update lists
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome TensorFlow [0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mAwesome[0m[38;5;14m[1m[4m (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)[0m[38;2;255;187;0m[1m[4m (https://github.com/jtoy/awesome)[0m
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome TensorFlow [0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mAwesome[0m[38;5;14m[1m[4m (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)[0m[38;2;255;187;0m[1m[4m (https://github.com/jtoy/awesome)[0m
|
||||
|
||||
[38;5;12mA curated list of awesome TensorFlow experiments, libraries, and projects. Inspired by awesome-machine-learning.[39m
|
||||
|
||||
@@ -41,8 +41,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mClassification on time series[0m[38;5;12m (https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition) - Recurrent Neural Network classification in TensorFlow with LSTM on cellphone sensor data[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGetting Started with TensorFlow on Android[0m[38;5;12m (https://omid.al/posts/2017-02-20-Tutorial-Build-Your-First-Tensorflow-Android-App.html) - Build your first TensorFlow Android app[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPredict time series[0m[38;5;12m (https://github.com/guillaume-chevalier/seq2seq-signal-prediction) - Learn to use a seq2seq model on simple datasets as an introduction to the vast array of possibilities that this architecture offers[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSingle Image Random Dot Stereograms[0m
|
||||
[38;5;12m (https://github.com/Mazecreator/TensorFlow-SIRDS) - SIRDS is a means to present 3D data in a 2D image. It allows for scientific data display of a waterfall type plot with no hidden lines due to perspective.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSingle Image Random Dot Stereograms[0m[38;5;12m (https://github.com/Mazecreator/TensorFlow-SIRDS) - SIRDS is a means to present 3D data in a 2D image. It allows for scientific data display of a waterfall type plot with no hidden lines due to perspective.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCS20[0m[38;5;14m[1m [0m[38;5;14m[1mSI:[0m[38;5;14m[1m [0m[38;5;14m[1mTensorFlow[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mDeepLearning[0m[38;5;14m[1m [0m[38;5;14m[1mResearch[0m[38;5;12m [39m[38;5;12m(http://web.stanford.edu/class/cs20si/syllabus.html)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mStanford[39m[38;5;12m [39m[38;5;12mCourse[39m[38;5;12m [39m[38;5;12mabout[39m[38;5;12m [39m[38;5;12mTensorflow[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12m2017[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mSyllabus[0m[38;5;12m [39m[38;5;12m(http://web.stanford.edu/class/cs20si/syllabus.html)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mUnofficial[0m[38;5;14m[1m [0m[38;5;14m[1mVideos[0m[38;5;12m [39m
|
||||
[38;5;12m(https://youtu.be/g-EvyKpZjmQ?list=PLSPPwKHXGS2110rEaNH7amFGmaD5hsObs)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorFlow World[0m[38;5;12m (https://github.com/astorfi/TensorFlow-World) - Concise and ready-to-use TensorFlow tutorials with detailed documentation are provided.[39m
|
||||
@@ -107,8 +106,8 @@
|
||||
[38;5;12m(http://ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCNN visualization using Tensorflow[0m[38;5;12m (https://github.com/InFoCusp/tf_cnnvis) - Tensorflow implementation of [39m[38;5;14m[1m"Visualizing and Understanding Convolutional Networks"[0m[38;5;12m (https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVGAN Tensorflow[0m[38;5;12m (https://github.com/Singularity42/VGAN-Tensorflow) - Tensorflow implementation for MIT [39m[38;5;14m[1m"Generating Videos with Scene Dynamics"[0m[38;5;12m (http://carlvondrick.com/tinyvideo/) by Vondrick et al.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m3D[0m[38;5;14m[1m [0m[38;5;14m[1mConvolutional[0m[38;5;14m[1m [0m[38;5;14m[1mNeural[0m[38;5;14m[1m [0m[38;5;14m[1mNetworks[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mTensorFlow[0m[38;5;12m [39m[38;5;12m(https://github.com/astorfi/3D-convolutional-speaker-recognition)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mImplementation[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;14m[1m"3D[0m[38;5;14m[1m [0m[38;5;14m[1mConvolutional[0m[38;5;14m[1m [0m[38;5;14m[1mNeural[0m[38;5;14m[1m [0m[38;5;14m[1mNetworks[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mSpeaker[0m[38;5;14m[1m [0m[38;5;14m[1mVerification[0m[38;5;14m[1m [0m[38;5;14m[1mapplication"[0m[38;5;12m [39m
|
||||
[38;5;12m(https://arxiv.org/abs/1705.09422)[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mTensorFlow[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mTorfi[39m[38;5;12m [39m[38;5;12met[39m[38;5;12m [39m[38;5;12mal.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m3D[0m[38;5;14m[1m [0m[38;5;14m[1mConvolutional[0m[38;5;14m[1m [0m[38;5;14m[1mNeural[0m[38;5;14m[1m [0m[38;5;14m[1mNetworks[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mTensorFlow[0m[38;5;12m [39m[38;5;12m(https://github.com/astorfi/3D-convolutional-speaker-recognition)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mImplementation[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;14m[1m"3D[0m[38;5;14m[1m [0m[38;5;14m[1mConvolutional[0m[38;5;14m[1m [0m[38;5;14m[1mNeural[0m[38;5;14m[1m [0m[38;5;14m[1mNetworks[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mSpeaker[0m[38;5;14m[1m [0m[38;5;14m[1mVerification[0m[38;5;14m[1m [0m[38;5;14m[1mapplication"[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/abs/1705.09422)[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m
|
||||
[38;5;12mTensorFlow[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mTorfi[39m[38;5;12m [39m[38;5;12met[39m[38;5;12m [39m[38;5;12mal.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mU-Net[0m[38;5;12m (https://github.com/zsdonghao/u-net-brain-tumor) - For Brain Tumor Segmentation[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpatial Transformer Networks[0m[38;5;12m (https://github.com/zsdonghao/Spatial-Transformer-Nets) - Learn the Transformation Function [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLip[0m[38;5;14m[1m [0m[38;5;14m[1mReading[0m[38;5;14m[1m [0m[38;5;14m[1m-[0m[38;5;14m[1m [0m[38;5;14m[1mCross[0m[38;5;14m[1m [0m[38;5;14m[1mAudio-Visual[0m[38;5;14m[1m [0m[38;5;14m[1mRecognition[0m[38;5;14m[1m [0m[38;5;14m[1musing[0m[38;5;14m[1m [0m[38;5;14m[1m3D[0m[38;5;14m[1m [0m[38;5;14m[1mArchitectures[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mTensorFlow[0m[38;5;12m [39m[38;5;12m(https://github.com/astorfi/lip-reading-deeplearning)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mTensorFlow[39m[38;5;12m [39m[38;5;12mImplementation[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;14m[1m"Cross[0m[38;5;14m[1m [0m[38;5;14m[1mAudio-Visual[0m[38;5;14m[1m [0m[38;5;14m[1mRecognition[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mthe[0m[38;5;14m[1m [0m[38;5;14m[1mWild[0m[38;5;14m[1m [0m[38;5;14m[1mUsing[0m[38;5;14m[1m [0m[38;5;14m[1mDeep[0m[38;5;14m[1m [0m[38;5;14m[1mLearning"[0m[38;5;12m [39m
|
||||
@@ -122,10 +121,10 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorNets[0m[38;5;12m (https://github.com/taehoonlee/tensornets) - 40+ Popular Computer Vision Models With Pre-trained Weights.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLadder Network[0m[38;5;12m (https://github.com/divamgupta/ladder_network_keras) - Implementation of Ladder Network for Semi-Supervised Learning in Keras and Tensorflow[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTF-Unet[0m[38;5;12m (https://github.com/juniorxsound/TF-Unet) - General purpose U-Network implemented in Keras for image segmentation[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSarus[0m[38;5;14m[1m [0m[38;5;14m[1mTF2[0m[38;5;14m[1m [0m[38;5;14m[1mModels[0m[38;5;12m [39m[38;5;12m(https://github.com/sarus-tech/tf2-published-models)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mlong[39m[38;5;12m [39m[38;5;12mlist[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mrecent[39m[38;5;12m [39m[38;5;12mgenerative[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mimplemented[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mclean,[39m[38;5;12m [39m[38;5;12measy[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mreuse,[39m[38;5;12m [39m[38;5;12mTensorflow[39m[38;5;12m [39m[38;5;12m2[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12m(Plain[39m[38;5;12m [39m[38;5;12mAutoencoder,[39m[38;5;12m [39m[38;5;12mVAE,[39m[38;5;12m [39m[38;5;12mVQ-VAE,[39m[38;5;12m [39m[38;5;12mPixelCNN,[39m[38;5;12m [39m[38;5;12mGated[39m[38;5;12m [39m[38;5;12mPixelCNN,[39m[38;5;12m [39m
|
||||
[38;5;12mPixelCNN++,[39m[38;5;12m [39m[38;5;12mPixelSNAIL,[39m[38;5;12m [39m[38;5;12mConditional[39m[38;5;12m [39m[38;5;12mNeural[39m[38;5;12m [39m[38;5;12mProcesses).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mModel[0m[38;5;14m[1m [0m[38;5;14m[1mMaker[0m[38;5;12m [39m[38;5;12m(https://www.tensorflow.org/lite/guide/model_maker)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mtransfer[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12msimplifies[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mprocess[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mtraining,[39m[38;5;12m [39m[38;5;12mevaluation[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdeployment[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mTensorFlow[39m[38;5;12m [39m[38;5;12mLite[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12m(support:[39m[38;5;12m [39m[38;5;12mImage[39m[38;5;12m [39m[38;5;12mClassification,[39m[38;5;12m [39m[38;5;12mObject[39m[38;5;12m [39m
|
||||
[38;5;12mDetection,[39m[38;5;12m [39m[38;5;12mText[39m[38;5;12m [39m[38;5;12mClassification,[39m[38;5;12m [39m[38;5;12mBERT[39m[38;5;12m [39m[38;5;12mQuestion[39m[38;5;12m [39m[38;5;12mAnswer,[39m[38;5;12m [39m[38;5;12mAudio[39m[38;5;12m [39m[38;5;12mClassification,[39m[38;5;12m [39m[38;5;12mRecommendation[39m[38;5;12m [39m[38;5;12metc.;[39m[38;5;12m [39m[38;5;14m[1mAPI[0m[38;5;14m[1m [0m[38;5;14m[1mreference[0m[38;5;12m [39m[38;5;12m(https://www.tensorflow.org/lite/api_docs/python/tflite_model_maker)).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSarus[0m[38;5;14m[1m [0m[38;5;14m[1mTF2[0m[38;5;14m[1m [0m[38;5;14m[1mModels[0m[38;5;12m [39m[38;5;12m(https://github.com/sarus-tech/tf2-published-models)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mlong[39m[38;5;12m [39m[38;5;12mlist[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mrecent[39m[38;5;12m [39m[38;5;12mgenerative[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mimplemented[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mclean,[39m[38;5;12m [39m[38;5;12measy[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mreuse,[39m[38;5;12m [39m[38;5;12mTensorflow[39m[38;5;12m [39m[38;5;12m2[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12m(Plain[39m[38;5;12m [39m[38;5;12mAutoencoder,[39m[38;5;12m [39m[38;5;12mVAE,[39m[38;5;12m [39m[38;5;12mVQ-VAE,[39m[38;5;12m [39m[38;5;12mPixelCNN,[39m[38;5;12m [39m[38;5;12mGated[39m[38;5;12m [39m[38;5;12mPixelCNN,[39m[38;5;12m [39m[38;5;12mPixelCNN++,[39m[38;5;12m [39m
|
||||
[38;5;12mPixelSNAIL,[39m[38;5;12m [39m[38;5;12mConditional[39m[38;5;12m [39m[38;5;12mNeural[39m[38;5;12m [39m[38;5;12mProcesses).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mModel[0m[38;5;14m[1m [0m[38;5;14m[1mMaker[0m[38;5;12m [39m[38;5;12m(https://www.tensorflow.org/lite/guide/model_maker)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mtransfer[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12msimplifies[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mprocess[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mtraining,[39m[38;5;12m [39m[38;5;12mevaluation[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdeployment[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mTensorFlow[39m[38;5;12m [39m[38;5;12mLite[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12m(support:[39m[38;5;12m [39m[38;5;12mImage[39m[38;5;12m [39m[38;5;12mClassification,[39m[38;5;12m [39m[38;5;12mObject[39m[38;5;12m [39m[38;5;12mDetection,[39m[38;5;12m [39m[38;5;12mText[39m[38;5;12m [39m
|
||||
[38;5;12mClassification,[39m[38;5;12m [39m[38;5;12mBERT[39m[38;5;12m [39m[38;5;12mQuestion[39m[38;5;12m [39m[38;5;12mAnswer,[39m[38;5;12m [39m[38;5;12mAudio[39m[38;5;12m [39m[38;5;12mClassification,[39m[38;5;12m [39m[38;5;12mRecommendation[39m[38;5;12m [39m[38;5;12metc.;[39m[38;5;12m [39m[38;5;14m[1mAPI[0m[38;5;14m[1m [0m[38;5;14m[1mreference[0m[38;5;12m [39m[38;5;12m(https://www.tensorflow.org/lite/api_docs/python/tflite_model_maker)).[39m
|
||||
|
||||
|
||||
|
||||
@@ -165,8 +164,9 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorIO[0m[38;5;12m (https://doc-ai.github.io/tensorio/) - Lightweight, cross-platform library for deploying TensorFlow Lite models to mobile devices. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStellarGraph[0m[38;5;12m (https://github.com/stellargraph/stellargraph) - Machine Learning on Graphs, a Python library for machine learning on graph-structured (network-structured) data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeepBay[0m[38;5;12m (https://github.com/ElPapi42/DeepBay) - High-Level Keras Complement for implement common architectures stacks, served as easy to use plug-n-play modules[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorflow-Probability[0m[38;5;12m (https://www.tensorflow.org/probability) - Probabalistic programming built on TensorFlow that makes it easy to combine probabilistic models and deep learning on modern hardware.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorflow-Probability[0m[38;5;12m (https://www.tensorflow.org/probability) - Probabilistic programming built on TensorFlow that makes it easy to combine probabilistic models and deep learning on modern hardware.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorLayerX[0m[38;5;12m (https://github.com/tensorlayer/TensorLayerX) - TensorLayerX: A Unified Deep Learning Framework for All Hardwares, Backends and OS, including TensorFlow.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTxeo[0m[38;5;12m (https://github.com/rdabra/txeo) - A modern C++ wrapper for TensorFlow.[39m
|
||||
|
||||
|
||||
|
||||
@@ -189,8 +189,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mWhy Google wants everyone to have access to TensorFlow[0m[38;5;12m (http://video.foxnews.com/v/4611174773001/why-google-wants-everyone-to-have-access-to-tensorflow/?#sp=show-clips)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVideos from TensorFlow Silicon Valley Meet Up 1/19/2016[0m[38;5;12m (http://blog.altoros.com/videos-from-tensorflow-silicon-valley-meetup-january-19-2016.html)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVideos from TensorFlow Silicon Valley Meet Up 1/21/2016[0m[38;5;12m (http://blog.altoros.com/videos-from-tensorflow-seattle-meetup-jan-21-2016.html)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStanford CS224d Lecture 7 - Introduction to TensorFlow, 19th Apr 2016[0m
|
||||
[38;5;12m (https://www.youtube.com/watch?v=L8Y2_Cq2X5s&index=7&list=PLmImxx8Char9Ig0ZHSyTqGsdhb9weEGam) - CS224d Deep Learning for Natural Language Processing by Richard Socher[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStanford CS224d Lecture 7 - Introduction to TensorFlow, 19th Apr 2016[0m[38;5;12m (https://www.youtube.com/watch?v=L8Y2_Cq2X5s&index=7&list=PLmImxx8Char9Ig0ZHSyTqGsdhb9weEGam) - CS224d Deep Learning for Natural Language Processing by Richard Socher[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDiving[0m[38;5;14m[1m [0m[38;5;14m[1minto[0m[38;5;14m[1m [0m[38;5;14m[1mMachine[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mthrough[0m[38;5;14m[1m [0m[38;5;14m[1mTensorFlow[0m[38;5;12m [39m[38;5;12m(https://youtu.be/GZBIPwdGtkk?list=PLBkISg6QfSX9HL6us70IBs9slFciFFa4W)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mPycon[39m[38;5;12m [39m[38;5;12m2016[39m[38;5;12m [39m[38;5;12mPortland[39m[38;5;12m [39m[38;5;12mOregon,[39m[38;5;12m [39m[38;5;14m[1mSlide[0m[38;5;12m [39m[38;5;12m(https://storage.googleapis.com/amy-jo/talks/tf-workshop.pdf)[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;14m[1mCode[0m[38;5;12m [39m
|
||||
[38;5;12m(https://github.com/amygdala/tensorflow-workshop)[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mJulia[39m[38;5;12m [39m[38;5;12mFerraioli,[39m[38;5;12m [39m[38;5;12mAmy[39m[38;5;12m [39m[38;5;12mUnruh,[39m[38;5;12m [39m[38;5;12mEli[39m[38;5;12m [39m[38;5;12mBixby[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLarge Scale Deep Learning with TensorFlow[0m[38;5;12m (https://youtu.be/XYwIDn00PAo) - Spark Summit 2016 Keynote by Jeff Dean[39m
|
||||
@@ -208,21 +207,21 @@
|
||||
[38;5;12m (http://download.tensorflow.org/paper/whitepaper2015.pdf) - This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorFlow Estimators: Managing Simplicity vs. Flexibility in High-Level Machine Learning Frameworks[0m[38;5;12m (https://arxiv.org/pdf/1708.02637.pdf)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTF.Learn: TensorFlow's High-level Module for Distributed Machine Learning[0m[38;5;12m (https://arxiv.org/abs/1612.04251)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mComparative[0m[38;5;14m[1m [0m[38;5;14m[1mStudy[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mDeep[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mSoftware[0m[38;5;14m[1m [0m[38;5;14m[1mFrameworks[0m[38;5;12m [39m[38;5;12m(http://arxiv.org/abs/1511.06435)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mstudy[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mperformed[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mseveral[39m[38;5;12m [39m[38;5;12mtypes[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12marchitectures[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mwe[39m[38;5;12m [39m[38;5;12mevaluate[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mperformance[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mabove[39m[38;5;12m [39m[38;5;12mframeworks[39m[38;5;12m [39m[38;5;12mwhen[39m[38;5;12m [39m[38;5;12memployed[39m[38;5;12m [39m[38;5;12mon[39m
|
||||
[38;5;12ma[39m[38;5;12m [39m[38;5;12msingle[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mboth[39m[38;5;12m [39m[38;5;12m(multi-threaded)[39m[38;5;12m [39m[38;5;12mCPU[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mGPU[39m[38;5;12m [39m[38;5;12m(Nvidia[39m[38;5;12m [39m[38;5;12mTitan[39m[38;5;12m [39m[38;5;12mX)[39m[38;5;12m [39m[38;5;12msettings[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mComparative[0m[38;5;14m[1m [0m[38;5;14m[1mStudy[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mDeep[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mSoftware[0m[38;5;14m[1m [0m[38;5;14m[1mFrameworks[0m[38;5;12m [39m[38;5;12m(http://arxiv.org/abs/1511.06435)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mstudy[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mperformed[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mseveral[39m[38;5;12m [39m[38;5;12mtypes[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12marchitectures[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mwe[39m[38;5;12m [39m[38;5;12mevaluate[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mperformance[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mabove[39m[38;5;12m [39m[38;5;12mframeworks[39m[38;5;12m [39m[38;5;12mwhen[39m[38;5;12m [39m[38;5;12memployed[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msingle[39m[38;5;12m [39m
|
||||
[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mboth[39m[38;5;12m [39m[38;5;12m(multi-threaded)[39m[38;5;12m [39m[38;5;12mCPU[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mGPU[39m[38;5;12m [39m[38;5;12m(Nvidia[39m[38;5;12m [39m[38;5;12mTitan[39m[38;5;12m [39m[38;5;12mX)[39m[38;5;12m [39m[38;5;12msettings[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDistributed TensorFlow with MPI[0m[38;5;12m (http://arxiv.org/abs/1603.02339) - In this paper, we extend recently proposed Google TensorFlow for execution on large scale clusters using Message Passing Interface (MPI)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGlobally Normalized Transition-Based Neural Networks[0m[38;5;12m (http://arxiv.org/abs/1603.06042) - This paper describes the models behind [39m[38;5;14m[1mSyntaxNet[0m[38;5;12m (https://github.com/tensorflow/models/tree/master/syntaxnet).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorFlow: A system for large-scale machine learning[0m[38;5;12m (https://arxiv.org/abs/1605.08695) - This paper describes the TensorFlow dataflow model in contrast to existing systems and demonstrate the compelling performance[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorLayer:[0m[38;5;14m[1m [0m[38;5;14m[1mA[0m[38;5;14m[1m [0m[38;5;14m[1mVersatile[0m[38;5;14m[1m [0m[38;5;14m[1mLibrary[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mEfficient[0m[38;5;14m[1m [0m[38;5;14m[1mDeep[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mDevelopment[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/abs/1707.08551)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mpaper[39m[38;5;12m [39m[38;5;12mdescribes[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mversatile[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12maims[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mhelping[39m[38;5;12m [39m[38;5;12mresearchers[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mengineers[39m[38;5;12m [39m[38;5;12mefficiently[39m[38;5;12m [39m[38;5;12mdevelop[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m
|
||||
[38;5;12mlearning[39m[38;5;12m [39m[38;5;12msystems.[39m[38;5;12m [39m[38;5;12m(Winner[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mBest[39m[38;5;12m [39m[38;5;12mOpen[39m[38;5;12m [39m[38;5;12mSource[39m[38;5;12m [39m[38;5;12mSoftware[39m[38;5;12m [39m[38;5;12mAward[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mACM[39m[38;5;12m [39m[38;5;12mMM[39m[38;5;12m [39m[38;5;12m2017)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorLayer: A Versatile Library for Efficient Deep Learning Development[0m
|
||||
[38;5;12m (https://arxiv.org/abs/1707.08551) - This paper describes a versatile Python library that aims at helping researchers and engineers efficiently develop deep learning systems. (Winner of The Best Open Source Software Award of ACM MM 2017)[39m
|
||||
|
||||
|
||||
|
||||
[38;2;255;187;0m[4mOfficial announcements[0m
|
||||
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorFlow: smarter machine learning, for everyone[0m[38;5;12m (https://googleblog.blogspot.com/2015/11/tensorflow-smarter-machine-learning-for.html) - An introduction to TensorFlow[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAnnouncing[0m[38;5;14m[1m [0m[38;5;14m[1mSyntaxNet:[0m[38;5;14m[1m [0m[38;5;14m[1mThe[0m[38;5;14m[1m [0m[38;5;14m[1mWorld’s[0m[38;5;14m[1m [0m[38;5;14m[1mMost[0m[38;5;14m[1m [0m[38;5;14m[1mAccurate[0m[38;5;14m[1m [0m[38;5;14m[1mParser[0m[38;5;14m[1m [0m[38;5;14m[1mGoes[0m[38;5;14m[1m [0m[38;5;14m[1mOpen[0m[38;5;14m[1m [0m[38;5;14m[1mSource[0m[38;5;12m [39m[38;5;12m(http://googleresearch.blogspot.com/2016/05/announcing-syntaxnet-worlds-most.html)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mRelease[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mSyntaxNet,[39m[38;5;12m [39m[38;5;12m"an[39m[38;5;12m [39m[38;5;12mopen-source[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetwork[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mimplemented[39m[38;5;12m [39m[38;5;12min[39m
|
||||
[38;5;12mTensorFlow[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mfoundation[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mNatural[39m[38;5;12m [39m[38;5;12mLanguage[39m[38;5;12m [39m[38;5;12mUnderstanding[39m[38;5;12m [39m[38;5;12msystems.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAnnouncing SyntaxNet: The World’s Most Accurate Parser Goes Open Source[0m
|
||||
[38;5;12m (http://googleresearch.blogspot.com/2016/05/announcing-syntaxnet-worlds-most.html) - Release of SyntaxNet, "an open-source neural network framework implemented in TensorFlow that provides a foundation for Natural Language Understanding systems.[39m
|
||||
|
||||
[38;2;255;187;0m[4mBlog posts[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOfficial Tensorflow Blog[0m[38;5;12m (http://blog.tensorflow.org/)[39m
|
||||
@@ -238,8 +237,8 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mUsing TensorBoard to Visualize Image Classification Retraining in TensorFlow[0m[38;5;12m (http://maxmelnick.com/2016/07/04/visualizing-tensorflow-retrain.html)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTFRecords Guide[0m[38;5;12m (http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/) semantic segmentation and handling the TFRecord file format.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorFlow Android Guide[0m[38;5;12m (https://blog.mindorks.com/android-tensorflow-machine-learning-example-ff0e9b2654cc) - Android TensorFlow Machine Learning Example.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorFlow[0m[38;5;14m[1m [0m[38;5;14m[1mOptimizations[0m[38;5;14m[1m [0m[38;5;14m[1mon[0m[38;5;14m[1m [0m[38;5;14m[1mModern[0m[38;5;14m[1m [0m[38;5;14m[1mIntel®[0m[38;5;14m[1m [0m[38;5;14m[1mArchitecture[0m[38;5;12m [39m[38;5;12m(https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mIntroduces[39m[38;5;12m [39m[38;5;12mTensorFlow[39m[38;5;12m [39m[38;5;12moptimizations[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mIntel®[39m[38;5;12m [39m[38;5;12mXeon®[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mIntel®[39m[38;5;12m [39m[38;5;12mXeon[39m[38;5;12m [39m[38;5;12mPhi™[39m[38;5;12m [39m
|
||||
[38;5;12mprocessor-based[39m[38;5;12m [39m[38;5;12mplatforms[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12mIntel/Google[39m[38;5;12m [39m[38;5;12mcollaboration.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorFlow Optimizations on Modern Intel® Architecture[0m
|
||||
[38;5;12m (https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture) - Introduces TensorFlow optimizations on Intel® Xeon® and Intel® Xeon Phi™ processor-based platforms based on an Intel/Google collaboration.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCoca-Cola's Image Recognition App[0m[38;5;12m (https://developers.googleblog.com/2017/09/how-machine-learning-with-tensorflow.html) Coca-Cola's product code image recognizing neural network with user input feedback loop.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHow Does The TensorFlow Work[0m[38;5;12m (https://www.letslearnai.com/2018/02/02/how-does-the-machine-learning-library-tensorflow-work.html) How Does The Machine Learning Library TensorFlow Work?[39m
|
||||
|
||||
@@ -266,16 +265,16 @@
|
||||
[38;5;12m (https://bleedingedgepress.com/tensor-flow-for-machine-intelligence/) - Complete guide to use TensorFlow from the basics of graph computing, to deep learning models to using it in production environments - Bleeding Edge Press[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGetting Started with TensorFlow[0m
|
||||
[38;5;12m (https://www.packtpub.com/big-data-and-business-intelligence/getting-started-tensorflow) - Get up and running with the latest numerical computing library by Google and dive deeper into your data, by Giancarlo Zaccone[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHands-On[0m[38;5;14m[1m [0m[38;5;14m[1mMachine[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1mScikit-Learn[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mTensorFlow[0m[38;5;12m [39m[38;5;12m(http://shop.oreilly.com/product/0636920052289.do)[39m[38;5;12m [39m[38;5;12m–[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mAurélien[39m[38;5;12m [39m[38;5;12mGeron,[39m[38;5;12m [39m[38;5;12mformer[39m[38;5;12m [39m[38;5;12mlead[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mYouTube[39m[38;5;12m [39m[38;5;12mvideo[39m[38;5;12m [39m[38;5;12mclassification[39m[38;5;12m [39m[38;5;12mteam.[39m[38;5;12m [39m[38;5;12mCovers[39m[38;5;12m [39m[38;5;12mML[39m[38;5;12m [39m[38;5;12mfundamentals,[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdeploying[39m[38;5;12m [39m
|
||||
[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mnets[39m[38;5;12m [39m[38;5;12macross[39m[38;5;12m [39m[38;5;12mmultiple[39m[38;5;12m [39m[38;5;12mservers[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mGPUs[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mTensorFlow,[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mlatest[39m[38;5;12m [39m[38;5;12mCNN,[39m[38;5;12m [39m[38;5;12mRNN[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mAutoencoder[39m[38;5;12m [39m[38;5;12marchitectures,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mReinforcement[39m[38;5;12m [39m[38;5;12mLearning[39m[38;5;12m [39m[38;5;12m(Deep[39m[38;5;12m [39m[38;5;12mQ).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBuilding[0m[38;5;14m[1m [0m[38;5;14m[1mMachine[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mProjects[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1mTensorflow[0m[38;5;12m [39m[38;5;12m(https://www.packtpub.com/big-data-and-business-intelligence/building-machine-learning-projects-tensorflow)[39m[38;5;12m [39m[38;5;12m–[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mRodolfo[39m[38;5;12m [39m[38;5;12mBonnin.[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mbook[39m[38;5;12m [39m[38;5;12mcovers[39m[38;5;12m [39m[38;5;12mvarious[39m[38;5;12m [39m[38;5;12mprojects[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mTensorFlow[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m
|
||||
[38;5;12mexpose[39m[38;5;12m [39m[38;5;12mwhat[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mdone[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mTensorFlow[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mdifferent[39m[38;5;12m [39m[38;5;12mscenarios.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mbook[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12mprojects[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mmodels,[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning,[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mworking[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mvarious[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetworks.[39m[38;5;12m [39m[38;5;12mEach[39m[38;5;12m [39m[38;5;12mproject[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12mengaging[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12minsightful[39m[38;5;12m [39m
|
||||
[38;5;12mexercise[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mwill[39m[38;5;12m [39m[38;5;12mteach[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;12mTensorFlow[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mshow[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mlayers[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mexplored[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mworking[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mTensors.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeep Learning using TensorLayer[0m[38;5;12m (http://www.broadview.com.cn/book/5059) - by Hao Dong et al. This book covers both deep learning and the implmentation by using TensorFlow and TensorLayer.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorFlow[0m[38;5;14m[1m [0m[38;5;14m[1m2.0[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mAction[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/tensorflow-in-action)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mThushan[39m[38;5;12m [39m[38;5;12mGanegedara.[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mpractical[39m[38;5;12m [39m[38;5;12mguide[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbuilding[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mnew[39m[38;5;12m [39m[38;5;12mfeatures[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mTensorFlow[39m[38;5;12m [39m[38;5;12m2.0[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mfilled[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mengaging[39m[38;5;12m [39m[38;5;12mprojects,[39m[38;5;12m [39m
|
||||
[38;5;12msimple[39m[38;5;12m [39m[38;5;12mlanguage,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcoverage[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mlatest[39m[38;5;12m [39m[38;5;12malgorithms.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mProbabilistic[0m[38;5;14m[1m [0m[38;5;14m[1mProgramming[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mBayesian[0m[38;5;14m[1m [0m[38;5;14m[1mMethods[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mHackers[0m[38;5;12m [39m[38;5;12m(https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mCameron[39m[38;5;12m [39m[38;5;12mDavidson-Pilon.[39m[38;5;12m [39m[38;5;12mIntroduction[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mBayesian[39m[38;5;12m [39m[38;5;12mmethods[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||||
[38;5;12mprobabalistic[39m[38;5;12m [39m[38;5;12mgraphical[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mtensorflow-probability[39m[38;5;12m [39m[38;5;12m(and,[39m[38;5;12m [39m[38;5;12malternatively[39m[38;5;12m [39m[38;5;12mPyMC2/3).[39m[38;5;12m [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHands-On[0m[38;5;14m[1m [0m[38;5;14m[1mMachine[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1mScikit-Learn[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mTensorFlow[0m[38;5;12m [39m[38;5;12m(http://shop.oreilly.com/product/0636920052289.do)[39m[38;5;12m [39m[38;5;12m–[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mAurélien[39m[38;5;12m [39m[38;5;12mGeron,[39m[38;5;12m [39m[38;5;12mformer[39m[38;5;12m [39m[38;5;12mlead[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mYouTube[39m[38;5;12m [39m[38;5;12mvideo[39m[38;5;12m [39m[38;5;12mclassification[39m[38;5;12m [39m[38;5;12mteam.[39m[38;5;12m [39m[38;5;12mCovers[39m[38;5;12m [39m[38;5;12mML[39m[38;5;12m [39m[38;5;12mfundamentals,[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdeploying[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mnets[39m[38;5;12m [39m
|
||||
[38;5;12macross[39m[38;5;12m [39m[38;5;12mmultiple[39m[38;5;12m [39m[38;5;12mservers[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mGPUs[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mTensorFlow,[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mlatest[39m[38;5;12m [39m[38;5;12mCNN,[39m[38;5;12m [39m[38;5;12mRNN[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mAutoencoder[39m[38;5;12m [39m[38;5;12marchitectures,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mReinforcement[39m[38;5;12m [39m[38;5;12mLearning[39m[38;5;12m [39m[38;5;12m(Deep[39m[38;5;12m [39m[38;5;12mQ).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBuilding[0m[38;5;14m[1m [0m[38;5;14m[1mMachine[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mProjects[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1mTensorflow[0m[38;5;12m [39m[38;5;12m(https://www.packtpub.com/big-data-and-business-intelligence/building-machine-learning-projects-tensorflow)[39m[38;5;12m [39m[38;5;12m–[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mRodolfo[39m[38;5;12m [39m[38;5;12mBonnin.[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mbook[39m[38;5;12m [39m[38;5;12mcovers[39m[38;5;12m [39m[38;5;12mvarious[39m[38;5;12m [39m[38;5;12mprojects[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mTensorFlow[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mexpose[39m[38;5;12m [39m[38;5;12mwhat[39m
|
||||
[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mdone[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mTensorFlow[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mdifferent[39m[38;5;12m [39m[38;5;12mscenarios.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mbook[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12mprojects[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mmodels,[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning,[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mworking[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mvarious[39m[38;5;12m [39m[38;5;12mneural[39m[38;5;12m [39m[38;5;12mnetworks.[39m[38;5;12m [39m[38;5;12mEach[39m[38;5;12m [39m[38;5;12mproject[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12mengaging[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12minsightful[39m[38;5;12m [39m[38;5;12mexercise[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mwill[39m[38;5;12m [39m[38;5;12mteach[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m
|
||||
[38;5;12mhow[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;12mTensorFlow[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mshow[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mlayers[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mexplored[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mworking[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mTensors.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeep Learning using TensorLayer[0m[38;5;12m (http://www.broadview.com.cn/book/5059) - by Hao Dong et al. This book covers both deep learning and the implementation by using TensorFlow and TensorLayer.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorFlow[0m[38;5;14m[1m [0m[38;5;14m[1m2.0[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mAction[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/tensorflow-in-action)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mThushan[39m[38;5;12m [39m[38;5;12mGanegedara.[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mpractical[39m[38;5;12m [39m[38;5;12mguide[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbuilding[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mnew[39m[38;5;12m [39m[38;5;12mfeatures[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mTensorFlow[39m[38;5;12m [39m[38;5;12m2.0[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mfilled[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mengaging[39m[38;5;12m [39m[38;5;12mprojects,[39m[38;5;12m [39m[38;5;12msimple[39m[38;5;12m [39m
|
||||
[38;5;12mlanguage,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcoverage[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mlatest[39m[38;5;12m [39m[38;5;12malgorithms.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mProbabilistic[0m[38;5;14m[1m [0m[38;5;14m[1mProgramming[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mBayesian[0m[38;5;14m[1m [0m[38;5;14m[1mMethods[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mHackers[0m[38;5;12m [39m[38;5;12m(https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mCameron[39m[38;5;12m [39m[38;5;12mDavidson-Pilon.[39m[38;5;12m [39m[38;5;12mIntroduction[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mBayesian[39m[38;5;12m [39m[38;5;12mmethods[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mprobabilistic[39m[38;5;12m [39m
|
||||
[38;5;12mgraphical[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mtensorflow-probability[39m[38;5;12m [39m[38;5;12m(and,[39m[38;5;12m [39m[38;5;12malternatively[39m[38;5;12m [39m[38;5;12mPyMC2/3).[39m[38;5;12m [39m
|
||||
|
||||
|
||||
|
||||
@@ -301,3 +300,5 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSome of the python libraries were cut-and-pasted from [39m[38;5;14m[1mvinta[0m[38;5;12m (https://github.com/vinta/awesome-python)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mThe few go reference I found where pulled from [39m[38;5;14m[1mthis page[0m[38;5;12m (https://code.google.com/p/go-wiki/wiki/Projects#Machine_Learning)[39m
|
||||
|
||||
|
||||
[38;5;12mtensorflow Github: https://github.com/jtoy/awesome-tensorflow[39m
|
||||
|
||||
Reference in New Issue
Block a user