Update render script and Makefile
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome Computer Vision: [0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mAwesome[0m[38;5;14m[1m[4m (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)[0m[38;2;255;187;0m[1m[4m (https://github.com/sindresorhus/awesome)[0m
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome Computer Vision: [0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mAwesome[0m[38;5;14m[1m[4m (https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)[0m[38;2;255;187;0m[1m[4m (https://github.com/sindresorhus/awesome)[0m
|
||||
[38;5;12mA curated list of awesome computer vision resources, inspired by [39m[38;5;14m[1mawesome-php[0m[38;5;12m (https://github.com/ziadoz/awesome-php).[39m
|
||||
|
||||
[38;5;12mFor a list people in computer vision listed with their academic genealogy, please visit [39m[38;5;14m[1mhere[0m[38;5;12m (https://github.com/jbhuang0604/awesome-computer-vision/blob/master/people.md)[39m
|
||||
@@ -99,12 +99,13 @@
|
||||
[38;2;255;187;0m[4mOpenCV Programming[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLearning OpenCV: Computer Vision with the OpenCV Library[0m[38;5;12m (http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134) - Gary Bradski and Adrian Kaehler[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPractical Python and OpenCV[0m[38;5;12m (https://www.pyimagesearch.com/practical-python-opencv/) - Adrian Rosebrock[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpenCV[0m[38;5;14m[1m [0m[38;5;14m[1mEssentials[0m[38;5;12m [39m[38;5;12m(http://www.amazon.com/OpenCV-Essentials-Oscar-Deniz-Suarez/dp/1783984244/ref=sr_1_1?s=books&ie=UTF8&qid=1424594237&sr=1-1&keywords=opencv+essentials#)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mOscar[39m[38;5;12m [39m[38;5;12mDeniz[39m[38;5;12m [39m[38;5;12mSuarez,[39m[38;5;12m [39m[38;5;12mMª[39m[38;5;12m [39m[38;5;12mdel[39m[38;5;12m [39m[38;5;12mMilagro[39m[38;5;12m [39m
|
||||
[38;5;12mFernandez[39m[38;5;12m [39m[38;5;12mCarrobles,[39m[38;5;12m [39m[38;5;12mNoelia[39m[38;5;12m [39m[38;5;12mVallez[39m[38;5;12m [39m[38;5;12mEnano,[39m[38;5;12m [39m[38;5;12mGloria[39m[38;5;12m [39m[38;5;12mBueno[39m[38;5;12m [39m[38;5;12mGarcia,[39m[38;5;12m [39m[38;5;12mIsmael[39m[38;5;12m [39m[38;5;12mSerrano[39m[38;5;12m [39m[38;5;12mGracia[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mOpenCV[0m[38;5;14m[1m [0m[38;5;14m[1mEssentials[0m[38;5;12m [39m[38;5;12m(http://www.amazon.com/OpenCV-Essentials-Oscar-Deniz-Suarez/dp/1783984244/ref=sr_1_1?s=books&ie=UTF8&qid=1424594237&sr=1-1&keywords=opencv+essentials#)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mOscar[39m[38;5;12m [39m[38;5;12mDeniz[39m[38;5;12m [39m
|
||||
[38;5;12mSuarez,[39m[38;5;12m [39m[38;5;12mMª[39m[38;5;12m [39m[38;5;12mdel[39m[38;5;12m [39m[38;5;12mMilagro[39m[38;5;12m [39m[38;5;12mFernandez[39m[38;5;12m [39m[38;5;12mCarrobles,[39m[38;5;12m [39m[38;5;12mNoelia[39m[38;5;12m [39m[38;5;12mVallez[39m[38;5;12m [39m[38;5;12mEnano,[39m[38;5;12m [39m[38;5;12mGloria[39m[38;5;12m [39m[38;5;12mBueno[39m[38;5;12m [39m[38;5;12mGarcia,[39m[38;5;12m [39m[38;5;12mIsmael[39m[38;5;12m [39m[38;5;12mSerrano[39m[38;5;12m [39m[38;5;12mGracia[39m
|
||||
|
||||
[38;2;255;187;0m[4mMachine Learning[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPattern Recognition and Machine Learning[0m[38;5;12m (http://research.microsoft.com/en-us/um/people/cmbishop/prml/index.htm) - Christopher M. Bishop 2007[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeural Networks for Pattern Recognition[0m[38;5;12m (http://www.engineering.upm.ro/master-ie/sacpi/mat_did/info068/docum/Neural%20Networks%20for%20Pattern%20Recognition.pdf) - Christopher M. Bishop 1995[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeural Networks for Pattern Recognition[0m
|
||||
[38;5;12m (http://www.engineering.upm.ro/master-ie/sacpi/mat_did/info068/docum/Neural%20Networks%20for%20Pattern%20Recognition.pdf) - Christopher M. Bishop 1995[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mProbabilistic Graphical Models: Principles and Techniques[0m[38;5;12m (http://pgm.stanford.edu/) - Daphne Koller and Nir Friedman 2009[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPattern Classification[0m[38;5;12m (http://www.amazon.com/Pattern-Classification-2nd-Richard-Duda/dp/0471056693) - Peter E. Hart, David G. Stork, and Richard O. Duda 2000[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMachine Learning[0m[38;5;12m (http://www.amazon.com/Machine-Learning-Tom-M-Mitchell/dp/0070428077/) - Tom M. Mitchell 1997[39m
|
||||
@@ -264,18 +265,20 @@
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mConvex Optimization[0m[38;5;12m (http://videolectures.net/mlss07_vandenberghe_copt/?q=convex%20optimization) - Lieven Vandenberghe (University of California, Los Angeles)[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mContinuous Optimization in Computer Vision[0m[38;5;12m (https://www.youtube.com/watch?v=oZqoWozVDVg) - Andrew Fitzgibbon (Microsoft Research)[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mBeyond stochastic gradient descent for large-scale machine learning[0m[38;5;12m (http://videolectures.net/sahd2014_bach_stochastic_gradient/) - Francis Bach (INRIA)[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVariational[0m[38;5;14m[1m [0m[38;5;14m[1mMethods[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mComputer[0m[38;5;14m[1m [0m[38;5;14m[1mVision[0m[38;5;12m [39m[38;5;12m(https://www.youtube.com/playlist?list=PLTBdjV_4f-EJ7A2iIH5L5ztqqrWYjP2RI)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mDaniel[39m[38;5;12m [39m[38;5;12mCremers[39m[38;5;12m [39m[38;5;12m(Technische[39m[38;5;12m [39m[38;5;12mUniversität[39m[38;5;12m [39m[38;5;12mMünchen)[39m[38;5;12m [39m[38;5;12m([39m[38;5;14m[1mlecture[0m[38;5;14m[1m [0m[38;5;14m[1m18[0m[38;5;14m[1m [0m[38;5;14m[1mmissing[0m[38;5;14m[1m [0m[38;5;14m[1mfrom[0m[38;5;14m[1m [0m[38;5;14m[1mplaylist[0m[38;5;12m [39m
|
||||
[38;5;12m(https://www.youtube.com/watch?v=GgcbVPNd3SI))[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVariational[0m[38;5;14m[1m [0m[38;5;14m[1mMethods[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mComputer[0m[38;5;14m[1m [0m[38;5;14m[1mVision[0m[38;5;12m [39m[38;5;12m(https://www.youtube.com/playlist?list=PLTBdjV_4f-EJ7A2iIH5L5ztqqrWYjP2RI)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mDaniel[39m[38;5;12m [39m[38;5;12mCremers[39m[38;5;12m [39m[38;5;12m(Technische[39m[38;5;12m [39m[38;5;12mUniversität[39m[38;5;12m [39m[38;5;12mMünchen)[39m[38;5;12m [39m[38;5;12m([39m[38;5;14m[1mlecture[0m[38;5;14m[1m [0m[38;5;14m[1m18[0m[38;5;14m[1m [0m[38;5;14m[1mmissing[0m[38;5;14m[1m [0m
|
||||
[38;5;14m[1mfrom[0m[38;5;14m[1m [0m[38;5;14m[1mplaylist[0m[38;5;12m [39m[38;5;12m(https://www.youtube.com/watch?v=GgcbVPNd3SI))[39m
|
||||
|
||||
[38;2;255;187;0m[4mDeep Learning[0m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mA tutorial on Deep Learning[0m[38;5;12m (http://videolectures.net/jul09_hinton_deeplearn/) - Geoffrey E. Hinton (University of Toronto)[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeep Learning[0m[38;5;12m (http://videolectures.net/kdd2014_salakhutdinov_deep_learning/?q=Hidden%20Markov%20model#) - Ruslan Salakhutdinov (University of Toronto)[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mScaling up Deep Learning[0m[38;5;12m (http://videolectures.net/kdd2014_bengio_deep_learning/) - Yoshua Bengio (University of Montreal)[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mImageNet Classification with Deep Convolutional Neural Networks[0m[38;5;12m (http://videolectures.net/machine_krizhevsky_imagenet_classification/?q=deep%20learning) - Alex Krizhevsky (University of Toronto)[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mImageNet Classification with Deep Convolutional Neural Networks[0m
|
||||
[38;5;12m (http://videolectures.net/machine_krizhevsky_imagenet_classification/?q=deep%20learning) - Alex Krizhevsky (University of Toronto)[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mThe Unreasonable Effectivness Of Deep Learning[0m[38;5;12m (http://videolectures.net/sahd2014_lecun_deep_learning/) Yann LeCun (NYU/Facebook Research) 2014[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeep Learning for Computer Vision[0m[38;5;12m (https://www.youtube.com/watch?v=qgx57X0fBdA) - Rob Fergus (NYU/Facebook Research)[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mHigh-dimensional learning with deep network contractions[0m[38;5;12m (http://videolectures.net/sahd2014_mallat_dimensional_learning/) - Stéphane Mallat (Ecole Normale Superieure)[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGraduate Summer School 2012: Deep Learning, Feature Learning[0m[38;5;12m (http://www.ipam.ucla.edu/programs/summer-schools/graduate-summer-school-deep-learning-feature-learning/?tab=schedule) - IPAM, 2012[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mGraduate Summer School 2012: Deep Learning, Feature Learning[0m
|
||||
[38;5;12m (http://www.ipam.ucla.edu/programs/summer-schools/graduate-summer-school-deep-learning-feature-learning/?tab=schedule) - IPAM, 2012[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mWorkshop on Big Data and Statistical Machine Learning[0m[38;5;12m (http://www.fields.utoronto.ca/programs/scientific/14-15/bigdata/machine/)[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMachine Learning Summer School[0m[38;5;12m (https://www.youtube.com/channel/UC3ywjSv5OsDiDAnOP8C1NiQ) - Reykjavik, Iceland 2014[39m
|
||||
[48;5;235m[38;5;249m* **Deep Learning Session 1** (https://www.youtube.com/watch?v=JuimBuvEWBg) - Yoshua Bengio (Universtiy of Montreal)[49m[39m
|
||||
@@ -370,19 +373,22 @@
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMulti-frame image super-resolution[0m[38;5;12m (http://www.robots.ox.ac.uk/~vgg/software/SR/)[39m
|
||||
[48;5;235m[38;5;249m* Pickup, L. C. Machine Learning in Multi-frame Image Super-resolution, PhD thesis 2008[49m[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mMarkov Random Fields for Super-Resolution[0m[38;5;12m (http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%20Fields%20for%20Super-Resolution.html)[39m
|
||||
[48;5;235m[38;5;249m* W. T Freeman and C. Liu. Markov Random Fields for Super-resolution and Texture Synthesis. In A. Blake, P. Kohli, and C. Rother, eds., Advances in Markov Random Fields for Vision and Image Processing, Chapter 1[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[48;5;235m[38;5;249m0. MIT Press, 2011[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[48;5;235m[38;5;249m* W. T Freeman and C. Liu. Markov Random Fields for Super-resolution and Texture Synthesis. In A. Blake, P. Kohli, and C. Rother, eds., Advances in Markov Random Fields for Vision and Image P[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[48;5;235m[38;5;249mrocessing, Chapter 10. MIT Press, 2011[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSparse regression and natural image prior[0m[38;5;12m (https://people.mpi-inf.mpg.de/~kkim/supres/supres.htm)[39m
|
||||
[48;5;235m[38;5;249m* K. I. Kim and Y. Kwon, "Single-image super-resolution using sparse regression and natural image prior", IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 6, pp. 1127-1133, 2010.[49m[39m
|
||||
[48;5;235m[38;5;249m* K. I. Kim and Y. Kwon, "Single-image super-resolution using sparse regression and natural image prior", IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 6, pp. 1127-1133,[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[48;5;235m[38;5;249m 2010.[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSingle-Image Super Resolution via a Statistical Model[0m[38;5;12m (http://www.cs.technion.ac.il/~elad/Various/SingleImageSR_TIP14_Box.zip)[39m
|
||||
[48;5;235m[38;5;249m* T. Peleg and M. Elad, A Statistical Prediction Model Based on Sparse Representations for Single Image Super-Resolution, IEEE Transactions on Image Processing, Vol. 23, No. 6, Pages 2569-2582, June 2014[49m[39m
|
||||
[48;5;235m[38;5;249m* T. Peleg and M. Elad, A Statistical Prediction Model Based on Sparse Representations for Single Image Super-Resolution, IEEE Transactions on Image Processing, Vol. 23, No. 6, Pages 2569-258[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[48;5;235m[38;5;249m2, June 2014[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSparse Coding for Super-Resolution[0m[38;5;12m (http://www.cs.technion.ac.il/~elad/Various/Single_Image_SR.zip)[39m
|
||||
[48;5;235m[38;5;249m* R. Zeyde, M. Elad, and M. Protter On Single Image Scale-Up using Sparse-Representations, Curves & Surfaces, Avignon-France, June 24-30, 2010 (appears also in Lecture-Notes-on-Computer-Science - LNCS).[49m[39m
|
||||
[48;5;235m[38;5;249m* R. Zeyde, M. Elad, and M. Protter On Single Image Scale-Up using Sparse-Representations, Curves & Surfaces, Avignon-France, June 24-30, 2010 (appears also in Lecture-Notes-on-Computer-Scien[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[48;5;235m[38;5;249mce - LNCS).[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mPatch-wise Sparse Recovery[0m[38;5;12m (http://www.ifp.illinois.edu/~jyang29/ScSR.htm)[39m
|
||||
[48;5;235m[38;5;249m* Jianchao Yang, John Wright, Thomas Huang, and Yi Ma. Image super-resolution via sparse representation. IEEE Transactions on Image Processing (TIP), vol. 19, issue 11, 2010.[49m[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mNeighbor embedding[0m[38;5;12m (http://www.jdl.ac.cn/user/hchang/doc/code.rar)[39m
|
||||
[48;5;235m[38;5;249m* H. Chang, D.Y. Yeung, Y. Xiong. Super-resolution through neighbor embedding. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol.1, pp.275-282, Washington[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[48;5;235m[38;5;249m, DC, USA, 27 June - 2 July 2004.[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[48;5;235m[38;5;249m* H. Chang, D.Y. Yeung, Y. Xiong. Super-resolution through neighbor embedding. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol.1, pp[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[48;5;235m[38;5;249m.275-282, Washington, DC, USA, 27 June - 2 July 2004.[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDeformable Patches[0m[38;5;12m (https://sites.google.com/site/yuzhushome/single-image-super-resolution-using-deformable-patches)[39m
|
||||
[48;5;235m[38;5;249m* Yu Zhu, Yanning Zhang and Alan Yuille, Single Image Super-resolution using Deformable Patches, CVPR 2014[49m[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSRCNN[0m[38;5;12m (http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html)[39m
|
||||
@@ -485,7 +491,8 @@
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mSegmentation by Transduction[0m[38;5;12m (http://www.cs.cmu.edu/~olivierd/)[39m
|
||||
|
||||
[38;2;255;187;0m[4mVideo Segmentation[0m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVideo Segmentation with Superpixels[0m[38;5;12m (http://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/image-and-video-segmentation/video-segmentation-with-superpixels/)[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mVideo Segmentation with Superpixels[0m
|
||||
[38;5;12m (http://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/image-and-video-segmentation/video-segmentation-with-superpixels/)[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mEfficient hierarchical graph-based video segmentation[0m[38;5;12m (http://www.cc.gatech.edu/cpl/projects/videosegmentation/)[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mObject segmentation in video[0m[38;5;12m (http://lmb.informatik.uni-freiburg.de/Publications/2011/OB11/)[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mStreaming hierarchical video segmentation[0m[38;5;12m (http://www.cse.buffalo.edu/~jcorso/r/supervoxels/)[39m
|
||||
@@ -519,7 +526,8 @@
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mG2O: General framework for graph optomization[0m[38;5;12m (https://github.com/RainerKuemmerle/g2o)[39m
|
||||
|
||||
[38;2;255;187;0m[4mLoop Closure:[0m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFabMap: appearance-based loop closure system[0m[38;5;12m (http://www.robots.ox.ac.uk/~mjc/Software.htm) - also available in [39m[38;5;14m[1mOpenCV2.4.11[0m[38;5;12m (http://docs.opencv.org/2.4/modules/contrib/doc/openfabmap.html)[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mFabMap:[0m[38;5;14m[1m [0m[38;5;14m[1mappearance-based[0m[38;5;14m[1m [0m[38;5;14m[1mloop[0m[38;5;14m[1m [0m[38;5;14m[1mclosure[0m[38;5;14m[1m [0m[38;5;14m[1msystem[0m[38;5;12m [39m[38;5;12m(http://www.robots.ox.ac.uk/~mjc/Software.htm)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mavailable[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;14m[1mOpenCV2.4.11[0m[38;5;12m [39m
|
||||
[38;5;12m(http://docs.opencv.org/2.4/modules/contrib/doc/openfabmap.html)[39m
|
||||
[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mDBoW2: binary bag-of-words loop detection system[0m[38;5;12m (http://webdiis.unizar.es/~dorian/index.php?p=32)[39m
|
||||
|
||||
[38;2;255;187;0m[4mLocalization & Mapping:[0m
|
||||
|
||||
Reference in New Issue
Block a user