update lists
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome Deep Vision [0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mAwesome[0m[38;5;14m[1m[4m (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)[0m[38;2;255;187;0m[1m[4m (https://github.com/sindresorhus/awesome)[0m
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome Deep Vision [0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mAwesome[0m[38;5;14m[1m[4m (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)[0m[38;2;255;187;0m[1m[4m (https://github.com/sindresorhus/awesome)[0m
|
||||
|
||||
[38;5;12mA curated list of deep learning resources for computer vision, inspired by [39m[38;5;14m[1mawesome-php[0m[38;5;12m (https://github.com/ziadoz/awesome-php) and [39m[38;5;14m[1mawesome-computer-vision[0m[38;5;12m (https://github.com/jbhuang0604/awesome-computer-vision).[39m
|
||||
|
||||
@@ -135,7 +135,7 @@
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJustin[39m[38;5;12m [39m[38;5;12mJohnson,[39m[38;5;12m [39m[38;5;12mAlexandre[39m[38;5;12m [39m[38;5;12mAlahi,[39m[38;5;12m [39m[38;5;12mLi[39m[38;5;12m [39m[38;5;12mFei-Fei,[39m[38;5;12m [39m[38;5;12mPerceptual[39m[38;5;12m [39m[38;5;12mLosses[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mReal-Time[39m[38;5;12m [39m[38;5;12mStyle[39m[38;5;12m [39m[38;5;12mTransfer[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mSuper-Resolution,[39m[38;5;12m [39m[38;5;12marXiv:1603.08155,[39m[38;5;12m [39m[38;5;12m2016.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m[38;5;12m(http://arxiv.org/abs/1603.08155)[39m[38;5;12m [39m[38;5;12mSupplementary[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||||
[38;5;12m(http://cs.stanford.edu/people/jcjohns/papers/fast-style/fast-style-supp.pdf)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSRGAN[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mChristian[39m[38;5;12m [39m[38;5;12mLedig,[39m[38;5;12m [39m[38;5;12mLucas[39m[38;5;12m [39m[38;5;12mTheis,[39m[38;5;12m [39m[38;5;12mFerenc[39m[38;5;12m [39m[38;5;12mHuszar,[39m[38;5;12m [39m[38;5;12mJose[39m[38;5;12m [39m[38;5;12mCaballero,[39m[38;5;12m [39m[38;5;12mAndrew[39m[38;5;12m [39m[38;5;12mCunningham,[39m[38;5;12m [39m[38;5;12mAlejandro[39m[38;5;12m [39m[38;5;12mAcosta,[39m[38;5;12m [39m[38;5;12mAndrew[39m[38;5;12m [39m[38;5;12mAitken,[39m[38;5;12m [39m[38;5;12mAlykhan[39m[38;5;12m [39m[38;5;12mTejani,[39m[38;5;12m [39m[38;5;12mJohannes[39m[38;5;12m [39m[38;5;12mTotz,[39m[38;5;12m [39m[38;5;12mZehan[39m[38;5;12m [39m[38;5;12mWang,[39m[38;5;12m [39m[38;5;12mWenzhe[39m[38;5;12m [39m[38;5;12mShi,[39m[38;5;12m [39m[38;5;12mPhoto-Realistic[39m[38;5;12m [39m[38;5;12mSingle[39m[38;5;12m [39m[38;5;12mImage[39m[38;5;12m [39m[38;5;12mSuper-Resolution[39m[38;5;12m [39m[38;5;12mUsing[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mGenerative[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mChristian[39m[38;5;12m [39m[38;5;12mLedig,[39m[38;5;12m [39m[38;5;12mLucas[39m[38;5;12m [39m[38;5;12mTheis,[39m[38;5;12m [39m[38;5;12mFerenc[39m[38;5;12m [39m[38;5;12mHuszar,[39m[38;5;12m [39m[38;5;12mJose[39m[38;5;12m [39m[38;5;12mCaballero,[39m[38;5;12m [39m[38;5;12mAndrew[39m[38;5;12m [39m[38;5;12mCunningham,[39m[38;5;12m [39m[38;5;12mAlejandro[39m[38;5;12m [39m[38;5;12mAcosta,[39m[38;5;12m [39m[38;5;12mAndrew[39m[38;5;12m [39m[38;5;12mAitken,[39m[38;5;12m [39m[38;5;12mAlykhan[39m[38;5;12m [39m[38;5;12mTejani,[39m[38;5;12m [39m[38;5;12mJohannes[39m[38;5;12m [39m[38;5;12mTotz,[39m[38;5;12m [39m[38;5;12mZehan[39m[38;5;12m [39m[38;5;12mWang,[39m[38;5;12m [39m[38;5;12mWenzhe[39m[38;5;12m [39m[38;5;12mShi,[39m[38;5;12m [39m[38;5;12mPhoto-Realistic[39m[38;5;12m [39m[38;5;12mSingle[39m[38;5;12m [39m[38;5;12mImage[39m[38;5;12m [39m[38;5;12mSuper-Resolution[39m[38;5;12m [39m[38;5;12mUsing[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mGenerative[39m[38;5;12m [39m
|
||||
[38;5;12mAdversarial[39m[38;5;12m [39m[38;5;12mNetwork,[39m[38;5;12m [39m[38;5;12marXiv:1609.04802v3,[39m[38;5;12m [39m[38;5;12m2016.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m[38;5;12m(https://arxiv.org/pdf/1609.04802v3.pdf)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mOthers[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mOsendorfer, Christian, Hubert Soyer, and Patrick van der Smagt, Image Super-Resolution with Fast Approximate Convolutional Sparse Coding, ICONIP, 2014. [39m[38;5;12mPaper ICONIP-2014[39m[38;5;14m[1m [0m[38;5;12m (http://brml.org/uploads/tx_sibibtex/281.pdf)[39m
|
||||
@@ -201,14 +201,12 @@
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMohammadreza Mostajabi, Payman Yadollahpour, Gregory Shakhnarovich, Feedforward Semantic Segmentation With Zoom-Out Features, CVPR, 2015[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJoint Calibration [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1507.01581)[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHolger Caesar, Jasper Uijlings, Vittorio Ferrari, Joint Calibration for Semantic Segmentation, arXiv:1507.01581.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFully[39m[38;5;12m [39m[38;5;12mConvolutional[39m[38;5;12m [39m[38;5;12mNetworks[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mSemantic[39m[38;5;12m [39m[38;5;12mSegmentation[39m[38;5;12m [39m[38;5;12mPaper-CVPR15[39m[38;5;14m[1m [0m[38;5;12m [39m[38;5;12m(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf)[39m[38;5;12m [39m[38;5;12mPaper-arXiv15[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||||
[38;5;12m(http://arxiv.org/pdf/1411.4038)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mFully Convolutional Networks for Semantic Segmentation [39m[38;5;12mPaper-CVPR15[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf) [39m[38;5;12mPaper-arXiv15[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1411.4038)[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJonathan Long, Evan Shelhamer, Trevor Darrell, Fully Convolutional Networks for Semantic Segmentation, CVPR, 2015.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHypercolumn [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Hariharan_Hypercolumns_for_Object_2015_CVPR_paper.pdf)[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mBharath Hariharan, Pablo Arbelaez, Ross Girshick, Jitendra Malik, Hypercolumns for Object Segmentation and Fine-Grained Localization, CVPR, 2015.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mDeep Hierarchical Parsing[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAbhishek[39m[38;5;12m [39m[38;5;12mSharma,[39m[38;5;12m [39m[38;5;12mOncel[39m[38;5;12m [39m[38;5;12mTuzel,[39m[38;5;12m [39m[38;5;12mDavid[39m[38;5;12m [39m[38;5;12mW.[39m[38;5;12m [39m[38;5;12mJacobs,[39m[38;5;12m [39m[38;5;12mDeep[39m[38;5;12m [39m[38;5;12mHierarchical[39m[38;5;12m [39m[38;5;12mParsing[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mSemantic[39m[38;5;12m [39m[38;5;12mSegmentation,[39m[38;5;12m [39m[38;5;12mCVPR,[39m[38;5;12m [39m[38;5;12m2015.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||||
[38;5;12m(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Sharma_Deep_Hierarchical_Parsing_2015_CVPR_paper.pdf)[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAbhishek Sharma, Oncel Tuzel, David W. Jacobs, Deep Hierarchical Parsing for Semantic Segmentation, CVPR, 2015. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Sharma_Deep_Hierarchical_Parsing_2015_CVPR_paper.pdf)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mLearning Hierarchical Features for Scene Labeling [39m[38;5;12mPaper-ICML12[39m[38;5;14m[1m [0m[38;5;12m (http://yann.lecun.com/exdb/publis/pdf/farabet-icml-12.pdf) [39m[38;5;12mPaper-PAMI13[39m[38;5;14m[1m [0m[38;5;12m (http://yann.lecun.com/exdb/publis/pdf/farabet-pami-13.pdf)[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mClement Farabet, Camille Couprie, Laurent Najman, Yann LeCun, Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers, ICML, 2012.[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mClement Farabet, Camille Couprie, Laurent Najman, Yann LeCun, Learning Hierarchical Features for Scene Labeling, PAMI, 2013.[39m
|
||||
@@ -262,8 +260,7 @@
|
||||
[38;5;12m(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Lenc_Understanding_Image_Representations_2015_CVPR_paper.pdf)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAnh[39m[38;5;12m [39m[38;5;12mNguyen,[39m[38;5;12m [39m[38;5;12mJason[39m[38;5;12m [39m[38;5;12mYosinski,[39m[38;5;12m [39m[38;5;12mJeff[39m[38;5;12m [39m[38;5;12mClune,[39m[38;5;12m [39m[38;5;12mDeep[39m[38;5;12m [39m[38;5;12mNeural[39m[38;5;12m [39m[38;5;12mNetworks[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mEasily[39m[38;5;12m [39m[38;5;12mFooled:High[39m[38;5;12m [39m[38;5;12mConfidence[39m[38;5;12m [39m[38;5;12mPredictions[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mUnrecognizable[39m[38;5;12m [39m[38;5;12mImages,[39m[38;5;12m [39m[38;5;12mCVPR,[39m[38;5;12m [39m[38;5;12m2015.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||||
[38;5;12m(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Nguyen_Deep_Neural_Networks_2015_CVPR_paper.pdf)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAravindh[39m[38;5;12m [39m[38;5;12mMahendran,[39m[38;5;12m [39m[38;5;12mAndrea[39m[38;5;12m [39m[38;5;12mVedaldi,[39m[38;5;12m [39m[38;5;12mUnderstanding[39m[38;5;12m [39m[38;5;12mDeep[39m[38;5;12m [39m[38;5;12mImage[39m[38;5;12m [39m[38;5;12mRepresentations[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mInverting[39m[38;5;12m [39m[38;5;12mThem,[39m[38;5;12m [39m[38;5;12mCVPR,[39m[38;5;12m [39m[38;5;12m2015.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||||
[38;5;12m(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Mahendran_Understanding_Deep_Image_2015_CVPR_paper.pdf)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAravindh Mahendran, Andrea Vedaldi, Understanding Deep Image Representations by Inverting Them, CVPR, 2015. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Mahendran_Understanding_Deep_Image_2015_CVPR_paper.pdf)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mBolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba, Object Detectors Emerge in Deep Scene CNNs, ICLR, 2015. [39m[38;5;12marXiv Paper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/abs/1412.6856)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAlexey Dosovitskiy, Thomas Brox, Inverting Visual Representations with Convolutional Networks, arXiv, 2015. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/abs/1506.02753)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMatthrew Zeiler, Rob Fergus, Visualizing and Understanding Convolutional Networks, ECCV, 2014. [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf)[39m
|
||||
@@ -291,8 +288,7 @@
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mXinlei Chen, C. Lawrence Zitnick, Learning a Recurrent Visual Representation for Image Caption Generation, arXiv:1411.5654.[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mXinlei Chen, C. Lawrence Zitnick, Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation, CVPR 2015[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMicrosoft [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1411.4952)[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHao[39m[38;5;12m [39m[38;5;12mFang,[39m[38;5;12m [39m[38;5;12mSaurabh[39m[38;5;12m [39m[38;5;12mGupta,[39m[38;5;12m [39m[38;5;12mForrest[39m[38;5;12m [39m[38;5;12mIandola,[39m[38;5;12m [39m[38;5;12mRupesh[39m[38;5;12m [39m[38;5;12mSrivastava,[39m[38;5;12m [39m[38;5;12mLi[39m[38;5;12m [39m[38;5;12mDeng,[39m[38;5;12m [39m[38;5;12mPiotr[39m[38;5;12m [39m[38;5;12mDollár,[39m[38;5;12m [39m[38;5;12mJianfeng[39m[38;5;12m [39m[38;5;12mGao,[39m[38;5;12m [39m[38;5;12mXiaodong[39m[38;5;12m [39m[38;5;12mHe,[39m[38;5;12m [39m[38;5;12mMargaret[39m[38;5;12m [39m[38;5;12mMitchell,[39m[38;5;12m [39m[38;5;12mJohn[39m[38;5;12m [39m[38;5;12mC.[39m[38;5;12m [39m[38;5;12mPlatt,[39m[38;5;12m [39m[38;5;12mC.[39m[38;5;12m [39m[38;5;12mLawrence[39m[38;5;12m [39m[38;5;12mZitnick,[39m[38;5;12m [39m[38;5;12mGeoffrey[39m[38;5;12m [39m[38;5;12mZweig,[39m[38;5;12m [39m[38;5;12mFrom[39m[38;5;12m [39m[38;5;12mCaptions[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mVisual[39m[38;5;12m [39m[38;5;12mConcepts[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mBack,[39m[38;5;12m [39m[38;5;12mCVPR,[39m[38;5;12m [39m
|
||||
[38;5;12m2015.[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHao Fang, Saurabh Gupta, Forrest Iandola, Rupesh Srivastava, Li Deng, Piotr Dollár, Jianfeng Gao, Xiaodong He, Margaret Mitchell, John C. Platt, C. Lawrence Zitnick, Geoffrey Zweig, From Captions to Visual Concepts and Back, CVPR, 2015.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mUniv. Montreal / Univ. Toronto [39m[38;5;12mWeb[39m[38;5;14m[1m (http://kelvinxu.github.io/projects/capgen.html)[0m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m (http://www.cs.toronto.edu/~zemel/documents/captionAttn.pdf)[0m[38;5;12m [39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mKelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, Yoshua Bengio, Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention, arXiv:1502.03044 / ICML 2015[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mIdiap / EPFL / Facebook [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1502.03671)[0m[38;5;12m [39m
|
||||
@@ -301,7 +297,7 @@
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJunhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, Alan L. Yuille, Learning like a Child: Fast Novel Visual Concept Learning from Sentence Descriptions of Images, arXiv:1504.06692[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMS + Berkeley[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJacob Devlin, Saurabh Gupta, Ross Girshick, Margaret Mitchell, C. Lawrence Zitnick, Exploring Nearest Neighbor Approaches for Image Captioning, arXiv:1505.04467 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1505.04467.pdf)[0m[38;5;12m [39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJacob[39m[38;5;12m [39m[38;5;12mDevlin,[39m[38;5;12m [39m[38;5;12mHao[39m[38;5;12m [39m[38;5;12mCheng,[39m[38;5;12m [39m[38;5;12mHao[39m[38;5;12m [39m[38;5;12mFang,[39m[38;5;12m [39m[38;5;12mSaurabh[39m[38;5;12m [39m[38;5;12mGupta,[39m[38;5;12m [39m[38;5;12mLi[39m[38;5;12m [39m[38;5;12mDeng,[39m[38;5;12m [39m[38;5;12mXiaodong[39m[38;5;12m [39m[38;5;12mHe,[39m[38;5;12m [39m[38;5;12mGeoffrey[39m[38;5;12m [39m[38;5;12mZweig,[39m[38;5;12m [39m[38;5;12mMargaret[39m[38;5;12m [39m[38;5;12mMitchell,[39m[38;5;12m [39m[38;5;12mLanguage[39m[38;5;12m [39m[38;5;12mModels[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mImage[39m[38;5;12m [39m[38;5;12mCaptioning:[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mQuirks[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mWhat[39m[38;5;12m [39m[38;5;12mWorks,[39m[38;5;12m [39m[38;5;12marXiv:1505.01809[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;14m[1m(http://arxiv.org/pdf/1505.01809.pdf)[0m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJacob Devlin, Hao Cheng, Hao Fang, Saurabh Gupta, Li Deng, Xiaodong He, Geoffrey Zweig, Margaret Mitchell, Language Models for Image Captioning: The Quirks and What Works, arXiv:1505.01809 [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1505.01809.pdf)[0m[38;5;12m [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAdelaide [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.01144.pdf)[0m[38;5;12m [39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mQi Wu, Chunhua Shen, Anton van den Hengel, Lingqiao Liu, Anthony Dick, Image Captioning with an Intermediate Attributes Layer, arXiv:1506.01144[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTilburg [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1506.03694.pdf)[0m[38;5;12m [39m
|
||||
@@ -377,8 +373,8 @@
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJost Tobias Springenberg, "Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks", ICLR 2016, [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.06390v1.pdf)[0m[38;5;12m [39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mHarrison Edwards, Amos Storkey, "Censoring Representations with an Adversary", ICLR 2016, [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.05897v3.pdf)[0m[38;5;12m [39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTakeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, Shin Ishii, "Distributional Smoothing with Virtual Adversarial Training", ICLR 2016, [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1507.00677v8.pdf)[0m[38;5;12m [39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJun-Yan[39m[38;5;12m [39m[38;5;12mZhu,[39m[38;5;12m [39m[38;5;12mPhilipp[39m[38;5;12m [39m[38;5;12mKrahenbuhl,[39m[38;5;12m [39m[38;5;12mEli[39m[38;5;12m [39m[38;5;12mShechtman,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mAlexei[39m[38;5;12m [39m[38;5;12mA.[39m[38;5;12m [39m[38;5;12mEfros,[39m[38;5;12m [39m[38;5;12m"Generative[39m[38;5;12m [39m[38;5;12mVisual[39m[38;5;12m [39m[38;5;12mManipulation[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mNatural[39m[38;5;12m [39m[38;5;12mImage[39m[38;5;12m [39m[38;5;12mManifold",[39m[38;5;12m [39m[38;5;12mECCV[39m[38;5;12m [39m[38;5;12m2016.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;14m[1m(https://arxiv.org/pdf/1609.03552v2.pdf)[0m[38;5;12m [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;14m[1m(https://github.com/junyanz/iGAN)[0m[38;5;12m [39m
|
||||
[38;5;12mVideo[39m[38;5;14m[1m [0m[38;5;14m[1m(https://youtu.be/9c4z6YsBGQ0)[0m[38;5;12m [39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJun-Yan[39m[38;5;12m [39m[38;5;12mZhu,[39m[38;5;12m [39m[38;5;12mPhilipp[39m[38;5;12m [39m[38;5;12mKrahenbuhl,[39m[38;5;12m [39m[38;5;12mEli[39m[38;5;12m [39m[38;5;12mShechtman,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mAlexei[39m[38;5;12m [39m[38;5;12mA.[39m[38;5;12m [39m[38;5;12mEfros,[39m[38;5;12m [39m[38;5;12m"Generative[39m[38;5;12m [39m[38;5;12mVisual[39m[38;5;12m [39m[38;5;12mManipulation[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mNatural[39m[38;5;12m [39m[38;5;12mImage[39m[38;5;12m [39m[38;5;12mManifold",[39m[38;5;12m [39m[38;5;12mECCV[39m[38;5;12m [39m[38;5;12m2016.[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;14m[1m(https://arxiv.org/pdf/1609.03552v2.pdf)[0m[38;5;12m [39m[38;5;12mCode[39m[38;5;14m[1m [0m[38;5;14m[1m(https://github.com/junyanz/iGAN)[0m[38;5;12m [39m[38;5;12mVideo[39m[38;5;14m[1m [0m
|
||||
[38;5;14m[1m(https://youtu.be/9c4z6YsBGQ0)[0m[38;5;12m [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMixing Convolutional and Adversarial Networks[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mAlec Radford, Luke Metz, Soumith Chintala, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016. [39m[38;5;12mPaper[39m[38;5;14m[1m (http://arxiv.org/pdf/1511.06434.pdf)[0m[38;5;12m [39m
|
||||
|
||||
@@ -468,3 +464,5 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook's AI Painting@Wired[0m[38;5;12m (http://www.wired.com/2015/06/facebook-googles-fake-brains-spawn-new-visual-reality/)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mInceptionism: Going Deeper into Neural Networks@Google Research[0m[38;5;12m (http://googleresearch.blogspot.kr/2015/06/inceptionism-going-deeper-into-neural.html)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mImplementing Neural networks[0m[38;5;12m (http://peterroelants.github.io/) [39m
|
||||
|
||||
[38;5;12mdeepvision Github: https://github.com/kjw0612/awesome-deep-vision[39m
|
||||
|
||||
Reference in New Issue
Block a user