update lists
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome - Most Cited Deep Learning Papers[0m
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome - Most Cited Deep Learning Papers[0m
|
||||
|
||||
[38;5;14m[1m![0m[38;5;12mAwesome[39m[38;5;14m[1m (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)[0m[38;5;12m (https://github.com/sindresorhus/awesome)[39m
|
||||
|
||||
@@ -6,17 +6,16 @@
|
||||
|
||||
[38;5;12mA curated list of the most cited deep learning papers (2012-2016)[39m
|
||||
|
||||
[38;5;12mWe[39m[38;5;12m [39m[38;5;12mbelieve[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mthere[39m[38;5;12m [39m[38;5;12mexist[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mclassic[0m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mpapers[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mworth[39m[38;5;12m [39m[38;5;12mreading[39m[38;5;12m [39m[38;5;12mregardless[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m[38;5;12mapplication[39m[38;5;12m [39m[38;5;12mdomain.[39m[38;5;12m [39m[38;5;12mRather[39m[38;5;12m [39m[38;5;12mthan[39m[38;5;12m [39m[38;5;12mproviding[39m[38;5;12m [39m[38;5;12moverwhelming[39m[38;5;12m [39m[38;5;12mamount[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mpapers,[39m[38;5;12m [39m[38;5;12mWe[39m[38;5;12m [39m[38;5;12mwould[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mprovide[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mcurated[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mlist[0m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mawesome[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m
|
||||
[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mpapers[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mconsidered[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mmust-reads[0m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mcertain[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12mdomains.[39m
|
||||
[38;5;12mWe[39m[38;5;12m [39m[38;5;12mbelieve[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mthere[39m[38;5;12m [39m[38;5;12mexist[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mclassic[0m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mpapers[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mworth[39m[38;5;12m [39m[38;5;12mreading[39m[38;5;12m [39m[38;5;12mregardless[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m[38;5;12mapplication[39m[38;5;12m [39m[38;5;12mdomain.[39m[38;5;12m [39m[38;5;12mRather[39m[38;5;12m [39m[38;5;12mthan[39m[38;5;12m [39m[38;5;12mproviding[39m[38;5;12m [39m[38;5;12moverwhelming[39m[38;5;12m [39m[38;5;12mamount[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mpapers,[39m[38;5;12m [39m[38;5;12mWe[39m[38;5;12m [39m[38;5;12mwould[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mprovide[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mcurated[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mlist[0m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mawesome[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m
|
||||
[38;5;12mpapers[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mconsidered[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mmust-reads[0m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mcertain[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12mdomains.[39m
|
||||
|
||||
[38;2;255;187;0m[4mBackground[0m
|
||||
|
||||
[38;5;12mBefore[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mlist,[39m[38;5;12m [39m[38;5;12mthere[39m[38;5;12m [39m[38;5;12mexist[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mawesome[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mdeep[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mlearning[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mlists[0m[38;5;12m,[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mexample,[39m[38;5;12m [39m[38;5;14m[1mDeep[0m[38;5;14m[1m [0m[38;5;14m[1mVision[0m[38;5;12m [39m[38;5;12m(https://github.com/kjw0612/awesome-deep-vision)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;14m[1mAwesome[0m[38;5;14m[1m [0m[38;5;14m[1mRecurrent[0m[38;5;14m[1m [0m[38;5;14m[1mNeural[0m[38;5;14m[1m [0m[38;5;14m[1mNetworks[0m[38;5;12m [39m[38;5;12m(https://github.com/kjw0612/awesome-rnn).[39m[38;5;12m [39m[38;5;12mAlso,[39m[38;5;12m [39m[38;5;12mafter[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m
|
||||
[38;5;12mlist[39m[38;5;12m [39m[38;5;12mcomes[39m[38;5;12m [39m[38;5;12mout,[39m[38;5;12m [39m[38;5;12manother[39m[38;5;12m [39m[38;5;12mawesome[39m[38;5;12m [39m[38;5;12mlist[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mbeginners,[39m[38;5;12m [39m[38;5;12mcalled[39m[38;5;12m [39m[38;5;14m[1mDeep[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mPapers[0m[38;5;14m[1m [0m[38;5;14m[1mReading[0m[38;5;14m[1m [0m[38;5;14m[1mRoadmap[0m[38;5;12m [39m[38;5;12m(https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadmap),[39m[38;5;12m [39m[38;5;12mhas[39m[38;5;12m [39m[38;5;12mbeen[39m[38;5;12m [39m[38;5;12mcreated[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mloved[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m
|
||||
[38;5;12mresearchers.[39m
|
||||
[38;5;12mBefore[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mlist,[39m[38;5;12m [39m[38;5;12mthere[39m[38;5;12m [39m[38;5;12mexist[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mawesome[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mdeep[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mlearning[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mlists[0m[38;5;12m,[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mexample,[39m[38;5;12m [39m[38;5;14m[1mDeep[0m[38;5;14m[1m [0m[38;5;14m[1mVision[0m[38;5;12m [39m[38;5;12m(https://github.com/kjw0612/awesome-deep-vision)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;14m[1mAwesome[0m[38;5;14m[1m [0m[38;5;14m[1mRecurrent[0m[38;5;14m[1m [0m[38;5;14m[1mNeural[0m[38;5;14m[1m [0m[38;5;14m[1mNetworks[0m[38;5;12m [39m[38;5;12m(https://github.com/kjw0612/awesome-rnn).[39m[38;5;12m [39m[38;5;12mAlso,[39m[38;5;12m [39m[38;5;12mafter[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mlist[39m[38;5;12m [39m[38;5;12mcomes[39m
|
||||
[38;5;12mout,[39m[38;5;12m [39m[38;5;12manother[39m[38;5;12m [39m[38;5;12mawesome[39m[38;5;12m [39m[38;5;12mlist[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mbeginners,[39m[38;5;12m [39m[38;5;12mcalled[39m[38;5;12m [39m[38;5;14m[1mDeep[0m[38;5;14m[1m [0m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mPapers[0m[38;5;14m[1m [0m[38;5;14m[1mReading[0m[38;5;14m[1m [0m[38;5;14m[1mRoadmap[0m[38;5;12m [39m[38;5;12m(https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadmap),[39m[38;5;12m [39m[38;5;12mhas[39m[38;5;12m [39m[38;5;12mbeen[39m[38;5;12m [39m[38;5;12mcreated[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mloved[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mresearchers.[39m
|
||||
|
||||
[38;5;12mAlthough[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mRoadmap[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mList[0m[38;5;12m [39m[38;5;12mincludes[39m[38;5;12m [39m[38;5;12mlots[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mimportant[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mpapers,[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mfeels[39m[38;5;12m [39m[38;5;12moverwhelming[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mme[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mread[39m[38;5;12m [39m[38;5;12mthem[39m[38;5;12m [39m[38;5;12mall.[39m[38;5;12m [39m[38;5;12mAs[39m[38;5;12m [39m[38;5;12mI[39m[38;5;12m [39m[38;5;12mmentioned[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mintroduction,[39m[38;5;12m [39m[38;5;12mI[39m[38;5;12m [39m[38;5;12mbelieve[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mseminal[39m[38;5;12m [39m[38;5;12mworks[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mgive[39m[38;5;12m [39m[38;5;12mus[39m[38;5;12m [39m[38;5;12mlessons[39m[38;5;12m [39m[38;5;12mregardless[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m
|
||||
[38;5;12mapplication[39m[38;5;12m [39m[38;5;12mdomain.[39m[38;5;12m [39m[38;5;12mThus,[39m[38;5;12m [39m[38;5;12mI[39m[38;5;12m [39m[38;5;12mwould[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mintroduce[39m[38;5;12m [39m[38;5;14m[1mtop[0m[38;5;14m[1m [0m[38;5;14m[1m100[0m[38;5;14m[1m [0m[38;5;14m[1mdeep[0m[38;5;14m[1m [0m[38;5;14m[1mlearning[0m[38;5;14m[1m [0m[38;5;14m[1mpapers[0m[38;5;12m [39m[38;5;12mhere[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgood[39m[38;5;12m [39m[38;5;12mstarting[39m[38;5;12m [39m[38;5;12mpoint[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12moverviewing[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mresearches.[39m
|
||||
[38;5;12mAlthough[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mRoadmap[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mList[0m[38;5;12m [39m[38;5;12mincludes[39m[38;5;12m [39m[38;5;12mlots[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mimportant[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mpapers,[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mfeels[39m[38;5;12m [39m[38;5;12moverwhelming[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mme[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mread[39m[38;5;12m [39m[38;5;12mthem[39m[38;5;12m [39m[38;5;12mall.[39m[38;5;12m [39m[38;5;12mAs[39m[38;5;12m [39m[38;5;12mI[39m[38;5;12m [39m[38;5;12mmentioned[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mintroduction,[39m[38;5;12m [39m[38;5;12mI[39m[38;5;12m [39m[38;5;12mbelieve[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mseminal[39m[38;5;12m [39m[38;5;12mworks[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mgive[39m[38;5;12m [39m[38;5;12mus[39m[38;5;12m [39m[38;5;12mlessons[39m[38;5;12m [39m[38;5;12mregardless[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m[38;5;12mapplication[39m[38;5;12m [39m[38;5;12mdomain.[39m
|
||||
[38;5;12mThus,[39m[38;5;12m [39m[38;5;12mI[39m[38;5;12m [39m[38;5;12mwould[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mintroduce[39m[38;5;12m [39m[38;5;14m[1mtop[0m[38;5;14m[1m [0m[38;5;14m[1m100[0m[38;5;14m[1m [0m[38;5;14m[1mdeep[0m[38;5;14m[1m [0m[38;5;14m[1mlearning[0m[38;5;14m[1m [0m[38;5;14m[1mpapers[0m[38;5;12m [39m[38;5;12mhere[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgood[39m[38;5;12m [39m[38;5;12mstarting[39m[38;5;12m [39m[38;5;12mpoint[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12moverviewing[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mresearches.[39m
|
||||
|
||||
[38;5;12mTo get the news for newly released papers everyday, follow my [39m[38;5;14m[1mtwitter[0m[38;5;12m (https://twitter.com/TerryUm_ML) or [39m[38;5;14m[1mfacebook page[0m[38;5;12m (https://www.facebook.com/terryum.io/)! [39m
|
||||
|
||||
@@ -36,8 +35,8 @@
|
||||
[38;5;12m- [39m[38;5;14m[1m2012[0m[38;5;12m : +800 citations[39m
|
||||
[38;5;12m- [39m[38;5;14m[1m~2012[0m[38;5;12m : [39m[48;2;30;30;40m[38;5;13m[3mOld Papers[0m[38;5;12m (by discussion)[39m
|
||||
|
||||
[38;5;12mPlease[39m[38;5;12m [39m[38;5;12mnote[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mwe[39m[38;5;12m [39m[38;5;12mprefer[39m[38;5;12m [39m[38;5;12mseminal[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mpapers[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mapplied[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mvarious[39m[38;5;12m [39m[38;5;12mresearches[39m[38;5;12m [39m[38;5;12mrather[39m[38;5;12m [39m[38;5;12mthan[39m[38;5;12m [39m[38;5;12mapplication[39m[38;5;12m [39m[38;5;12mpapers.[39m[38;5;12m [39m[38;5;12mFor[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mreason,[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m[38;5;12mpapers[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mmeet[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mcriteria[39m[38;5;12m [39m[38;5;12mmay[39m[38;5;12m [39m[38;5;12mnot[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12maccepted[39m[38;5;12m [39m[38;5;12mwhile[39m[38;5;12m [39m[38;5;12mothers[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mdepends[39m[38;5;12m [39m[38;5;12mon[39m
|
||||
[38;5;12mthe[39m[38;5;12m [39m[38;5;12mimpact[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mpaper,[39m[38;5;12m [39m[38;5;12mapplicability[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[38;5;12mresearches[39m[38;5;12m [39m[38;5;12mscarcity[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12mdomain,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mso[39m[38;5;12m [39m[38;5;12mon.[39m
|
||||
[38;5;12mPlease[39m[38;5;12m [39m[38;5;12mnote[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mwe[39m[38;5;12m [39m[38;5;12mprefer[39m[38;5;12m [39m[38;5;12mseminal[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mpapers[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mapplied[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mvarious[39m[38;5;12m [39m[38;5;12mresearches[39m[38;5;12m [39m[38;5;12mrather[39m[38;5;12m [39m[38;5;12mthan[39m[38;5;12m [39m[38;5;12mapplication[39m[38;5;12m [39m[38;5;12mpapers.[39m[38;5;12m [39m[38;5;12mFor[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mreason,[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m[38;5;12mpapers[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mmeet[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mcriteria[39m[38;5;12m [39m[38;5;12mmay[39m[38;5;12m [39m[38;5;12mnot[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12maccepted[39m[38;5;12m [39m[38;5;12mwhile[39m[38;5;12m [39m[38;5;12mothers[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mdepends[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m
|
||||
[38;5;12mimpact[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mpaper,[39m[38;5;12m [39m[38;5;12mapplicability[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mother[39m[38;5;12m [39m[38;5;12mresearches[39m[38;5;12m [39m[38;5;12mscarcity[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12mdomain,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mso[39m[38;5;12m [39m[38;5;12mon.[39m
|
||||
|
||||
[38;5;14m[1mWe need your contributions![0m
|
||||
|
||||
@@ -45,8 +44,8 @@
|
||||
[38;5;12m(Please read the [39m[38;5;14m[1mcontributing guide[0m[38;5;12m (https://github.com/terryum/awesome-deep-learning-papers/blob/master/Contributing.md) for further instructions, though just letting me know the title of papers can also be a big contribution to us.)[39m
|
||||
|
||||
[38;5;12m(Update)[39m[38;5;12m [39m[38;5;12mYou[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mdownload[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mtop-100[39m[38;5;12m [39m[38;5;12mpapers[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;14m[1mthis[0m[38;5;12m [39m[38;5;12m(https://github.com/terryum/awesome-deep-learning-papers/blob/master/fetch_papers.py)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mcollect[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mauthors'[39m[38;5;12m [39m[38;5;12mnames[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;14m[1mthis[0m[38;5;12m [39m
|
||||
[38;5;12m(https://github.com/terryum/awesome-deep-learning-papers/blob/master/get_authors.py).[39m[38;5;12m [39m[38;5;12mAlso,[39m[38;5;12m [39m[38;5;14m[1mbib[0m[38;5;14m[1m [0m[38;5;14m[1mfile[0m[38;5;12m [39m[38;5;12m(https://github.com/terryum/awesome-deep-learning-papers/blob/master/top100papers.bib)[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mtop-100[39m[38;5;12m [39m[38;5;12mpapers[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mavailable.[39m[38;5;12m [39m[38;5;12mThanks,[39m[38;5;12m [39m
|
||||
[38;5;12mdoodhwala,[39m[38;5;12m [39m[38;5;14m[1mSven[0m[38;5;12m [39m[38;5;12m(https://github.com/sunshinemyson)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;14m[1mgrepinsight[0m[38;5;12m [39m[38;5;12m(https://github.com/grepinsight)![39m
|
||||
[38;5;12m(https://github.com/terryum/awesome-deep-learning-papers/blob/master/get_authors.py).[39m[38;5;12m [39m[38;5;12mAlso,[39m[38;5;12m [39m[38;5;14m[1mbib[0m[38;5;14m[1m [0m[38;5;14m[1mfile[0m[38;5;12m [39m[38;5;12m(https://github.com/terryum/awesome-deep-learning-papers/blob/master/top100papers.bib)[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mtop-100[39m[38;5;12m [39m[38;5;12mpapers[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mavailable.[39m[38;5;12m [39m[38;5;12mThanks,[39m[38;5;12m [39m[38;5;12mdoodhwala,[39m[38;5;12m [39m
|
||||
[38;5;14m[1mSven[0m[38;5;12m [39m[38;5;12m(https://github.com/sunshinemyson)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;14m[1mgrepinsight[0m[38;5;12m [39m[38;5;12m(https://github.com/grepinsight)![39m
|
||||
|
||||
[38;5;12m+ Can anyone contribute the code for obtaining the statistics of the authors of Top-100 papers?[39m
|
||||
|
||||
@@ -79,10 +78,8 @@
|
||||
[38;5;12m- [39m[38;5;14m[1mDistilling the knowledge in a neural network[0m[38;5;12m (2015), G. Hinton et al. [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1503.02531)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mDeep neural networks are easily fooled: High confidence predictions for unrecognizable images[0m[38;5;12m (2015), A. Nguyen et al. [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1412.1897)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mHow transferable are features in deep neural networks?[0m[38;5;12m (2014), J. Yosinski et al. [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks.pdf)[39m
|
||||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mCNN[0m[38;5;14m[1m [0m[38;5;14m[1mfeatures[0m[38;5;14m[1m [0m[38;5;14m[1moff-the-Shelf:[0m[38;5;14m[1m [0m[38;5;14m[1mAn[0m[38;5;14m[1m [0m[38;5;14m[1mastounding[0m[38;5;14m[1m [0m[38;5;14m[1mbaseline[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mrecognition[0m[38;5;12m [39m[38;5;12m(2014),[39m[38;5;12m [39m[38;5;12mA.[39m[38;5;12m [39m[38;5;12mRazavian[39m[38;5;12m [39m[38;5;12met[39m[38;5;12m [39m[38;5;12mal.[39m[38;5;12m [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||||
[38;5;12m(http://www.cv-foundation.org//openaccess/content_cvpr_workshops_2014/W15/papers/Razavian_CNN_Features_Off-the-Shelf_2014_CVPR_paper.pdf)[39m
|
||||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mLearning[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mtransferring[0m[38;5;14m[1m [0m[38;5;14m[1mmid-Level[0m[38;5;14m[1m [0m[38;5;14m[1mimage[0m[38;5;14m[1m [0m[38;5;14m[1mrepresentations[0m[38;5;14m[1m [0m[38;5;14m[1musing[0m[38;5;14m[1m [0m[38;5;14m[1mconvolutional[0m[38;5;14m[1m [0m[38;5;14m[1mneural[0m[38;5;14m[1m [0m[38;5;14m[1mnetworks[0m[38;5;12m [39m[38;5;12m(2014),[39m[38;5;12m [39m[38;5;12mM.[39m[38;5;12m [39m[38;5;12mOquab[39m[38;5;12m [39m[38;5;12met[39m[38;5;12m [39m[38;5;12mal.[39m[38;5;12m [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||||
[38;5;12m(http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Oquab_Learning_and_Transferring_2014_CVPR_paper.pdf)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mCNN features off-the-Shelf: An astounding baseline for recognition[0m[38;5;12m (2014), A. Razavian et al. [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org//openaccess/content_cvpr_workshops_2014/W15/papers/Razavian_CNN_Features_Off-the-Shelf_2014_CVPR_paper.pdf)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mLearning and transferring mid-Level image representations using convolutional neural networks[0m[38;5;12m (2014), M. Oquab et al. [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Oquab_Learning_and_Transferring_2014_CVPR_paper.pdf)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mVisualizing and understanding convolutional networks[0m[38;5;12m (2014), M. Zeiler and R. Fergus [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1311.2901)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mDecaf: A deep convolutional activation feature for generic visual recognition[0m[38;5;12m (2014), J. Donahue et al. [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1310.1531)[39m
|
||||
|
||||
@@ -143,8 +140,7 @@
|
||||
[38;5;12m- [39m[38;5;14m[1mDeep visual-semantic alignments for generating image descriptions[0m[38;5;12m (2015), A. Karpathy and L. Fei-Fei [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Karpathy_Deep_Visual-Semantic_Alignments_2015_CVPR_paper.pdf)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mShow, attend and tell: Neural image caption generation with visual attention[0m[38;5;12m (2015), K. Xu et al. [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1502.03044)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mShow and tell: A neural image caption generator[0m[38;5;12m (2015), O. Vinyals et al. [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Vinyals_Show_and_Tell_2015_CVPR_paper.pdf)[39m
|
||||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mLong-term[0m[38;5;14m[1m [0m[38;5;14m[1mrecurrent[0m[38;5;14m[1m [0m[38;5;14m[1mconvolutional[0m[38;5;14m[1m [0m[38;5;14m[1mnetworks[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mvisual[0m[38;5;14m[1m [0m[38;5;14m[1mrecognition[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mdescription[0m[38;5;12m [39m[38;5;12m(2015),[39m[38;5;12m [39m[38;5;12mJ.[39m[38;5;12m [39m[38;5;12mDonahue[39m[38;5;12m [39m[38;5;12met[39m[38;5;12m [39m[38;5;12mal.[39m[38;5;12m [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||||
[38;5;12m(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mLong-term recurrent convolutional networks for visual recognition and description[0m[38;5;12m (2015), J. Donahue et al. [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mVQA: Visual question answering[0m[38;5;12m (2015), S. Antol et al. [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Antol_VQA_Visual_Question_ICCV_2015_paper.pdf)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mDeepFace: Closing the gap to human-level performance in face verification[0m[38;5;12m (2014), Y. Taigman et al. [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf):[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mLarge-scale video classification with convolutional neural networks[0m[38;5;12m (2014), A. Karpathy et al. [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (http://vision.stanford.edu/pdf/karpathy14.pdf)[39m
|
||||
@@ -372,8 +368,7 @@
|
||||
|
||||
[48;2;30;30;40m[38;5;13m[3m(~2014)[0m
|
||||
[38;5;12m- DeepPose: Human pose estimation via deep neural networks (2014), A. Toshev and C. Szegedy [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Toshev_DeepPose_Human_Pose_2014_CVPR_paper.pdf)[39m
|
||||
[38;5;12m-[39m[38;5;12m [39m[38;5;12mLearning[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mDeep[39m[38;5;12m [39m[38;5;12mConvolutional[39m[38;5;12m [39m[38;5;12mNetwork[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mImage[39m[38;5;12m [39m[38;5;12mSuper-Resolution[39m[38;5;12m [39m[38;5;12m(2014,[39m[38;5;12m [39m[38;5;12mC.[39m[38;5;12m [39m[38;5;12mDong[39m[38;5;12m [39m[38;5;12met[39m[38;5;12m [39m[38;5;12mal.[39m[38;5;12m [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m [39m
|
||||
[38;5;12m(https://www.researchgate.net/profile/Chen_Change_Loy/publication/264552416_Lecture_Notes_in_Computer_Science/links/53e583e50cf25d674e9c280e.pdf)[39m
|
||||
[38;5;12m- Learning a Deep Convolutional Network for Image Super-Resolution (2014, C. Dong et al. [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (https://www.researchgate.net/profile/Chen_Change_Loy/publication/264552416_Lecture_Notes_in_Computer_Science/links/53e583e50cf25d674e9c280e.pdf)[39m
|
||||
[38;5;12m- Recurrent models of visual attention (2014), V. Mnih et al. [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (http://arxiv.org/pdf/1406.6247.pdf)[39m
|
||||
[38;5;12m- Empirical evaluation of gated recurrent neural networks on sequence modeling (2014), J. Chung et al. [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/pdf/1412.3555)[39m
|
||||
[38;5;12m- Addressing the rare word problem in neural machine translation (2014), M. Luong et al. [39m[38;5;12mpdf[39m[38;5;14m[1m [0m[38;5;12m (https://arxiv.org/pdf/1410.8206)[39m
|
||||
@@ -399,3 +394,5 @@
|
||||
[38;5;14m[1m![0m[38;5;12mCC0[39m[38;5;14m[1m (http://mirrors.creativecommons.org/presskit/buttons/88x31/svg/cc-zero.svg)[0m[38;5;12m (https://creativecommons.org/publicdomain/zero/1.0/)[39m
|
||||
|
||||
[38;5;12mTo the extent possible under law, [39m[38;5;14m[1mTerry T. Um[0m[38;5;12m (https://www.facebook.com/terryum.io/) has waived all copyright and related or neighboring rights to this work.[39m
|
||||
|
||||
[38;5;12mdeeplearningpapers Github: https://github.com/terryum/awesome-deep-learning-papers[39m
|
||||
|
||||
Reference in New Issue
Block a user