update lists
This commit is contained in:
@@ -1,21 +1,22 @@
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mData Science Tutorials & Resources for Beginners [0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mAwesome[0m[38;5;14m[1m[4m (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)[0m[38;2;255;187;0m[1m[4m (https://github.com/sindresorhus/awesome)[0m
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mData Science Tutorials & Resources for Beginners [0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mAwesome[0m[38;5;14m[1m[4m (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)[0m[38;2;255;187;0m[1m[4m (https://github.com/sindresorhus/awesome)[0m
|
||||
|
||||
[48;2;30;30;40m[38;5;13m[3mIf you want to know more about Data Science but don't know where to start this list is for you![0m[38;5;12m :chart_with_upwards_trend:[39m
|
||||
|
||||
[38;5;12mNo previous knowledge required but Python and statistics basics will definitely come in handy. These ressources have been used successfully for many beginners at my local Data Science student group [39m[38;5;14m[1mML-KA[0m[38;5;12m (http://ml-ka.de/).[39m
|
||||
[38;5;12mNo previous knowledge is required but Python and statistics basics will definitely come in handy. These resources have been used successfully for many beginners at my local Data Science student group [39m[38;5;14m[1mML-KA[0m[38;5;12m (http://ml-ka.de/).[39m
|
||||
|
||||
[38;2;255;187;0m[4mWhat is Data Science?[0m
|
||||
|
||||
[38;5;12m- [39m[38;5;14m[1m'What is Data Science?' on Quora[0m[38;5;12m (https://www.quora.com/What-is-data-science)[39m
|
||||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mExplanation[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mimportant[0m[38;5;14m[1m [0m[38;5;14m[1mvocabulary[0m[38;5;12m [39m[38;5;12m(https://www.quora.com/What-is-the-difference-between-Data-Analytics-Data-Analysis-Data-Mining-Data-Science-Machine-Learning-and-Big-Data-1?share=1)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mDifferentiation[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mBig[39m[38;5;12m [39m[38;5;12mData,[39m[38;5;12m [39m[38;5;12mMachine[39m[38;5;12m [39m[38;5;12mLearning,[39m[38;5;12m [39m
|
||||
[38;5;12mData[39m[38;5;12m [39m[38;5;12mScience.[39m
|
||||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mExplanation[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mimportant[0m[38;5;14m[1m [0m[38;5;14m[1mvocabulary[0m[38;5;12m [39m[38;5;12m(https://www.quora.com/What-is-the-difference-between-Data-Analytics-Data-Analysis-Data-Mining-Data-Science-Machine-Learning-and-Big-Data-1?share=1)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mDifferentiation[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mBig[39m[38;5;12m [39m[38;5;12mData,[39m[38;5;12m [39m[38;5;12mMachine[39m[38;5;12m [39m[38;5;12mLearning,[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m
|
||||
[38;5;12mScience.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mData Science for Business (Book)[0m[38;5;12m (https://amzn.to/2voPJUi) - An introduction to Data Science and its use as a business asset.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mData Science Process: A Beginner’s Comprehensive Guide[0m[38;5;12m (https://www.scaler.com/blog/data-science-process/) - Technical Skills for the Data Science: This emphasizes the practical skills needed throughout the data science process.[39m
|
||||
|
||||
[38;2;255;187;0m[4mCommon Algorithms and Procedures[0m
|
||||
|
||||
[38;5;12m- [39m[38;5;14m[1mSupervised vs unsupervised learning[0m[38;5;12m (https://stackoverflow.com/questions/1832076/what-is-the-difference-between-supervised-learning-and-unsupervised-learning) - The two most common types of Machine Learning algorithms. [39m
|
||||
[38;5;12m- [39m[38;5;14m[1m9 important Data Science algorithms and their implementation[0m[38;5;12m (https://nbviewer.jupyter.org/github/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/05.05-Naive-Bayes.ipynb) [39m
|
||||
[38;5;12m- [39m[38;5;14m[1mCross validation[0m[38;5;12m (https://nbviewer.jupyter.org/github/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/05.03-Hyperparameters-and-Model-Validation.ipynb) - Evaluate the performance of your algorithm / model.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mCross validation[0m[38;5;12m (https://nbviewer.jupyter.org/github/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/05.03-Hyperparameters-and-Model-Validation.ipynb) - Evaluate the performance of your algorithm/model.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mFeature engineering[0m[38;5;12m (https://nbviewer.jupyter.org/github/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/05.04-Feature-Engineering.ipynb) - Modifying the data to better model predictions.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mScientific introduction to 10 important Data Science algorithms[0m[38;5;12m (http://www.cs.umd.edu/%7Esamir/498/10Algorithms-08.pdf)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mModel ensemble: Explanation[0m[38;5;12m (https://www.analyticsvidhya.com/blog/2017/02/introduction-to-ensembling-along-with-implementation-in-r/) - Combine multiple models into one for better performance.[39m
|
||||
@@ -95,3 +96,5 @@
|
||||
|
||||
[38;5;12mTo the extent possible under law, Simon Böhm has waived all copyright and[39m
|
||||
[38;5;12mrelated or neighboring rights to this work. Disclaimer: Some of the links are affiliate links.[39m
|
||||
|
||||
[38;5;12mlearndatascience Github: https://github.com/siboehm/awesome-learn-datascience[39m
|
||||
|
||||
Reference in New Issue
Block a user