Update render script and Makefile

This commit is contained in:
Jonas Zeunert
2024-04-22 21:54:39 +02:00
parent 2d63fe63cd
commit 4d0cd768f7
10975 changed files with 47095 additions and 4031084 deletions

View File

@@ -1,5 +1,5 @@
 Awesome Computer Vision: !Awesome (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg) (https://github.com/sindresorhus/awesome)
 Awesome Computer Vision: !Awesome (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg) (https://github.com/sindresorhus/awesome)
A curated list of awesome computer vision resources, inspired by awesome-php (https://github.com/ziadoz/awesome-php).
For a list people in computer vision listed with their academic genealogy, please visit here (https://github.com/jbhuang0604/awesome-computer-vision/blob/master/people.md)
@@ -99,12 +99,13 @@
OpenCV Programming
⟡ Learning OpenCV: Computer Vision with the OpenCV Library (http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134) - Gary Bradski and Adrian Kaehler
⟡ Practical Python and OpenCV (https://www.pyimagesearch.com/practical-python-opencv/) - Adrian Rosebrock
⟡ OpenCV Essentials (http://www.amazon.com/OpenCV-Essentials-Oscar-Deniz-Suarez/dp/1783984244/ref=sr_1_1?s=books&ie=UTF8&qid=1424594237&sr=1-1&keywords=opencv+essentials#) - Oscar Deniz Suarez, Mª del Milagro 
Fernandez Carrobles, Noelia Vallez Enano, Gloria Bueno Garcia, Ismael Serrano Gracia
⟡ OpenCV Essentials (http://www.amazon.com/OpenCV-Essentials-Oscar-Deniz-Suarez/dp/1783984244/ref=sr_1_1?s=books&ie=UTF8&qid=1424594237&sr=1-1&keywords=opencv+essentials#) - Oscar Deniz 
Suarez, Mª del Milagro Fernandez Carrobles, Noelia Vallez Enano, Gloria Bueno Garcia, Ismael Serrano Gracia
Machine Learning
⟡ Pattern Recognition and Machine Learning (http://research.microsoft.com/en-us/um/people/cmbishop/prml/index.htm) - Christopher M. Bishop 2007
⟡ Neural Networks for Pattern Recognition (http://www.engineering.upm.ro/master-ie/sacpi/mat_did/info068/docum/Neural%20Networks%20for%20Pattern%20Recognition.pdf) - Christopher M. Bishop 1995
⟡ Neural Networks for Pattern Recognition
 (http://www.engineering.upm.ro/master-ie/sacpi/mat_did/info068/docum/Neural%20Networks%20for%20Pattern%20Recognition.pdf) - Christopher M. Bishop 1995
⟡ Probabilistic Graphical Models: Principles and Techniques (http://pgm.stanford.edu/) - Daphne Koller and Nir Friedman 2009
⟡ Pattern Classification (http://www.amazon.com/Pattern-Classification-2nd-Richard-Duda/dp/0471056693) - Peter E. Hart, David G. Stork, and Richard O. Duda 2000
⟡ Machine Learning (http://www.amazon.com/Machine-Learning-Tom-M-Mitchell/dp/0070428077/) - Tom M. Mitchell 1997
@@ -264,18 +265,20 @@
 ⟡ Convex Optimization (http://videolectures.net/mlss07_vandenberghe_copt/?q=convex%20optimization) - Lieven Vandenberghe (University of California, Los Angeles)
 ⟡ Continuous Optimization in Computer Vision (https://www.youtube.com/watch?v=oZqoWozVDVg) - Andrew Fitzgibbon (Microsoft Research)
 ⟡ Beyond stochastic gradient descent for large-scale machine learning (http://videolectures.net/sahd2014_bach_stochastic_gradient/) - Francis Bach (INRIA)
 ⟡ Variational Methods for Computer Vision (https://www.youtube.com/playlist?list=PLTBdjV_4f-EJ7A2iIH5L5ztqqrWYjP2RI) - Daniel Cremers (Technische Universität München) (lecture 18 missing from playlist 
(https://www.youtube.com/watch?v=GgcbVPNd3SI))
 ⟡ Variational Methods for Computer Vision (https://www.youtube.com/playlist?list=PLTBdjV_4f-EJ7A2iIH5L5ztqqrWYjP2RI) - Daniel Cremers (Technische Universität München) (lecture 18 missing 
from playlist (https://www.youtube.com/watch?v=GgcbVPNd3SI))
Deep Learning
 ⟡ A tutorial on Deep Learning (http://videolectures.net/jul09_hinton_deeplearn/) - Geoffrey E. Hinton (University of Toronto)
 ⟡ Deep Learning (http://videolectures.net/kdd2014_salakhutdinov_deep_learning/?q=Hidden%20Markov%20model#) - Ruslan Salakhutdinov (University of Toronto)
 ⟡ Scaling up Deep Learning (http://videolectures.net/kdd2014_bengio_deep_learning/) - Yoshua Bengio (University of Montreal)
 ⟡ ImageNet Classification with Deep Convolutional Neural Networks (http://videolectures.net/machine_krizhevsky_imagenet_classification/?q=deep%20learning) - Alex Krizhevsky (University of Toronto)
 ⟡ ImageNet Classification with Deep Convolutional Neural Networks
 (http://videolectures.net/machine_krizhevsky_imagenet_classification/?q=deep%20learning) - Alex Krizhevsky (University of Toronto)
 ⟡ The Unreasonable Effectivness Of Deep Learning (http://videolectures.net/sahd2014_lecun_deep_learning/) Yann LeCun (NYU/Facebook Research) 2014
 ⟡ Deep Learning for Computer Vision (https://www.youtube.com/watch?v=qgx57X0fBdA) - Rob Fergus (NYU/Facebook Research)
 ⟡ High-dimensional learning with deep network contractions (http://videolectures.net/sahd2014_mallat_dimensional_learning/) - Stéphane Mallat (Ecole Normale Superieure)
 ⟡ Graduate Summer School 2012: Deep Learning, Feature Learning (http://www.ipam.ucla.edu/programs/summer-schools/graduate-summer-school-deep-learning-feature-learning/?tab=schedule) - IPAM, 2012
 ⟡ Graduate Summer School 2012: Deep Learning, Feature Learning
 (http://www.ipam.ucla.edu/programs/summer-schools/graduate-summer-school-deep-learning-feature-learning/?tab=schedule) - IPAM, 2012
 ⟡ Workshop on Big Data and Statistical Machine Learning (http://www.fields.utoronto.ca/programs/scientific/14-15/bigdata/machine/)
 ⟡ Machine Learning Summer School (https://www.youtube.com/channel/UC3ywjSv5OsDiDAnOP8C1NiQ) - Reykjavik, Iceland 2014
* **Deep Learning Session 1** (https://www.youtube.com/watch?v=JuimBuvEWBg) - Yoshua Bengio (Universtiy of Montreal)
@@ -370,19 +373,22 @@
 ⟡ Multi-frame image super-resolution (http://www.robots.ox.ac.uk/~vgg/software/SR/)
* Pickup, L. C. Machine Learning in Multi-frame Image Super-resolution, PhD thesis 2008
 ⟡ Markov Random Fields for Super-Resolution (http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%20Fields%20for%20Super-Resolution.html)
* W. T Freeman and C. Liu. Markov Random Fields for Super-resolution and Texture Synthesis. In A. Blake, P. Kohli, and C. Rother, eds., Advances in Markov Random Fields for Vision and Image Processing, Chapter 1 
0. MIT Press, 2011 
* W. T Freeman and C. Liu. Markov Random Fields for Super-resolution and Texture Synthesis. In A. Blake, P. Kohli, and C. Rother, eds., Advances in Markov Random Fields for Vision and Image P 
rocessing, Chapter 10. MIT Press, 2011 
 ⟡ Sparse regression and natural image prior (https://people.mpi-inf.mpg.de/~kkim/supres/supres.htm)
* K. I. Kim and Y. Kwon, "Single-image super-resolution using sparse regression and natural image prior", IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 6, pp. 1127-1133, 2010.
* K. I. Kim and Y. Kwon, "Single-image super-resolution using sparse regression and natural image prior", IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 6, pp. 1127-1133, 
 2010. 
 ⟡ Single-Image Super Resolution via a Statistical Model (http://www.cs.technion.ac.il/~elad/Various/SingleImageSR_TIP14_Box.zip)
* T. Peleg and M. Elad, A Statistical Prediction Model Based on Sparse Representations for Single Image Super-Resolution, IEEE Transactions on Image Processing, Vol. 23, No. 6, Pages 2569-2582, June 2014
* T. Peleg and M. Elad, A Statistical Prediction Model Based on Sparse Representations for Single Image Super-Resolution, IEEE Transactions on Image Processing, Vol. 23, No. 6, Pages 2569-258 
2, June 2014 
 ⟡ Sparse Coding for Super-Resolution (http://www.cs.technion.ac.il/~elad/Various/Single_Image_SR.zip)
* R. Zeyde, M. Elad, and M. Protter On Single Image Scale-Up using Sparse-Representations, Curves & Surfaces, Avignon-France, June 24-30, 2010 (appears also in Lecture-Notes-on-Computer-Science - LNCS).
* R. Zeyde, M. Elad, and M. Protter On Single Image Scale-Up using Sparse-Representations, Curves & Surfaces, Avignon-France, June 24-30, 2010 (appears also in Lecture-Notes-on-Computer-Scien 
ce - LNCS). 
 ⟡ Patch-wise Sparse Recovery (http://www.ifp.illinois.edu/~jyang29/ScSR.htm)
* Jianchao Yang, John Wright, Thomas Huang, and Yi Ma. Image super-resolution via sparse representation. IEEE Transactions on Image Processing (TIP), vol. 19, issue 11, 2010.
 ⟡ Neighbor embedding (http://www.jdl.ac.cn/user/hchang/doc/code.rar)
* H. Chang, D.Y. Yeung, Y. Xiong. Super-resolution through neighbor embedding. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol.1, pp.275-282, Washington 
, DC, USA, 27 June - 2 July 2004. 
* H. Chang, D.Y. Yeung, Y. Xiong. Super-resolution through neighbor embedding. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol.1, pp 
.275-282, Washington, DC, USA, 27 June - 2 July 2004. 
 ⟡ Deformable Patches (https://sites.google.com/site/yuzhushome/single-image-super-resolution-using-deformable-patches)
* Yu Zhu, Yanning Zhang and Alan Yuille, Single Image Super-resolution using Deformable Patches, CVPR 2014
 ⟡ SRCNN (http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html)
@@ -485,7 +491,8 @@
 ⟡ Segmentation by Transduction (http://www.cs.cmu.edu/~olivierd/)
Video Segmentation
 ⟡ Video Segmentation with Superpixels (http://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/image-and-video-segmentation/video-segmentation-with-superpixels/)
 ⟡ Video Segmentation with Superpixels
 (http://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/image-and-video-segmentation/video-segmentation-with-superpixels/)
 ⟡ Efficient hierarchical graph-based video segmentation (http://www.cc.gatech.edu/cpl/projects/videosegmentation/)
 ⟡ Object segmentation in video (http://lmb.informatik.uni-freiburg.de/Publications/2011/OB11/)
 ⟡ Streaming hierarchical video segmentation (http://www.cse.buffalo.edu/~jcorso/r/supervoxels/)
@@ -519,7 +526,8 @@
 ⟡ G2O: General framework for graph optomization (https://github.com/RainerKuemmerle/g2o)
Loop Closure:
 ⟡ FabMap: appearance-based loop closure system (http://www.robots.ox.ac.uk/~mjc/Software.htm) - also available in OpenCV2.4.11 (http://docs.opencv.org/2.4/modules/contrib/doc/openfabmap.html)
 ⟡ FabMap: appearance-based loop closure system (http://www.robots.ox.ac.uk/~mjc/Software.htm) - also available in OpenCV2.4.11 
(http://docs.opencv.org/2.4/modules/contrib/doc/openfabmap.html)
 ⟡ DBoW2: binary bag-of-words loop detection system (http://webdiis.unizar.es/~dorian/index.php?p=32)
Localization & Mapping: