update lists
This commit is contained in:
@@ -28,7 +28,6 @@
|
||||
[38;5;12m- [39m[38;5;14m[1mDeep Learning[0m[38;5;12m (#deep-learning)[39m
|
||||
[48;5;235m[38;5;249m- **PyTorch** (#pytorch)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[48;5;235m[38;5;249m- **TensorFlow** (#tensorflow)[49m[39m
|
||||
[48;5;235m[38;5;249m- **MXNet** (#mxnet)[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mJAX[0m[38;5;12m (#jax)[39m
|
||||
[48;5;235m[38;5;249m- **Others** (#others)[49m[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mAutomated Machine Learning[0m[38;5;12m (#automated-machine-learning)[39m
|
||||
@@ -156,12 +155,6 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mElephas[0m[38;5;12m (https://github.com/maxpumperla/elephas) - Distributed Deep learning with Keras & Spark. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mqkeras[0m[38;5;12m (https://github.com/google/qkeras) - A quantization deep learning library. [39m
|
||||
|
||||
[38;2;255;187;0m[4mMXNet[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMXNet[0m[38;5;12m (https://github.com/apache/incubator-mxnet) - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGluon[0m[38;5;12m (https://github.com/gluon-api/gluon-api) - A clear, concise, simple yet powerful and efficient API for deep learning (now included in MXNet). [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mXfer[0m[38;5;12m (https://github.com/amzn/xfer) - Transfer Learning library for Deep Neural Networks. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMXNet[0m[38;5;12m (https://github.com/ROCmSoftwarePlatform/mxnet) - HIP Port of MXNet. [39m
|
||||
|
||||
[38;2;255;187;0m[4mJAX[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mJAX[0m[38;5;12m (https://github.com/google/jax) - Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFLAX[0m[38;5;12m (https://github.com/google/flax) - A neural network library for JAX that is designed for flexibility.[39m
|
||||
@@ -184,7 +177,6 @@
|
||||
|
||||
[38;2;255;187;0m[4mNatural Language Processing[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtorchtext[0m[38;5;12m (https://github.com/pytorch/text) - Data loaders and abstractions for text and NLP. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgluon-nlp[0m[38;5;12m (https://github.com/dmlc/gluon-nlp) - NLP made easy. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKerasNLP[0m[38;5;12m (https://github.com/keras-team/keras-nlp) - Modular Natural Language Processing workflows with Keras. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mspaCy[0m[38;5;12m (https://spacy.io/) - Industrial-Strength Natural Language Processing.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNLTK[0m[38;5;12m (https://github.com/nltk/nltk) - Modules, data sets, and tutorials supporting research and development in Natural Language Processing.[39m
|
||||
@@ -209,7 +201,6 @@
|
||||
[38;2;255;187;0m[4mComputer Vision[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtorchvision[0m[38;5;12m (https://github.com/pytorch/vision) - Datasets, Transforms, and Models specific to Computer Vision. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyTorch3D[0m[38;5;12m (https://github.com/facebookresearch/pytorch3d) - PyTorch3D is FAIR's library of reusable components for deep learning with 3D data. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgluon-cv[0m[38;5;12m (https://github.com/dmlc/gluon-cv) - Provides implementations of the state-of-the-art deep learning models in computer vision. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKerasCV[0m[38;5;12m (https://github.com/keras-team/keras-cv) - Industry-strength Computer Vision workflows with Keras. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpenCV[0m[38;5;12m (https://github.com/opencv/opencv) - Open Source Computer Vision Library.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDecord[0m[38;5;12m (https://github.com/dmlc/decord) - An efficient video loader for deep learning with smart shuffling that's super easy to digest.[39m
|
||||
@@ -223,6 +214,7 @@
|
||||
|
||||
[38;2;255;187;0m[4mTime Series[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msktime[0m[38;5;12m (https://github.com/alan-turing-institute/sktime) - A unified framework for machine learning with time series. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mskforecast[0m[38;5;12m (https://github.com/JoaquinAmatRodrigo/skforecast) - Time series forecasting with machine learning models[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdarts[0m[38;5;12m (https://github.com/unit8co/darts) - A python library for easy manipulation and forecasting of time series.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mstatsforecast[0m[38;5;12m (https://github.com/Nixtla/statsforecast) - Lightning fast forecasting with statistical and econometric models.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmlforecast[0m[38;5;12m (https://github.com/Nixtla/mlforecast) - Scalable machine learning-based time series forecasting.[39m
|
||||
@@ -239,8 +231,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mChaos Genius[0m[38;5;12m (https://github.com/chaos-genius/chaos_genius) - ML powered analytics engine for outlier/anomaly detection and root cause analysis[39m
|
||||
|
||||
[38;2;255;187;0m[4mReinforcement Learning[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGymnasium[0m[38;5;12m [39m[38;5;12m(https://github.com/Farama-Foundation/Gymnasium)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAn[39m[38;5;12m [39m[38;5;12mAPI[39m[38;5;12m [39m[38;5;12mstandard[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12msingle-agent[39m[38;5;12m [39m[38;5;12mreinforcement[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12menvironments,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mpopular[39m[38;5;12m [39m[38;5;12mreference[39m[38;5;12m [39m[38;5;12menvironments[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mrelated[39m[38;5;12m [39m[38;5;12mutilities[39m[38;5;12m [39m[38;5;12m(formerly[39m[38;5;12m [39m[38;5;14m[1mGym[0m[38;5;12m [39m
|
||||
[38;5;12m(https://github.com/openai/gym)).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGymnasium[0m[38;5;12m (https://github.com/Farama-Foundation/Gymnasium) - An API standard for single-agent reinforcement learning environments, with popular reference environments and related utilities (formerly [39m[38;5;14m[1mGym[0m[38;5;12m (https://github.com/openai/gym)).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPettingZoo[0m[38;5;12m (https://github.com/Farama-Foundation/PettingZoo) - An API standard for multi-agent reinforcement learning environments, with popular reference environments and related utilities.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMAgent2[0m[38;5;12m (https://github.com/Farama-Foundation/MAgent2) - An engine for high performance multi-agent environments with very large numbers of agents, along with a set of reference environments.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStable Baselines3[0m[38;5;12m (https://github.com/DLR-RM/stable-baselines3) - A set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines.[39m
|
||||
@@ -340,10 +331,10 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNetron[0m[38;5;12m (https://github.com/lutzroeder/Netron) - Visualizer for deep learning and machine learning models (no Python code, but visualizes models from most Python Deep Learning frameworks).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFlashLight[0m[38;5;12m (https://github.com/dlguys/flashlight) - Visualization Tool for your NeuralNetwork.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtensorboard-pytorch[0m[38;5;12m (https://github.com/lanpa/tensorboard-pytorch) - Tensorboard for PyTorch (and chainer, mxnet, numpy, ...).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmxboard[0m[38;5;12m (https://github.com/awslabs/mxboard) - Logging MXNet data for visualization in TensorBoard. [39m
|
||||
|
||||
[38;2;255;187;0m[4mGenetic Programming[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgplearn[0m[38;5;12m (https://github.com/trevorstephens/gplearn) - Genetic Programming in Python. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyGAD[0m[38;5;12m (https://github.com/ahmedfgad/GeneticAlgorithmPython) - Genetic Algorithm in Python. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDEAP[0m[38;5;12m (https://github.com/DEAP/deap) - Distributed Evolutionary Algorithms in Python.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mkaroo_gp[0m[38;5;12m (https://github.com/kstaats/karoo_gp) - A Genetic Programming platform for Python with GPU support. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmonkeys[0m[38;5;12m (https://github.com/hchasestevens/monkeys) - A strongly-typed genetic programming framework for Python.[39m
|
||||
@@ -352,6 +343,8 @@
|
||||
|
||||
[38;2;255;187;0m[4mOptimization[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOptuna[0m[38;5;12m (https://github.com/optuna/optuna) - A hyperparameter optimization framework.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpymoo[0m[38;5;12m (https://github.com/anyoptimization/pymoo) - Multi-objective Optimization in Python.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpycma[0m[38;5;12m (https://github.com/CMA-ES/pycma?tab=readme-ov-file) - Python implementation of CMA-ES.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpearmint[0m[38;5;12m (https://github.com/HIPS/Spearmint) - Bayesian optimization.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBoTorch[0m[38;5;12m (https://github.com/pytorch/botorch) - Bayesian optimization in PyTorch. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscikit-opt[0m[38;5;12m (https://github.com/guofei9987/scikit-opt) - Heuristic Algorithms for optimization.[39m
|
||||
@@ -462,8 +455,8 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mswifter[0m[38;5;12m (https://github.com/jmcarpenter2/swifter) - A package that efficiently applies any function to a pandas dataframe or series in the fastest available manner.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpandas-log[0m[38;5;12m (https://github.com/eyaltrabelsi/pandas-log) - A package that allows providing feedback about basic pandas operations and finds both business logic and performance issues.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mvaex[0m[38;5;12m (https://github.com/vaexio/vaex) - Out-of-Core DataFrames for Python, ML, visualize and explore big tabular data at a billion rows per second.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mxarray[0m[38;5;12m [39m[38;5;12m(https://github.com/pydata/xarray)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mXarray[39m[38;5;12m [39m[38;5;12mcombines[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbest[39m[38;5;12m [39m[38;5;12mfeatures[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mNumPy[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mpandas[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmultidimensional[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mselection[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12msupplementing[39m[38;5;12m [39m[38;5;12mnumerical[39m[38;5;12m [39m[38;5;12maxis[39m[38;5;12m [39m[38;5;12mlabels[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mnamed[39m[38;5;12m [39m[38;5;12mdimensions[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12mintuitive,[39m[38;5;12m [39m[38;5;12mconcise,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mless[39m[38;5;12m [39m
|
||||
[38;5;12merror-prone[39m[38;5;12m [39m[38;5;12mindexing[39m[38;5;12m [39m[38;5;12mroutines.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mxarray[0m[38;5;12m [39m[38;5;12m(https://github.com/pydata/xarray)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mXarray[39m[38;5;12m [39m[38;5;12mcombines[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbest[39m[38;5;12m [39m[38;5;12mfeatures[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mNumPy[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mpandas[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmultidimensional[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mselection[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12msupplementing[39m[38;5;12m [39m[38;5;12mnumerical[39m[38;5;12m [39m[38;5;12maxis[39m[38;5;12m [39m[38;5;12mlabels[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mnamed[39m[38;5;12m [39m[38;5;12mdimensions[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12mintuitive,[39m[38;5;12m [39m[38;5;12mconcise,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mless[39m[38;5;12m [39m[38;5;12merror-prone[39m
|
||||
[38;5;12mindexing[39m[38;5;12m [39m[38;5;12mroutines.[39m
|
||||
|
||||
[38;2;255;187;0m[4mPipelines[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpdpipe[0m[38;5;12m (https://github.com/shaypal5/pdpipe) - Sasy pipelines for pandas DataFrames.[39m
|
||||
@@ -511,6 +504,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdeepchecks[0m[38;5;12m (https://github.com/deepchecks/deepchecks) - Validation & testing of ML models and data during model development, deployment, and production. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mevidently[0m[38;5;12m (https://github.com/evidentlyai/evidently) - Evaluate and monitor ML models from validation to production.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorFlow Data Validation[0m[38;5;12m (https://github.com/tensorflow/data-validation) - Library for exploring and validating machine learning data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDataComPy[0m[38;5;12m (https://github.com/capitalone/datacompy)- A library to compare Pandas, Polars, and Spark data frames. It provides stats and lets users adjust for match accuracy.[39m
|
||||
|
||||
[38;2;255;187;0m[4mEvaluation[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrecmetrics[0m[38;5;12m (https://github.com/statisticianinstilettos/recmetrics) - Library of useful metrics and plots for evaluating recommender systems.[39m
|
||||
@@ -558,3 +552,5 @@
|
||||
|
||||
[38;2;255;187;0m[4mLicense[0m
|
||||
[38;5;12mThis work is licensed under the Creative Commons Attribution 4.0 International License - [39m[38;5;14m[1mCC BY 4.0[0m[38;5;12m (https://creativecommons.org/licenses/by/4.0/)[39m
|
||||
|
||||
[38;5;12mpythondatascience Github: https://github.com/krzjoa/awesome-python-data-science[39m
|
||||
|
||||
Reference in New Issue
Block a user