Rendered
This commit is contained in:
349
terminal/qa
Normal file
349
terminal/qa
Normal file
@@ -0,0 +1,349 @@
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome Question Answering [0m[38;5;14m[1m[4m![0m[38;2;255;187;0m[1m[4mAwesome[0m[38;5;14m[1m[4m (https://awesome.re/badge.svg)[0m[38;2;255;187;0m[1m[4m (https://github.com/sindresorhus/awesome) [0m
|
||||
|
||||
[38;5;12m_A[39m[38;5;12m [39m[38;5;12mcurated[39m[38;5;12m [39m[38;5;12mlist[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12m__[39m[38;5;14m[1mQuestion[0m[38;5;14m[1m [0m[38;5;14m[1mAnswering[0m[38;5;14m[1m [0m[38;5;14m[1m(QA)[0m[38;5;12m [39m[38;5;12m(https://en.wikipedia.org/wiki/Question_answering)__[39m[38;5;12m [39m[38;5;12msubject[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcomputer[39m[38;5;12m [39m[38;5;12mscience[39m[38;5;12m [39m[38;5;12mdiscipline[39m[38;5;12m [39m[38;5;12mwithin[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mfields[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12minformation[39m[38;5;12m [39m[38;5;12mretrieval[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mnatural[39m[38;5;12m [39m
|
||||
[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12mprocessing[39m[38;5;12m [39m[38;5;12m(NLP)[39m[38;5;12m [39m[38;5;12mtoward[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mmachine[39m[38;5;12m [39m[38;5;12mlearning[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mlearning_[39m
|
||||
|
||||
[38;5;12m_정보 검색 및 자연 언어 처리 분야의 질의응답에 관한 큐레이션 - 머신러닝과 딥러닝 단계까지_[39m
|
||||
[38;5;12m_问答系统主题的精选列表,是信息检索和自然语言处理领域的计算机科学学科 - 使用机器学习和深度学习_[39m
|
||||
|
||||
[38;2;255;187;0m[4mContents[0m
|
||||
|
||||
|
||||
|
||||
|
||||
[38;5;12m- [39m[38;5;14m[1mRecent Trends[0m[38;5;12m (#recent-trends)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mAbout QA[0m[38;5;12m (#about-qa)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mEvents[0m[38;5;12m (#events)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mSystems[0m[38;5;12m (#systems)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mCompetitions in QA[0m[38;5;12m (#competitions-in-qa)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mPublications[0m[38;5;12m (#publications)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mCodes[0m[38;5;12m (#codes)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mLectures[0m[38;5;12m (#lectures)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mSlides[0m[38;5;12m (#slides)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mDataset Collections[0m[38;5;12m (#dataset-collections)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mDatasets[0m[38;5;12m (#datasets)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mBooks[0m[38;5;12m (#books)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mLinks[0m[38;5;12m (#links)[39m
|
||||
|
||||
|
||||
|
||||
[38;2;255;187;0m[4mRecent Trends[0m
|
||||
[38;2;255;187;0m[4mRecent QA Models[0m
|
||||
[38;5;12m- DilBert: Delaying Interaction Layers in Transformer-based Encoders for Efficient Open Domain Question Answering (2020)[39m
|
||||
[38;5;12m - paper: https://arxiv.org/pdf/2010.08422.pdf[39m
|
||||
[38;5;12m - github: https://github.com/wissam-sib/dilbert[39m
|
||||
[38;5;12m- UnifiedQA: Crossing Format Boundaries With a Single QA System (2020)[39m
|
||||
[38;5;12m - Demo: https://unifiedqa.apps.allenai.org/[39m
|
||||
[38;5;12m- ProQA: Resource-efficient method for pretraining a dense corpus index for open-domain QA and IR. (2020)[39m
|
||||
[38;5;12m - paper: https://arxiv.org/pdf/2005.00038.pdf[39m
|
||||
[38;5;12m - github: https://github.com/xwhan/ProQA[39m
|
||||
[38;5;12m- TYDI QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages (2020)[39m
|
||||
[38;5;12m - paper: https://arxiv.org/ftp/arxiv/papers/2003/2003.05002.pdf[39m
|
||||
[38;5;12m- Retrospective Reader for Machine Reading Comprehension[39m
|
||||
[38;5;12m - paper: https://arxiv.org/pdf/2001.09694v2.pdf[39m
|
||||
[38;5;12m- TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection (AAAI 2020)[39m
|
||||
[38;5;12m - paper: https://arxiv.org/pdf/1911.04118.pdf[39m
|
||||
[38;2;255;187;0m[4mRecent Language Models[0m
|
||||
[38;5;12m- [39m[38;5;14m[1mELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators[0m[38;5;12m (https://openreview.net/pdf?id=r1xMH1BtvB), Kevin Clark, et al., ICLR, 2020.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mTinyBERT: Distilling BERT for Natural Language Understanding[0m[38;5;12m (https://openreview.net/pdf?id=rJx0Q6EFPB), Xiaoqi Jiao, et al., ICLR, 2020.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mMINILM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers[0m[38;5;12m (https://arxiv.org/abs/2002.10957), Wenhui Wang, et al., arXiv, 2020.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mT5: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer[0m[38;5;12m (https://arxiv.org/abs/1910.10683), Colin Raffel, et al., arXiv preprint, 2019.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mERNIE: Enhanced Language Representation with Informative Entities[0m[38;5;12m (https://arxiv.org/abs/1905.07129), Zhengyan Zhang, et al., ACL, 2019.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mXLNet: Generalized Autoregressive Pretraining for Language Understanding[0m[38;5;12m (https://arxiv.org/abs/1906.08237), Zhilin Yang, et al., arXiv preprint, 2019.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mALBERT: A Lite BERT for Self-supervised Learning of Language Representations[0m[38;5;12m (https://arxiv.org/abs/1909.11942), Zhenzhong Lan, et al., arXiv preprint, 2019.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mRoBERTa: A Robustly Optimized BERT Pretraining Approach[0m[38;5;12m (https://arxiv.org/abs/1907.11692), Yinhan Liu, et al., arXiv preprint, 2019.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mDistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter[0m[38;5;12m (https://arxiv.org/pdf/1910.01108.pdf), Victor sanh, et al., arXiv, 2019.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mSpanBERT: Improving Pre-training by Representing and Predicting Spans[0m[38;5;12m (https://arxiv.org/pdf/1907.10529v3.pdf), Mandar Joshi, et al., TACL, 2019.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mBERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[0m[38;5;12m (https://arxiv.org/abs/1810.04805), Jacob Devlin, et al., NAACL 2019, 2018.[39m
|
||||
[38;2;255;187;0m[4mAAAI 2020[0m
|
||||
[38;5;12m - [39m[38;5;14m[1mTANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection[0m[38;5;12m (https://arxiv.org/pdf/1911.04118.pdf), Siddhant Garg, et al., AAAI 2020, Nov 2019.[39m
|
||||
[38;2;255;187;0m[4mACL 2019[0m
|
||||
[38;5;12m - [39m[38;5;14m[1mOverview of the MEDIQA 2019 Shared Task on Textual Inference,[0m
|
||||
[38;5;12mQuestion Entailment and Question Answering[39m[38;5;14m[1m (https://www.aclweb.org/anthology/W19-5039), Asma Ben Abacha, et al., ACL-W 2019, Aug 2019.[0m
|
||||
[38;5;12m - [39m[38;5;14m[1mTowards Scalable and Reliable Capsule Networks for Challenging NLP Applications[0m[38;5;12m (https://arxiv.org/pdf/1906.02829v1.pdf), Wei Zhao, et al., ACL 2019, Jun 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mCognitive Graph for Multi-Hop Reading Comprehension at Scale[0m[38;5;12m (https://arxiv.org/pdf/1905.05460v2.pdf), Ming Ding, et al., ACL 2019, Jun 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mReal-Time Open-Domain Question Answering with Dense-Sparse Phrase Index[0m[38;5;12m (https://arxiv.org/abs/1906.05807), Minjoon Seo, et al., ACL 2019, Jun 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mUnsupervised Question Answering by Cloze Translation[0m[38;5;12m (https://arxiv.org/abs/1906.04980), Patrick Lewis, et al., ACL 2019, Jun 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mSemEval-2019 Task 10: Math Question Answering[0m[38;5;12m (https://www.aclweb.org/anthology/S19-2153), Mark Hopkins, et al., ACL-W 2019, Jun 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mImproving Question Answering over Incomplete KBs with Knowledge-Aware Reader[0m[38;5;12m (https://arxiv.org/abs/1905.07098), Wenhan Xiong, et al., ACL 2019, May 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mMatching Article Pairs with Graphical Decomposition and Convolutions[0m[38;5;12m (https://arxiv.org/pdf/1802.07459v2.pdf), Bang Liu, et al., ACL 2019, May 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mEpisodic Memory Reader: Learning what to Remember for Question Answering from Streaming Data[0m[38;5;12m (https://arxiv.org/abs/1903.06164), Moonsu Han, et al., ACL 2019, Mar 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mNatural Questions: a Benchmark for Question Answering Research[0m[38;5;12m (https://ai.google/research/pubs/pub47761), Tom Kwiatkowski, et al., TACL 2019, Jan 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mTextbook Question Answering with Multi-modal Context Graph Understanding and Self-supervised Open-set Comprehension[0m[38;5;12m (https://arxiv.org/abs/1811.00232), Daesik Kim, et al., ACL 2019, Nov 2018.[39m
|
||||
[38;2;255;187;0m[4mEMNLP-IJCNLP 2019[0m
|
||||
[38;5;12m - [39m[38;5;14m[1mLanguage Models as Knowledge Bases?[0m[38;5;12m (https://arxiv.org/pdf/1909.01066v2.pdf), Fabio Petron, et al., EMNLP-IJCNLP 2019, Sep 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mLXMERT: Learning Cross-Modality Encoder Representations from Transformers[0m[38;5;12m (https://arxiv.org/pdf/1908.07490v3.pdf), Hao Tan, et al., EMNLP-IJCNLP 2019, Dec 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mAnswering Complex Open-domain Questions Through Iterative Query Generation[0m[38;5;12m (https://arxiv.org/pdf/1910.07000v1.pdf), Peng Qi, et al., EMNLP-IJCNLP 2019, Oct 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mKagNet: Knowledge-Aware Graph Networks for Commonsense Reasoning[0m[38;5;12m (https://arxiv.org/pdf/1909.02151v1.pdf), Bill Yuchen Lin, et al., EMNLP-IJCNLP 2019, Sep 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mMixture Content Selection for Diverse Sequence Generation[0m[38;5;12m (https://arxiv.org/pdf/1909.01953v1.pdf), Jaemin Cho, et al., EMNLP-IJCNLP 2019, Sep 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mA Discrete Hard EM Approach for Weakly Supervised Question Answering[0m[38;5;12m (https://arxiv.org/pdf/1909.04849v1.pdf), Sewon Min, et al., EMNLP-IJCNLP, 2019, Sep 2019.[39m
|
||||
[38;2;255;187;0m[4mArxiv[0m
|
||||
[38;5;12m - [39m[38;5;14m[1mInvestigating the Successes and Failures of BERT for Passage Re-Ranking[0m[38;5;12m (https://arxiv.org/abs/1905.01758), Harshith Padigela, et al., arXiv preprint, May 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mBERT with History Answer Embedding for Conversational Question Answering[0m[38;5;12m (https://arxiv.org/abs/1905.05412), Chen Qu, et al., arXiv preprint, May 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mUnderstanding the Behaviors of BERT in Ranking[0m[38;5;12m (https://arxiv.org/abs/1904.07531), Yifan Qiao, et al., arXiv preprint, Apr 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mBERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis[0m[38;5;12m (https://arxiv.org/abs/1904.02232), Hu Xu, et al., arXiv preprint, Apr 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mEnd-to-End Open-Domain Question Answering with BERTserini[0m[38;5;12m (https://arxiv.org/abs/1902.01718), Wei Yang, et al., arXiv preprint, Feb 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mA BERT Baseline for the Natural Questions[0m[38;5;12m (https://arxiv.org/abs/1901.08634), Chris Alberti, et al., arXiv preprint, Jan 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mPassage Re-ranking with BERT[0m[38;5;12m (https://arxiv.org/abs/1901.04085), Rodrigo Nogueira, et al., arXiv preprint, Jan 2019.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mSDNet: Contextualized Attention-based Deep Network for Conversational Question Answering[0m[38;5;12m (https://arxiv.org/abs/1812.03593), Chenguang Zhu, et al., arXiv, Dec 2018.[39m
|
||||
[38;2;255;187;0m[4mDataset[0m
|
||||
[38;5;12m - [39m[38;5;14m[1mELI5: Long Form Question Answering[0m[38;5;12m (https://arxiv.org/abs/1907.09190), Angela Fan, et al., ACL 2019, Jul 2019[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mCODAH: An Adversarially-Authored Question Answering Dataset for[0m
|
||||
[38;5;12mCommon Sense[39m[38;5;14m[1m (https://www.aclweb.org/anthology/W19-2008.pdf), Michael Chen, et al., RepEval 2019, Jun 2019.[0m
|
||||
[38;5;12m [39m
|
||||
[38;2;255;187;0m[4mAbout QA[0m
|
||||
[38;2;255;187;0m[4mTypes of QA[0m
|
||||
[38;5;12m- Single-turn QA: answer without considering any context[39m
|
||||
[38;5;12m- Conversational QA: use previsous conversation turns[39m
|
||||
[38;2;255;187;0m[4mSubtypes of QA[0m
|
||||
[38;5;12m- Knowledge-based QA[39m
|
||||
[38;5;12m- Table/List-based QA[39m
|
||||
[38;5;12m- Text-based QA[39m
|
||||
[38;5;12m- Community-based QA[39m
|
||||
[38;5;12m- Visual QA[39m
|
||||
|
||||
[38;2;255;187;0m[4mAnalysis and Parsing for Pre-processing in QA systems[0m
|
||||
[38;5;12mLanugage Analysis[39m
|
||||
[38;5;12m 1. [39m[38;5;14m[1mMorphological analysis[0m[38;5;12m (https://www.cs.bham.ac.uk/~pjh/sem1a5/pt2/pt2_intro_morphology.html)[39m
|
||||
[38;5;12m 2. [39m[38;5;14m[1mNamed Entity Recognition(NER)[0m[38;5;12m (mds/named-entity-recognition.md)[39m
|
||||
[38;5;12m 3. Homonyms / Polysemy Analysis[39m
|
||||
[38;5;12m 4. Syntactic Parsing (Dependency Parsing)[39m
|
||||
[38;5;12m 5. Semantic Recognition[39m
|
||||
|
||||
[38;2;255;187;0m[4mMost QA systems have roughly 3 parts[0m
|
||||
[38;5;12m1. Fact extraction [39m
|
||||
[48;5;235m[38;5;249m1. Entity Extraction [49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[48;5;235m[38;5;249m 1. **Named-Entity Recognition(NER)** (mds/named-entity-recognition.md)[49m[39m
|
||||
[48;5;235m[38;5;249m2. **Relation Extraction** (mds/relation-extraction.md) [49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[38;5;12m2. Understanding the question[39m
|
||||
[38;5;12m3. Generating an answer[39m
|
||||
|
||||
[38;2;255;187;0m[4mEvents[0m
|
||||
[38;5;12m- Wolfram Alpha launced the answer engine in 2009.[39m
|
||||
[38;5;12m- IBM Watson system defeated top [39m[48;2;30;30;40m[38;5;14m[1m[3mJeopardy![0m[48;2;30;30;40m[38;5;13m[3m (https://www.jeopardy.com)[0m[38;5;12m champions in 2011.[39m
|
||||
[38;5;12m- Apple's Siri integrated Wolfram Alpha's answer engine in 2011.[39m
|
||||
[38;5;12m- Google embraced QA by launching its Knowledge Graph, leveraging the free base knowledge base in 2012.[39m
|
||||
[38;5;12m- Amazon Echo | Alexa (2015), Google Home | Google Assistant (2016), INVOKE | MS Cortana (2017), HomePod (2017)[39m
|
||||
|
||||
[38;2;255;187;0m[4mSystems[0m
|
||||
[38;5;12m- [39m[38;5;14m[1mIBM Watson[0m[38;5;12m (https://www.ibm.com/watson/) - Has state-of-the-arts performance. [39m
|
||||
[38;5;12m- [39m[38;5;14m[1mFacebook DrQA[0m[38;5;12m (https://research.fb.com/downloads/drqa/) - Applied to the SQuAD1.0 dataset. The SQuAD2.0 dataset has released. but DrQA is not tested yet.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mMIT media lab's Knowledge graph[0m[38;5;12m (http://conceptnet.io/) - Is a freely-available semantic network, designed to help computers understand the meanings of words that people use.[39m
|
||||
|
||||
[38;2;255;187;0m[4mCompetitions in QA[0m
|
||||
|
||||
[38;5;239m│[39m[38;5;12m [39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m [39m[38;5;12mDataset[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mLanguage[39m[38;5;239m│[39m[38;5;12m [39m[38;5;12mOrganizer[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mSince[39m[38;5;239m│[39m[38;5;12m [39m[38;5;12mTop Rank[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m [39m[38;5;12mModel[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mStatus[39m[38;5;239m│[39m[38;5;12mOver Human Performance[39m[38;5;239m│[39m
|
||||
[38;5;239m├[39m[38;5;239m───[39m[38;5;239m┼[39m[38;5;239m────────────────────────────────────────────────────────────────────────────[39m[38;5;239m┼[39m[38;5;239m────────[39m[38;5;239m┼[39m[38;5;239m───────────────────[39m[38;5;239m┼[39m[38;5;239m─────[39m[38;5;239m┼[39m[38;5;239m───────────────────────────[39m[38;5;239m┼[39m[38;5;239m───────────────────────────────────[39m[38;5;239m┼[39m[38;5;239m──────[39m[38;5;239m┼[39m[38;5;239m──────────────────────[39m[38;5;239m┤[39m
|
||||
[38;5;239m│[39m[38;5;12m0[39m[38;5;12m [39m[38;5;239m│[39m[38;5;14m[1mStory Cloze Test[0m[38;5;12m [39m[38;5;239m│[39m[38;5;12mEnglish[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mUniv. of Rochester[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m2016[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mmsap[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mLogistic regression[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mClosed[39m[38;5;239m│[39m[38;5;12mx[39m[38;5;12m [39m[38;5;239m│[39m
|
||||
[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m (http://cs.rochester.edu/~nasrinm/files/Papers/lsdsem17-shared-task.pdf)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m [39m[38;5;239m│[39m
|
||||
[38;5;239m│[39m[38;5;12m1[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mMS MARCO[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mEnglish[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mMicrosoft[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m2016[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mYUANFUDAO research NLP[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mMARS[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mClosed[39m[38;5;239m│[39m[38;5;12mo[39m[38;5;12m [39m[38;5;239m│[39m
|
||||
[38;5;239m│[39m[38;5;12m2[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mMS MARCO V2[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mEnglish[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mMicrosoft[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m2018[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mNTT Media Intelli. Lab.[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mMasque Q&A Style[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mOpened[39m[38;5;239m│[39m[38;5;12mx[39m[38;5;12m [39m[38;5;239m│[39m
|
||||
[38;5;239m│[39m[38;5;12m3[39m[38;5;12m [39m[38;5;239m│[39m[38;5;14m[1mSQuAD[0m[38;5;12m (https://arxiv.org/abs/1606.05250)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mEnglish[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mUniv. of Stanford[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m2018[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mXLNet (single model)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mXLNet Team[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mClosed[39m[38;5;239m│[39m[38;5;12mo[39m[38;5;12m [39m[38;5;239m│[39m
|
||||
[38;5;239m│[39m[38;5;12m4[39m[38;5;12m [39m[38;5;239m│[39m[38;5;14m[1mSQuAD 2.0[0m[38;5;12m (https://rajpurkar.github.io/SQuAD-explorer/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mEnglish[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mUniv. of Stanford[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m2018[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mPINGAN Omni-Sinitic[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mALBERT + DAAF + Verifier (ensemble)[39m[38;5;239m│[39m[38;5;12mOpened[39m[38;5;239m│[39m[38;5;12mo[39m[38;5;12m [39m[38;5;239m│[39m
|
||||
[38;5;239m│[39m[38;5;12m5[39m[38;5;12m [39m[38;5;239m│[39m[38;5;14m[1mTriviaQA[0m[38;5;12m (http://nlp.cs.washington.edu/triviaqa/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mEnglish[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mUniv. of Washington[39m[38;5;239m│[39m[38;5;12m2017[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mMing Yan[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m-[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mClosed[39m[38;5;239m│[39m[38;5;12m-[39m[38;5;12m [39m[38;5;239m│[39m
|
||||
[38;5;239m│[39m[38;5;12m6[39m[38;5;12m [39m[38;5;239m│[39m[38;5;14m[1mdecaNLP[0m[38;5;12m (https://decanlp.com/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mEnglish[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mSalesforce Research[39m[38;5;239m│[39m[38;5;12m2018[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mSalesforce Research[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mMQAN[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mClosed[39m[38;5;239m│[39m[38;5;12mx[39m[38;5;12m [39m[38;5;239m│[39m
|
||||
[38;5;239m│[39m[38;5;12m7[39m[38;5;12m [39m[38;5;239m│[39m[38;5;14m[1mDuReader Ver1.[0m[38;5;12m (https://ai.baidu.com/broad/introduction)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mChinese[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mBaidu[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m2015[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mTryer[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mT-Reader (single)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mClosed[39m[38;5;239m│[39m[38;5;12mx[39m[38;5;12m [39m[38;5;239m│[39m
|
||||
[38;5;239m│[39m[38;5;12m8[39m[38;5;12m [39m[38;5;239m│[39m[38;5;14m[1mDuReader Ver2.[0m[38;5;12m (https://ai.baidu.com/broad/introduction)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mChinese[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mBaidu[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m2017[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mrenaissance[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mAliReader[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mOpened[39m[38;5;239m│[39m[38;5;12m-[39m[38;5;12m [39m[38;5;239m│[39m
|
||||
[38;5;239m│[39m[38;5;12m9[39m[38;5;12m [39m[38;5;239m│[39m[38;5;14m[1mKorQuAD[0m[38;5;12m (https://korquad.github.io/KorQuad%201.0/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mKorean[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mLG CNS AI Research[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m2018[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mClova AI LaRva Team[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mLaRva-Kor-Large+ + CLaF (single)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mClosed[39m[38;5;239m│[39m[38;5;12mo[39m[38;5;12m [39m[38;5;239m│[39m
|
||||
[38;5;239m│[39m[38;5;12m10[39m[38;5;12m [39m[38;5;239m│[39m[38;5;14m[1mKorQuAD 2.0[0m[38;5;12m (https://korquad.github.io/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mKorean[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mLG CNS AI Research[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m2019[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mKangwon National University[39m[38;5;239m│[39m[38;5;12mKNU-baseline(single model)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mOpened[39m[38;5;239m│[39m[38;5;12mx[39m[38;5;12m [39m[38;5;239m│[39m
|
||||
[38;5;239m│[39m[38;5;12m11[39m[38;5;12m [39m[38;5;239m│[39m[38;5;14m[1mCoQA[0m[38;5;12m (https://stanfordnlp.github.io/coqa/)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mEnglish[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mUniv. of Stanford[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12m2018[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mZhuiyi Technology[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mRoBERTa + AT + KD (ensemble)[39m[38;5;12m [39m[38;5;239m│[39m[38;5;12mOpened[39m[38;5;239m│[39m[38;5;12mo[39m[38;5;12m [39m[38;5;239m│[39m
|
||||
|
||||
[38;2;255;187;0m[4mPublications[0m
|
||||
[38;5;12m- Papers[39m
|
||||
[38;5;12m - [39m[38;5;14m[1m"Learning to Skim Text"[0m[38;5;12m (https://arxiv.org/pdf/1704.06877.pdf), Adams Wei Yu, Hongrae Lee, Quoc V. Le, 2017.[39m
|
||||
[48;5;235m[38;5;249m: Show only what you want in Text[49m[39m
|
||||
[38;5;12m - [39m[38;5;14m[1m"Deep Joint Entity Disambiguation with Local Neural Attention"[0m[38;5;12m (https://arxiv.org/pdf/1704.04920.pdf), Octavian-Eugen Ganea and Thomas Hofmann, 2017.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1m"BI-DIRECTIONAL ATTENTION FLOW FOR MACHINE COMPREHENSION"[0m[38;5;12m (https://arxiv.org/pdf/1611.01603.pdf), Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, Hananneh Hajishirzi, ICLR, 2017.[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1m"Capturing[0m[38;5;14m[1m [0m[38;5;14m[1mSemantic[0m[38;5;14m[1m [0m[38;5;14m[1mSimilarity[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mEntity[0m[38;5;14m[1m [0m[38;5;14m[1mLinking[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1mConvolutional[0m[38;5;14m[1m [0m[38;5;14m[1mNeural[0m[38;5;14m[1m [0m[38;5;14m[1mNetworks"[0m[38;5;12m [39m[38;5;12m(http://nlp.cs.berkeley.edu/pubs/FrancisLandau-Durrett-Klein_2016_EntityConvnets_paper.pdf),[39m[38;5;12m [39m[38;5;12mMatthew[39m[38;5;12m [39m[38;5;12mFrancis-Landau,[39m[38;5;12m [39m[38;5;12mGreg[39m
|
||||
[38;5;12mDurrett[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mDan[39m[38;5;12m [39m[38;5;12mKlei,[39m[38;5;12m [39m[38;5;12mNAACL-HLT[39m[38;5;12m [39m[38;5;12m2016.[39m
|
||||
[48;5;235m[38;5;249m- https://GitHub.com/matthewfl/nlp-entity-convnet[49m[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1m"Entity[0m[38;5;14m[1m [0m[38;5;14m[1mLinking[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1ma[0m[38;5;14m[1m [0m[38;5;14m[1mKnowledge[0m[38;5;14m[1m [0m[38;5;14m[1mBase:[0m[38;5;14m[1m [0m[38;5;14m[1mIssues,[0m[38;5;14m[1m [0m[38;5;14m[1mTechniques,[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mSolutions"[0m[38;5;12m [39m[38;5;12m(https://ieeexplore.ieee.org/document/6823700/),[39m[38;5;12m [39m[38;5;12mWei[39m[38;5;12m [39m[38;5;12mShen,[39m[38;5;12m [39m[38;5;12mJianyong[39m[38;5;12m [39m[38;5;12mWang,[39m[38;5;12m [39m[38;5;12mJiawei[39m[38;5;12m [39m[38;5;12mHan,[39m[38;5;12m [39m[38;5;12mIEEE[39m[38;5;12m [39m[38;5;12mTransactions[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mKnowledge[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mData[39m[38;5;12m [39m
|
||||
[38;5;12mEngineering(TKDE),[39m[38;5;12m [39m[38;5;12m2014.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1m"Introduction to “This is Watson"[0m[38;5;12m (https://ieeexplore.ieee.org/document/6177724/), IBM Journal of Research and Development, D. A. Ferrucci, 2012.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1m"A survey on question answering technology from an information retrieval perspective"[0m[38;5;12m (https://www.sciencedirect.com/science/article/pii/S0020025511003860), Information Sciences, 2011.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1m"Question Answering in Restricted Domains: An Overview"[0m[38;5;12m (https://www.mitpressjournals.org/doi/abs/10.1162/coli.2007.33.1.41), Diego Mollá and José Luis Vicedo, Computational Linguistics, 2007[39m
|
||||
[38;5;12m - [39m[38;5;14m[1m"Natural language question answering: the view from here"[0m[38;5;12m (), L Hirschman, R Gaizauskas, natural language engineering, 2001.[39m
|
||||
[38;5;12m - Entity Disambiguation / Entity Linking[39m
|
||||
|
||||
[38;2;255;187;0m[4mCodes[0m
|
||||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mBiDAF[0m[38;5;12m [39m[38;5;12m(https://github.com/allenai/bi-att-flow)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mBi-Directional[39m[38;5;12m [39m[38;5;12mAttention[39m[38;5;12m [39m[38;5;12mFlow[39m[38;5;12m [39m[38;5;12m(BIDAF)[39m[38;5;12m [39m[38;5;12mnetwork[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mmulti-stage[39m[38;5;12m [39m[38;5;12mhierarchical[39m[38;5;12m [39m[38;5;12mprocess[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mrepresents[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mcontext[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mdifferent[39m[38;5;12m [39m[38;5;12mlevels[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mgranularity[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12muses[39m[38;5;12m [39m
|
||||
[38;5;12mbi-directional[39m[38;5;12m [39m[38;5;12mattention[39m[38;5;12m [39m[38;5;12mflow[39m[38;5;12m [39m[38;5;12mmechanism[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mobtain[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mquery-aware[39m[38;5;12m [39m[38;5;12mcontext[39m[38;5;12m [39m[38;5;12mrepresentation[39m[38;5;12m [39m[38;5;12mwithout[39m[38;5;12m [39m[38;5;12mearly[39m[38;5;12m [39m[38;5;12msummarization.[39m[38;5;12m [39m
|
||||
[38;5;12m - Official; Tensorflow v1.2[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mPaper[0m[38;5;12m (https://arxiv.org/pdf/1611.01603.pdf)[39m
|
||||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mQANet[0m[38;5;12m [39m[38;5;12m(https://github.com/NLPLearn/QANet)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mQ&A[39m[38;5;12m [39m[38;5;12marchitecture[39m[38;5;12m [39m[38;5;12mdoes[39m[38;5;12m [39m[38;5;12mnot[39m[38;5;12m [39m[38;5;12mrequire[39m[38;5;12m [39m[38;5;12mrecurrent[39m[38;5;12m [39m[38;5;12mnetworks:[39m[38;5;12m [39m[38;5;12mIts[39m[38;5;12m [39m[38;5;12mencoder[39m[38;5;12m [39m[38;5;12mconsists[39m[38;5;12m [39m[38;5;12mexclusively[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mconvolution[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mself-attention,[39m[38;5;12m [39m[38;5;12mwhere[39m[38;5;12m [39m[38;5;12mconvolution[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mlocal[39m[38;5;12m [39m
|
||||
[38;5;12minteractions[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mself-attention[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mglobal[39m[38;5;12m [39m[38;5;12minteractions.[39m
|
||||
[38;5;12m - Google; Unofficial; Tensorflow v1.5[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mPaper[0m[38;5;12m (#qanet)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mR-Net[0m[38;5;12m (https://github.com/HKUST-KnowComp/R-Net) - An end-to-end neural networks model for reading comprehension style question answering, which aims to answer questions from a given passage.[39m
|
||||
[38;5;12m - MS; Unofficially by HKUST; Tensorflow v1.5[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mPaper[0m[38;5;12m (https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/r-net.pdf)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mR-Net-in-Keras[0m[38;5;12m (https://github.com/YerevaNN/R-NET-in-Keras) - R-NET re-implementation in Keras.[39m
|
||||
[38;5;12m - MS; Unofficial; Keras v2.0.6[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mPaper[0m[38;5;12m (https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/r-net.pdf)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mDrQA[0m[38;5;12m (https://github.com/hitvoice/DrQA) - DrQA is a system for reading comprehension applied to open-domain question answering.[39m
|
||||
[38;5;12m - Facebook; Official; Pytorch v0.4[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mPaper[0m[38;5;12m (#drqa)[39m
|
||||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mBERT[0m[38;5;12m [39m[38;5;12m(https://github.com/google-research/bert)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mA[39m[38;5;12m [39m[38;5;12mnew[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12mrepresentation[39m[38;5;12m [39m[38;5;12mmodel[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mstands[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mBidirectional[39m[38;5;12m [39m[38;5;12mEncoder[39m[38;5;12m [39m[38;5;12mRepresentations[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mTransformers.[39m[38;5;12m [39m[38;5;12mUnlike[39m[38;5;12m [39m[38;5;12mrecent[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12mrepresentation[39m[38;5;12m [39m[38;5;12mmodels,[39m[38;5;12m [39m[38;5;12mBERT[39m
|
||||
[38;5;12mis[39m[38;5;12m [39m[38;5;12mdesigned[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mpre-train[39m[38;5;12m [39m[38;5;12mdeep[39m[38;5;12m [39m[38;5;12mbidirectional[39m[38;5;12m [39m[38;5;12mrepresentations[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mjointly[39m[38;5;12m [39m[38;5;12mconditioning[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mboth[39m[38;5;12m [39m[38;5;12mleft[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mright[39m[38;5;12m [39m[38;5;12mcontext[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mall[39m[38;5;12m [39m[38;5;12mlayers.[39m[38;5;12m [39m
|
||||
[38;5;12m - Google; Official implementation; Tensorflow v1.11.0[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mPaper[0m[38;5;12m (https://arxiv.org/abs/1810.04805)[39m
|
||||
|
||||
[38;2;255;187;0m[4mLectures[0m
|
||||
[38;5;12m- [39m[38;5;14m[1mQuestion Answering - Natural Language Processing[0m[38;5;12m (https://youtu.be/Kzi6tE4JaGo) - By Dragomir Radev, Ph.D. | University of Michigan | 2016.[39m
|
||||
|
||||
[38;2;255;187;0m[4mSlides[0m
|
||||
[38;5;12m- [39m[38;5;14m[1mQuestion Answering with Knowledge Bases, Web and Beyond[0m[38;5;12m (https://github.com/scottyih/Slides/blob/master/QA%20Tutorial.pdf) - By Scott Wen-tau Yih & Hao Ma | Microsoft Research | 2016.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mQuestion Answering[0m[38;5;12m (https://hpi.de/fileadmin/user_upload/fachgebiete/plattner/teaching/NaturalLanguageProcessing/NLP2017/NLP8_QuestionAnswering.pdf) - By Dr. Mariana Neves | Hasso Plattner Institut | 2017.[39m
|
||||
|
||||
[38;2;255;187;0m[4mDataset Collections[0m
|
||||
[38;5;12m- [39m[38;5;14m[1mNLIWOD's Question answering datasets[0m[38;5;12m (https://github.com/dice-group/NLIWOD/tree/master/qa.datasets)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mkarthinkncode's Datasets for Natural Language Processing[0m[38;5;12m (https://github.com/karthikncode/nlp-datasets)[39m
|
||||
|
||||
[38;2;255;187;0m[4mDatasets[0m
|
||||
[38;5;12m- [39m[38;5;14m[1mAI2 Science Questions v2.1(2017)[0m[38;5;12m (http://data.allenai.org/ai2-science-questions/)[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mconsists[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mquestions[39m[38;5;12m [39m[38;5;12mused[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mstudent[39m[38;5;12m [39m[38;5;12massessments[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mUnited[39m[38;5;12m [39m[38;5;12mStates[39m[38;5;12m [39m[38;5;12macross[39m[38;5;12m [39m[38;5;12melementary[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmiddle[39m[38;5;12m [39m[38;5;12mschool[39m[38;5;12m [39m[38;5;12mgrade[39m[38;5;12m [39m[38;5;12mlevels.[39m[38;5;12m [39m[38;5;12mEach[39m[38;5;12m [39m[38;5;12mquestion[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12m4-way[39m[38;5;12m [39m[38;5;12mmultiple[39m[38;5;12m [39m[38;5;12mchoice[39m[38;5;12m [39m[38;5;12mformat[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmay[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mmay[39m[38;5;12m [39m[38;5;12mnot[39m[38;5;12m [39m[38;5;12minclude[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mdiagram[39m[38;5;12m [39m
|
||||
[38;5;12melement.[39m
|
||||
[38;5;12m - Paper: http://ai2-website.s3.amazonaws.com/publications/AI2ReasoningChallenge2018.pdf[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mChildren's Book Test[0m[38;5;12m (https://uclmr.github.io/ai4exams/data.html)[39m
|
||||
[38;5;12m-[39m[38;5;12m [39m[38;5;12mIt[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mone[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mbAbI[39m[38;5;12m [39m[38;5;12mproject[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mFacebook[39m[38;5;12m [39m[38;5;12mAI[39m[38;5;12m [39m[38;5;12mResearch[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12morganized[39m[38;5;12m [39m[38;5;12mtowards[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mgoal[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mautomatic[39m[38;5;12m [39m[38;5;12mtext[39m[38;5;12m [39m[38;5;12munderstanding[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mreasoning.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mCBT[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mdesigned[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mmeasure[39m[38;5;12m [39m[38;5;12mdirectly[39m[38;5;12m [39m[38;5;12mhow[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m[38;5;12mlanguage[39m[38;5;12m [39m[38;5;12mmodels[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m
|
||||
[38;5;12mexploit[39m[38;5;12m [39m[38;5;12mwider[39m[38;5;12m [39m[38;5;12mlinguistic[39m[38;5;12m [39m[38;5;12mcontext.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mCODAH Dataset[0m[38;5;12m (https://github.com/Websail-NU/CODAH)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mDeepMind Q&A Dataset; CNN/Daily Mail[0m[38;5;12m (https://github.com/deepmind/rc-data)[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mHermann[39m[38;5;12m [39m[38;5;12met[39m[38;5;12m [39m[38;5;12mal.[39m[38;5;12m [39m[38;5;12m(2015)[39m[38;5;12m [39m[38;5;12mcreated[39m[38;5;12m [39m[38;5;12mtwo[39m[38;5;12m [39m[38;5;12mawesome[39m[38;5;12m [39m[38;5;12mdatasets[39m[38;5;12m [39m[38;5;12musing[39m[38;5;12m [39m[38;5;12mnews[39m[38;5;12m [39m[38;5;12marticles[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mQ&A[39m[38;5;12m [39m[38;5;12mresearch.[39m[38;5;12m [39m[38;5;12mEach[39m[38;5;12m [39m[38;5;12mdataset[39m[38;5;12m [39m[38;5;12mcontains[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mdocuments[39m[38;5;12m [39m[38;5;12m(90k[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12m197k[39m[38;5;12m [39m[38;5;12meach),[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12meach[39m[38;5;12m [39m[38;5;12mdocument[39m[38;5;12m [39m[38;5;12mcompanies[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12maverage[39m[38;5;12m [39m[38;5;12m4[39m[38;5;12m [39m[38;5;12mquestions[39m[38;5;12m [39m
|
||||
[38;5;12mapproximately.[39m[38;5;12m [39m[38;5;12mEach[39m[38;5;12m [39m[38;5;12mquestion[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msentence[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mone[39m[38;5;12m [39m[38;5;12mmissing[39m[38;5;12m [39m[38;5;12mword/phrase[39m[38;5;12m [39m[38;5;12mwhich[39m[38;5;12m [39m[38;5;12mcan[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12mfound[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12maccompanying[39m[38;5;12m [39m[38;5;12mdocument/context.[39m
|
||||
[38;5;12m - Paper: https://arxiv.org/abs/1506.03340[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mELI5[0m[38;5;12m (https://github.com/facebookresearch/ELI5)[39m
|
||||
[38;5;12m - Paper: https://arxiv.org/abs/1907.09190[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mGraphQuestions[0m[38;5;12m (https://github.com/ysu1989/GraphQuestions)[39m
|
||||
[38;5;12m - On generating Characteristic-rich Question sets for QA evaluation.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mLC-QuAD[0m[38;5;12m (http://sda.cs.uni-bonn.de/projects/qa-dataset/)[39m
|
||||
[38;5;12m - It is a gold standard KBQA (Question Answering over Knowledge Base) dataset containing 5000 Question and SPARQL queries. LC-QuAD uses DBpedia v04.16 as the target KB.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mMS MARCO[0m[38;5;12m (http://www.msmarco.org/dataset.aspx)[39m
|
||||
[38;5;12m - This is for real-world question answering.[39m
|
||||
[38;5;12m - Paper: https://arxiv.org/abs/1611.09268[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mMultiRC[0m[38;5;12m (https://cogcomp.org/multirc/)[39m
|
||||
[38;5;12m - A dataset of short paragraphs and multi-sentence questions[39m
|
||||
[38;5;12m - Paper: http://cogcomp.org/page/publication_view/833 [39m
|
||||
[38;5;12m- [39m[38;5;14m[1mNarrativeQA[0m[38;5;12m (https://github.com/deepmind/narrativeqa)[39m
|
||||
[38;5;12m - It includes the list of documents with Wikipedia summaries, links to full stories, and questions and answers.[39m
|
||||
[38;5;12m - Paper: https://arxiv.org/pdf/1712.07040v1.pdf[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mNewsQA[0m[38;5;12m (https://github.com/Maluuba/newsqa)[39m
|
||||
[38;5;12m - A machine comprehension dataset[39m
|
||||
[38;5;12m - Paper: https://arxiv.org/pdf/1611.09830.pdf[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mQestion-Answer Dataset by CMU[0m[38;5;12m (http://www.cs.cmu.edu/~ark/QA-data/)[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mcorpus[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mWikipedia[39m[38;5;12m [39m[38;5;12marticles,[39m[38;5;12m [39m[38;5;12mmanually-generated[39m[38;5;12m [39m[38;5;12mfactoid[39m[38;5;12m [39m[38;5;12mquestions[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mthem,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmanually-generated[39m[38;5;12m [39m[38;5;12manswers[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mthese[39m[38;5;12m [39m[38;5;12mquestions,[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12muse[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12macademic[39m[38;5;12m [39m[38;5;12mresearch.[39m[38;5;12m [39m[38;5;12mThese[39m[38;5;12m [39m[38;5;12mdata[39m[38;5;12m [39m[38;5;12mwere[39m[38;5;12m [39m[38;5;12mcollected[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mNoah[39m[38;5;12m [39m
|
||||
[38;5;12mSmith,[39m[38;5;12m [39m[38;5;12mMichael[39m[38;5;12m [39m[38;5;12mHeilman,[39m[38;5;12m [39m[38;5;12mRebecca[39m[38;5;12m [39m[38;5;12mHwa,[39m[38;5;12m [39m[38;5;12mShay[39m[38;5;12m [39m[38;5;12mCohen,[39m[38;5;12m [39m[38;5;12mKevin[39m[38;5;12m [39m[38;5;12mGimpel,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mmany[39m[38;5;12m [39m[38;5;12mstudents[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mCarnegie[39m[38;5;12m [39m[38;5;12mMellon[39m[38;5;12m [39m[38;5;12mUniversity[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mUniversity[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mPittsburgh[39m[38;5;12m [39m[38;5;12mbetween[39m[38;5;12m [39m[38;5;12m2008[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12m2010.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mSQuAD1.0[0m[38;5;12m (https://rajpurkar.github.io/SQuAD-explorer/)[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mStanford[39m[38;5;12m [39m[38;5;12mQuestion[39m[38;5;12m [39m[38;5;12mAnswering[39m[38;5;12m [39m[38;5;12mDataset[39m[38;5;12m [39m[38;5;12m(SQuAD)[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mreading[39m[38;5;12m [39m[38;5;12mcomprehension[39m[38;5;12m [39m[38;5;12mdataset,[39m[38;5;12m [39m[38;5;12mconsisting[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mquestions[39m[38;5;12m [39m[38;5;12mposed[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mcrowdworkers[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mset[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mWikipedia[39m[38;5;12m [39m[38;5;12marticles,[39m[38;5;12m [39m[38;5;12mwhere[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12manswer[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mevery[39m[38;5;12m [39m[38;5;12mquestion[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msegment[39m[38;5;12m [39m
|
||||
[38;5;12mof[39m[38;5;12m [39m[38;5;12mtext,[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mspan,[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mcorresponding[39m[38;5;12m [39m[38;5;12mreading[39m[38;5;12m [39m[38;5;12mpassage,[39m[38;5;12m [39m[38;5;12mor[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mquestion[39m[38;5;12m [39m[38;5;12mmight[39m[38;5;12m [39m[38;5;12mbe[39m[38;5;12m [39m[38;5;12munanswerable.[39m
|
||||
[38;5;12m - Paper: https://arxiv.org/abs/1606.05250[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mSQuAD2.0[0m[38;5;12m (https://rajpurkar.github.io/SQuAD-explorer/)[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mSQuAD2.0[39m[38;5;12m [39m[38;5;12mcombines[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12m100,000[39m[38;5;12m [39m[38;5;12mquestions[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mSQuAD1.1[39m[38;5;12m [39m[38;5;12mwith[39m[38;5;12m [39m[38;5;12mover[39m[38;5;12m [39m[38;5;12m50,000[39m[38;5;12m [39m[38;5;12mnew,[39m[38;5;12m [39m[38;5;12munanswerable[39m[38;5;12m [39m[38;5;12mquestions[39m[38;5;12m [39m[38;5;12mwritten[39m[38;5;12m [39m[38;5;12madversarially[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mcrowdworkers[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mlook[39m[38;5;12m [39m[38;5;12msimilar[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12manswerable[39m[38;5;12m [39m[38;5;12mones.[39m[38;5;12m [39m[38;5;12mTo[39m[38;5;12m [39m[38;5;12mdo[39m[38;5;12m [39m[38;5;12mwell[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mSQuAD2.0,[39m[38;5;12m [39m[38;5;12msystems[39m[38;5;12m [39m[38;5;12mmust[39m
|
||||
[38;5;12mnot[39m[38;5;12m [39m[38;5;12monly[39m[38;5;12m [39m[38;5;12manswer[39m[38;5;12m [39m[38;5;12mquestions[39m[38;5;12m [39m[38;5;12mwhen[39m[38;5;12m [39m[38;5;12mpossible,[39m[38;5;12m [39m[38;5;12mbut[39m[38;5;12m [39m[38;5;12malso[39m[38;5;12m [39m[38;5;12mdetermine[39m[38;5;12m [39m[38;5;12mwhen[39m[38;5;12m [39m[38;5;12mno[39m[38;5;12m [39m[38;5;12manswer[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12msupported[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mparagraph[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mabstain[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12manswering.[39m
|
||||
[38;5;12m - Paper: https://arxiv.org/abs/1806.03822[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mStory cloze test[0m[38;5;12m (http://cs.rochester.edu/nlp/rocstories/)[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12m'Story[39m[38;5;12m [39m[38;5;12mCloze[39m[38;5;12m [39m[38;5;12mTest'[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mnew[39m[38;5;12m [39m[38;5;12mcommonsense[39m[38;5;12m [39m[38;5;12mreasoning[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mevaluating[39m[38;5;12m [39m[38;5;12mstory[39m[38;5;12m [39m[38;5;12munderstanding,[39m[38;5;12m [39m[38;5;12mstory[39m[38;5;12m [39m[38;5;12mgeneration,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mscript[39m[38;5;12m [39m[38;5;12mlearning.[39m[38;5;12m [39m[38;5;12mThis[39m[38;5;12m [39m[38;5;12mtest[39m[38;5;12m [39m[38;5;12mrequires[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12msystem[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mchoose[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mcorrect[39m[38;5;12m [39m[38;5;12mending[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m
|
||||
[38;5;12mfour-sentence[39m[38;5;12m [39m[38;5;12mstory.[39m
|
||||
[38;5;12m - Paper: https://arxiv.org/abs/1604.01696[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mTriviaQA[0m[38;5;12m (http://nlp.cs.washington.edu/triviaqa/)[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mTriviaQA[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mreading[39m[38;5;12m [39m[38;5;12mcomprehension[39m[38;5;12m [39m[38;5;12mdataset[39m[38;5;12m [39m[38;5;12mcontaining[39m[38;5;12m [39m[38;5;12mover[39m[38;5;12m [39m[38;5;12m650K[39m[38;5;12m [39m[38;5;12mquestion-answer-evidence[39m[38;5;12m [39m[38;5;12mtriples.[39m[38;5;12m [39m[38;5;12mTriviaQA[39m[38;5;12m [39m[38;5;12mincludes[39m[38;5;12m [39m[38;5;12m95K[39m[38;5;12m [39m[38;5;12mquestion-answer[39m[38;5;12m [39m[38;5;12mpairs[39m[38;5;12m [39m[38;5;12mauthored[39m[38;5;12m [39m[38;5;12mby[39m[38;5;12m [39m[38;5;12mtrivia[39m[38;5;12m [39m[38;5;12menthusiasts[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mindependently[39m[38;5;12m [39m[38;5;12mgathered[39m[38;5;12m [39m
|
||||
[38;5;12mevidence[39m[38;5;12m [39m[38;5;12mdocuments,[39m[38;5;12m [39m[38;5;12msix[39m[38;5;12m [39m[38;5;12mper[39m[38;5;12m [39m[38;5;12mquestion[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12maverage,[39m[38;5;12m [39m[38;5;12mthat[39m[38;5;12m [39m[38;5;12mprovide[39m[38;5;12m [39m[38;5;12mhigh[39m[38;5;12m [39m[38;5;12mquality[39m[38;5;12m [39m[38;5;12mdistant[39m[38;5;12m [39m[38;5;12msupervision[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12manswering[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mquestions.[39m[38;5;12m [39m
|
||||
[38;5;12m - Paper: https://arxiv.org/abs/1705.03551[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mWikiQA[0m[38;5;12m (https://www.microsoft.com/en-us/download/details.aspx?id=52419&from=https%3A%2F%2Fresearch.microsoft.com%2Fen-US%2Fdownloads%2F4495da01-db8c-4041-a7f6-7984a4f6a905%2Fdefault.aspx)[39m
|
||||
[38;5;12m - A publicly available set of question and sentence pairs for open-domain question answering.[39m
|
||||
[38;5;12m [39m
|
||||
[38;2;255;187;0m[4mThe DeepQA Research Team in IBM Watson's publication within 5 years[0m
|
||||
[38;5;12m- 2015[39m
|
||||
[38;5;12m - "Automated Problem List Generation from Electronic Medical Records in IBM Watson", Murthy Devarakonda, Ching-Huei Tsou, IAAI, 2015.[39m
|
||||
[38;5;12m - "Decision Making in IBM Watson Question Answering", J. William Murdock, Ontology summit, 2015.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1m"Unsupervised Entity-Relation Analysis in IBM Watson"[0m[38;5;12m (http://www.cogsys.org/papers/ACS2015/article12.pdf), Aditya Kalyanpur, J William Murdock, ACS, 2015.[39m
|
||||
[38;5;12m - "Commonsense Reasoning: An Event Calculus Based Approach", E T Mueller, Morgan Kaufmann/Elsevier, 2015.[39m
|
||||
[38;5;12m- 2014[39m
|
||||
[38;5;12m - "Problem-oriented patient record summary: An early report on a Watson application", M. Devarakonda, Dongyang Zhang, Ching-Huei Tsou, M. Bornea, Healthcom, 2014.[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1m"WatsonPaths:[0m[38;5;14m[1m [0m[38;5;14m[1mScenario-based[0m[38;5;14m[1m [0m[38;5;14m[1mQuestion[0m[38;5;14m[1m [0m[38;5;14m[1mAnswering[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mInference[0m[38;5;14m[1m [0m[38;5;14m[1mover[0m[38;5;14m[1m [0m[38;5;14m[1mUnstructured[0m[38;5;14m[1m [0m[38;5;14m[1mInformation"[0m[38;5;12m [39m
|
||||
[38;5;12m(http://domino.watson.ibm.com/library/Cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/088f74984a07645485257d5f006ace96!OpenDocument&Highlight=0,RC25489),[39m[38;5;12m [39m[38;5;12mAdam[39m[38;5;12m [39m[38;5;12mLally,[39m[38;5;12m [39m[38;5;12mSugato[39m[38;5;12m [39m[38;5;12mBachi,[39m[38;5;12m [39m[38;5;12mMichael[39m[38;5;12m [39m[38;5;12mA.[39m[38;5;12m [39m[38;5;12mBarborak,[39m[38;5;12m [39m[38;5;12mDavid[39m[38;5;12m [39m[38;5;12mW.[39m[38;5;12m [39m
|
||||
[38;5;12mBuchanan,[39m[38;5;12m [39m[38;5;12mJennifer[39m[38;5;12m [39m[38;5;12mChu-Carroll,[39m[38;5;12m [39m[38;5;12mDavid[39m[38;5;12m [39m[38;5;12mA.[39m[38;5;12m [39m[38;5;12mFerrucci[39m[48;2;30;30;40m[38;5;13m[3m,[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mMichael[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mR.[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mGlass,[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mAditya[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mKalyanpur,[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mErik[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mT.[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mMueller,[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mJ.[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mWilliam[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mMurdock,[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mSiddharth[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mPatwardhan,[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mJohn[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mM.[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mPrager,[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mChristopher[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mA.[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mWelty,[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mIBM[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mResearch[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3mReport[0m[48;2;30;30;40m[38;5;13m[3m [0m
|
||||
[48;2;30;30;40m[38;5;13m[3mRC25489,[0m[48;2;30;30;40m[38;5;13m[3m [0m[48;2;30;30;40m[38;5;13m[3m2014.[0m
|
||||
[38;5;12m - [39m[38;5;14m[1m"Medical Relation Extraction with Manifold Models"[0m[38;5;12m (http://acl2014.org/acl2014/P14-1/pdf/P14-1078.pdf), Chang Wang and James Fan, ACL, 2014.[39m
|
||||
|
||||
[38;2;255;187;0m[4mMS Research's publication within 5 years[0m
|
||||
[38;5;12m- 2018[39m
|
||||
[38;5;12m - "Characterizing and Supporting Question Answering in Human-to-Human Communication", Xiao Yang, Ahmed Hassan Awadallah, Madian Khabsa, Wei Wang, Miaosen Wang, ACM SIGIR, 2018.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1m"FigureQA: An Annotated Figure Dataset for Visual Reasoning"[0m[38;5;12m (https://arxiv.org/abs/1710.07300), Samira Ebrahimi Kahou, Vincent Michalski, Adam Atkinson, Akos Kadar, Adam Trischler, Yoshua Bengio, ICLR, 2018[39m
|
||||
[38;5;12m- 2017[39m
|
||||
[38;5;12m - "Multi-level Attention Networks for Visual Question Answering", Dongfei Yu, Jianlong Fu, Tao Mei, Yong Rui, CVPR, 2017.[39m
|
||||
[38;5;12m - "A Joint Model for Question Answering and Question Generation", Tong Wang, Xingdi (Eric) Yuan, Adam Trischler, ICML, 2017.[39m
|
||||
[38;5;12m - "Two-Stage Synthesis Networks for Transfer Learning in Machine Comprehension", David Golub, Po-Sen Huang, Xiaodong He, Li Deng, EMNLP, 2017.[39m
|
||||
[38;5;12m - "Question-Answering with Grammatically-Interpretable Representations", Hamid Palangi, Paul Smolensky, Xiaodong He, Li Deng, [39m
|
||||
[38;5;12m - "Search-based Neural Structured Learning for Sequential Question Answering", Mohit Iyyer, Wen-tau Yih, Ming-Wei Chang, ACL, 2017.[39m
|
||||
[38;5;12m- 2016[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1m"Stacked[0m[38;5;14m[1m [0m[38;5;14m[1mAttention[0m[38;5;14m[1m [0m[38;5;14m[1mNetworks[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mImage[0m[38;5;14m[1m [0m[38;5;14m[1mQuestion[0m[38;5;14m[1m [0m[38;5;14m[1mAnswering"[0m[38;5;12m [39m[38;5;12m(https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Yang_Stacked_Attention_Networks_CVPR_2016_paper.html),[39m[38;5;12m [39m[38;5;12mZichao[39m[38;5;12m [39m[38;5;12mYang,[39m[38;5;12m [39m[38;5;12mXiaodong[39m[38;5;12m [39m[38;5;12mHe,[39m[38;5;12m [39m
|
||||
[38;5;12mJianfeng[39m[38;5;12m [39m[38;5;12mGao,[39m[38;5;12m [39m[38;5;12mLi[39m[38;5;12m [39m[38;5;12mDeng,[39m[38;5;12m [39m[38;5;12mAlex[39m[38;5;12m [39m[38;5;12mSmola,[39m[38;5;12m [39m[38;5;12mCVPR,[39m[38;5;12m [39m[38;5;12m2016.[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1m"Question[0m[38;5;14m[1m [0m[38;5;14m[1mAnswering[0m[38;5;14m[1m [0m[38;5;14m[1mwith[0m[38;5;14m[1m [0m[38;5;14m[1mKnowledge[0m[38;5;14m[1m [0m[38;5;14m[1mBase,[0m[38;5;14m[1m [0m[38;5;14m[1mWeb[0m[38;5;14m[1m [0m[38;5;14m[1mand[0m[38;5;14m[1m [0m[38;5;14m[1mBeyond"[0m[38;5;12m [39m[38;5;12m(https://www.microsoft.com/en-us/research/publication/question-answering-with-knowledge-base-web-and-beyond/),[39m[38;5;12m [39m[38;5;12mYih,[39m[38;5;12m [39m[38;5;12mScott[39m[38;5;12m [39m[38;5;12mWen-tau[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mMa,[39m[38;5;12m [39m[38;5;12mHao,[39m[38;5;12m [39m[38;5;12mACM[39m[38;5;12m [39m
|
||||
[38;5;12mSIGIR,[39m[38;5;12m [39m[38;5;12m2016.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1m"NewsQA: A Machine Comprehension Dataset"[0m[38;5;12m (https://arxiv.org/abs/1611.09830), Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip Bachman, Kaheer Suleman, RepL4NLP, 2016.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1m"Table Cell Search for Question Answering"[0m[38;5;12m (https://dl.acm.org/citation.cfm?id=2883080), Sun, Huan and Ma, Hao and He, Xiaodong and Yih, Wen-tau and Su, Yu and Yan, Xifeng, WWW, 2016.[39m
|
||||
[38;5;12m- 2015[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1m"WIKIQA:[0m[38;5;14m[1m [0m[38;5;14m[1mA[0m[38;5;14m[1m [0m[38;5;14m[1mChallenge[0m[38;5;14m[1m [0m[38;5;14m[1mDataset[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mOpen-Domain[0m[38;5;14m[1m [0m[38;5;14m[1mQuestion[0m[38;5;14m[1m [0m[38;5;14m[1mAnswering"[0m[38;5;12m [39m[38;5;12m(https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/YangYihMeek_EMNLP-15_WikiQA.pdf),[39m[38;5;12m [39m[38;5;12mYi[39m[38;5;12m [39m[38;5;12mYang,[39m[38;5;12m [39m[38;5;12mWen-tau[39m[38;5;12m [39m[38;5;12mYih,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mChristopher[39m[38;5;12m [39m
|
||||
[38;5;12mMeek,[39m[38;5;12m [39m[38;5;12mEMNLP,[39m[38;5;12m [39m[38;5;12m2015.[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1m"Web-based[0m[38;5;14m[1m [0m[38;5;14m[1mQuestion[0m[38;5;14m[1m [0m[38;5;14m[1mAnswering:[0m[38;5;14m[1m [0m[38;5;14m[1mRevisiting[0m[38;5;14m[1m [0m[38;5;14m[1mAskMSR"[0m[38;5;12m [39m[38;5;12m(https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/AskMSRPlusTR_082815.pdf),[39m[38;5;12m [39m[38;5;12mChen-Tse[39m[38;5;12m [39m[38;5;12mTsai,[39m[38;5;12m [39m[38;5;12mWen-tau[39m[38;5;12m [39m[38;5;12mYih,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mChristopher[39m[38;5;12m [39m[38;5;12mJ.C.[39m[38;5;12m [39m[38;5;12mBurges,[39m[38;5;12m [39m
|
||||
[38;5;12mMSR-TR,[39m[38;5;12m [39m[38;5;12m2015.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1m"Open Domain Question Answering via Semantic Enrichment"[0m[38;5;12m (https://dl.acm.org/citation.cfm?id=2741651), Huan Sun, Hao Ma, Wen-tau Yih, Chen-Tse Tsai, Jingjing Liu, and Ming-Wei Chang, WWW, 2015.[39m
|
||||
[38;5;12m- 2014[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1m"An[0m[38;5;14m[1m [0m[38;5;14m[1mOverview[0m[38;5;14m[1m [0m[38;5;14m[1mof[0m[38;5;14m[1m [0m[38;5;14m[1mMicrosoft[0m[38;5;14m[1m [0m[38;5;14m[1mDeep[0m[38;5;14m[1m [0m[38;5;14m[1mQA[0m[38;5;14m[1m [0m[38;5;14m[1mSystem[0m[38;5;14m[1m [0m[38;5;14m[1mon[0m[38;5;14m[1m [0m[38;5;14m[1mStanford[0m[38;5;14m[1m [0m[38;5;14m[1mWebQuestions[0m[38;5;14m[1m [0m[38;5;14m[1mBenchmark"[0m[38;5;12m [39m[38;5;12m(https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Microsoft20Deep20QA.pdf),[39m[38;5;12m [39m[38;5;12mZhenghao[39m[38;5;12m [39m[38;5;12mWang,[39m[38;5;12m [39m[38;5;12mShengquan[39m[38;5;12m [39m[38;5;12mYan,[39m[38;5;12m [39m
|
||||
[38;5;12mHuaming[39m[38;5;12m [39m[38;5;12mWang,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mXuedong[39m[38;5;12m [39m[38;5;12mHuang,[39m[38;5;12m [39m[38;5;12mMSR-TR,[39m[38;5;12m [39m[38;5;12m2014.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1m"Semantic Parsing for Single-Relation Question Answering"[0m[38;5;12m (), Wen-tau Yih, Xiaodong He, Christopher Meek, ACL, 2014.[39m
|
||||
[38;5;12m [39m
|
||||
[38;2;255;187;0m[4mGoogle AI's publication within 5 years[0m
|
||||
[38;5;12m- 2018[39m
|
||||
[38;5;12m - Google QA [39m
|
||||
[48;5;235m[38;5;249m- **"QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension"** (https://openreview.net/pdf?id=B14TlG-RW), Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohamma[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[48;5;235m[38;5;249md Norouzi, Quoc V. Le, ICLR, 2018.[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[48;5;235m[38;5;249m- **"Ask the Right Questions: Active Question Reformulation with Reinforcement Learning"** (https://openreview.net/pdf?id=S1CChZ-CZ), Christian Buck and Jannis Bulian and Massimiliano Ciaramita and Wojciech Pawe[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[48;5;235m[38;5;249mł Gajewski and Andrea Gesmundo and Neil Houlsby and Wei Wang, ICLR, 2018.[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[48;5;235m[38;5;249m- **"Building Large Machine Reading-Comprehension Datasets using Paragraph Vectors"** (https://arxiv.org/pdf/1612.04342.pdf), Radu Soricut, Nan Ding, 2018.[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[38;5;12m - Sentence representation[39m
|
||||
[48;5;235m[38;5;249m- **"An efficient framework for learning sentence representations"** (https://arxiv.org/pdf/1803.02893.pdf), Lajanugen Logeswaran, Honglak Lee, ICLR, 2018.[49m[39m
|
||||
[38;5;12m - [39m[38;5;14m[1m"Did the model understand the question?"[0m[38;5;12m (https://arxiv.org/pdf/1805.05492.pdf), Pramod K. Mudrakarta and Ankur Taly and Mukund Sundararajan and Kedar Dhamdhere, ACL, 2018.[39m
|
||||
[38;5;12m- 2017[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1m"Analyzing[0m[38;5;14m[1m [0m[38;5;14m[1mLanguage[0m[38;5;14m[1m [0m[38;5;14m[1mLearned[0m[38;5;14m[1m [0m[38;5;14m[1mby[0m[38;5;14m[1m [0m[38;5;14m[1man[0m[38;5;14m[1m [0m[38;5;14m[1mActive[0m[38;5;14m[1m [0m[38;5;14m[1mQuestion[0m[38;5;14m[1m [0m[38;5;14m[1mAnswering[0m[38;5;14m[1m [0m[38;5;14m[1mAgent"[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/pdf/1801.07537.pdf),[39m[38;5;12m [39m[38;5;12mChristian[39m[38;5;12m [39m[38;5;12mBuck[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mJannis[39m[38;5;12m [39m[38;5;12mBulian[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mMassimiliano[39m[38;5;12m [39m[38;5;12mCiaramita[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mWojciech[39m[38;5;12m [39m[38;5;12mGajewski[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mAndrea[39m[38;5;12m [39m
|
||||
[38;5;12mGesmundo[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mNeil[39m[38;5;12m [39m[38;5;12mHoulsby[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mWei[39m[38;5;12m [39m[38;5;12mWang,[39m[38;5;12m [39m[38;5;12mNIPS,[39m[38;5;12m [39m[38;5;12m2017.[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1m"Learning[0m[38;5;14m[1m [0m[38;5;14m[1mRecurrent[0m[38;5;14m[1m [0m[38;5;14m[1mSpan[0m[38;5;14m[1m [0m[38;5;14m[1mRepresentations[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mExtractive[0m[38;5;14m[1m [0m[38;5;14m[1mQuestion[0m[38;5;14m[1m [0m[38;5;14m[1mAnswering"[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/pdf/1611.01436.pdf),[39m[38;5;12m [39m[38;5;12mKenton[39m[38;5;12m [39m[38;5;12mLee[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mShimi[39m[38;5;12m [39m[38;5;12mSalant[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mTom[39m[38;5;12m [39m[38;5;12mKwiatkowski[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mAnkur[39m[38;5;12m [39m[38;5;12mParikh[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mDipanjan[39m[38;5;12m [39m[38;5;12mDas[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||||
[38;5;12mJonathan[39m[38;5;12m [39m[38;5;12mBerant,[39m[38;5;12m [39m[38;5;12mICLR,[39m[38;5;12m [39m[38;5;12m2017.[39m
|
||||
[38;5;12m - Identify the same question[39m
|
||||
[48;5;235m[38;5;249m- **"Neural Paraphrase Identification of Questions with Noisy Pretraining"** (https://arxiv.org/pdf/1704.04565.pdf), Gaurav Singh Tomar and Thyago Duque and Oscar Täckström and Jakob Uszkoreit and Dipanjan Das, [49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[48;5;235m[38;5;249mSCLeM, 2017.[49m[39m[48;5;235m[38;5;249m [49m[39m
|
||||
[38;5;12m- 2014[39m
|
||||
[38;5;12m - "Great Question! Question Quality in Community Q&A", Sujith Ravi and Bo Pang and Vibhor Rastogi and Ravi Kumar, ICWSM, 2014.[39m
|
||||
|
||||
[38;2;255;187;0m[4mFacebook AI Research's publication within 5 years[0m
|
||||
[38;5;12m- 2018[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mEmbodied Question Answering[0m[38;5;12m (https://research.fb.com/publications/embodied-question-answering/), Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra, CVPR, 2018[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mDo[0m[38;5;14m[1m [0m[38;5;14m[1mexplanations[0m[38;5;14m[1m [0m[38;5;14m[1mmake[0m[38;5;14m[1m [0m[38;5;14m[1mVQA[0m[38;5;14m[1m [0m[38;5;14m[1mmodels[0m[38;5;14m[1m [0m[38;5;14m[1mmore[0m[38;5;14m[1m [0m[38;5;14m[1mpredictable[0m[38;5;14m[1m [0m[38;5;14m[1mto[0m[38;5;14m[1m [0m[38;5;14m[1ma[0m[38;5;14m[1m [0m[38;5;14m[1mhuman?[0m[38;5;12m [39m[38;5;12m(https://research.fb.com/publications/do-explanations-make-vqa-models-more-predictable-to-a-human/),[39m[38;5;12m [39m[38;5;12mArjun[39m[38;5;12m [39m[38;5;12mChandrasekaran,[39m[38;5;12m [39m[38;5;12mViraj[39m[38;5;12m [39m[38;5;12mPrabhu,[39m[38;5;12m [39m[38;5;12mDeshraj[39m[38;5;12m [39m
|
||||
[38;5;12mYadav,[39m[38;5;12m [39m[38;5;12mPrithvijit[39m[38;5;12m [39m[38;5;12mChattopadhyay,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mDevi[39m[38;5;12m [39m[38;5;12mParikh,[39m[38;5;12m [39m[38;5;12mEMNLP,[39m[38;5;12m [39m[38;5;12m2018[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mNeural[0m[38;5;14m[1m [0m[38;5;14m[1mCompositional[0m[38;5;14m[1m [0m[38;5;14m[1mDenotational[0m[38;5;14m[1m [0m[38;5;14m[1mSemantics[0m[38;5;14m[1m [0m[38;5;14m[1mfor[0m[38;5;14m[1m [0m[38;5;14m[1mQuestion[0m[38;5;14m[1m [0m[38;5;14m[1mAnswering[0m[38;5;12m [39m[38;5;12m(https://research.fb.com/publications/neural-compositional-denotational-semantics-for-question-answering/),[39m[38;5;12m [39m[38;5;12mNitish[39m[38;5;12m [39m[38;5;12mGupta,[39m[38;5;12m [39m[38;5;12mMike[39m[38;5;12m [39m[38;5;12mLewis,[39m[38;5;12m [39m[38;5;12mEMNLP,[39m
|
||||
[38;5;12m2018[39m
|
||||
[38;5;12m- 2017[39m
|
||||
[38;5;12m - DrQA [39m
|
||||
[48;5;235m[38;5;249m- **Reading Wikipedia to Answer Open-Domain Questions** (https://cs.stanford.edu/people/danqi/papers/acl2017.pdf), Danqi Chen, Adam Fisch, Jason Weston & Antoine Bordes, ACL, 2017.[49m[39m
|
||||
|
||||
[38;2;255;187;0m[4mBooks[0m
|
||||
[38;5;12m- Natural Language Question Answering system Paperback - Boris Galitsky (2003)[39m
|
||||
[38;5;12m- New Directions in Question Answering - Mark T. Maybury (2004)[39m
|
||||
[38;5;12m- Part 3. 5. Question Answering in The Oxford Handbook of Computational Linguistics - Sanda Harabagiu and Dan Moldovan (2005)[39m
|
||||
[38;5;12m- Chap.28 Question Answering in Speech and Language Processing - Daniel Jurafsky & James H. Martin (2017)[39m
|
||||
|
||||
[38;2;255;187;0m[4mLinks[0m
|
||||
[38;5;12m- [39m[38;5;14m[1mBuilding a Question-Answering System from Scratch— Part 1[0m[38;5;12m (https://towardsdatascience.com/building-a-question-answering-system-part-1-9388aadff507)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mQeustion Answering with Tensorflow By Steven Hewitt, O'REILLY, 2017[0m[38;5;12m (https://www.oreilly.com/ideas/question-answering-with-tensorflow)[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mWhy question answering is hard[0m[38;5;12m (http://nicklothian.com/blog/2014/09/25/why-question-answering-is-hard/)[39m
|
||||
|
||||
|
||||
[38;2;255;187;0m[4mContributing[0m
|
||||
|
||||
[38;5;12mContributions welcome! Read the [39m[38;5;14m[1mcontribution guidelines[0m[38;5;12m (contributing.md) first.[39m
|
||||
|
||||
[38;2;255;187;0m[4mLicense[0m
|
||||
[38;5;14m[1m![0m[38;5;12mCC0[39m[38;5;14m[1m (http://mirrors.creativecommons.org/presskit/buttons/88x31/svg/cc-zero.svg)[0m[38;5;12m (https://creativecommons.org/share-your-work/public-domain/cc0/)[39m
|
||||
|
||||
[38;5;12mTo the extent possible under law, [39m[38;5;14m[1mseriousmac[0m[38;5;12m (https://github.com/seriousmac) (the maintainer) has waived all copyright and related or neighboring rights to this work.[39m
|
||||
Reference in New Issue
Block a user