update lists
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome Big Data[0m
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome Big Data[0m
|
||||
|
||||
[38;5;14m[1m![0m[38;5;12mAwesome[39m[38;5;14m[1m (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)[0m[38;5;12m (https://github.com/sindresorhus/awesome)[39m
|
||||
|
||||
@@ -59,10 +59,9 @@
|
||||
|
||||
[38;2;255;187;0m[4mFrameworks[0m
|
||||
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBistro[0m[38;5;12m [39m[38;5;12m(https://github.com/facebook/bistro)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mgeneral-purpose[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mengine[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mboth[39m[38;5;12m [39m[38;5;12mbatch[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mstream[39m[38;5;12m [39m[38;5;12manalytics.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mnovel[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mmodel,[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mrepresents[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mvia[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mfunctions[0m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mprocesses[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mvia[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mcolumn[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3moperations[0m[38;5;12m [39m
|
||||
[38;5;12mas[39m[38;5;12m [39m[38;5;12mopposed[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mhaving[39m[38;5;12m [39m[38;5;12monly[39m[38;5;12m [39m[38;5;12mset[39m[38;5;12m [39m[38;5;12moperations[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mconventional[39m[38;5;12m [39m[38;5;12mapproaches[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m[38;5;12mMapReduce[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mSQL.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIBM Streams[0m
|
||||
[38;5;12m (https://www.ibm.com/analytics/us/en/technology/stream-computing/) - platform for distributed processing and real-time analytics. Integrates with many of the popular technologies in the Big Data ecosystem (Kafka, HDFS, Spark, etc.)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBistro[0m[38;5;12m [39m[38;5;12m(https://github.com/facebook/bistro)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mgeneral-purpose[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mengine[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mboth[39m[38;5;12m [39m[38;5;12mbatch[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mstream[39m[38;5;12m [39m[38;5;12manalytics.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mbased[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mnovel[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mmodel,[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mrepresents[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mvia[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mfunctions[0m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mprocesses[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mvia[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mcolumn[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3moperations[0m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mopposed[39m
|
||||
[38;5;12mto[39m[38;5;12m [39m[38;5;12mhaving[39m[38;5;12m [39m[38;5;12monly[39m[38;5;12m [39m[38;5;12mset[39m[38;5;12m [39m[38;5;12moperations[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mconventional[39m[38;5;12m [39m[38;5;12mapproaches[39m[38;5;12m [39m[38;5;12mlike[39m[38;5;12m [39m[38;5;12mMapReduce[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mSQL.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIBM Streams[0m[38;5;12m (https://www.ibm.com/analytics/us/en/technology/stream-computing/) - platform for distributed processing and real-time analytics. Integrates with many of the popular technologies in the Big Data ecosystem (Kafka, HDFS, Spark, etc.)[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Hadoop[0m[38;5;12m (http://hadoop.apache.org/) - framework for distributed processing. Integrates MapReduce (parallel processing), YARN (job scheduling) and HDFS (distributed file system).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTigon[0m[38;5;12m (https://github.com/caskdata/tigon) - High Throughput Real-time Stream Processing Framework.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPachyderm[0m[38;5;12m (http://pachyderm.io/) - Pachyderm is a data storage platform built on Docker and Kubernetes to provide reproducible data processing and analysis.[39m
|
||||
@@ -97,8 +96,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mConcurrent Cascading[0m[38;5;12m (http://www.cascading.org/) - framework for data management/analytics on Hadoop.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDamballa Parkour[0m[38;5;12m (https://github.com/damballa/parkour) - MapReduce library for Clojure.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDatasalt Pangool[0m[38;5;12m (https://github.com/datasalt/pangool) - alternative MapReduce paradigm.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDataTorrent StrAM[0m
|
||||
[38;5;12m (https://www.datatorrent.com/) - real-time engine is designed to enable distributed, asynchronous, real time in-memory big-data computations in as unblocked a way as possible, with minimal overhead and impact on performance.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDataTorrent StrAM[0m[38;5;12m (https://www.datatorrent.com/) - real-time engine is designed to enable distributed, asynchronous, real time in-memory big-data computations in as unblocked a way as possible, with minimal overhead and impact on performance.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook Corona[0m[38;5;12m (https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920) - Hadoop enhancement which removes single point of failure.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook Peregrine[0m[38;5;12m (http://peregrine_mapreduce.bitbucket.org/) - Map Reduce framework.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook Scuba[0m[38;5;12m (https://www.facebook.com/notes/facebook-engineering/under-the-hood-data-diving-with-scuba/10150599692628920) - distributed in-memory datastore.[39m
|
||||
@@ -167,12 +165,11 @@
|
||||
|
||||
[38;2;255;187;0m[4mKey Map Data Model[0m
|
||||
|
||||
[38;5;14m[1mNote[0m[38;5;12m:[39m[38;5;12m [39m[38;5;12mThere[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m[38;5;12mterm[39m[38;5;12m [39m[38;5;12mconfusion[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mindustry,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mtwo[39m[38;5;12m [39m[38;5;12mdifferent[39m[38;5;12m [39m[38;5;12mthings[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mcalled[39m[38;5;12m [39m[38;5;12m"Columnar[39m[38;5;12m [39m[38;5;12mDatabases".[39m[38;5;12m [39m[38;5;12mSome,[39m[38;5;12m [39m[38;5;12mlisted[39m[38;5;12m [39m[38;5;12mhere,[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mdistributed,[39m[38;5;12m [39m[38;5;12mpersistent[39m[38;5;12m [39m[38;5;12mdatabases[39m[38;5;12m [39m[38;5;12mbuilt[39m[38;5;12m [39m[38;5;12maround[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12m"key-map"[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mmodel:[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mhas[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12m(possibly[39m[38;5;12m [39m
|
||||
[38;5;12mcomposite)[39m[38;5;12m [39m[38;5;12mkey,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mmap[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mkey-value[39m[38;5;12m [39m[38;5;12mpairs[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12massociated.[39m[38;5;12m [39m[38;5;12mIn[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m[38;5;12msystems,[39m[38;5;12m [39m[38;5;12mmultiple[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mvalue[39m[38;5;12m [39m[38;5;12mmaps[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12massociated[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mkey,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthese[39m[38;5;12m [39m[38;5;12mmaps[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mreferred[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12m"column[39m[38;5;12m [39m[38;5;12mfamilies"[39m[38;5;12m [39m[38;5;12m(with[39m[38;5;12m [39m[38;5;12mvalue[39m[38;5;12m [39m[38;5;12mmap[39m[38;5;12m [39m[38;5;12mkeys[39m[38;5;12m [39m[38;5;12mbeing[39m[38;5;12m [39m[38;5;12mreferred[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m
|
||||
[38;5;12m"columns").[39m
|
||||
[38;5;14m[1mNote[0m[38;5;12m:[39m[38;5;12m [39m[38;5;12mThere[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m[38;5;12mterm[39m[38;5;12m [39m[38;5;12mconfusion[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mindustry,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mtwo[39m[38;5;12m [39m[38;5;12mdifferent[39m[38;5;12m [39m[38;5;12mthings[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mcalled[39m[38;5;12m [39m[38;5;12m"Columnar[39m[38;5;12m [39m[38;5;12mDatabases".[39m[38;5;12m [39m[38;5;12mSome,[39m[38;5;12m [39m[38;5;12mlisted[39m[38;5;12m [39m[38;5;12mhere,[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mdistributed,[39m[38;5;12m [39m[38;5;12mpersistent[39m[38;5;12m [39m[38;5;12mdatabases[39m[38;5;12m [39m[38;5;12mbuilt[39m[38;5;12m [39m[38;5;12maround[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12m"key-map"[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mmodel:[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mhas[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12m(possibly[39m[38;5;12m [39m[38;5;12mcomposite)[39m[38;5;12m [39m[38;5;12mkey,[39m
|
||||
[38;5;12mwith[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mmap[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mkey-value[39m[38;5;12m [39m[38;5;12mpairs[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12massociated.[39m[38;5;12m [39m[38;5;12mIn[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m[38;5;12msystems,[39m[38;5;12m [39m[38;5;12mmultiple[39m[38;5;12m [39m[38;5;12msuch[39m[38;5;12m [39m[38;5;12mvalue[39m[38;5;12m [39m[38;5;12mmaps[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12massociated[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mkey,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthese[39m[38;5;12m [39m[38;5;12mmaps[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mreferred[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12m"column[39m[38;5;12m [39m[38;5;12mfamilies"[39m[38;5;12m [39m[38;5;12m(with[39m[38;5;12m [39m[38;5;12mvalue[39m[38;5;12m [39m[38;5;12mmap[39m[38;5;12m [39m[38;5;12mkeys[39m[38;5;12m [39m[38;5;12mbeing[39m[38;5;12m [39m[38;5;12mreferred[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12m"columns").[39m
|
||||
|
||||
[38;5;12mAnother[39m[38;5;12m [39m[38;5;12mgroup[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mtechnologies[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mcalled[39m[38;5;12m [39m[38;5;12m"columnar[39m[38;5;12m [39m[38;5;12mdatabases"[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mdistinguished[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mstores[39m[38;5;12m [39m[38;5;12mdata,[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mdisk[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mmemory[39m[38;5;12m [39m[38;5;12m--[39m[38;5;12m [39m[38;5;12mrather[39m[38;5;12m [39m[38;5;12mthan[39m[38;5;12m [39m[38;5;12mstoring[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mtraditional[39m[38;5;12m [39m[38;5;12mway,[39m[38;5;12m [39m[38;5;12mwhere[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mcolumn[39m[38;5;12m [39m[38;5;12mvalues[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgiven[39m[38;5;12m [39m[38;5;12mkey[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mstored[39m[38;5;12m [39m
|
||||
[38;5;12mnext[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12meach[39m[38;5;12m [39m[38;5;12mother,[39m[38;5;12m [39m[38;5;12m"row[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mrow",[39m[38;5;12m [39m[38;5;12mthese[39m[38;5;12m [39m[38;5;12msystems[39m[38;5;12m [39m[38;5;12mstore[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mcolumn[0m[38;5;12m [39m[38;5;12mvalues[39m[38;5;12m [39m[38;5;12mnext[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12meach[39m[38;5;12m [39m[38;5;12mother.[39m[38;5;12m [39m[38;5;12mSo[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12mwork[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mneeded[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mget[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mcolumns[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgiven[39m[38;5;12m [39m[38;5;12mkey,[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12mless[39m[38;5;12m [39m[38;5;12mwork[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mneeded[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mget[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mvalues[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgiven[39m[38;5;12m [39m[38;5;12mcolumn.[39m
|
||||
[38;5;12mAnother[39m[38;5;12m [39m[38;5;12mgroup[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mtechnologies[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mcalled[39m[38;5;12m [39m[38;5;12m"columnar[39m[38;5;12m [39m[38;5;12mdatabases"[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mdistinguished[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mit[39m[38;5;12m [39m[38;5;12mstores[39m[38;5;12m [39m[38;5;12mdata,[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mdisk[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mmemory[39m[38;5;12m [39m[38;5;12m--[39m[38;5;12m [39m[38;5;12mrather[39m[38;5;12m [39m[38;5;12mthan[39m[38;5;12m [39m[38;5;12mstoring[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mtraditional[39m[38;5;12m [39m[38;5;12mway,[39m[38;5;12m [39m[38;5;12mwhere[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mcolumn[39m[38;5;12m [39m[38;5;12mvalues[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgiven[39m[38;5;12m [39m[38;5;12mkey[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mstored[39m[38;5;12m [39m[38;5;12mnext[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m
|
||||
[38;5;12meach[39m[38;5;12m [39m[38;5;12mother,[39m[38;5;12m [39m[38;5;12m"row[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mrow",[39m[38;5;12m [39m[38;5;12mthese[39m[38;5;12m [39m[38;5;12msystems[39m[38;5;12m [39m[38;5;12mstore[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[48;2;30;30;40m[38;5;13m[3mcolumn[0m[38;5;12m [39m[38;5;12mvalues[39m[38;5;12m [39m[38;5;12mnext[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12meach[39m[38;5;12m [39m[38;5;12mother.[39m[38;5;12m [39m[38;5;12mSo[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12mwork[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mneeded[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mget[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mcolumns[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgiven[39m[38;5;12m [39m[38;5;12mkey,[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12mless[39m[38;5;12m [39m[38;5;12mwork[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mneeded[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mget[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mvalues[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgiven[39m[38;5;12m [39m[38;5;12mcolumn.[39m
|
||||
|
||||
[38;5;12mThe former group is referred to as "key map data model" here. The line between these and the [39m[38;5;14m[1mKey-value Data Model[0m[38;5;12m (#key-value-data-model) stores is fairly blurry.[39m
|
||||
|
||||
@@ -216,7 +213,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRedis[0m[38;5;12m (https://redis.io/) - in memory key value datastore.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRiak[0m[38;5;12m (https://github.com/basho/riak) - a decentralized datastore.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStorehaus[0m[38;5;12m (https://github.com/twitter/storehaus) - library to work with asynchronous key value stores, by Twitter.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSummitDB[0m[38;5;12m (https://github.com/tidwall/summitdb) - an in-memory, NoSQL key/value database, with disk persistance and using the Raft consensus algorithm.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSummitDB[0m[38;5;12m (https://github.com/tidwall/summitdb) - an in-memory, NoSQL key/value database, with disk persistence and using the Raft consensus algorithm.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTarantool[0m[38;5;12m (https://github.com/tarantool/tarantool) - an efficient NoSQL database and a Lua application server.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTiKV[0m[38;5;12m (https://github.com/pingcap/tikv) - a distributed key-value database powered by Rust and inspired by Google Spanner and HBase.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTile38[0m[38;5;12m (https://github.com/tidwall/tile38) - a geolocation data store, spatial index, and realtime geofence, supporting a variety of object types including latitude/longitude points, bounding boxes, XYZ tiles, Geohashes, and GeoJSON[39m
|
||||
@@ -229,8 +226,8 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Giraph[0m[38;5;12m (http://giraph.apache.org/) - implementation of Pregel, based on Hadoop.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Spark Bagel[0m[38;5;12m (http://spark.apache.org/docs/0.7.3/bagel-programming-guide.html) - implementation of Pregel, part of Spark.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mArangoDB[0m[38;5;12m (https://www.arangodb.com/) - multi model distributed database.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDGraph[0m[38;5;12m [39m[38;5;12m(https://github.com/dgraph-io/dgraph)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mscalable,[39m[38;5;12m [39m[38;5;12mdistributed,[39m[38;5;12m [39m[38;5;12mlow[39m[38;5;12m [39m[38;5;12mlatency,[39m[38;5;12m [39m[38;5;12mhigh[39m[38;5;12m [39m[38;5;12mthroughput[39m[38;5;12m [39m[38;5;12mgraph[39m[38;5;12m [39m[38;5;12mdatabase[39m[38;5;12m [39m[38;5;12maimed[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mproviding[39m[38;5;12m [39m[38;5;12mGoogle[39m[38;5;12m [39m[38;5;12mproduction[39m[38;5;12m [39m[38;5;12mlevel[39m[38;5;12m [39m[38;5;12mscale[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthroughput,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mlow[39m[38;5;12m [39m[38;5;12menough[39m[38;5;12m [39m[38;5;12mlatency[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mserving[39m[38;5;12m [39m[38;5;12mreal[39m[38;5;12m [39m[38;5;12mtime[39m[38;5;12m [39m[38;5;12muser[39m[38;5;12m [39m
|
||||
[38;5;12mqueries,[39m[38;5;12m [39m[38;5;12mover[39m[38;5;12m [39m[38;5;12mterabytes[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mstructured[39m[38;5;12m [39m[38;5;12mdata.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDGraph[0m[38;5;12m [39m[38;5;12m(https://github.com/dgraph-io/dgraph)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mscalable,[39m[38;5;12m [39m[38;5;12mdistributed,[39m[38;5;12m [39m[38;5;12mlow[39m[38;5;12m [39m[38;5;12mlatency,[39m[38;5;12m [39m[38;5;12mhigh[39m[38;5;12m [39m[38;5;12mthroughput[39m[38;5;12m [39m[38;5;12mgraph[39m[38;5;12m [39m[38;5;12mdatabase[39m[38;5;12m [39m[38;5;12maimed[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mproviding[39m[38;5;12m [39m[38;5;12mGoogle[39m[38;5;12m [39m[38;5;12mproduction[39m[38;5;12m [39m[38;5;12mlevel[39m[38;5;12m [39m[38;5;12mscale[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthroughput,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mlow[39m[38;5;12m [39m[38;5;12menough[39m[38;5;12m [39m[38;5;12mlatency[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mserving[39m[38;5;12m [39m[38;5;12mreal[39m[38;5;12m [39m[38;5;12mtime[39m[38;5;12m [39m[38;5;12muser[39m[38;5;12m [39m[38;5;12mqueries,[39m[38;5;12m [39m
|
||||
[38;5;12mover[39m[38;5;12m [39m[38;5;12mterabytes[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mstructured[39m[38;5;12m [39m[38;5;12mdata.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEliasDB[0m[38;5;12m (https://github.com/krotik/eliasdb) - a lightweight graph based database that does not require any third-party libraries.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook TAO[0m[38;5;12m (https://www.facebook.com/notes/facebook-engineering/tao-the-power-of-the-graph/10151525983993920) - TAO is the distributed data store that is widely used at facebook to store and serve the social graph.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGCHQ Gaffer[0m[38;5;12m (https://github.com/gchq/Gaffer) - Gaffer by GCHQ is a framework that makes it easy to store large-scale graphs in which the nodes and edges have statistics.[39m
|
||||
@@ -347,6 +344,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDremio[0m[38;5;12m (https://www.dremio.com/) - an open-source, SQL-like Data-as-a-Service Platform based on Apache Arrow.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook PrestoDB[0m[38;5;12m (https://prestodb.io/) - distributed SQL query engine.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGoogle BigQuery[0m[38;5;12m (https://research.google.com/pubs/pub36632.html) - framework for interactive analysis, implementation of Dremel.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIceberg[0m[38;5;12m (https://iceberg.apache.org/) - an open table format for huge analytic datasets. Iceberg adds tables to Trino and Spark that use a high-performance format that works just like a SQL table.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMaterialize[0m[38;5;12m (https://github.com/materializeinc/materialize) - is a streaming database for real-time applications using SQL for queries and supporting a large fraction of PostgreSQL.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mInvantive SQL[0m[38;5;12m (https://documentation.invantive.com/2017R2/invantive-sql-grammar/invantive-sql-grammar-17.30.html) - SQL engine for online and on-premise use with integrated local data replication and 70+ connectors.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPipelineDB[0m[38;5;12m (https://www.pipelinedb.com/) - an open-source relational database that runs SQL queries continuously on streams, incrementally storing results in tables.[39m
|
||||
@@ -395,7 +393,7 @@
|
||||
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAkka Toolkit[0m[38;5;12m (http://akka.io/) - runtime for distributed, and fault tolerant event-driven applications on the JVM.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Avro[0m[38;5;12m (http://avro.apache.org/) - data serialization system.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Curator[0m[38;5;12m (http://curator.apache.org/) - Java libaries for Apache ZooKeeper.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Curator[0m[38;5;12m (http://curator.apache.org/) - Java libraries for Apache ZooKeeper.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Karaf[0m[38;5;12m (http://karaf.apache.org/) - OSGi runtime that runs on top of any OSGi framework.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Thrift[0m[38;5;12m (http://thrift.apache.org//) - framework to build binary protocols.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Zookeeper[0m[38;5;12m (http://zookeeper.apache.org/) - centralized service for process management.[39m
|
||||
@@ -405,8 +403,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMara[0m[38;5;12m (https://github.com/mara/data-integration) - A lightweight opinionated ETL framework, halfway between plain scripts and Apache Airflow[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpenMPI[0m[38;5;12m (https://www.open-mpi.org/) - message passing framework.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSerf[0m[38;5;12m (https://www.serf.io/) - decentralized solution for service discovery and orchestration.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpotify Luigi[0m
|
||||
[38;5;12m (https://github.com/spotify/luigi) - a Python package for building complex pipelines of batch jobs. It handles dependency resolution, workflow management, visualization, handling failures, command line integration, and much more.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpotify Luigi[0m[38;5;12m (https://github.com/spotify/luigi) - a Python package for building complex pipelines of batch jobs. It handles dependency resolution, workflow management, visualization, handling failures, command line integration, and much more.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpring XD[0m[38;5;12m (https://github.com/spring-projects/spring-xd) - distributed and extensible system for data ingestion, real time analytics, batch processing, and data export.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTwitter Elephant Bird[0m[38;5;12m (https://github.com/twitter/elephant-bird) - libraries for working with LZOP-compressed data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTwitter Finagle[0m[38;5;12m (https://twitter.github.io/finagle/) - asynchronous network stack for the JVM.[39m
|
||||
@@ -434,8 +431,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mConcurrent Pattern[0m[38;5;12m (http://www.cascading.org/projects/pattern/) - machine learning library for Cascading.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mconvnetjs[0m[38;5;12m (https://github.com/karpathy/convnetjs) - Deep Learning in Javascript. Train Convolutional Neural Networks (or ordinary ones) in your browser.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDataVec[0m[38;5;12m (https://github.com/deeplearning4j/DataVec) - A vectorization and data preprocessing library for deep learning in Java and Scala. Part of the Deeplearning4j ecosystem. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeeplearning4j[0m
|
||||
[38;5;12m (https://github.com/deeplearning4j) - Fast, open deep learning for the JVM (Java, Scala, Clojure). A neural network configuration layer powered by a C++ library. Uses Spark and Hadoop to train nets on multiple GPUs and CPUs.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeeplearning4j[0m[38;5;12m (https://github.com/deeplearning4j) - Fast, open deep learning for the JVM (Java, Scala, Clojure). A neural network configuration layer powered by a C++ library. Uses Spark and Hadoop to train nets on multiple GPUs and CPUs.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDecider[0m[38;5;12m (https://github.com/danielsdeleo/Decider) - Flexible and Extensible Machine Learning in Ruby.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mENCOG[0m[38;5;12m (http://www.heatonresearch.com/encog/) - machine learning framework that supports a variety of advanced algorithms, as well as support classes to normalize and process data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1metcML[0m[38;5;12m (http://www.etcml.com/) - text classification with machine learning.[39m
|
||||
@@ -455,7 +451,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMonkeyLearn[0m[38;5;12m (https://monkeylearn.com/) - Text mining made easy. Extract and classify data from text.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mND4J[0m[38;5;12m (https://github.com/deeplearning4j/nd4j) - A matrix library for the JVM. Numpy for Java. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnupic[0m[38;5;12m (https://github.com/numenta/nupic) - Numenta Platform for Intelligent Computing: a brain-inspired machine intelligence platform, and biologically accurate neural network based on cortical learning algorithms.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPredictionIO[0m[38;5;12m (http://predictionio.incubator.apache.org/index.html) - machine learning server buit on Hadoop, Mahout and Cascading.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPredictionIO[0m[38;5;12m (http://predictionio.incubator.apache.org/index.html) - machine learning server built on Hadoop, Mahout and Cascading.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyTorch Geometric Temporal[0m[38;5;12m (https://github.com/benedekrozemberczki/pytorch_geometric_temporal) - a temporal extension library for PyTorch Geometric .[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRL4J[0m[38;5;12m (https://github.com/deeplearning4j/rl4j) - Reinforcement learning for Java and Scala. Includes Deep-Q learning and A3C algorithms, and integrates with Open AI's Gym. Runs in the Deeplearning4j ecosystem. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSAMOA[0m[38;5;12m (http://samoa.incubator.apache.org/) - distributed streaming machine learning framework.[39m
|
||||
@@ -490,7 +486,7 @@
|
||||
|
||||
[38;2;255;187;0m[4mSystem Deployment[0m
|
||||
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Ambari[0m[38;5;12m (http://ambari.apache.org/) - operational framework for Hadoop mangement.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Ambari[0m[38;5;12m (http://ambari.apache.org/) - operational framework for Hadoop management.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Bigtop[0m[38;5;12m (http://bigtop.apache.org//) - system deployment framework for the Hadoop ecosystem.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Helix[0m[38;5;12m (http://helix.apache.org/) - cluster management framework.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mApache Mesos[0m[38;5;12m (http://mesos.apache.org/) - cluster manager.[39m
|
||||
@@ -520,6 +516,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAthenaX[0m[38;5;12m (https://github.com/uber/AthenaX) - a streaming analytics platform that enables users to run production-quality, large scale streaming analytics using Structured Query Language (SQL).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAtlas[0m[38;5;12m (https://github.com/Netflix/atlas) - a backend for managing dimensional time series data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCountly[0m[38;5;12m (https://count.ly/) - open source mobile and web analytics platform, based on Node.js & MongoDB.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mComet[0m[38;5;12m (https://www.comet.com/site/) - Comet provides an end-to-end model evaluation platform for AI developers, with best in class LLM evaluations, experiment tracking, and production monitoring.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDomino[0m[38;5;12m (https://www.dominodatalab.com/) - Run, scale, share, and deploy models — without any infrastructure.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEclipse BIRT[0m[38;5;12m (http://www.eclipse.org/birt/) - Eclipse-based reporting system.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mElastAert[0m[38;5;12m (https://github.com/Yelp/elastalert) - ElastAlert is a simple framework for alerting on anomalies, spikes, or other patterns of interest from data in ElasticSearch.[39m
|
||||
@@ -534,10 +531,11 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKapacitor[0m[38;5;12m (https://github.com/influxdata/kapacitor) - an open source framework for processing, monitoring, and alerting on time series data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKylin[0m[38;5;12m (http://kylin.apache.org/) - open source Distributed Analytics Engine from eBay.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPivotalR[0m[38;5;12m (https://github.com/pivotalsoftware/PivotalR) - R on Pivotal HD / HAWQ and PostgreSQL.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpik[0m[38;5;12m (https://www.comet.com/site/products/opik/) - Debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mRakam[0m[38;5;12m (https://github.com/rakam-io/rakam) - open-source real-time custom analytics platform powered by Postgresql, Kinesis and PrestoDB. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mQubole[0m[38;5;12m (https://www.qubole.com/) - auto-scaling Hadoop cluster, built-in data connectors.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSnappyData[0m[38;5;12m [39m[38;5;12m(https://github.com/SnappyDataInc/snappydata)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12min-memory[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mstore[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mreal-time[39m[38;5;12m [39m[38;5;12moperational[39m[38;5;12m [39m[38;5;12manalytics,[39m[38;5;12m [39m[38;5;12mdelivering[39m[38;5;12m [39m[38;5;12mstream[39m[38;5;12m [39m[38;5;12manalytics,[39m[38;5;12m [39m[38;5;12mOLTP[39m[38;5;12m [39m[38;5;12m(online[39m[38;5;12m [39m[38;5;12mtransaction[39m[38;5;12m [39m[38;5;12mprocessing)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mOLAP[39m[38;5;12m [39m[38;5;12m(online[39m[38;5;12m [39m[38;5;12manalytical[39m[38;5;12m [39m
|
||||
[38;5;12mprocessing)[39m[38;5;12m [39m[38;5;12mbuilt[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mSpark[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msingle[39m[38;5;12m [39m[38;5;12mintegrated[39m[38;5;12m [39m[38;5;12mcluster.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSnappyData[0m[38;5;12m [39m[38;5;12m(https://github.com/SnappyDataInc/snappydata)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12min-memory[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mstore[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mreal-time[39m[38;5;12m [39m[38;5;12moperational[39m[38;5;12m [39m[38;5;12manalytics,[39m[38;5;12m [39m[38;5;12mdelivering[39m[38;5;12m [39m[38;5;12mstream[39m[38;5;12m [39m[38;5;12manalytics,[39m[38;5;12m [39m[38;5;12mOLTP[39m[38;5;12m [39m[38;5;12m(online[39m[38;5;12m [39m[38;5;12mtransaction[39m[38;5;12m [39m[38;5;12mprocessing)[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mOLAP[39m[38;5;12m [39m[38;5;12m(online[39m[38;5;12m [39m[38;5;12manalytical[39m[38;5;12m [39m[38;5;12mprocessing)[39m[38;5;12m [39m[38;5;12mbuilt[39m[38;5;12m [39m
|
||||
[38;5;12mon[39m[38;5;12m [39m[38;5;12mSpark[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msingle[39m[38;5;12m [39m[38;5;12mintegrated[39m[38;5;12m [39m[38;5;12mcluster.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSnowplow[0m[38;5;12m (https://github.com/snowplow/snowplow) - enterprise-strength web and event analytics, powered by Hadoop, Kinesis, Redshift and Postgres.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSparkR[0m[38;5;12m (http://amplab-extras.github.io/SparkR-pkg/) - R frontend for Spark.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSplunk[0m[38;5;12m (https://www.splunk.com/) - analyzer for machine-generated data.[39m
|
||||
@@ -560,14 +558,14 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLinkedIn Cleo[0m[38;5;12m (https://github.com/linkedin/cleo) - is a flexible software library for enabling rapid development of partial, out-of-order and real-time typeahead search.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLinkedIn Galene[0m[38;5;12m (https://engineering.linkedin.com/search/did-you-mean-galene) - search architecture at LinkedIn.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLinkedIn Zoie[0m[38;5;12m (https://github.com/senseidb/zoie) - is a realtime search/indexing system written in Java.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMG4J[0m[38;5;12m [39m[38;5;12m(http://mg4j.di.unimi.it/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mMG4J[39m[38;5;12m [39m[38;5;12m(Managing[39m[38;5;12m [39m[38;5;12mGigabytes[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mJava)[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mfull-text[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mengine[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mdocument[39m[38;5;12m [39m[38;5;12mcollections[39m[38;5;12m [39m[38;5;12mwritten[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mJava.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mhighly[39m[38;5;12m [39m[38;5;12mcustomisable,[39m[38;5;12m [39m[38;5;12mhigh-performance[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12mstate-of-the-art[39m[38;5;12m [39m[38;5;12mfeatures[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||||
[38;5;12mnew[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12malgorithms.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMG4J[0m[38;5;12m [39m[38;5;12m(http://mg4j.di.unimi.it/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mMG4J[39m[38;5;12m [39m[38;5;12m(Managing[39m[38;5;12m [39m[38;5;12mGigabytes[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mJava)[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mfull-text[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mengine[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mdocument[39m[38;5;12m [39m[38;5;12mcollections[39m[38;5;12m [39m[38;5;12mwritten[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mJava.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mhighly[39m[38;5;12m [39m[38;5;12mcustomisable,[39m[38;5;12m [39m[38;5;12mhigh-performance[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12mstate-of-the-art[39m[38;5;12m [39m[38;5;12mfeatures[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mnew[39m[38;5;12m [39m
|
||||
[38;5;12mresearch[39m[38;5;12m [39m[38;5;12malgorithms.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSphinx Search Server[0m[38;5;12m (http://sphinxsearch.com/) - fulltext search engine.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVespa[0m[38;5;12m (http://vespa.ai/) - is an engine for low-latency computation over large data sets. It stores and indexes your data such that queries, selection and processing over the data can be performed at serving time.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook[0m[38;5;14m[1m [0m[38;5;14m[1mFaiss[0m[38;5;12m [39m[38;5;12m(https://github.com/facebookresearch/faiss)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mefficient[39m[38;5;12m [39m[38;5;12msimilarity[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mclustering[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdense[39m[38;5;12m [39m[38;5;12mvectors.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mcontains[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12msets[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mvectors[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12many[39m[38;5;12m [39m[38;5;12msize,[39m[38;5;12m [39m[38;5;12mup[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mones[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mpossibly[39m[38;5;12m [39m[38;5;12mdo[39m[38;5;12m [39m
|
||||
[38;5;12mnot[39m[38;5;12m [39m[38;5;12mfit[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mRAM.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mcontains[39m[38;5;12m [39m[38;5;12msupporting[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mevaluation[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mparameter[39m[38;5;12m [39m[38;5;12mtuning.[39m[38;5;12m [39m[38;5;12mFaiss[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mwritten[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mC++[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mcomplete[39m[38;5;12m [39m[38;5;12mwrappers[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mPython/numpy.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAnnoy[0m[38;5;12m [39m[38;5;12m(https://github.com/spotify/annoy)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mC++[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mbindings[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mpoints[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mspace[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mclose[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgiven[39m[38;5;12m [39m[38;5;12mquery[39m[38;5;12m [39m[38;5;12mpoint.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mcreates[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mread-only[39m[38;5;12m [39m[38;5;12mfile-based[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mstructures[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mmmapped[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m
|
||||
[38;5;12mmemory[39m[38;5;12m [39m[38;5;12mso[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mprocesses[39m[38;5;12m [39m[38;5;12mmay[39m[38;5;12m [39m[38;5;12mshare[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12msame[39m[38;5;12m [39m[38;5;12mdata.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFacebook[0m[38;5;14m[1m [0m[38;5;14m[1mFaiss[0m[38;5;12m [39m[38;5;12m(https://github.com/facebookresearch/faiss)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mefficient[39m[38;5;12m [39m[38;5;12msimilarity[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mclustering[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mdense[39m[38;5;12m [39m[38;5;12mvectors.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mcontains[39m[38;5;12m [39m[38;5;12malgorithms[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12msets[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mvectors[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12many[39m[38;5;12m [39m[38;5;12msize,[39m[38;5;12m [39m[38;5;12mup[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mones[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mpossibly[39m[38;5;12m [39m[38;5;12mdo[39m[38;5;12m [39m[38;5;12mnot[39m[38;5;12m [39m[38;5;12mfit[39m[38;5;12m [39m[38;5;12min[39m
|
||||
[38;5;12mRAM.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mcontains[39m[38;5;12m [39m[38;5;12msupporting[39m[38;5;12m [39m[38;5;12mcode[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mevaluation[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mparameter[39m[38;5;12m [39m[38;5;12mtuning.[39m[38;5;12m [39m[38;5;12mFaiss[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mwritten[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mC++[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mcomplete[39m[38;5;12m [39m[38;5;12mwrappers[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mPython/numpy.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAnnoy[0m[38;5;12m [39m[38;5;12m(https://github.com/spotify/annoy)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mC++[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12mbindings[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12msearch[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mpoints[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mspace[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mclose[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mgiven[39m[38;5;12m [39m[38;5;12mquery[39m[38;5;12m [39m[38;5;12mpoint.[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mcreates[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mread-only[39m[38;5;12m [39m[38;5;12mfile-based[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mstructures[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12mmmapped[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12mmemory[39m[38;5;12m [39m[38;5;12mso[39m[38;5;12m [39m
|
||||
[38;5;12mthat[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mprocesses[39m[38;5;12m [39m[38;5;12mmay[39m[38;5;12m [39m[38;5;12mshare[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12msame[39m[38;5;12m [39m[38;5;12mdata.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mWeaviate[0m[38;5;12m (https://github.com/semi-technologies/weaviate) - Weaviate is a GraphQL-based semantic search engine with build-in (word) embeddings.[39m
|
||||
|
||||
[38;2;255;187;0m[4mMySQL forks and evolutions[0m
|
||||
@@ -623,6 +621,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mJedox Palo[0m[38;5;12m (https://www.jedox.com/en/) - customisable Business Intelligence platform.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mJethrodata[0m[38;5;12m (https://jethro.io/) - Interactive Big Data Analytics.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mintermix.io[0m[38;5;12m (https://intermix.io/) - Performance Monitoring for Amazon Redshift[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLightdash[0m[38;5;12m (https://github.com/lightdash/lightdash) - The open source Looker alternative built on dbt[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMetabase[0m[38;5;12m (https://github.com/metabase/metabase) - The simplest, fastest way to get business intelligence and analytics to everyone in your company.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMicrosoft[0m[38;5;12m (http://www.microsoft.com/en-us/server-cloud/solutions/business-intelligence/default.aspx) - business intelligence software and platform.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMicrostrategy[0m[38;5;12m (https://www.microstrategy.com/) - software platforms for business intelligence, mobile intelligence, and network applications.[39m
|
||||
@@ -644,8 +643,8 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mArbor[0m[38;5;12m (https://github.com/samizdatco/arbor) - graph visualization library using web workers and jQuery.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBanana[0m[38;5;12m (https://github.com/LucidWorks/banana) - visualize logs and time-stamped data stored in Solr. Port of Kibana.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBloomery[0m[38;5;12m (https://github.com/ufukomer/bloomery) - Web UI for Impala.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBokeh[0m[38;5;12m [39m[38;5;12m(http://bokeh.pydata.org/en/latest/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mpowerful[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12minteractive[39m[38;5;12m [39m[38;5;12mvisualization[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mtargets[39m[38;5;12m [39m[38;5;12mmodern[39m[38;5;12m [39m[38;5;12mweb[39m[38;5;12m [39m[38;5;12mbrowsers[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mpresentation,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mgoal[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mproviding[39m[38;5;12m [39m[38;5;12melegant,[39m[38;5;12m [39m[38;5;12mconcise[39m[38;5;12m [39m[38;5;12mconstruction[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mnovel[39m[38;5;12m [39m[38;5;12mgraphics[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m
|
||||
[38;5;12mstyle[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mD3.js,[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mdelivering[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mcapability[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mhigh-performance[39m[38;5;12m [39m[38;5;12minteractivity[39m[38;5;12m [39m[38;5;12mover[39m[38;5;12m [39m[38;5;12mvery[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mstreaming[39m[38;5;12m [39m[38;5;12mdatasets.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBokeh[0m[38;5;12m [39m[38;5;12m(http://bokeh.pydata.org/en/latest/)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mpowerful[39m[38;5;12m [39m[38;5;12mPython[39m[38;5;12m [39m[38;5;12minteractive[39m[38;5;12m [39m[38;5;12mvisualization[39m[38;5;12m [39m[38;5;12mlibrary[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mtargets[39m[38;5;12m [39m[38;5;12mmodern[39m[38;5;12m [39m[38;5;12mweb[39m[38;5;12m [39m[38;5;12mbrowsers[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mpresentation,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mgoal[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mproviding[39m[38;5;12m [39m[38;5;12melegant,[39m[38;5;12m [39m[38;5;12mconcise[39m[38;5;12m [39m[38;5;12mconstruction[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mnovel[39m[38;5;12m [39m[38;5;12mgraphics[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mstyle[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m
|
||||
[38;5;12mD3.js,[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mdelivering[39m[38;5;12m [39m[38;5;12mthis[39m[38;5;12m [39m[38;5;12mcapability[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mhigh-performance[39m[38;5;12m [39m[38;5;12minteractivity[39m[38;5;12m [39m[38;5;12mover[39m[38;5;12m [39m[38;5;12mvery[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mstreaming[39m[38;5;12m [39m[38;5;12mdatasets.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mC3[0m[38;5;12m (http://c3js.org/) - D3-based reusable chart library[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCartoDB[0m[38;5;12m (https://github.com/CartoDB/cartodb) - open-source or freemium hosting for geospatial databases with powerful front-end editing capabilities and a robust API.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mchartd[0m[38;5;12m (http://chartd.co/) - responsive, retina-compatible charts with just an img tag.[39m
|
||||
@@ -706,8 +705,7 @@
|
||||
[38;2;255;187;0m[4mInteresting Readings[0m
|
||||
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBig Data Benchmark[0m[38;5;12m (https://amplab.cs.berkeley.edu/benchmark/) - Benchmark of Redshift, Hive, Shark, Impala and Stiger/Tez.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNoSQL Comparison[0m
|
||||
[38;5;12m (https://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis) - Cassandra vs MongoDB vs CouchDB vs Redis vs Riak vs HBase vs Couchbase vs Neo4j vs Hypertable vs ElasticSearch vs Accumulo vs VoltDB vs Scalaris comparison.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNoSQL Comparison[0m[38;5;12m (https://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis) - Cassandra vs MongoDB vs CouchDB vs Redis vs Riak vs HBase vs Couchbase vs Neo4j vs Hypertable vs ElasticSearch vs Accumulo vs VoltDB vs Scalaris comparison.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMonitoring Kafka performance[0m[38;5;12m (https://www.datadoghq.com/blog/monitoring-kafka-performance-metrics?ref=awesome) - Guide to monitoring Apache Kafka, including native methods for metrics collection.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMonitoring Hadoop performance[0m[38;5;12m (https://www.datadoghq.com/blog/monitor-hadoop-metrics?ref=awesome) - Guide to monitoring Hadoop, with an overview of Hadoop architecture, and native methods for metrics collection.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMonitoring Cassandra performance[0m[38;5;12m (https://www.datadoghq.com/blog/how-to-monitor-cassandra-performance-metrics/?ref=awesome) - Guide to monitoring Cassandra, including native methods for metrics collection.[39m
|
||||
@@ -754,7 +752,7 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2010[0m[38;5;12m (https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf) - [39m[38;5;14m[1mFacebook[0m[38;5;12m - Finding a needle in Haystack: Facebook’s photo storage.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2010[0m[38;5;12m (https://amplab.cs.berkeley.edu/wp-content/uploads/2011/06/Spark-Cluster-Computing-with-Working-Sets.pdf) - [39m[38;5;14m[1mAMPLab[0m[38;5;12m - Spark: Cluster Computing with Working Sets.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2010[0m[38;5;12m (http://kowshik.github.io/JPregel/pregel_paper.pdf) - [39m[38;5;14m[1mGoogle[0m[38;5;12m - Pregel: A System for Large-Scale Graph Processing.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2010[0m[38;5;12m (http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36726.pdf) - [39m[38;5;14m[1mGoogle[0m[38;5;12m - Large-scale Incremental Processing Using Distributed Transactions and Notifications base of Percolator and Caffeine.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2010[0m[38;5;12m (http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36726.pdf) - [39m[38;5;14m[1mGoogle[0m[38;5;12m - Large-scale Incremental Processing Using Distributed Transactions and notifications base of Percolator and Caffeine.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2010[0m[38;5;12m (http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36632.pdf) - [39m[38;5;14m[1mGoogle[0m[38;5;12m - Dremel: Interactive Analysis of Web-Scale Datasets.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2010[0m[38;5;12m (http://leoneu.github.io/) - [39m[38;5;14m[1mYahoo[0m[38;5;12m - S4: Distributed Stream Computing Platform.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1m2009[0m[38;5;12m (http://www.cs.umd.edu/~abadi/papers/hadoopdb.pdf) - HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. [39m
|
||||
@@ -782,22 +780,22 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStreaming Data[0m[38;5;12m (https://www.manning.com/books/streaming-data) - Streaming Data introduces the concepts and requirements of streaming and real-time data systems.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStorm Applied[0m[38;5;12m (https://www.manning.com/books/storm-applied) - Storm Applied is a practical guide to using Apache Storm for the real-world tasks associated with processing and analyzing real-time data streams.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFundamentals[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mStream[0m[38;5;14m[1m [0m[38;5;14m[1mProcessing:[0m[38;5;14m[1m [0m[38;5;14m[1mApplication[0m[38;5;14m[1m [0m[38;5;14m[1mDesign,[0m[38;5;14m[1m [0m[38;5;14m[1mSystems,[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mAnalytics[0m[38;5;12m [39m
|
||||
[38;5;12m(http://www.cambridge.org/us/academic/subjects/engineering/communications-and-signal-processing/fundamentals-stream-processing-application-design-systems-and-analytics)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mcomprehensive,[39m[38;5;12m [39m[38;5;12mhands-on[39m[38;5;12m [39m[38;5;12mguide[39m[38;5;12m [39m[38;5;12mcombining[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mfundamental[39m[38;5;12m [39m
|
||||
[38;5;12mbuilding[39m[38;5;12m [39m[38;5;12mblocks[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12memerging[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mstream[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mideal[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mapplication[39m[38;5;12m [39m[38;5;12mdesigners,[39m[38;5;12m [39m[38;5;12msystem[39m[38;5;12m [39m[38;5;12mbuilders,[39m[38;5;12m [39m[38;5;12manalytic[39m[38;5;12m [39m[38;5;12mdevelopers,[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mstudents[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mresearchers[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mfield.[39m
|
||||
[38;5;12m(http://www.cambridge.org/us/academic/subjects/engineering/communications-and-signal-processing/fundamentals-stream-processing-application-design-systems-and-analytics)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mcomprehensive,[39m[38;5;12m [39m[38;5;12mhands-on[39m[38;5;12m [39m[38;5;12mguide[39m[38;5;12m [39m[38;5;12mcombining[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mfundamental[39m[38;5;12m [39m[38;5;12mbuilding[39m[38;5;12m [39m
|
||||
[38;5;12mblocks[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12memerging[39m[38;5;12m [39m[38;5;12mresearch[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mstream[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mideal[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mapplication[39m[38;5;12m [39m[38;5;12mdesigners,[39m[38;5;12m [39m[38;5;12msystem[39m[38;5;12m [39m[38;5;12mbuilders,[39m[38;5;12m [39m[38;5;12manalytic[39m[38;5;12m [39m[38;5;12mdevelopers,[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m[38;5;12mas[39m[38;5;12m [39m[38;5;12mstudents[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mresearchers[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mfield.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStream Data Processing: A Quality of Service Perspective[0m[38;5;12m (http://www.springer.com/us/book/9780387710020) - Presents a new paradigm suitable for stream and complex event processing.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mUnified Log Processing[0m[38;5;12m (https://www.manning.com/books/event-streams-in-action) - Unified Log Processing is a practical guide to implementing a unified log of event streams (Kafka or Kinesis) in your business[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKafka[0m[38;5;14m[1m [0m[38;5;14m[1mStreams[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mAction[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/kafka-streams-in-action)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mKafka[39m[38;5;12m [39m[38;5;12mStreams[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mAction[39m[38;5;12m [39m[38;5;12mteaches[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12meverything[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mneed[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mknow[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mimplement[39m[38;5;12m [39m[38;5;12mstream[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mflowing[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mKafka[39m[38;5;12m [39m[38;5;12mplatform,[39m[38;5;12m [39m[38;5;12mallowing[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mto[39m
|
||||
[38;5;12mfocus[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mgetting[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mwithout[39m[38;5;12m [39m[38;5;12msacrificing[39m[38;5;12m [39m[38;5;12mtime[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12meffort.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBig[0m[38;5;14m[1m [0m[38;5;14m[1mData[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/big-data)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mBig[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mteaches[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbuild[39m[38;5;12m [39m[38;5;12mbig[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12msystems[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12marchitecture[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mtakes[39m[38;5;12m [39m[38;5;12madvantage[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mclustered[39m[38;5;12m [39m[38;5;12mhardware[39m[38;5;12m [39m[38;5;12malong[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mnew[39m[38;5;12m [39m[38;5;12mtools[39m[38;5;12m [39m[38;5;12mdesigned[39m[38;5;12m [39m[38;5;12mspecifically[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mcapture[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12manalyze[39m[38;5;12m [39m
|
||||
[38;5;12mweb-scale[39m[38;5;12m [39m[38;5;12mdata.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpark[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mAction[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/spark-in-action)[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;14m[1mSpark[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mAction[0m[38;5;14m[1m [0m[38;5;14m[1m2nd[0m[38;5;14m[1m [0m[38;5;14m[1mEd.[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/spark-in-action-second-edition)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mSpark[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mAction[39m[38;5;12m [39m[38;5;12mteaches[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mtheory[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mskills[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mneed[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12meffectively[39m[38;5;12m [39m
|
||||
[38;5;12mhandle[39m[38;5;12m [39m[38;5;12mbatch[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mstreaming[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mSpark.[39m[38;5;12m [39m[38;5;12mFully[39m[38;5;12m [39m[38;5;12mupdated[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mSpark[39m[38;5;12m [39m[38;5;12m2.0.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKafka[0m[38;5;14m[1m [0m[38;5;14m[1mStreams[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mAction[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/kafka-streams-in-action)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mKafka[39m[38;5;12m [39m[38;5;12mStreams[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mAction[39m[38;5;12m [39m[38;5;12mteaches[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12meverything[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mneed[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mknow[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mimplement[39m[38;5;12m [39m[38;5;12mstream[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mflowing[39m[38;5;12m [39m[38;5;12minto[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mKafka[39m[38;5;12m [39m[38;5;12mplatform,[39m[38;5;12m [39m[38;5;12mallowing[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mfocus[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m
|
||||
[38;5;12mgetting[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mwithout[39m[38;5;12m [39m[38;5;12msacrificing[39m[38;5;12m [39m[38;5;12mtime[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12meffort.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBig Data[0m
|
||||
[38;5;12m (https://www.manning.com/books/big-data) - Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSpark[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mAction[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/spark-in-action)[39m[38;5;12m [39m[38;5;12m&[39m[38;5;12m [39m[38;5;14m[1mSpark[0m[38;5;14m[1m [0m[38;5;14m[1min[0m[38;5;14m[1m [0m[38;5;14m[1mAction[0m[38;5;14m[1m [0m[38;5;14m[1m2nd[0m[38;5;14m[1m [0m[38;5;14m[1mEd.[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/spark-in-action-second-edition)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mSpark[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mAction[39m[38;5;12m [39m[38;5;12mteaches[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mtheory[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mskills[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mneed[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12meffectively[39m[38;5;12m [39m[38;5;12mhandle[39m[38;5;12m [39m[38;5;12mbatch[39m[38;5;12m [39m
|
||||
[38;5;12mand[39m[38;5;12m [39m[38;5;12mstreaming[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mSpark.[39m[38;5;12m [39m[38;5;12mFully[39m[38;5;12m [39m[38;5;12mupdated[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mSpark[39m[38;5;12m [39m[38;5;12m2.0.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mKafka in Action[0m[38;5;12m (https://www.manning.com/books/kafka-in-action) - Kafka in Action is a fast-paced introduction to every aspect of working with Kafka you need to really reap its benefits.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFusion in Action[0m[38;5;12m (https://www.manning.com/books/fusion-in-action) - Fusion in Action teaches you to build a full-featured data analytics pipeline, including document and data search and distributed data clustering.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mReactive[0m[38;5;14m[1m [0m[38;5;14m[1mData[0m[38;5;14m[1m [0m[38;5;14m[1mHandling[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/reactive-data-handling)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mReactive[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mHandling[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcollection[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mfive[39m[38;5;12m [39m[38;5;12mhand-picked[39m[38;5;12m [39m[38;5;12mchapters,[39m[38;5;12m [39m[38;5;12mselected[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mManuel[39m[38;5;12m [39m[38;5;12mBernhardt,[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mintroduce[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbuilding[39m[38;5;12m [39m[38;5;12mreactive[39m[38;5;12m [39m[38;5;12mapplications[39m[38;5;12m [39m
|
||||
[38;5;12mcapable[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mhandling[39m[38;5;12m [39m[38;5;12mreal-time[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mloads--free[39m[38;5;12m [39m[38;5;12meBook![39m[38;5;12m [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mReactive[0m[38;5;14m[1m [0m[38;5;14m[1mData[0m[38;5;14m[1m [0m[38;5;14m[1mHandling[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/reactive-data-handling)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mReactive[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m[38;5;12mHandling[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcollection[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mfive[39m[38;5;12m [39m[38;5;12mhand-picked[39m[38;5;12m [39m[38;5;12mchapters,[39m[38;5;12m [39m[38;5;12mselected[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mManuel[39m[38;5;12m [39m[38;5;12mBernhardt,[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mintroduce[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbuilding[39m[38;5;12m [39m[38;5;12mreactive[39m[38;5;12m [39m[38;5;12mapplications[39m[38;5;12m [39m[38;5;12mcapable[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m
|
||||
[38;5;12mhandling[39m[38;5;12m [39m[38;5;12mreal-time[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mlarge[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mloads--free[39m[38;5;12m [39m[38;5;12meBook![39m[38;5;12m [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAzure Data Engineering[0m[38;5;12m (https://www.manning.com/books/azure-data-engineering) - A book about data engineering in general and the Azure platform specifically [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGrokking[0m[38;5;14m[1m [0m[38;5;14m[1mStreaming[0m[38;5;14m[1m [0m[38;5;14m[1mSystems[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/grokking-streaming-systems)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mGrokking[39m[38;5;12m [39m[38;5;12mStreaming[39m[38;5;12m [39m[38;5;12mSystems[39m[38;5;12m [39m[38;5;12mhelps[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12munravel[39m[38;5;12m [39m[38;5;12mwhat[39m[38;5;12m [39m[38;5;12mstreaming[39m[38;5;12m [39m[38;5;12msystems[39m[38;5;12m [39m[38;5;12mare,[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mthey[39m[38;5;12m [39m[38;5;12mwork,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mwhether[39m[38;5;12m [39m[38;5;12mthey’re[39m[38;5;12m [39m[38;5;12mright[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mbusiness.[39m[38;5;12m [39m[38;5;12mWritten[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbe[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGrokking[0m[38;5;14m[1m [0m[38;5;14m[1mStreaming[0m[38;5;14m[1m [0m[38;5;14m[1mSystems[0m[38;5;12m [39m[38;5;12m(https://www.manning.com/books/grokking-streaming-systems)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mGrokking[39m[38;5;12m [39m[38;5;12mStreaming[39m[38;5;12m [39m[38;5;12mSystems[39m[38;5;12m [39m[38;5;12mhelps[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12munravel[39m[38;5;12m [39m[38;5;12mwhat[39m[38;5;12m [39m[38;5;12mstreaming[39m[38;5;12m [39m[38;5;12msystems[39m[38;5;12m [39m[38;5;12mare,[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mthey[39m[38;5;12m [39m[38;5;12mwork,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mwhether[39m[38;5;12m [39m[38;5;12mthey’re[39m[38;5;12m [39m[38;5;12mright[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12myour[39m[38;5;12m [39m[38;5;12mbusiness.[39m[38;5;12m [39m[38;5;12mWritten[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m
|
||||
[38;5;12mtool-agnostic,[39m[38;5;12m [39m[38;5;12myou’ll[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mable[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mapply[39m[38;5;12m [39m[38;5;12mwhat[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mlearn[39m[38;5;12m [39m[38;5;12mno[39m[38;5;12m [39m[38;5;12mmatter[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12myou[39m[38;5;12m [39m[38;5;12mchoose.[39m
|
||||
|
||||
[38;2;255;187;0m[4mDistributed systems[0m
|
||||
@@ -813,7 +811,7 @@
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mIce Bucket Challenge Data Visualization[0m[38;5;12m (https://www.youtube.com/watch?v=qTEchen97rQ)[39m
|
||||
|
||||
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mOther Awesome Lists[0m
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mOther Awesome Lists[0m
|
||||
[38;5;12m- Other awesome lists [39m[38;5;14m[1mawesome-awesomeness[0m[38;5;12m (https://github.com/bayandin/awesome-awesomeness).[39m
|
||||
[38;5;12m- Even more lists [39m[38;5;14m[1mawesome[0m[38;5;12m (https://github.com/sindresorhus/awesome).[39m
|
||||
[38;5;12m- Another list? [39m[38;5;14m[1mlist[0m[38;5;12m (https://github.com/jnv/lists).[39m
|
||||
@@ -829,3 +827,5 @@
|
||||
[38;5;12m- Monte Carlo Tree Search Papers [39m[38;5;14m[1mawesome-monte-carlo-tree-search-papers[0m[38;5;12m (https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers).[39m
|
||||
[38;5;12m- Kafka [39m[38;5;14m[1mawesome-kafka[0m[38;5;12m (https://github.com/monksy/awesome-kafka).[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mGoogle Bigtable[0m[38;5;12m (https://github.com/zrosenbauer/awesome-bigtable).[39m
|
||||
|
||||
[38;5;12mbigdata Github: https://github.com/0xnr/awesome-bigdata[39m
|
||||
|
||||
Reference in New Issue
Block a user