Update render script and Makefile
This commit is contained in:
@@ -102,7 +102,8 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mCatBoost[0m[38;5;12m (https://github.com/catboost/catboost) - An open-source gradient boosting on decision trees library. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mThunderGBM[0m[38;5;12m (https://github.com/Xtra-Computing/thundergbm) - Fast GBDTs and Random Forests on GPUs. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNGBoost[0m[38;5;12m (https://github.com/stanfordmlgroup/ngboost) - Natural Gradient Boosting for Probabilistic Prediction.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorFlow Decision Forests[0m[38;5;12m (https://github.com/tensorflow/decision-forests) - A collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models in Keras. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTensorFlow Decision Forests[0m
|
||||
[38;5;12m (https://github.com/tensorflow/decision-forests) - A collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models in Keras. [39m
|
||||
|
||||
[38;2;255;187;0m[4mEnsemble Methods[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mML-Ensemble[0m[38;5;12m (http://ml-ensemble.com/) - High performance ensemble learning. [39m
|
||||
@@ -239,10 +240,12 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mChaos Genius[0m[38;5;12m (https://github.com/chaos-genius/chaos_genius) - ML powered analytics engine for outlier/anomaly detection and root cause analysis[39m
|
||||
|
||||
[38;2;255;187;0m[4mReinforcement Learning[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGymnasium[0m[38;5;12m [39m[38;5;12m(https://github.com/Farama-Foundation/Gymnasium)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAn[39m[38;5;12m [39m[38;5;12mAPI[39m[38;5;12m [39m[38;5;12mstandard[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12msingle-agent[39m[38;5;12m [39m[38;5;12mreinforcement[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12menvironments,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mpopular[39m[38;5;12m [39m[38;5;12mreference[39m[38;5;12m [39m[38;5;12menvironments[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mrelated[39m[38;5;12m [39m[38;5;12mutilities[39m[38;5;12m [39m[38;5;12m(formerly[39m[38;5;12m [39m[38;5;14m[1mGym[0m[38;5;12m [39m
|
||||
[38;5;12m(https://github.com/openai/gym)).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPettingZoo[0m[38;5;12m (https://github.com/Farama-Foundation/PettingZoo) - An API standard for multi-agent reinforcement learning environments, with popular reference environments and related utilities.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMAgent2[0m[38;5;12m (https://github.com/Farama-Foundation/MAgent2) - An engine for high performance multi-agent environments with very large numbers of agents, along with a set of reference environments.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGymnasium[0m[38;5;12m [39m[38;5;12m(https://github.com/Farama-Foundation/Gymnasium)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAn[39m[38;5;12m [39m[38;5;12mAPI[39m[38;5;12m [39m[38;5;12mstandard[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12msingle-agent[39m[38;5;12m [39m[38;5;12mreinforcement[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12menvironments,[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mpopular[39m[38;5;12m [39m[38;5;12mreference[39m[38;5;12m [39m[38;5;12menvironments[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mrelated[39m[38;5;12m [39m[38;5;12mutilities[39m[38;5;12m [39m
|
||||
[38;5;12m(formerly[39m[38;5;12m [39m[38;5;14m[1mGym[0m[38;5;12m [39m[38;5;12m(https://github.com/openai/gym)).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPettingZoo[0m
|
||||
[38;5;12m (https://github.com/Farama-Foundation/PettingZoo) - An API standard for multi-agent reinforcement learning environments, with popular reference environments and related utilities.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMAgent2[0m
|
||||
[38;5;12m (https://github.com/Farama-Foundation/MAgent2) - An engine for high performance multi-agent environments with very large numbers of agents, along with a set of reference environments.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStable Baselines3[0m[38;5;12m (https://github.com/DLR-RM/stable-baselines3) - A set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mShimmy[0m[38;5;12m (https://github.com/Farama-Foundation/Shimmy) - An API conversion tool for popular external reinforcement learning environments.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEnvPool[0m[38;5;12m (https://github.com/sail-sg/envpool) - C++-based high-performance parallel environment execution engine (vectorized env) for general RL environments.[39m
|
||||
@@ -260,7 +263,8 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgarage[0m[38;5;12m (https://github.com/rlworkgroup/garage) - A toolkit for reproducible reinforcement learning research.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHorizon[0m[38;5;12m (https://github.com/facebookresearch/Horizon) - A platform for Applied Reinforcement Learning.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mrlpyt[0m[38;5;12m (https://github.com/astooke/rlpyt) - Reinforcement Learning in PyTorch. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcleanrl[0m[38;5;12m (https://github.com/vwxyzjn/cleanrl) - High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features (PPO, DQN, C51, DDPG, TD3, SAC, PPG).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcleanrl[0m
|
||||
[38;5;12m (https://github.com/vwxyzjn/cleanrl) - High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features (PPO, DQN, C51, DDPG, TD3, SAC, PPG).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMachin[0m[38;5;12m (https://github.com/iffiX/machin) - A reinforcement library designed for pytorch. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSKRL[0m[38;5;12m (https://github.com/Toni-SM/skrl) - Modular reinforcement learning library (on PyTorch and JAX) with support for NVIDIA Isaac Gym, Isaac Orbit and Omniverse Isaac Gym. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mImitation[0m[38;5;12m (https://github.com/HumanCompatibleAI/imitation) - Clean PyTorch implementations of imitation and reward learning algorithms. [39m
|
||||
@@ -304,7 +308,8 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mInferPy[0m[38;5;12m (https://github.com/PGM-Lab/InferPy) - Deep Probabilistic Modelling Made Easy. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyStan[0m[38;5;12m (https://github.com/stan-dev/pystan) - Bayesian inference using the No-U-Turn sampler (Python interface).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msklearn-bayes[0m[38;5;12m (https://github.com/AmazaspShumik/sklearn-bayes) - Python package for Bayesian Machine Learning with scikit-learn API. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mskpro[0m[38;5;12m (https://github.com/alan-turing-institute/skpro) - Supervised domain-agnostic prediction framework for probabilistic modelling by [39m[38;5;14m[1mThe Alan Turing Institute[0m[38;5;12m (https://www.turing.ac.uk/). [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mskpro[0m[38;5;12m [39m[38;5;12m(https://github.com/alan-turing-institute/skpro)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mSupervised[39m[38;5;12m [39m[38;5;12mdomain-agnostic[39m[38;5;12m [39m[38;5;12mprediction[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mprobabilistic[39m[38;5;12m [39m[38;5;12mmodelling[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;14m[1mThe[0m[38;5;14m[1m [0m[38;5;14m[1mAlan[0m[38;5;14m[1m [0m[38;5;14m[1mTuring[0m[38;5;14m[1m [0m[38;5;14m[1mInstitute[0m[38;5;12m [39m
|
||||
[38;5;12m(https://www.turing.ac.uk/).[39m[38;5;12m [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPyVarInf[0m[38;5;12m (https://github.com/ctallec/pyvarinf) - Bayesian Deep Learning methods with Variational Inference for PyTorch. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1memcee[0m[38;5;12m (https://github.com/dfm/emcee) - The Python ensemble sampling toolkit for affine-invariant MCMC.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mhsmmlearn[0m[38;5;12m (https://github.com/jvkersch/hsmmlearn) - A library for hidden semi-Markov models with explicit durations.[39m
|
||||
@@ -372,8 +377,8 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPOT[0m[38;5;12m (https://github.com/rflamary/POT) - Python Optimal Transport library.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mTalos[0m[38;5;12m (https://github.com/autonomio/talos) - Hyperparameter Optimization for Keras Models.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnlopt[0m[38;5;12m (https://github.com/stevengj/nlopt) - Library for nonlinear optimization (global and local, constrained or unconstrained).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOR-Tools[0m[38;5;12m [39m[38;5;12m(https://developers.google.com/optimization)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAn[39m[38;5;12m [39m[38;5;12mopen-source[39m[38;5;12m [39m[38;5;12msoftware[39m[38;5;12m [39m[38;5;12msuite[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12moptimization[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mGoogle;[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12munified[39m[38;5;12m [39m[38;5;12mprogramming[39m[38;5;12m [39m[38;5;12minterface[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mhalf[39m[38;5;12m [39m[38;5;12mdozen[39m[38;5;12m [39m[38;5;12msolvers:[39m[38;5;12m [39m[38;5;12mSCIP,[39m[38;5;12m [39m[38;5;12mGLPK,[39m[38;5;12m [39m[38;5;12mGLOP,[39m[38;5;12m [39m[38;5;12mCP-SAT,[39m[38;5;12m [39m
|
||||
[38;5;12mCPLEX,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mGurobi.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOR-Tools[0m[38;5;12m [39m[38;5;12m(https://developers.google.com/optimization)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mAn[39m[38;5;12m [39m[38;5;12mopen-source[39m[38;5;12m [39m[38;5;12msoftware[39m[38;5;12m [39m[38;5;12msuite[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12moptimization[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mGoogle;[39m[38;5;12m [39m[38;5;12mprovides[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12munified[39m[38;5;12m [39m[38;5;12mprogramming[39m[38;5;12m [39m[38;5;12minterface[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mhalf[39m[38;5;12m [39m[38;5;12mdozen[39m[38;5;12m [39m[38;5;12msolvers:[39m[38;5;12m [39m[38;5;12mSCIP,[39m[38;5;12m [39m
|
||||
[38;5;12mGLPK,[39m[38;5;12m [39m[38;5;12mGLOP,[39m[38;5;12m [39m[38;5;12mCP-SAT,[39m[38;5;12m [39m[38;5;12mCPLEX,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mGurobi.[39m
|
||||
|
||||
[38;2;255;187;0m[4mFeature Engineering[0m
|
||||
|
||||
@@ -388,14 +393,16 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtsfresh[0m[38;5;12m (https://github.com/blue-yonder/tsfresh) - Automatic extraction of relevant features from time series. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdirty_cat[0m[38;5;12m (https://github.com/dirty-cat/dirty_cat) - Machine learning on dirty tabular data (especially: string-based variables for classifcation and regression). [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNitroFE[0m[38;5;12m (https://github.com/NITRO-AI/NitroFE) - Moving window features. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msk-transformer[0m[38;5;12m (https://github.com/chrislemke/sk-transformers) - A collection of various pandas & scikit-learn compatible transformers for all kinds of preprocessing and feature engineering steps [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1msk-transformer[0m
|
||||
[38;5;12m (https://github.com/chrislemke/sk-transformers) - A collection of various pandas & scikit-learn compatible transformers for all kinds of preprocessing and feature engineering steps [39m
|
||||
|
||||
|
||||
[38;2;255;187;0m[4mFeature Selection[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscikit-feature[0m[38;5;12m (https://github.com/jundongl/scikit-feature) - Feature selection repository in Python.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mboruta_py[0m[38;5;12m (https://github.com/scikit-learn-contrib/boruta_py) - Implementations of the Boruta all-relevant feature selection method. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBoostARoota[0m[38;5;12m (https://github.com/chasedehan/BoostARoota) - A fast xgboost feature selection algorithm. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscikit-rebate[0m[38;5;12m (https://github.com/EpistasisLab/scikit-rebate) - A scikit-learn-compatible Python implementation of ReBATE, a suite of Relief-based feature selection algorithms for Machine Learning. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mscikit-rebate[0m
|
||||
[38;5;12m (https://github.com/EpistasisLab/scikit-rebate) - A scikit-learn-compatible Python implementation of ReBATE, a suite of Relief-based feature selection algorithms for Machine Learning. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mzoofs[0m[38;5;12m (https://github.com/jaswinder9051998/zoofs) - A feature selection library based on evolutionary algorithms.[39m
|
||||
|
||||
[38;2;255;187;0m[4mVisualization[0m
|
||||
@@ -413,7 +420,8 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBokeh[0m[38;5;12m (https://github.com/bokeh/bokeh) - Interactive Web Plotting for Python.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mAltair[0m[38;5;12m (https://altair-viz.github.io/) - Declarative statistical visualization library for Python. Can easily do many data transformation within the code to create graph[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mbqplot[0m[38;5;12m (https://github.com/bqplot/bqplot) - Plotting library for IPython/Jupyter notebooks[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpyecharts[0m[38;5;12m (https://github.com/pyecharts/pyecharts) - Migrated from [39m[38;5;14m[1mEcharts[0m[38;5;12m (https://github.com/apache/echarts), a charting and visualization library, to Python's interactive visual drawing library.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpyecharts[0m[38;5;12m [39m[38;5;12m(https://github.com/pyecharts/pyecharts)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mMigrated[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;14m[1mEcharts[0m[38;5;12m [39m[38;5;12m(https://github.com/apache/echarts),[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcharting[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mvisualization[39m[38;5;12m [39m[38;5;12mlibrary,[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mPython's[39m[38;5;12m [39m[38;5;12minteractive[39m[38;5;12m [39m[38;5;12mvisual[39m[38;5;12m [39m[38;5;12mdrawing[39m[38;5;12m [39m
|
||||
[38;5;12mlibrary.[39m
|
||||
[38;2;255;187;0m[4mMap[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mfolium[0m[38;5;12m (https://python-visualization.github.io/folium/quickstart.html#Getting-Started) - Makes it easy to visualize data on an interactive open street map[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mgeemap[0m[38;5;12m (https://github.com/giswqs/geemap) - Python package for interactive mapping with Google Earth Engine (GEE)[39m
|
||||
@@ -457,14 +465,15 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mblaze[0m[38;5;12m (https://github.com/blaze/blaze) - NumPy and pandas interface to Big Data. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpandasql[0m[38;5;12m (https://github.com/yhat/pandasql) - Allows you to query pandas DataFrames using SQL syntax. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpandas-gbq[0m[38;5;12m (https://github.com/pydata/pandas-gbq) - pandas Google Big Query. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mxpandas[0m[38;5;12m (https://github.com/alan-turing-institute/xpandas) - Universal 1d/2d data containers with Transformers .functionality for data analysis by [39m[38;5;14m[1mThe Alan Turing Institute[0m[38;5;12m (https://www.turing.ac.uk/).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mxpandas[0m[38;5;12m [39m[38;5;12m(https://github.com/alan-turing-institute/xpandas)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mUniversal[39m[38;5;12m [39m[38;5;12m1d/2d[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mcontainers[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mTransformers[39m[38;5;12m [39m[38;5;12m.functionality[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12manalysis[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;14m[1mThe[0m[38;5;14m[1m [0m[38;5;14m[1mAlan[0m[38;5;14m[1m [0m[38;5;14m[1mTuring[0m[38;5;14m[1m [0m[38;5;14m[1mInstitute[0m[38;5;12m [39m
|
||||
[38;5;12m(https://www.turing.ac.uk/).[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpysparkling[0m[38;5;12m (https://github.com/svenkreiss/pysparkling) - A pure Python implementation of Apache Spark's RDD and DStream interfaces. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmodin[0m[38;5;12m (https://github.com/modin-project/modin) - Speed up your pandas workflows by changing a single line of code. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mswifter[0m[38;5;12m (https://github.com/jmcarpenter2/swifter) - A package that efficiently applies any function to a pandas dataframe or series in the fastest available manner.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpandas-log[0m[38;5;12m (https://github.com/eyaltrabelsi/pandas-log) - A package that allows providing feedback about basic pandas operations and finds both business logic and performance issues.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mvaex[0m[38;5;12m (https://github.com/vaexio/vaex) - Out-of-Core DataFrames for Python, ML, visualize and explore big tabular data at a billion rows per second.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mxarray[0m[38;5;12m [39m[38;5;12m(https://github.com/pydata/xarray)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mXarray[39m[38;5;12m [39m[38;5;12mcombines[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbest[39m[38;5;12m [39m[38;5;12mfeatures[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mNumPy[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mpandas[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmultidimensional[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mselection[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12msupplementing[39m[38;5;12m [39m[38;5;12mnumerical[39m[38;5;12m [39m[38;5;12maxis[39m[38;5;12m [39m[38;5;12mlabels[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mnamed[39m[38;5;12m [39m[38;5;12mdimensions[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m
|
||||
[38;5;12mintuitive,[39m[38;5;12m [39m[38;5;12mconcise,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mless[39m[38;5;12m [39m[38;5;12merror-prone[39m[38;5;12m [39m[38;5;12mindexing[39m[38;5;12m [39m[38;5;12mroutines.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mxarray[0m[38;5;12m [39m[38;5;12m(https://github.com/pydata/xarray)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mXarray[39m[38;5;12m [39m[38;5;12mcombines[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbest[39m[38;5;12m [39m[38;5;12mfeatures[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mNumPy[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mpandas[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmultidimensional[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mselection[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12msupplementing[39m[38;5;12m [39m[38;5;12mnumerical[39m[38;5;12m [39m[38;5;12maxis[39m[38;5;12m [39m[38;5;12mlabels[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mnamed[39m[38;5;12m [39m
|
||||
[38;5;12mdimensions[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mmore[39m[38;5;12m [39m[38;5;12mintuitive,[39m[38;5;12m [39m[38;5;12mconcise,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mless[39m[38;5;12m [39m[38;5;12merror-prone[39m[38;5;12m [39m[38;5;12mindexing[39m[38;5;12m [39m[38;5;12mroutines.[39m
|
||||
|
||||
[38;2;255;187;0m[4mPipelines[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mpdpipe[0m[38;5;12m (https://github.com/shaypal5/pdpipe) - Sasy pipelines for pandas DataFrames.[39m
|
||||
@@ -477,7 +486,8 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mmeza[0m[38;5;12m (https://github.com/reubano/meza) - A Python toolkit for processing tabular data.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mProdmodel[0m[38;5;12m (https://github.com/prodmodel/prodmodel) - Build system for data science pipelines.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mdopanda[0m[38;5;12m (https://github.com/dovpanda-dev/dovpanda) - Hints and tips for using pandas in an analysis environment. [39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHamilton[0m[38;5;12m (https://github.com/DAGWorks-Inc/hamilton) - A microframework for dataframe generation that applies Directed Acyclic Graphs specified by a flow of lazily evaluated Python functions.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHamilton[0m
|
||||
[38;5;12m (https://github.com/DAGWorks-Inc/hamilton) - A microframework for dataframe generation that applies Directed Acyclic Graphs specified by a flow of lazily evaluated Python functions.[39m
|
||||
|
||||
[38;2;255;187;0m[4mData-centric AI[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mcleanlab[0m[38;5;12m (https://github.com/cleanlab/cleanlab) - The standard data-centric AI package for data quality and machine learning with messy, real-world data and labels.[39m
|
||||
@@ -528,14 +538,16 @@
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mnumdifftools[0m[38;5;12m (https://github.com/pbrod/numdifftools) - Solve automatic numerical differentiation problems in one or more variables.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mquaternion[0m[38;5;12m (https://github.com/moble/quaternion) - Add built-in support for quaternions to numpy.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1madaptive[0m[38;5;12m (https://github.com/python-adaptive/adaptive) - Tools for adaptive and parallel samping of mathematical functions.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNumExpr[0m[38;5;12m [39m[38;5;12m(https://github.com/pydata/numexpr)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mfast[39m[38;5;12m [39m[38;5;12mnumerical[39m[38;5;12m [39m[38;5;12mexpression[39m[38;5;12m [39m[38;5;12mevaluator[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mNumPy[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcomes[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12mintegrated[39m[38;5;12m [39m[38;5;12mcomputing[39m[38;5;12m [39m[38;5;12mvirtual[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mspeed[39m[38;5;12m [39m[38;5;12mcalculations[39m[38;5;12m [39m[38;5;12mup[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mavoiding[39m[38;5;12m [39m[38;5;12mmemory[39m[38;5;12m [39m[38;5;12mallocation[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m
|
||||
[38;5;12mintermediate[39m[38;5;12m [39m[38;5;12mresults.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNumExpr[0m[38;5;12m [39m[38;5;12m(https://github.com/pydata/numexpr)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mfast[39m[38;5;12m [39m[38;5;12mnumerical[39m[38;5;12m [39m[38;5;12mexpression[39m[38;5;12m [39m[38;5;12mevaluator[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mNumPy[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mcomes[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12man[39m[38;5;12m [39m[38;5;12mintegrated[39m[38;5;12m [39m[38;5;12mcomputing[39m[38;5;12m [39m[38;5;12mvirtual[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mspeed[39m[38;5;12m [39m[38;5;12mcalculations[39m[38;5;12m [39m[38;5;12mup[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mavoiding[39m[38;5;12m [39m
|
||||
[38;5;12mmemory[39m[38;5;12m [39m[38;5;12mallocation[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mintermediate[39m[38;5;12m [39m[38;5;12mresults.[39m
|
||||
|
||||
[38;2;255;187;0m[4mWeb Scraping[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBeautifulSoup[0m[38;5;12m (https://www.crummy.com/software/BeautifulSoup/bs4/doc/): The easiest library to scrape static websites for beginners[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mScrapy[0m[38;5;12m (https://scrapy.org/): Fast and extensible scraping library. Can write rules and create customized scraper without touching the core[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSelenium[0m[38;5;12m (https://selenium-python.readthedocs.io/installation.html#introduction): Use Selenium Python API to access all functionalities of Selenium WebDriver in an intuitive way like a real user.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPattern[0m[38;5;12m (https://github.com/clips/pattern): High level scraping for well-establish websites such as Google, Twitter, and Wikipedia. Also has NLP, machine learning algorithms, and visualization[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSelenium[0m
|
||||
[38;5;12m (https://selenium-python.readthedocs.io/installation.html#introduction): Use Selenium Python API to access all functionalities of Selenium WebDriver in an intuitive way like a real user.[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPattern[0m
|
||||
[38;5;12m (https://github.com/clips/pattern): High level scraping for well-establish websites such as Google, Twitter, and Wikipedia. Also has NLP, machine learning algorithms, and visualization[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mtwitterscraper[0m[38;5;12m (https://github.com/taspinar/twitterscraper): Efficient library to scrape Twitter[39m
|
||||
|
||||
[38;2;255;187;0m[4mSpatial Analysis[0m
|
||||
|
||||
Reference in New Issue
Block a user