="book-survey-review">Book / Survey / Review</h3>
|
||||
<ul>
|
||||
<li>On the Origin of Deep Learning (2017), H. Wang and Bhiksha Raj. <a
|
||||
href="https://arxiv.org/pdf/1702.07800">[pdf]</a></li>
|
||||
<li>Deep Reinforcement Learning: An Overview (2017), Y. Li, <a
|
||||
href="http://arxiv.org/pdf/1701.07274v2.pdf">[pdf]</a></li>
|
||||
<li>Neural Machine Translation and Sequence-to-sequence Models(2017): A
|
||||
Tutorial, G. Neubig. <a
|
||||
href="http://arxiv.org/pdf/1703.01619v1.pdf">[pdf]</a></li>
|
||||
<li>Neural Network and Deep Learning (Book, Jan 2017), Michael Nielsen.
|
||||
<a
|
||||
href="http://neuralnetworksanddeeplearning.com/index.html">[html]</a></li>
|
||||
<li>Deep learning (Book, 2016), Goodfellow et al. <a
|
||||
href="http://www.deeplearningbook.org/">[html]</a></li>
|
||||
<li>LSTM: A search space odyssey (2016), K. Greff et al. <a
|
||||
href="https://arxiv.org/pdf/1503.04069.pdf?utm_content=buffereddc5&utm_medium=social&utm_source=plus.google.com&utm_campaign=buffer">[pdf]</a></li>
|
||||
<li>Tutorial on Variational Autoencoders (2016), C. Doersch. <a
|
||||
href="https://arxiv.org/pdf/1606.05908">[pdf]</a></li>
|
||||
<li>Deep learning (2015), Y. LeCun, Y. Bengio and G. Hinton <a
|
||||
href="https://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf">[pdf]</a></li>
|
||||
<li>Deep learning in neural networks: An overview (2015), J. Schmidhuber
|
||||
<a href="http://arxiv.org/pdf/1404.7828">[pdf]</a></li>
|
||||
<li>Representation learning: A review and new perspectives (2013), Y.
|
||||
Bengio et al. <a href="http://arxiv.org/pdf/1206.5538">[pdf]</a></li>
|
||||
</ul>
|
||||
<h3 id="video-lectures-tutorials-blogs">Video Lectures / Tutorials /
|
||||
Blogs</h3>
|
||||
<p><em>(Lectures)</em> - CS231n, Convolutional Neural Networks for
|
||||
Visual Recognition, Stanford University <a
|
||||
href="http://cs231n.stanford.edu/">[web]</a> - CS224d, Deep Learning for
|
||||
Natural Language Processing, Stanford University <a
|
||||
href="http://cs224d.stanford.edu/">[web]</a> - Oxford Deep NLP 2017,
|
||||
Deep Learning for Natural Language Processing, University of Oxford <a
|
||||
href="https://github.com/oxford-cs-deepnlp-2017/lectures">[web]</a></p>
|
||||
<p><em>(Tutorials)</em> - NIPS 2016 Tutorials, Long Beach <a
|
||||
href="https://nips.cc/Conferences/2016/Schedule?type=Tutorial">[web]</a>
|
||||
- ICML 2016 Tutorials, New York City <a
|
||||
href="http://techtalks.tv/icml/2016/tutorials/">[web]</a> - ICLR 2016
|
||||
Videos, San Juan <a
|
||||
href="http://videolectures.net/iclr2016_san_juan/">[web]</a> - Deep
|
||||
Learning Summer School 2016, Montreal <a
|
||||
href="http://videolectures.net/deeplearning2016_montreal/">[web]</a> -
|
||||
Bay Area Deep Learning School 2016, Stanford <a
|
||||
href="https://www.bayareadlschool.org/">[web]</a></p>
|
||||
<p><em>(Blogs)</em> - OpenAI <a href="https://www.openai.com/">[web]</a>
|
||||
- Distill <a href="http://distill.pub/">[web]</a> - Andrej Karpathy Blog
|
||||
<a href="http://karpathy.github.io/">[web]</a> - Colah’s Blog <a
|
||||
href="http://colah.github.io/">[Web]</a> - WildML <a
|
||||
href="http://www.wildml.com/">[Web]</a> - FastML <a
|
||||
href="http://www.fastml.com/">[web]</a> - TheMorningPaper <a
|
||||
href="https://blog.acolyer.org">[web]</a></p>
|
||||
<h3 id="appendix-more-than-top-100">Appendix: More than Top 100</h3>
|
||||
<p><em>(2016)</em> - A character-level decoder without explicit
|
||||
segmentation for neural machine translation (2016), J. Chung et al. <a
|
||||
href="https://arxiv.org/pdf/1603.06147">[pdf]</a> - Dermatologist-level
|
||||
classification of skin cancer with deep neural networks (2017), A.
|
||||
Esteva et al. <a
|
||||
href="http://www.nature.com/nature/journal/v542/n7639/full/nature21056.html">[html]</a>
|
||||
- Weakly supervised object localization with multi-fold multiple
|
||||
instance learning (2017), R. Gokberk et al. <a
|
||||
href="https://arxiv.org/pdf/1503.00949">[pdf]</a> - Brain tumor
|
||||
segmentation with deep neural networks (2017), M. Havaei et al. <a
|
||||
href="https://arxiv.org/pdf/1505.03540">[pdf]</a> - Professor Forcing: A
|
||||
New Algorithm for Training Recurrent Networks (2016), A. Lamb et al. <a
|
||||
href="https://arxiv.org/pdf/1610.09038">[pdf]</a> - Adversarially
|
||||
learned inference (2016), V. Dumoulin et al. <a
|
||||
href="https://ishmaelbelghazi.github.io/ALI/">[web]</a><a
|
||||
href="https://arxiv.org/pdf/1606.00704v1">[pdf]</a> - Understanding
|
||||
convolutional neural networks (2016), J. Koushik <a
|
||||
href="https://arxiv.org/pdf/1605.09081v1">[pdf]</a> - Taking the human
|
||||
out of the loop: A review of bayesian optimization (2016), B. Shahriari
|
||||
et al. <a
|
||||
href="https://www.cs.ox.ac.uk/people/nando.defreitas/publications/BayesOptLoop.pdf">[pdf]</a>
|
||||
- Adaptive computation time for recurrent neural networks (2016), A.
|
||||
Graves <a href="http://arxiv.org/pdf/1603.08983">[pdf]</a> - Densely
|
||||
connected convolutional networks (2016), G. Huang et al. <a
|
||||
href="https://arxiv.org/pdf/1608.06993v1">[pdf]</a> - Region-based
|
||||
convolutional networks for accurate object detection and segmentation
|
||||
(2016), R. Girshick et al. - Continuous deep q-learning with
|
||||
model-based acceleration (2016), S. Gu et al. <a
|
||||
href="http://www.jmlr.org/proceedings/papers/v48/gu16.pdf">[pdf]</a> - A
|
||||
thorough examination of the cnn/daily mail reading comprehension task
|
||||
(2016), D. Chen et al. <a
|
||||
href="https://arxiv.org/pdf/1606.02858">[pdf]</a> - Achieving open
|
||||
vocabulary neural machine translation with hybrid word-character models,
|
||||
M. Luong and C. Manning. <a
|
||||
href="https://arxiv.org/pdf/1604.00788">[pdf]</a> - Very Deep
|
||||
Convolutional Networks for Natural Language Processing (2016), A.
|
||||
Conneau et al. <a href="https://arxiv.org/pdf/1606.01781">[pdf]</a> -
|
||||
Bag of tricks for efficient text classification (2016), A. Joulin et
|
||||
al. <a href="https://arxiv.org/pdf/1607.01759">[pdf]</a> - Efficient
|
||||
piecewise training of deep structured models for semantic segmentation
|
||||
(2016), G. Lin et al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Lin_Efficient_Piecewise_Training_CVPR_2016_paper.pdf">[pdf]</a>
|
||||
- Learning to compose neural networks for question answering (2016), J.
|
||||
Andreas et al. <a href="https://arxiv.org/pdf/1601.01705">[pdf]</a> -
|
||||
Perceptual losses for real-time style transfer and super-resolution
|
||||
(2016), J. Johnson et al. <a
|
||||
href="https://arxiv.org/pdf/1603.08155">[pdf]</a> - Reading text in the
|
||||
wild with convolutional neural networks (2016), M. Jaderberg et al. <a
|
||||
href="http://arxiv.org/pdf/1412.1842">[pdf]</a> - What makes for
|
||||
effective detection proposals? (2016), J. Hosang et al. <a
|
||||
href="https://arxiv.org/pdf/1502.05082">[pdf]</a> - Inside-outside net:
|
||||
Detecting objects in context with skip pooling and recurrent neural
|
||||
networks (2016), S. Bell et al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Bell_Inside-Outside_Net_Detecting_CVPR_2016_paper.pdf">[pdf]</a>.
|
||||
- Instance-aware semantic segmentation via multi-task network cascades
|
||||
(2016), J. Dai et al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Dai_Instance-Aware_Semantic_Segmentation_CVPR_2016_paper.pdf">[pdf]</a>
|
||||
- Conditional image generation with pixelcnn decoders (2016), A. van den
|
||||
Oord et al. <a
|
||||
href="http://papers.nips.cc/paper/6527-tree-structured-reinforcement-learning-for-sequential-object-localization.pdf">[pdf]</a>
|
||||
- Deep networks with stochastic depth (2016), G. Huang et al., <a
|
||||
href="https://arxiv.org/pdf/1603.09382">[pdf]</a> - Consistency and
|
||||
Fluctuations For Stochastic Gradient Langevin Dynamics (2016), Yee Whye
|
||||
Teh et al. <a
|
||||
href="http://www.jmlr.org/papers/volume17/teh16a/teh16a.pdf">[pdf]</a></p>
|
||||
<p><em>(2015)</em> - Ask your neurons: A neural-based approach to
|
||||
answering questions about images (2015), M. Malinowski et al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Malinowski_Ask_Your_Neurons_ICCV_2015_paper.pdf">[pdf]</a>
|
||||
- Exploring models and data for image question answering (2015), M. Ren
|
||||
et al. <a
|
||||
href="http://papers.nips.cc/paper/5640-stochastic-variational-inference-for-hidden-markov-models.pdf">[pdf]</a>
|
||||
- Are you talking to a machine? dataset and methods for multilingual
|
||||
image question (2015), H. Gao et al. <a
|
||||
href="http://papers.nips.cc/paper/5641-are-you-talking-to-a-machine-dataset-and-methods-for-multilingual-image-question.pdf">[pdf]</a>
|
||||
- Mind’s eye: A recurrent visual representation for image caption
|
||||
generation (2015), X. Chen and C. Zitnick. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Chen_Minds_Eye_A_2015_CVPR_paper.pdf">[pdf]</a>
|
||||
- From captions to visual concepts and back (2015), H. Fang et al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Fang_From_Captions_to_2015_CVPR_paper.pdf">[pdf]</a>.
|
||||
- Towards AI-complete question answering: A set of prerequisite toy
|
||||
tasks (2015), J. Weston et al. <a
|
||||
href="http://arxiv.org/pdf/1502.05698">[pdf]</a> - Ask me anything:
|
||||
Dynamic memory networks for natural language processing (2015), A. Kumar
|
||||
et al. <a href="http://arxiv.org/pdf/1506.07285">[pdf]</a> -
|
||||
Unsupervised learning of video representations using LSTMs (2015), N.
|
||||
Srivastava et al. <a
|
||||
href="http://www.jmlr.org/proceedings/papers/v37/srivastava15.pdf">[pdf]</a>
|
||||
- Deep compression: Compressing deep neural networks with pruning,
|
||||
trained quantization and huffman coding (2015), S. Han et al. <a
|
||||
href="https://arxiv.org/pdf/1510.00149">[pdf]</a> - Improved semantic
|
||||
representations from tree-structured long short-term memory networks
|
||||
(2015), K. Tai et al. <a
|
||||
href="https://arxiv.org/pdf/1503.00075">[pdf]</a> - Character-aware
|
||||
neural language models (2015), Y. Kim et al. <a
|
||||
href="https://arxiv.org/pdf/1508.06615">[pdf]</a> - Grammar as a foreign
|
||||
language (2015), O. Vinyals et al. <a
|
||||
href="http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf">[pdf]</a>
|
||||
- Trust Region Policy Optimization (2015), J. Schulman et al. <a
|
||||
href="http://www.jmlr.org/proceedings/papers/v37/schulman15.pdf">[pdf]</a>
|
||||
- Beyond short snippents: Deep networks for video classification (2015)
|
||||
<a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf">[pdf]</a>
|
||||
- Learning Deconvolution Network for Semantic Segmentation (2015), H.
|
||||
Noh et al. <a href="https://arxiv.org/pdf/1505.04366v1">[pdf]</a> -
|
||||
Learning spatiotemporal features with 3d convolutional networks (2015),
|
||||
D. Tran et al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf">[pdf]</a>
|
||||
- Understanding neural networks through deep visualization (2015), J.
|
||||
Yosinski et al. <a href="https://arxiv.org/pdf/1506.06579">[pdf]</a> -
|
||||
An Empirical Exploration of Recurrent Network Architectures (2015), R.
|
||||
Jozefowicz et al. <a
|
||||
href="http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf">[pdf]</a>
|
||||
- Deep generative image models using a laplacian pyramid of adversarial
|
||||
networks (2015), E.Denton et al. <a
|
||||
href="http://papers.nips.cc/paper/5773-deep-generative-image-models-using-a-laplacian-pyramid-of-adversarial-networks.pdf">[pdf]</a>
|
||||
- Gated Feedback Recurrent Neural Networks (2015), J. Chung et al. <a
|
||||
href="http://www.jmlr.org/proceedings/papers/v37/chung15.pdf">[pdf]</a>
|
||||
- Fast and accurate deep network learning by exponential linear units
|
||||
(ELUS) (2015), D. Clevert et al. <a
|
||||
href="https://arxiv.org/pdf/1511.07289.pdf%5Cnhttp://arxiv.org/abs/1511.07289%5Cnhttp://arxiv.org/abs/1511.07289">[pdf]</a>
|
||||
- Pointer networks (2015), O. Vinyals et al. <a
|
||||
href="http://papers.nips.cc/paper/5866-pointer-networks.pdf">[pdf]</a> -
|
||||
Visualizing and Understanding Recurrent Networks (2015), A. Karpathy et
|
||||
al. <a href="https://arxiv.org/pdf/1506.02078">[pdf]</a> -
|
||||
Attention-based models for speech recognition (2015), J. Chorowski et
|
||||
al. <a
|
||||
href="http://papers.nips.cc/paper/5847-attention-based-models-for-speech-recognition.pdf">[pdf]</a>
|
||||
- End-to-end memory networks (2015), S. Sukbaatar et al. <a
|
||||
href="http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf">[pdf]</a>
|
||||
- Describing videos by exploiting temporal structure (2015), L. Yao et
|
||||
al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf">[pdf]</a>
|
||||
- A neural conversational model (2015), O. Vinyals and Q. Le. <a
|
||||
href="https://arxiv.org/pdf/1506.05869.pdf">[pdf]</a> - Improving
|
||||
distributional similarity with lessons learned from word embeddings, O.
|
||||
Levy et al. [[pdf]]
|
||||
(https://www.transacl.org/ojs/index.php/tacl/article/download/570/124) -
|
||||
Transition-Based Dependency Parsing with Stack Long Short-Term Memory
|
||||
(2015), C. Dyer et al. <a
|
||||
href="http://aclweb.org/anthology/P/P15/P15-1033.pdf">[pdf]</a> -
|
||||
Improved Transition-Based Parsing by Modeling Characters instead of
|
||||
Words with LSTMs (2015), M. Ballesteros et al. <a
|
||||
href="http://aclweb.org/anthology/D/D15/D15-1041.pdf">[pdf]</a> -
|
||||
Finding function in form: Compositional character models for open
|
||||
vocabulary word representation (2015), W. Ling et al. <a
|
||||
href="http://aclweb.org/anthology/D/D15/D15-1176.pdf">[pdf]</a></p>
|
||||
<p><em>(~2014)</em> - DeepPose: Human pose estimation via deep neural
|
||||
networks (2014), A. Toshev and C. Szegedy <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Toshev_DeepPose_Human_Pose_2014_CVPR_paper.pdf">[pdf]</a>
|
||||
- Learning a Deep Convolutional Network for Image Super-Resolution
|
||||
(2014, C. Dong et al. <a
|
||||
href="https://www.researchgate.net/profile/Chen_Change_Loy/publication/264552416_Lecture_Notes_in_Computer_Science/links/53e583e50cf25d674e9c280e.pdf">[pdf]</a>
|
||||
- Recurrent models of visual attention (2014), V. Mnih et al. <a
|
||||
href="http://arxiv.org/pdf/1406.6247.pdf">[pdf]</a> - Empirical
|
||||
evaluation of gated recurrent neural networks on sequence modeling
|
||||
(2014), J. Chung et al. <a
|
||||
href="https://arxiv.org/pdf/1412.3555">[pdf]</a> - Addressing the rare
|
||||
word problem in neural machine translation (2014), M. Luong et al. <a
|
||||
href="https://arxiv.org/pdf/1410.8206">[pdf]</a> - On the properties of
|
||||
neural machine translation: Encoder-decoder approaches (2014), K. Cho
|
||||
et. al. - Recurrent neural network regularization (2014), W. Zaremba et
|
||||
al. <a href="http://arxiv.org/pdf/1409.2329">[pdf]</a> - Intriguing
|
||||
properties of neural networks (2014), C. Szegedy et al. <a
|
||||
href="https://arxiv.org/pdf/1312.6199.pdf">[pdf]</a> - Towards
|
||||
end-to-end speech recognition with recurrent neural networks (2014), A.
|
||||
Graves and N. Jaitly. <a
|
||||
href="http://www.jmlr.org/proceedings/papers/v32/graves14.pdf">[pdf]</a>
|
||||
- Scalable object detection using deep neural networks (2014), D. Erhan
|
||||
et al. <a
|
||||
href="http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Erhan_Scalable_Object_Detection_2014_CVPR_paper.pdf">[pdf]</a>
|
||||
- On the importance of initialization and momentum in deep learning
|
||||
(2013), I. Sutskever et al. <a
|
||||
href="http://machinelearning.wustl.edu/mlpapers/paper_files/icml2013_sutskever13.pdf">[pdf]</a>
|
||||
- Regularization of neural networks using dropconnect (2013), L. Wan et
|
||||
al. <a
|
||||
href="http://machinelearning.wustl.edu/mlpapers/paper_files/icml2013_wan13.pdf">[pdf]</a>
|
||||
- Learning Hierarchical Features for Scene Labeling (2013), C. Farabet
|
||||
et al. <a
|
||||
href="https://hal-enpc.archives-ouvertes.fr/docs/00/74/20/77/PDF/farabet-pami-13.pdf">[pdf]</a>
|
||||
- Linguistic Regularities in Continuous Space Word Representations
|
||||
(2013), T. Mikolov et al. <a
|
||||
href="http://www.aclweb.org/anthology/N13-1#page=784">[pdf]</a> - Large
|
||||
scale distributed deep networks (2012), J. Dean et al. <a
|
||||
href="http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf">[pdf]</a>
|
||||
- A Fast and Accurate Dependency Parser using Neural Networks. Chen and
|
||||
Manning. <a
|
||||
href="http://cs.stanford.edu/people/danqi/papers/emnlp2014.pdf">[pdf]</a></p>
|
||||
<h2 id="acknowledgement">Acknowledgement</h2>
|
||||
<p>Thank you for all your contributions. Please make sure to read the <a
|
||||
href="https://github.com/terryum/awesome-deep-learning-papers/blob/master/Contributing.md">contributing
|
||||
guide</a> before you make a pull request.</p>
|
||||
<h2 id="license">License</h2>
|
||||
<p><a href="https://creativecommons.org/publicdomain/zero/1.0/"><img
|
||||
src="http://mirrors.creativecommons.org/presskit/buttons/88x31/svg/cc-zero.svg"
|
||||
alt="CC0" /></a></p>
|
||||
<p>To the extent possible under law, <a
|
||||
href="https://www.facebook.com/terryum.io/">Terry T. Um</a> has waived
|
||||
all copyright and related or neighboring rights to this work.</p>
|
||||
<p><a
|
||||
href="https://github.com/terryum/awesome-deep-learning-papers">deeplearningpapers.md
|
||||
Github</a></p>
|
||||
Reference in New Issue
Block a user