update lists
This commit is contained in:
@@ -36,6 +36,7 @@ href="https://github.com/josephmisiti/awesome-machine-learning/blob/master/meetu
|
||||
<h2 id="table-of-contents">Table of Contents</h2>
|
||||
<h3 id="frameworks-and-libraries">Frameworks and Libraries</h3>
|
||||
<!-- MarkdownTOC depth=4 -->
|
||||
<!-- Contents-->
|
||||
<ul>
|
||||
<li><a href="#awesome-machine-learning-">Awesome Machine Learning <img
|
||||
src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg"
|
||||
@@ -68,6 +69,8 @@ Processing</a></li>
|
||||
<li><a href="#cpp-speech-recognition">Speech Recognition</a></li>
|
||||
<li><a href="#cpp-sequence-analysis">Sequence Analysis</a></li>
|
||||
<li><a href="#cpp-gesture-detection">Gesture Detection</a></li>
|
||||
<li><a href="#cpp-reinforcement-learning">Reinforcement
|
||||
Learning</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#common-lisp">Common Lisp</a>
|
||||
<ul>
|
||||
@@ -250,6 +253,7 @@ Scripts / iPython Notebooks / Codebases</a></li>
|
||||
Source Code</a></li>
|
||||
<li><a href="#python-reinforcement-learning">Reinforcement
|
||||
Learning</a></li>
|
||||
<li><a href="#python-speech-recognition">Speech Recognition</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#ruby">Ruby</a>
|
||||
<ul>
|
||||
@@ -425,6 +429,8 @@ Python.</li>
|
||||
<li><a href="https://github.com/FidoProject/Fido">Fido</a> - A
|
||||
highly-modular C++ machine learning library for embedded electronics and
|
||||
robotics.</li>
|
||||
<li><a href="https://github.com/ozguraslank/flexml">FlexML</a> -
|
||||
Easy-to-use and flexible AutoML library for Python.</li>
|
||||
<li><a href="http://igraph.org/">igraph</a> - General purpose graph
|
||||
library.</li>
|
||||
<li><a href="https://github.com/oneapi-src/oneDAL">Intel® oneAPI Data
|
||||
@@ -455,6 +461,11 @@ full DNN-based applications on embedded platforms</li>
|
||||
<li><a href="https://github.com/oneapi-src/oneDNN">oneDNN</a> - An
|
||||
open-source cross-platform performance library for deep learning
|
||||
applications.</li>
|
||||
<li><a href="https://www.comet.com/site/products/opik/">Opik</a> - Open
|
||||
source engineering platform to debug, evaluate, and monitor your LLM
|
||||
applications, RAG systems, and agentic workflows with comprehensive
|
||||
tracing, automated evaluations, and production-ready dashboards. (<a
|
||||
href="https://github.com/comet-ml/opik/">Source Code</a>)</li>
|
||||
<li><a href="https://github.com/cdslaborg/paramonte">ParaMonte</a> - A
|
||||
general-purpose library with C/C++ interface for Bayesian data analysis
|
||||
and visualization via serial/parallel Monte Carlo and MCMC simulations.
|
||||
@@ -588,6 +599,11 @@ probabilistic models for sequences over a user defined alphabet.
|
||||
href="https://github.com/nickgillian/grt">grt</a> - The Gesture
|
||||
Recognition Toolkit (GRT) is a cross-platform, open-source, C++ machine
|
||||
learning library designed for real-time gesture recognition.</p>
|
||||
<p><a name="cpp-reinforcement-learning"></a> #### Reinforcement Learning
|
||||
* <a href="https://github.com/rl-tools/rl-tools">RLtools</a> - The
|
||||
fastest deep reinforcement learning library for continuous control,
|
||||
implemented header-only in pure, dependency-free C++ (Python bindings
|
||||
available as well).</p>
|
||||
<p><a name="common-lisp"></a> ## Common Lisp</p>
|
||||
<p><a name="common-lisp-general-purpose-machine-learning"></a> ####
|
||||
General-Purpose Machine Learning</p>
|
||||
@@ -1226,6 +1242,10 @@ href="https://cs.stanford.edu/people/karpathy/convnetjs/">Convnet.js</a>
|
||||
- ConvNetJS is a JavaScript library for training Deep Learning models<a
|
||||
href="#deep-learning">DEEP LEARNING</a>
|
||||
<strong>[Deprecated]</strong></li>
|
||||
<li><a href="https://github.com/TSavo/creatify-mcp">Creatify MCP</a> -
|
||||
Model Context Protocol server that exposes Creatify AI’s video
|
||||
generation capabilities to AI assistants, enabling natural language
|
||||
video creation workflows.</li>
|
||||
<li><a href="https://harthur.github.io/clusterfck/">Clusterfck</a> -
|
||||
Agglomerative hierarchical clustering implemented in JavaScript for
|
||||
Node.js and the browser. <strong>[Deprecated]</strong></li>
|
||||
@@ -1317,6 +1337,10 @@ WebAssembly.</li>
|
||||
Neural Network JavaScript Framework. WebDNN uses next generation
|
||||
JavaScript API, WebGPU for GPU execution, and WebAssembly for CPU
|
||||
execution.</li>
|
||||
<li><a href="https://webnn.dev">WebNN</a> - A new web standard that
|
||||
allows web apps and frameworks to accelerate deep neural networks with
|
||||
on-device hardware such as GPUs, CPUs, or purpose-built AI
|
||||
accelerators.</li>
|
||||
</ul>
|
||||
<p><a name="javascript-misc"></a> #### Misc</p>
|
||||
<ul>
|
||||
@@ -1455,6 +1479,8 @@ University Deep Learning Framework.</li>
|
||||
library that doesn’t make you tensor</li>
|
||||
<li><a href="https://github.com/alan-turing-institute/MLJ.jl">MLJ</a> -
|
||||
A Julia machine learning framework.</li>
|
||||
<li><a href="https://github.com/clugen/CluGen.jl/">CluGen</a> -
|
||||
Multidimensional cluster generation in Julia.</li>
|
||||
</ul>
|
||||
<p><a name="julia-natural-language-processing"></a> #### Natural
|
||||
Language Processing</p>
|
||||
@@ -1752,6 +1778,8 @@ href="https://github.com/trekhleb/machine-learning-octave">Machine
|
||||
Learning in MatLab/Octave</a> - Examples of popular machine learning
|
||||
algorithms (neural networks, linear/logistic regressions, K-Means, etc.)
|
||||
with code examples and mathematics behind them being explained.</li>
|
||||
<li><a href="https://github.com/clugen/MOCluGen/">MOCluGen</a> -
|
||||
Multidimensional cluster generation in MATLAB/Octave.</li>
|
||||
</ul>
|
||||
<p><a name="matlab-data-analysis--data-visualization"></a> #### Data
|
||||
Analysis / Data Visualization</p>
|
||||
@@ -2027,6 +2055,10 @@ attributes to objects.</li>
|
||||
<p><a name="python-computer-vision"></a> #### Computer Vision</p>
|
||||
<ul>
|
||||
<li><a
|
||||
href="https://github.com/lightly-ai/lightly-train">LightlyTrain</a> -
|
||||
Pretrain computer vision models on unlabeled data for industrial
|
||||
applications</li>
|
||||
<li><a
|
||||
href="https://github.com/scikit-image/scikit-image">Scikit-Image</a> - A
|
||||
collection of algorithms for image processing in Python.</li>
|
||||
<li><a href="https://github.com/guofei9987/scikit-opt">Scikit-Opt</a> -
|
||||
@@ -2268,7 +2300,7 @@ Language Toolkit.</li>
|
||||
<li><a href="https://github.com/RasaHQ/rasa">Rasa</a> - A “machine
|
||||
learning framework to automate text-and voice-based conversations.”</li>
|
||||
<li><a href="https://github.com/PPACI/yase">yase</a> - Transcode
|
||||
sentence (or other sequence) to list of word vector .</li>
|
||||
sentence (or other sequence) to list of word vector.</li>
|
||||
<li><a href="https://github.com/aboSamoor/polyglot">Polyglot</a> -
|
||||
Multilingual text (NLP) processing toolkit.</li>
|
||||
<li><a href="https://github.com/facebookresearch/DrQA">DrQA</a> -
|
||||
@@ -2303,6 +2335,8 @@ href="https://github.com/huggingface/transformers">Transformers</a> - A
|
||||
deep learning library containing thousands of pre-trained models on
|
||||
different tasks. The goto place for anything related to Large Language
|
||||
Models.</li>
|
||||
<li><a href="https://github.com/alinapetukhova/textcl">TextCL</a> - Text
|
||||
preprocessing package for use in NLP tasks.</li>
|
||||
</ul>
|
||||
<p><a name="python-general-purpose-machine-learning"></a> ####
|
||||
General-Purpose Machine Learning</p>
|
||||
@@ -2398,7 +2432,7 @@ bindings for eXtreme Gradient Boosting (Tree) Library.</li>
|
||||
<li><a href="https://github.com/serengil/chefboost">ChefBoost</a> - a
|
||||
lightweight decision tree framework for Python with categorical feature
|
||||
support covering regular decision tree algorithms such as ID3, C4.5,
|
||||
CART, CHAID and regression tree; also some advanved bagging and boosting
|
||||
CART, CHAID and regression tree; also some advanced bagging and boosting
|
||||
techniques such as gradient boosting, random forest and adaboost.</li>
|
||||
<li><a href="https://singa.apache.org">Apache SINGA</a> - An Apache
|
||||
Incubating project for developing an open source machine learning
|
||||
@@ -2465,6 +2499,15 @@ GPU-Accelerated Deep Learning Library in Python.
|
||||
neural network framework.</li>
|
||||
<li><a href="https://facebook.github.io/prophet/">prophet</a> - Fast and
|
||||
automated time series forecasting framework by Facebook.</li>
|
||||
<li><a href="https://github.com/skforecast/skforecast">skforecast</a> -
|
||||
Python library for time series forecasting using machine learning
|
||||
models. It works with any regressor compatible with the scikit-learn
|
||||
API, including popular options like LightGBM, XGBoost, CatBoost, Keras,
|
||||
and many others.</li>
|
||||
<li><a
|
||||
href="https://github.com/feature-engine/feature_engine">Feature-engine</a>
|
||||
- Open source library with an exhaustive battery of feature engineering
|
||||
and selection methods based on pandas and scikit-learn.</li>
|
||||
<li><a href="https://github.com/RaRe-Technologies/gensim">gensim</a> -
|
||||
Topic Modelling for Humans.</li>
|
||||
<li><a
|
||||
@@ -2811,10 +2854,9 @@ with data validation.</li>
|
||||
<li><a href="https://github.com/hpcaitech/ColossalAI">Colossal-AI</a>:
|
||||
An open-source deep learning system for large-scale model training and
|
||||
inference with high efficiency and low cost.</li>
|
||||
<li><a href="https://github.com/dirty-cat/dirty_cat">dirty_cat</a> -
|
||||
facilitates machine-learning on dirty, non-curated categories. It
|
||||
provides transformers and encoders robust to morphological variants,
|
||||
such as typos.</li>
|
||||
<li><a href="https://github.com/skrub-data/skrub">skrub</a> - Skrub is a
|
||||
Python library that eases preprocessing and feature engineering for
|
||||
machine learning on dataframes.</li>
|
||||
<li><a href="https://github.com/upgini/upgini">Upgini</a>: Free
|
||||
automated data & feature enrichment library for machine learning -
|
||||
automatically searches through thousands of ready-to-use features from
|
||||
@@ -2846,6 +2888,15 @@ systems.</li>
|
||||
The best-in-class MLOps platform with experiment tracking, model
|
||||
production monitoring, a model registry, and data lineage from training
|
||||
straight through to production.</li>
|
||||
<li><a href="https://github.com/Okerew/okrolearn">Okrolearn</a>: A
|
||||
python machine learning library created to combine powefull data
|
||||
analasys features with tensors and machine learning components, while
|
||||
maintaining support for other libraries.</li>
|
||||
<li><a href="https://github.com/comet-ml/opik">Opik</a>: Evaluate,
|
||||
trace, test, and ship LLM applications across your dev and production
|
||||
lifecycles.</li>
|
||||
<li><a href="https://github.com/clugen/pyclugen">pyclugen</a> -
|
||||
Multidimensional cluster generation in Python.</li>
|
||||
</ul>
|
||||
<p><a name="python-data-analysis--data-visualization"></a> #### Data
|
||||
Analysis / Data Visualization * <a
|
||||
@@ -2994,7 +3045,9 @@ visualizations of data in running processes such as machine learning
|
||||
training. * <a href="https://github.com/rlworkgroup/dowel">dowel</a> - A
|
||||
little logger for machine learning research. Output any object to the
|
||||
terminal, CSV, TensorBoard, text logs on disk, and more with just one
|
||||
call to <code>logger.log()</code>.</p>
|
||||
call to <code>logger.log()</code>. * <a
|
||||
href="https://github.com/vortico/flama">Flama</a> - Ignite your models
|
||||
into blazing-fast machine learning APIs with a modern framework.</p>
|
||||
<p><a name="python-misc-scripts--ipython-notebooks--codebases"></a> ####
|
||||
Misc Scripts / iPython Notebooks / Codebases * <a
|
||||
href="https://github.com/kennysong/minigrad">MiniGrad</a> – A minimal,
|
||||
@@ -3322,7 +3375,17 @@ href="https://github.com/opendilab/DI-engine">DI-engine</a> - DI-engine
|
||||
is a generalized Decision Intelligence engine. It supports most basic
|
||||
deep reinforcement learning (DRL) algorithms, such as DQN, PPO, SAC, and
|
||||
domain-specific algorithms like QMIX in multi-agent RL, GAIL in inverse
|
||||
RL, and RND in exploration problems.</p>
|
||||
RL, and RND in exploration problems. * <a
|
||||
href="https://github.com/Daveonwave/gym4ReaL">Gym4ReaL</a> - Gym4ReaL is
|
||||
a comprehensive suite of realistic environments designed to support the
|
||||
development and evaluation of RL algorithms that can operate in
|
||||
real-world scenarios. The suite includes a diverse set of tasks exposing
|
||||
RL algorithms to a variety of practical challenges.</p>
|
||||
<p><a name="python-speech-recognition"></a> #### Speech Recognition * <a
|
||||
href="https://github.com/espnet/espnet">EspNet</a> - ESPnet is an
|
||||
end-to-end speech processing toolkit for tasks like speech recognition,
|
||||
translation, and enhancement, using PyTorch and Kaldi-style data
|
||||
processing.</p>
|
||||
<p><a name="ruby"></a> ## Ruby</p>
|
||||
<p><a name="ruby-natural-language-processing"></a> #### Natural Language
|
||||
Processing</p>
|
||||
@@ -3436,7 +3499,9 @@ minimalist ML framework for Rust with a focus on performance (including
|
||||
GPU support) and ease of use. * <a
|
||||
href="https://github.com/rust-ml/linfa">linfa</a> - <code>linfa</code>
|
||||
aims to provide a comprehensive toolkit to build Machine Learning
|
||||
applications with Rust</p>
|
||||
applications with Rust * <a
|
||||
href="https://github.com/delta-rs/delta">delta</a> - An open source
|
||||
machine learning framework in Rust Δ</p>
|
||||
<h4 id="deep-learning">Deep Learning</h4>
|
||||
<ul>
|
||||
<li><a href="https://github.com/LaurentMazare/tch-rs">tch-rs</a> - Rust
|
||||
@@ -3757,10 +3822,16 @@ href="https://github.com/Azure/Azure-TDSP-Utilities">TDSP-Utilities</a>
|
||||
- Two data science utilities in R from Microsoft: 1) Interactive Data
|
||||
Exploration, Analysis, and Reporting (IDEAR) ; 2) Automated Modelling
|
||||
and Reporting (AMR).</li>
|
||||
<li><a href="https://github.com/clugen/clugenr/">clugenr</a> -
|
||||
Multidimensional cluster generation in R.</li>
|
||||
</ul>
|
||||
<p><a name="r-data-analysis--data-visualization"></a> #### Data
|
||||
Manipulation | Data Analysis | Data Visualization</p>
|
||||
<ul>
|
||||
<li><a href="https://rdatatable.gitlab.io/data.table/">data.table</a> -
|
||||
<code>data.table</code> provides a high-performance version of base R’s
|
||||
<code>data.frame</code> with syntax and feature enhancements for ease of
|
||||
use, convenience and programming speed.</li>
|
||||
<li><a
|
||||
href="https://www.rdocumentation.org/packages/dplyr/versions/0.7.8">dplyr</a>
|
||||
- A data manipulation package that helps to solve the most common data
|
||||
@@ -3951,6 +4022,12 @@ provides immutable objects and exposes its functionality through a
|
||||
scikit-learn-like API.</li>
|
||||
<li><a href="https://github.com/eaplatanios/tensorflow_scala">TensorFlow
|
||||
Scala</a> - Strongly-typed Scala API for TensorFlow.</li>
|
||||
<li><a
|
||||
href="https://github.com/linkedin/isolation-forest">isolation-forest</a>
|
||||
- A distributed Spark/Scala implementation of the isolation forest
|
||||
algorithm for unsupervised outlier detection, featuring support for
|
||||
scalable training and ONNX export for easy cross-platform
|
||||
inference.</li>
|
||||
</ul>
|
||||
<p><a name="scheme"></a> ## Scheme</p>
|
||||
<p><a name="scheme-neural-networks"></a> #### Neural Networks</p>
|
||||
@@ -4021,6 +4098,10 @@ href="https://github.com/cloudkj/layer">layer</a> - Neural network
|
||||
inference from the command line</p>
|
||||
<p><a name="tools-misc"></a> #### Misc</p>
|
||||
<ul>
|
||||
<li><a href="https://wallaroo.ai/">Wallaroo.AI</a> - Production AI
|
||||
plaftorm for deploying, managing, and observing any model at scale
|
||||
across any environment from cloud to edge. Let’s go from python notebook
|
||||
to inferencing in minutes.</li>
|
||||
<li><a href="https://github.com/infiniflow/infinity">Infinity</a> - The
|
||||
AI-native database built for LLM applications, providing incredibly fast
|
||||
vector and full-text search. Developed using C++20</li>
|
||||
@@ -4039,6 +4120,11 @@ user feedback.</li>
|
||||
href="https://github.com/qdrant/qdrant">open source</a> vector
|
||||
similarity search engine with extended filtering support, written in
|
||||
Rust.</li>
|
||||
<li><a href="https://localforge.dev/">Localforge</a> – Is an <a
|
||||
href="https://github.com/rockbite/localforge">open source</a> on-prem AI
|
||||
coding autonomous assistant that lives inside your repo, edits and tests
|
||||
files at SSD speed. Think Claude Code but with UI. plug in any LLM
|
||||
(OpenAI, Gemini, Ollama, etc.) and let it work for you.</li>
|
||||
<li><a href="https://milvus.io">milvus</a> – Milvus is <a
|
||||
href="https://github.com/milvus-io/milvus">open source</a> vector
|
||||
database for production AI, written in Go and C++, scalable and blazing
|
||||
@@ -4095,6 +4181,10 @@ warehouses or applications.</li>
|
||||
Kedro is a data and development workflow framework that implements best
|
||||
practices for data pipelines with an eye towards productionizing machine
|
||||
learning models.</li>
|
||||
<li><a href="https://github.com/dagworks-inc/hamilton">Hamilton</a> - a
|
||||
lightweight library to define data transformations as a directed-acyclic
|
||||
graph (DAG). It helps author reliable feature engineering and machine
|
||||
learning pipelines, and more.</li>
|
||||
<li><a href="https://guild.ai/">guild.ai</a> - Tool to log, analyze,
|
||||
compare and “optimize” experiments. It’s cross-platform and framework
|
||||
independent, and provided integrated visualizers such as
|
||||
@@ -4124,7 +4214,7 @@ href="https://neptune.ai/">Neptune.ai</a>, <a
|
||||
href="https://www.comet.ml/">Comet.ml</a>, <a
|
||||
href="https://valohai.com/">Valohai.ai</a>, <a
|
||||
href="https://DAGsHub.com/">DAGsHub</a>.</li>
|
||||
<li><a href="https://www.arize.com">Arize AI</a> - Model validaiton and
|
||||
<li><a href="https://www.arize.com">Arize AI</a> - Model validation and
|
||||
performance monitoring, drift detection, explainability, visualization
|
||||
across structured and unstructured data</li>
|
||||
<li><a
|
||||
@@ -4160,6 +4250,21 @@ on any cloud infrastructure.</li>
|
||||
<li><a href="https://github.com/reactorsh/ambrosia">Ambrosia</a> -
|
||||
Ambrosia helps you clean up your LLM datasets using <em>other</em>
|
||||
LLMs.</li>
|
||||
<li><a href="https://www.fiddler.ai">Fiddler AI</a> - The all-in-one AI
|
||||
Observability and Security platform for responsible AI. It provides
|
||||
monitoring, analytics, and centralized controls to operationalize ML,
|
||||
GenAI, and LLM applications with trust. Fiddler helps enterprises scale
|
||||
LLM and ML deployments to deliver high performance AI, reduce costs, and
|
||||
be responsible in governance.</li>
|
||||
<li><a href="https://getmaxim.ai">Maxim AI</a> - The agent simulation,
|
||||
evaluation, and observability platform helping product teams ship their
|
||||
AI applications with the quality and speed needed for real-world
|
||||
use.</li>
|
||||
<li><a href="https://github.com/splx-ai/agentic-radar">Agentic Radar</a>
|
||||
- Open-source CLI security scanner for agentic workflows. Scans your
|
||||
workflow’s source code, detects vulnerabilities, and generates an
|
||||
interactive visualization along with a detailed security report.
|
||||
Supports LangGraph, CrewAI, n8n, OpenAI Agents, and more.</li>
|
||||
</ul>
|
||||
<p><a name="books"></a> ## Books</p>
|
||||
<ul>
|
||||
@@ -4192,14 +4297,23 @@ uses concrete examples, minimal theory, and production-ready Python
|
||||
frameworks (Scikit-Learn, Keras, and TensorFlow) to help you gain an
|
||||
intuitive understanding of the concepts and tools for building
|
||||
intelligent systems.</li>
|
||||
<li><a
|
||||
href="https://www.appliedaicourse.com/blog/machine-learning-books/">Machine
|
||||
Learning Books for Beginners</a> - This blog provides a curated list of
|
||||
introductory books to help aspiring ML professionals to grasp
|
||||
foundational machine learning concepts and techniques.</li>
|
||||
</ul>
|
||||
<p><a name="credits"></a> * <a href="https://netron.app/">Netron</a> -
|
||||
An opensource viewer for neural network, deep learning and machine
|
||||
learning models * <a
|
||||
href="https://teachablemachine.withgoogle.com/">Teachable Machine</a> -
|
||||
Train Machine Learning models on the fly to recognize your own images,
|
||||
sounds, & poses. * <a href="https://modelzoo.co/">Model Zoo</a> -
|
||||
Discover open source deep learning code and pretrained models.</p>
|
||||
sounds, & poses. * <a
|
||||
href="https://pollinations.ai">Pollinations.AI</a> - Free, no-signup
|
||||
APIs for text, image, and audio generation with no API keys required.
|
||||
Offers OpenAI-compatible interfaces and React hooks for easy
|
||||
integration. * <a href="https://modelzoo.co/">Model Zoo</a> - Discover
|
||||
open source deep learning code and pretrained models.</p>
|
||||
<h2 id="credits">Credits</h2>
|
||||
<ul>
|
||||
<li>Some of the python libraries were cut-and-pasted from <a
|
||||
@@ -4207,3 +4321,6 @@ href="https://github.com/vinta/awesome-python">vinta</a></li>
|
||||
<li>References for Go were mostly cut-and-pasted from <a
|
||||
href="https://github.com/gopherdata/resources/tree/master/tooling">gopherdata</a></li>
|
||||
</ul>
|
||||
<p><a
|
||||
href="https://github.com/josephmisiti/awesome-machine-learning">machinelearning.md
|
||||
Github</a></p>
|
||||
|
||||
Reference in New Issue
Block a user